1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements name lookup for C, C++, Objective-C, and
11 // Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Lookup.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclLookups.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/ModuleLoader.h"
27 #include "clang/Sema/DeclSpec.h"
28 #include "clang/Sema/ExternalSemaSource.h"
29 #include "clang/Sema/Overload.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/ScopeInfo.h"
32 #include "clang/Sema/Sema.h"
33 #include "clang/Sema/SemaInternal.h"
34 #include "clang/Sema/TemplateDeduction.h"
35 #include "clang/Sema/TypoCorrection.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/StringMap.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <limits>
46 #include <list>
47 #include <map>
48 #include <set>
49 #include <utility>
50 #include <vector>
51
52 using namespace clang;
53 using namespace sema;
54
55 namespace {
56 class UnqualUsingEntry {
57 const DeclContext *Nominated;
58 const DeclContext *CommonAncestor;
59
60 public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)61 UnqualUsingEntry(const DeclContext *Nominated,
62 const DeclContext *CommonAncestor)
63 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64 }
65
getCommonAncestor() const66 const DeclContext *getCommonAncestor() const {
67 return CommonAncestor;
68 }
69
getNominatedNamespace() const70 const DeclContext *getNominatedNamespace() const {
71 return Nominated;
72 }
73
74 // Sort by the pointer value of the common ancestor.
75 struct Comparator {
operator ()__anonf7278da80111::UnqualUsingEntry::Comparator76 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77 return L.getCommonAncestor() < R.getCommonAncestor();
78 }
79
operator ()__anonf7278da80111::UnqualUsingEntry::Comparator80 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81 return E.getCommonAncestor() < DC;
82 }
83
operator ()__anonf7278da80111::UnqualUsingEntry::Comparator84 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85 return DC < E.getCommonAncestor();
86 }
87 };
88 };
89
90 /// A collection of using directives, as used by C++ unqualified
91 /// lookup.
92 class UnqualUsingDirectiveSet {
93 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94
95 ListTy list;
96 llvm::SmallPtrSet<DeclContext*, 8> visited;
97
98 public:
UnqualUsingDirectiveSet()99 UnqualUsingDirectiveSet() {}
100
visitScopeChain(Scope * S,Scope * InnermostFileScope)101 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102 // C++ [namespace.udir]p1:
103 // During unqualified name lookup, the names appear as if they
104 // were declared in the nearest enclosing namespace which contains
105 // both the using-directive and the nominated namespace.
106 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
107 assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109 for (; S; S = S->getParent()) {
110 // C++ [namespace.udir]p1:
111 // A using-directive shall not appear in class scope, but may
112 // appear in namespace scope or in block scope.
113 DeclContext *Ctx = S->getEntity();
114 if (Ctx && Ctx->isFileContext()) {
115 visit(Ctx, Ctx);
116 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117 for (auto *I : S->using_directives())
118 visit(I, InnermostFileDC);
119 }
120 }
121 }
122
123 // Visits a context and collect all of its using directives
124 // recursively. Treats all using directives as if they were
125 // declared in the context.
126 //
127 // A given context is only every visited once, so it is important
128 // that contexts be visited from the inside out in order to get
129 // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)130 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
131 if (!visited.insert(DC))
132 return;
133
134 addUsingDirectives(DC, EffectiveDC);
135 }
136
137 // Visits a using directive and collects all of its using
138 // directives recursively. Treats all using directives as if they
139 // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)140 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
141 DeclContext *NS = UD->getNominatedNamespace();
142 if (!visited.insert(NS))
143 return;
144
145 addUsingDirective(UD, EffectiveDC);
146 addUsingDirectives(NS, EffectiveDC);
147 }
148
149 // Adds all the using directives in a context (and those nominated
150 // by its using directives, transitively) as if they appeared in
151 // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)152 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
153 SmallVector<DeclContext*,4> queue;
154 while (true) {
155 for (auto UD : DC->using_directives()) {
156 DeclContext *NS = UD->getNominatedNamespace();
157 if (visited.insert(NS)) {
158 addUsingDirective(UD, EffectiveDC);
159 queue.push_back(NS);
160 }
161 }
162
163 if (queue.empty())
164 return;
165
166 DC = queue.pop_back_val();
167 }
168 }
169
170 // Add a using directive as if it had been declared in the given
171 // context. This helps implement C++ [namespace.udir]p3:
172 // The using-directive is transitive: if a scope contains a
173 // using-directive that nominates a second namespace that itself
174 // contains using-directives, the effect is as if the
175 // using-directives from the second namespace also appeared in
176 // the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)177 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
178 // Find the common ancestor between the effective context and
179 // the nominated namespace.
180 DeclContext *Common = UD->getNominatedNamespace();
181 while (!Common->Encloses(EffectiveDC))
182 Common = Common->getParent();
183 Common = Common->getPrimaryContext();
184
185 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
186 }
187
done()188 void done() {
189 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
190 }
191
192 typedef ListTy::const_iterator const_iterator;
193
begin() const194 const_iterator begin() const { return list.begin(); }
end() const195 const_iterator end() const { return list.end(); }
196
197 std::pair<const_iterator,const_iterator>
getNamespacesFor(DeclContext * DC) const198 getNamespacesFor(DeclContext *DC) const {
199 return std::equal_range(begin(), end(), DC->getPrimaryContext(),
200 UnqualUsingEntry::Comparator());
201 }
202 };
203 }
204
205 // Retrieve the set of identifier namespaces that correspond to a
206 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)207 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
208 bool CPlusPlus,
209 bool Redeclaration) {
210 unsigned IDNS = 0;
211 switch (NameKind) {
212 case Sema::LookupObjCImplicitSelfParam:
213 case Sema::LookupOrdinaryName:
214 case Sema::LookupRedeclarationWithLinkage:
215 case Sema::LookupLocalFriendName:
216 IDNS = Decl::IDNS_Ordinary;
217 if (CPlusPlus) {
218 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
219 if (Redeclaration)
220 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
221 }
222 if (Redeclaration)
223 IDNS |= Decl::IDNS_LocalExtern;
224 break;
225
226 case Sema::LookupOperatorName:
227 // Operator lookup is its own crazy thing; it is not the same
228 // as (e.g.) looking up an operator name for redeclaration.
229 assert(!Redeclaration && "cannot do redeclaration operator lookup");
230 IDNS = Decl::IDNS_NonMemberOperator;
231 break;
232
233 case Sema::LookupTagName:
234 if (CPlusPlus) {
235 IDNS = Decl::IDNS_Type;
236
237 // When looking for a redeclaration of a tag name, we add:
238 // 1) TagFriend to find undeclared friend decls
239 // 2) Namespace because they can't "overload" with tag decls.
240 // 3) Tag because it includes class templates, which can't
241 // "overload" with tag decls.
242 if (Redeclaration)
243 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
244 } else {
245 IDNS = Decl::IDNS_Tag;
246 }
247 break;
248
249 case Sema::LookupLabel:
250 IDNS = Decl::IDNS_Label;
251 break;
252
253 case Sema::LookupMemberName:
254 IDNS = Decl::IDNS_Member;
255 if (CPlusPlus)
256 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
257 break;
258
259 case Sema::LookupNestedNameSpecifierName:
260 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
261 break;
262
263 case Sema::LookupNamespaceName:
264 IDNS = Decl::IDNS_Namespace;
265 break;
266
267 case Sema::LookupUsingDeclName:
268 assert(Redeclaration && "should only be used for redecl lookup");
269 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
270 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
271 Decl::IDNS_LocalExtern;
272 break;
273
274 case Sema::LookupObjCProtocolName:
275 IDNS = Decl::IDNS_ObjCProtocol;
276 break;
277
278 case Sema::LookupAnyName:
279 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
280 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
281 | Decl::IDNS_Type;
282 break;
283 }
284 return IDNS;
285 }
286
configure()287 void LookupResult::configure() {
288 IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
289 isForRedeclaration());
290
291 // If we're looking for one of the allocation or deallocation
292 // operators, make sure that the implicitly-declared new and delete
293 // operators can be found.
294 switch (NameInfo.getName().getCXXOverloadedOperator()) {
295 case OO_New:
296 case OO_Delete:
297 case OO_Array_New:
298 case OO_Array_Delete:
299 SemaRef.DeclareGlobalNewDelete();
300 break;
301
302 default:
303 break;
304 }
305
306 // Compiler builtins are always visible, regardless of where they end
307 // up being declared.
308 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
309 if (unsigned BuiltinID = Id->getBuiltinID()) {
310 if (!SemaRef.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
311 AllowHidden = true;
312 }
313 }
314 }
315
sanity() const316 bool LookupResult::sanity() const {
317 // This function is never called by NDEBUG builds.
318 assert(ResultKind != NotFound || Decls.size() == 0);
319 assert(ResultKind != Found || Decls.size() == 1);
320 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
321 (Decls.size() == 1 &&
322 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
323 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
324 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
325 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
326 Ambiguity == AmbiguousBaseSubobjectTypes)));
327 assert((Paths != nullptr) == (ResultKind == Ambiguous &&
328 (Ambiguity == AmbiguousBaseSubobjectTypes ||
329 Ambiguity == AmbiguousBaseSubobjects)));
330 return true;
331 }
332
333 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)334 void LookupResult::deletePaths(CXXBasePaths *Paths) {
335 delete Paths;
336 }
337
338 /// Get a representative context for a declaration such that two declarations
339 /// will have the same context if they were found within the same scope.
getContextForScopeMatching(Decl * D)340 static DeclContext *getContextForScopeMatching(Decl *D) {
341 // For function-local declarations, use that function as the context. This
342 // doesn't account for scopes within the function; the caller must deal with
343 // those.
344 DeclContext *DC = D->getLexicalDeclContext();
345 if (DC->isFunctionOrMethod())
346 return DC;
347
348 // Otherwise, look at the semantic context of the declaration. The
349 // declaration must have been found there.
350 return D->getDeclContext()->getRedeclContext();
351 }
352
353 /// Resolves the result kind of this lookup.
resolveKind()354 void LookupResult::resolveKind() {
355 unsigned N = Decls.size();
356
357 // Fast case: no possible ambiguity.
358 if (N == 0) {
359 assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
360 return;
361 }
362
363 // If there's a single decl, we need to examine it to decide what
364 // kind of lookup this is.
365 if (N == 1) {
366 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
367 if (isa<FunctionTemplateDecl>(D))
368 ResultKind = FoundOverloaded;
369 else if (isa<UnresolvedUsingValueDecl>(D))
370 ResultKind = FoundUnresolvedValue;
371 return;
372 }
373
374 // Don't do any extra resolution if we've already resolved as ambiguous.
375 if (ResultKind == Ambiguous) return;
376
377 llvm::SmallPtrSet<NamedDecl*, 16> Unique;
378 llvm::SmallPtrSet<QualType, 16> UniqueTypes;
379
380 bool Ambiguous = false;
381 bool HasTag = false, HasFunction = false, HasNonFunction = false;
382 bool HasFunctionTemplate = false, HasUnresolved = false;
383
384 unsigned UniqueTagIndex = 0;
385
386 unsigned I = 0;
387 while (I < N) {
388 NamedDecl *D = Decls[I]->getUnderlyingDecl();
389 D = cast<NamedDecl>(D->getCanonicalDecl());
390
391 // Ignore an invalid declaration unless it's the only one left.
392 if (D->isInvalidDecl() && I < N-1) {
393 Decls[I] = Decls[--N];
394 continue;
395 }
396
397 // Redeclarations of types via typedef can occur both within a scope
398 // and, through using declarations and directives, across scopes. There is
399 // no ambiguity if they all refer to the same type, so unique based on the
400 // canonical type.
401 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
402 if (!TD->getDeclContext()->isRecord()) {
403 QualType T = SemaRef.Context.getTypeDeclType(TD);
404 if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
405 // The type is not unique; pull something off the back and continue
406 // at this index.
407 Decls[I] = Decls[--N];
408 continue;
409 }
410 }
411 }
412
413 if (!Unique.insert(D)) {
414 // If it's not unique, pull something off the back (and
415 // continue at this index).
416 Decls[I] = Decls[--N];
417 continue;
418 }
419
420 // Otherwise, do some decl type analysis and then continue.
421
422 if (isa<UnresolvedUsingValueDecl>(D)) {
423 HasUnresolved = true;
424 } else if (isa<TagDecl>(D)) {
425 if (HasTag)
426 Ambiguous = true;
427 UniqueTagIndex = I;
428 HasTag = true;
429 } else if (isa<FunctionTemplateDecl>(D)) {
430 HasFunction = true;
431 HasFunctionTemplate = true;
432 } else if (isa<FunctionDecl>(D)) {
433 HasFunction = true;
434 } else {
435 if (HasNonFunction)
436 Ambiguous = true;
437 HasNonFunction = true;
438 }
439 I++;
440 }
441
442 // C++ [basic.scope.hiding]p2:
443 // A class name or enumeration name can be hidden by the name of
444 // an object, function, or enumerator declared in the same
445 // scope. If a class or enumeration name and an object, function,
446 // or enumerator are declared in the same scope (in any order)
447 // with the same name, the class or enumeration name is hidden
448 // wherever the object, function, or enumerator name is visible.
449 // But it's still an error if there are distinct tag types found,
450 // even if they're not visible. (ref?)
451 if (HideTags && HasTag && !Ambiguous &&
452 (HasFunction || HasNonFunction || HasUnresolved)) {
453 if (getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
454 getContextForScopeMatching(Decls[UniqueTagIndex ? 0 : N - 1])))
455 Decls[UniqueTagIndex] = Decls[--N];
456 else
457 Ambiguous = true;
458 }
459
460 Decls.set_size(N);
461
462 if (HasNonFunction && (HasFunction || HasUnresolved))
463 Ambiguous = true;
464
465 if (Ambiguous)
466 setAmbiguous(LookupResult::AmbiguousReference);
467 else if (HasUnresolved)
468 ResultKind = LookupResult::FoundUnresolvedValue;
469 else if (N > 1 || HasFunctionTemplate)
470 ResultKind = LookupResult::FoundOverloaded;
471 else
472 ResultKind = LookupResult::Found;
473 }
474
addDeclsFromBasePaths(const CXXBasePaths & P)475 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
476 CXXBasePaths::const_paths_iterator I, E;
477 for (I = P.begin(), E = P.end(); I != E; ++I)
478 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
479 DE = I->Decls.end(); DI != DE; ++DI)
480 addDecl(*DI);
481 }
482
setAmbiguousBaseSubobjects(CXXBasePaths & P)483 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
484 Paths = new CXXBasePaths;
485 Paths->swap(P);
486 addDeclsFromBasePaths(*Paths);
487 resolveKind();
488 setAmbiguous(AmbiguousBaseSubobjects);
489 }
490
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)491 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
492 Paths = new CXXBasePaths;
493 Paths->swap(P);
494 addDeclsFromBasePaths(*Paths);
495 resolveKind();
496 setAmbiguous(AmbiguousBaseSubobjectTypes);
497 }
498
print(raw_ostream & Out)499 void LookupResult::print(raw_ostream &Out) {
500 Out << Decls.size() << " result(s)";
501 if (isAmbiguous()) Out << ", ambiguous";
502 if (Paths) Out << ", base paths present";
503
504 for (iterator I = begin(), E = end(); I != E; ++I) {
505 Out << "\n";
506 (*I)->print(Out, 2);
507 }
508 }
509
510 /// \brief Lookup a builtin function, when name lookup would otherwise
511 /// fail.
LookupBuiltin(Sema & S,LookupResult & R)512 static bool LookupBuiltin(Sema &S, LookupResult &R) {
513 Sema::LookupNameKind NameKind = R.getLookupKind();
514
515 // If we didn't find a use of this identifier, and if the identifier
516 // corresponds to a compiler builtin, create the decl object for the builtin
517 // now, injecting it into translation unit scope, and return it.
518 if (NameKind == Sema::LookupOrdinaryName ||
519 NameKind == Sema::LookupRedeclarationWithLinkage) {
520 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
521 if (II) {
522 if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
523 II == S.getFloat128Identifier()) {
524 // libstdc++4.7's type_traits expects type __float128 to exist, so
525 // insert a dummy type to make that header build in gnu++11 mode.
526 R.addDecl(S.getASTContext().getFloat128StubType());
527 return true;
528 }
529
530 // If this is a builtin on this (or all) targets, create the decl.
531 if (unsigned BuiltinID = II->getBuiltinID()) {
532 // In C++, we don't have any predefined library functions like
533 // 'malloc'. Instead, we'll just error.
534 if (S.getLangOpts().CPlusPlus &&
535 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
536 return false;
537
538 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
539 BuiltinID, S.TUScope,
540 R.isForRedeclaration(),
541 R.getNameLoc())) {
542 R.addDecl(D);
543 return true;
544 }
545 }
546 }
547 }
548
549 return false;
550 }
551
552 /// \brief Determine whether we can declare a special member function within
553 /// the class at this point.
CanDeclareSpecialMemberFunction(const CXXRecordDecl * Class)554 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
555 // We need to have a definition for the class.
556 if (!Class->getDefinition() || Class->isDependentContext())
557 return false;
558
559 // We can't be in the middle of defining the class.
560 return !Class->isBeingDefined();
561 }
562
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)563 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
564 if (!CanDeclareSpecialMemberFunction(Class))
565 return;
566
567 // If the default constructor has not yet been declared, do so now.
568 if (Class->needsImplicitDefaultConstructor())
569 DeclareImplicitDefaultConstructor(Class);
570
571 // If the copy constructor has not yet been declared, do so now.
572 if (Class->needsImplicitCopyConstructor())
573 DeclareImplicitCopyConstructor(Class);
574
575 // If the copy assignment operator has not yet been declared, do so now.
576 if (Class->needsImplicitCopyAssignment())
577 DeclareImplicitCopyAssignment(Class);
578
579 if (getLangOpts().CPlusPlus11) {
580 // If the move constructor has not yet been declared, do so now.
581 if (Class->needsImplicitMoveConstructor())
582 DeclareImplicitMoveConstructor(Class); // might not actually do it
583
584 // If the move assignment operator has not yet been declared, do so now.
585 if (Class->needsImplicitMoveAssignment())
586 DeclareImplicitMoveAssignment(Class); // might not actually do it
587 }
588
589 // If the destructor has not yet been declared, do so now.
590 if (Class->needsImplicitDestructor())
591 DeclareImplicitDestructor(Class);
592 }
593
594 /// \brief Determine whether this is the name of an implicitly-declared
595 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)596 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
597 switch (Name.getNameKind()) {
598 case DeclarationName::CXXConstructorName:
599 case DeclarationName::CXXDestructorName:
600 return true;
601
602 case DeclarationName::CXXOperatorName:
603 return Name.getCXXOverloadedOperator() == OO_Equal;
604
605 default:
606 break;
607 }
608
609 return false;
610 }
611
612 /// \brief If there are any implicit member functions with the given name
613 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,const DeclContext * DC)614 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
615 DeclarationName Name,
616 const DeclContext *DC) {
617 if (!DC)
618 return;
619
620 switch (Name.getNameKind()) {
621 case DeclarationName::CXXConstructorName:
622 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
623 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
624 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
625 if (Record->needsImplicitDefaultConstructor())
626 S.DeclareImplicitDefaultConstructor(Class);
627 if (Record->needsImplicitCopyConstructor())
628 S.DeclareImplicitCopyConstructor(Class);
629 if (S.getLangOpts().CPlusPlus11 &&
630 Record->needsImplicitMoveConstructor())
631 S.DeclareImplicitMoveConstructor(Class);
632 }
633 break;
634
635 case DeclarationName::CXXDestructorName:
636 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
637 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
638 CanDeclareSpecialMemberFunction(Record))
639 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
640 break;
641
642 case DeclarationName::CXXOperatorName:
643 if (Name.getCXXOverloadedOperator() != OO_Equal)
644 break;
645
646 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
647 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
648 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
649 if (Record->needsImplicitCopyAssignment())
650 S.DeclareImplicitCopyAssignment(Class);
651 if (S.getLangOpts().CPlusPlus11 &&
652 Record->needsImplicitMoveAssignment())
653 S.DeclareImplicitMoveAssignment(Class);
654 }
655 }
656 break;
657
658 default:
659 break;
660 }
661 }
662
663 // Adds all qualifying matches for a name within a decl context to the
664 // given lookup result. Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)665 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
666 bool Found = false;
667
668 // Lazily declare C++ special member functions.
669 if (S.getLangOpts().CPlusPlus)
670 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
671
672 // Perform lookup into this declaration context.
673 DeclContext::lookup_const_result DR = DC->lookup(R.getLookupName());
674 for (DeclContext::lookup_const_iterator I = DR.begin(), E = DR.end(); I != E;
675 ++I) {
676 NamedDecl *D = *I;
677 if ((D = R.getAcceptableDecl(D))) {
678 R.addDecl(D);
679 Found = true;
680 }
681 }
682
683 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
684 return true;
685
686 if (R.getLookupName().getNameKind()
687 != DeclarationName::CXXConversionFunctionName ||
688 R.getLookupName().getCXXNameType()->isDependentType() ||
689 !isa<CXXRecordDecl>(DC))
690 return Found;
691
692 // C++ [temp.mem]p6:
693 // A specialization of a conversion function template is not found by
694 // name lookup. Instead, any conversion function templates visible in the
695 // context of the use are considered. [...]
696 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
697 if (!Record->isCompleteDefinition())
698 return Found;
699
700 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
701 UEnd = Record->conversion_end(); U != UEnd; ++U) {
702 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
703 if (!ConvTemplate)
704 continue;
705
706 // When we're performing lookup for the purposes of redeclaration, just
707 // add the conversion function template. When we deduce template
708 // arguments for specializations, we'll end up unifying the return
709 // type of the new declaration with the type of the function template.
710 if (R.isForRedeclaration()) {
711 R.addDecl(ConvTemplate);
712 Found = true;
713 continue;
714 }
715
716 // C++ [temp.mem]p6:
717 // [...] For each such operator, if argument deduction succeeds
718 // (14.9.2.3), the resulting specialization is used as if found by
719 // name lookup.
720 //
721 // When referencing a conversion function for any purpose other than
722 // a redeclaration (such that we'll be building an expression with the
723 // result), perform template argument deduction and place the
724 // specialization into the result set. We do this to avoid forcing all
725 // callers to perform special deduction for conversion functions.
726 TemplateDeductionInfo Info(R.getNameLoc());
727 FunctionDecl *Specialization = nullptr;
728
729 const FunctionProtoType *ConvProto
730 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
731 assert(ConvProto && "Nonsensical conversion function template type");
732
733 // Compute the type of the function that we would expect the conversion
734 // function to have, if it were to match the name given.
735 // FIXME: Calling convention!
736 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
737 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
738 EPI.ExceptionSpecType = EST_None;
739 EPI.NumExceptions = 0;
740 QualType ExpectedType
741 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
742 None, EPI);
743
744 // Perform template argument deduction against the type that we would
745 // expect the function to have.
746 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
747 Specialization, Info)
748 == Sema::TDK_Success) {
749 R.addDecl(Specialization);
750 Found = true;
751 }
752 }
753
754 return Found;
755 }
756
757 // Performs C++ unqualified lookup into the given file context.
758 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)759 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
760 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
761
762 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
763
764 // Perform direct name lookup into the LookupCtx.
765 bool Found = LookupDirect(S, R, NS);
766
767 // Perform direct name lookup into the namespaces nominated by the
768 // using directives whose common ancestor is this namespace.
769 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
770 std::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
771
772 for (; UI != UEnd; ++UI)
773 if (LookupDirect(S, R, UI->getNominatedNamespace()))
774 Found = true;
775
776 R.resolveKind();
777
778 return Found;
779 }
780
isNamespaceOrTranslationUnitScope(Scope * S)781 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
782 if (DeclContext *Ctx = S->getEntity())
783 return Ctx->isFileContext();
784 return false;
785 }
786
787 // Find the next outer declaration context from this scope. This
788 // routine actually returns the semantic outer context, which may
789 // differ from the lexical context (encoded directly in the Scope
790 // stack) when we are parsing a member of a class template. In this
791 // case, the second element of the pair will be true, to indicate that
792 // name lookup should continue searching in this semantic context when
793 // it leaves the current template parameter scope.
findOuterContext(Scope * S)794 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
795 DeclContext *DC = S->getEntity();
796 DeclContext *Lexical = nullptr;
797 for (Scope *OuterS = S->getParent(); OuterS;
798 OuterS = OuterS->getParent()) {
799 if (OuterS->getEntity()) {
800 Lexical = OuterS->getEntity();
801 break;
802 }
803 }
804
805 // C++ [temp.local]p8:
806 // In the definition of a member of a class template that appears
807 // outside of the namespace containing the class template
808 // definition, the name of a template-parameter hides the name of
809 // a member of this namespace.
810 //
811 // Example:
812 //
813 // namespace N {
814 // class C { };
815 //
816 // template<class T> class B {
817 // void f(T);
818 // };
819 // }
820 //
821 // template<class C> void N::B<C>::f(C) {
822 // C b; // C is the template parameter, not N::C
823 // }
824 //
825 // In this example, the lexical context we return is the
826 // TranslationUnit, while the semantic context is the namespace N.
827 if (!Lexical || !DC || !S->getParent() ||
828 !S->getParent()->isTemplateParamScope())
829 return std::make_pair(Lexical, false);
830
831 // Find the outermost template parameter scope.
832 // For the example, this is the scope for the template parameters of
833 // template<class C>.
834 Scope *OutermostTemplateScope = S->getParent();
835 while (OutermostTemplateScope->getParent() &&
836 OutermostTemplateScope->getParent()->isTemplateParamScope())
837 OutermostTemplateScope = OutermostTemplateScope->getParent();
838
839 // Find the namespace context in which the original scope occurs. In
840 // the example, this is namespace N.
841 DeclContext *Semantic = DC;
842 while (!Semantic->isFileContext())
843 Semantic = Semantic->getParent();
844
845 // Find the declaration context just outside of the template
846 // parameter scope. This is the context in which the template is
847 // being lexically declaration (a namespace context). In the
848 // example, this is the global scope.
849 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
850 Lexical->Encloses(Semantic))
851 return std::make_pair(Semantic, true);
852
853 return std::make_pair(Lexical, false);
854 }
855
856 namespace {
857 /// An RAII object to specify that we want to find block scope extern
858 /// declarations.
859 struct FindLocalExternScope {
FindLocalExternScope__anonf7278da80211::FindLocalExternScope860 FindLocalExternScope(LookupResult &R)
861 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
862 Decl::IDNS_LocalExtern) {
863 R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
864 }
restore__anonf7278da80211::FindLocalExternScope865 void restore() {
866 R.setFindLocalExtern(OldFindLocalExtern);
867 }
~FindLocalExternScope__anonf7278da80211::FindLocalExternScope868 ~FindLocalExternScope() {
869 restore();
870 }
871 LookupResult &R;
872 bool OldFindLocalExtern;
873 };
874 }
875
CppLookupName(LookupResult & R,Scope * S)876 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
877 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
878
879 DeclarationName Name = R.getLookupName();
880 Sema::LookupNameKind NameKind = R.getLookupKind();
881
882 // If this is the name of an implicitly-declared special member function,
883 // go through the scope stack to implicitly declare
884 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
885 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
886 if (DeclContext *DC = PreS->getEntity())
887 DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
888 }
889
890 // Implicitly declare member functions with the name we're looking for, if in
891 // fact we are in a scope where it matters.
892
893 Scope *Initial = S;
894 IdentifierResolver::iterator
895 I = IdResolver.begin(Name),
896 IEnd = IdResolver.end();
897
898 // First we lookup local scope.
899 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
900 // ...During unqualified name lookup (3.4.1), the names appear as if
901 // they were declared in the nearest enclosing namespace which contains
902 // both the using-directive and the nominated namespace.
903 // [Note: in this context, "contains" means "contains directly or
904 // indirectly".
905 //
906 // For example:
907 // namespace A { int i; }
908 // void foo() {
909 // int i;
910 // {
911 // using namespace A;
912 // ++i; // finds local 'i', A::i appears at global scope
913 // }
914 // }
915 //
916 UnqualUsingDirectiveSet UDirs;
917 bool VisitedUsingDirectives = false;
918 bool LeftStartingScope = false;
919 DeclContext *OutsideOfTemplateParamDC = nullptr;
920
921 // When performing a scope lookup, we want to find local extern decls.
922 FindLocalExternScope FindLocals(R);
923
924 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
925 DeclContext *Ctx = S->getEntity();
926
927 // Check whether the IdResolver has anything in this scope.
928 bool Found = false;
929 for (; I != IEnd && S->isDeclScope(*I); ++I) {
930 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
931 if (NameKind == LookupRedeclarationWithLinkage) {
932 // Determine whether this (or a previous) declaration is
933 // out-of-scope.
934 if (!LeftStartingScope && !Initial->isDeclScope(*I))
935 LeftStartingScope = true;
936
937 // If we found something outside of our starting scope that
938 // does not have linkage, skip it. If it's a template parameter,
939 // we still find it, so we can diagnose the invalid redeclaration.
940 if (LeftStartingScope && !((*I)->hasLinkage()) &&
941 !(*I)->isTemplateParameter()) {
942 R.setShadowed();
943 continue;
944 }
945 }
946
947 Found = true;
948 R.addDecl(ND);
949 }
950 }
951 if (Found) {
952 R.resolveKind();
953 if (S->isClassScope())
954 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
955 R.setNamingClass(Record);
956 return true;
957 }
958
959 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
960 // C++11 [class.friend]p11:
961 // If a friend declaration appears in a local class and the name
962 // specified is an unqualified name, a prior declaration is
963 // looked up without considering scopes that are outside the
964 // innermost enclosing non-class scope.
965 return false;
966 }
967
968 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
969 S->getParent() && !S->getParent()->isTemplateParamScope()) {
970 // We've just searched the last template parameter scope and
971 // found nothing, so look into the contexts between the
972 // lexical and semantic declaration contexts returned by
973 // findOuterContext(). This implements the name lookup behavior
974 // of C++ [temp.local]p8.
975 Ctx = OutsideOfTemplateParamDC;
976 OutsideOfTemplateParamDC = nullptr;
977 }
978
979 if (Ctx) {
980 DeclContext *OuterCtx;
981 bool SearchAfterTemplateScope;
982 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
983 if (SearchAfterTemplateScope)
984 OutsideOfTemplateParamDC = OuterCtx;
985
986 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
987 // We do not directly look into transparent contexts, since
988 // those entities will be found in the nearest enclosing
989 // non-transparent context.
990 if (Ctx->isTransparentContext())
991 continue;
992
993 // We do not look directly into function or method contexts,
994 // since all of the local variables and parameters of the
995 // function/method are present within the Scope.
996 if (Ctx->isFunctionOrMethod()) {
997 // If we have an Objective-C instance method, look for ivars
998 // in the corresponding interface.
999 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1000 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1001 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1002 ObjCInterfaceDecl *ClassDeclared;
1003 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1004 Name.getAsIdentifierInfo(),
1005 ClassDeclared)) {
1006 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1007 R.addDecl(ND);
1008 R.resolveKind();
1009 return true;
1010 }
1011 }
1012 }
1013 }
1014
1015 continue;
1016 }
1017
1018 // If this is a file context, we need to perform unqualified name
1019 // lookup considering using directives.
1020 if (Ctx->isFileContext()) {
1021 // If we haven't handled using directives yet, do so now.
1022 if (!VisitedUsingDirectives) {
1023 // Add using directives from this context up to the top level.
1024 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1025 if (UCtx->isTransparentContext())
1026 continue;
1027
1028 UDirs.visit(UCtx, UCtx);
1029 }
1030
1031 // Find the innermost file scope, so we can add using directives
1032 // from local scopes.
1033 Scope *InnermostFileScope = S;
1034 while (InnermostFileScope &&
1035 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1036 InnermostFileScope = InnermostFileScope->getParent();
1037 UDirs.visitScopeChain(Initial, InnermostFileScope);
1038
1039 UDirs.done();
1040
1041 VisitedUsingDirectives = true;
1042 }
1043
1044 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1045 R.resolveKind();
1046 return true;
1047 }
1048
1049 continue;
1050 }
1051
1052 // Perform qualified name lookup into this context.
1053 // FIXME: In some cases, we know that every name that could be found by
1054 // this qualified name lookup will also be on the identifier chain. For
1055 // example, inside a class without any base classes, we never need to
1056 // perform qualified lookup because all of the members are on top of the
1057 // identifier chain.
1058 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1059 return true;
1060 }
1061 }
1062 }
1063
1064 // Stop if we ran out of scopes.
1065 // FIXME: This really, really shouldn't be happening.
1066 if (!S) return false;
1067
1068 // If we are looking for members, no need to look into global/namespace scope.
1069 if (NameKind == LookupMemberName)
1070 return false;
1071
1072 // Collect UsingDirectiveDecls in all scopes, and recursively all
1073 // nominated namespaces by those using-directives.
1074 //
1075 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1076 // don't build it for each lookup!
1077 if (!VisitedUsingDirectives) {
1078 UDirs.visitScopeChain(Initial, S);
1079 UDirs.done();
1080 }
1081
1082 // If we're not performing redeclaration lookup, do not look for local
1083 // extern declarations outside of a function scope.
1084 if (!R.isForRedeclaration())
1085 FindLocals.restore();
1086
1087 // Lookup namespace scope, and global scope.
1088 // Unqualified name lookup in C++ requires looking into scopes
1089 // that aren't strictly lexical, and therefore we walk through the
1090 // context as well as walking through the scopes.
1091 for (; S; S = S->getParent()) {
1092 // Check whether the IdResolver has anything in this scope.
1093 bool Found = false;
1094 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1095 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1096 // We found something. Look for anything else in our scope
1097 // with this same name and in an acceptable identifier
1098 // namespace, so that we can construct an overload set if we
1099 // need to.
1100 Found = true;
1101 R.addDecl(ND);
1102 }
1103 }
1104
1105 if (Found && S->isTemplateParamScope()) {
1106 R.resolveKind();
1107 return true;
1108 }
1109
1110 DeclContext *Ctx = S->getEntity();
1111 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1112 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1113 // We've just searched the last template parameter scope and
1114 // found nothing, so look into the contexts between the
1115 // lexical and semantic declaration contexts returned by
1116 // findOuterContext(). This implements the name lookup behavior
1117 // of C++ [temp.local]p8.
1118 Ctx = OutsideOfTemplateParamDC;
1119 OutsideOfTemplateParamDC = nullptr;
1120 }
1121
1122 if (Ctx) {
1123 DeclContext *OuterCtx;
1124 bool SearchAfterTemplateScope;
1125 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1126 if (SearchAfterTemplateScope)
1127 OutsideOfTemplateParamDC = OuterCtx;
1128
1129 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1130 // We do not directly look into transparent contexts, since
1131 // those entities will be found in the nearest enclosing
1132 // non-transparent context.
1133 if (Ctx->isTransparentContext())
1134 continue;
1135
1136 // If we have a context, and it's not a context stashed in the
1137 // template parameter scope for an out-of-line definition, also
1138 // look into that context.
1139 if (!(Found && S && S->isTemplateParamScope())) {
1140 assert(Ctx->isFileContext() &&
1141 "We should have been looking only at file context here already.");
1142
1143 // Look into context considering using-directives.
1144 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1145 Found = true;
1146 }
1147
1148 if (Found) {
1149 R.resolveKind();
1150 return true;
1151 }
1152
1153 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1154 return false;
1155 }
1156 }
1157
1158 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1159 return false;
1160 }
1161
1162 return !R.empty();
1163 }
1164
1165 /// \brief Find the declaration that a class temploid member specialization was
1166 /// instantiated from, or the member itself if it is an explicit specialization.
getInstantiatedFrom(Decl * D,MemberSpecializationInfo * MSInfo)1167 static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
1168 return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
1169 }
1170
1171 /// \brief Find the module in which the given declaration was defined.
getDefiningModule(Decl * Entity)1172 static Module *getDefiningModule(Decl *Entity) {
1173 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1174 // If this function was instantiated from a template, the defining module is
1175 // the module containing the pattern.
1176 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1177 Entity = Pattern;
1178 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1179 // If it's a class template specialization, find the template or partial
1180 // specialization from which it was instantiated.
1181 if (ClassTemplateSpecializationDecl *SpecRD =
1182 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1183 llvm::PointerUnion<ClassTemplateDecl*,
1184 ClassTemplatePartialSpecializationDecl*> From =
1185 SpecRD->getInstantiatedFrom();
1186 if (ClassTemplateDecl *FromTemplate = From.dyn_cast<ClassTemplateDecl*>())
1187 Entity = FromTemplate->getTemplatedDecl();
1188 else if (From)
1189 Entity = From.get<ClassTemplatePartialSpecializationDecl*>();
1190 // Otherwise, it's an explicit specialization.
1191 } else if (MemberSpecializationInfo *MSInfo =
1192 RD->getMemberSpecializationInfo())
1193 Entity = getInstantiatedFrom(RD, MSInfo);
1194 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1195 if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
1196 Entity = getInstantiatedFrom(ED, MSInfo);
1197 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1198 // FIXME: Map from variable template specializations back to the template.
1199 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
1200 Entity = getInstantiatedFrom(VD, MSInfo);
1201 }
1202
1203 // Walk up to the containing context. That might also have been instantiated
1204 // from a template.
1205 DeclContext *Context = Entity->getDeclContext();
1206 if (Context->isFileContext())
1207 return Entity->getOwningModule();
1208 return getDefiningModule(cast<Decl>(Context));
1209 }
1210
getLookupModules()1211 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1212 unsigned N = ActiveTemplateInstantiations.size();
1213 for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
1214 I != N; ++I) {
1215 Module *M = getDefiningModule(ActiveTemplateInstantiations[I].Entity);
1216 if (M && !LookupModulesCache.insert(M).second)
1217 M = nullptr;
1218 ActiveTemplateInstantiationLookupModules.push_back(M);
1219 }
1220 return LookupModulesCache;
1221 }
1222
1223 /// \brief Determine whether a declaration is visible to name lookup.
1224 ///
1225 /// This routine determines whether the declaration D is visible in the current
1226 /// lookup context, taking into account the current template instantiation
1227 /// stack. During template instantiation, a declaration is visible if it is
1228 /// visible from a module containing any entity on the template instantiation
1229 /// path (by instantiating a template, you allow it to see the declarations that
1230 /// your module can see, including those later on in your module).
isVisibleSlow(Sema & SemaRef,NamedDecl * D)1231 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1232 assert(D->isHidden() && !SemaRef.ActiveTemplateInstantiations.empty() &&
1233 "should not call this: not in slow case");
1234 Module *DeclModule = D->getOwningModule();
1235 assert(DeclModule && "hidden decl not from a module");
1236
1237 // Find the extra places where we need to look.
1238 llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1239 if (LookupModules.empty())
1240 return false;
1241
1242 // If our lookup set contains the decl's module, it's visible.
1243 if (LookupModules.count(DeclModule))
1244 return true;
1245
1246 // If the declaration isn't exported, it's not visible in any other module.
1247 if (D->isModulePrivate())
1248 return false;
1249
1250 // Check whether DeclModule is transitively exported to an import of
1251 // the lookup set.
1252 for (llvm::DenseSet<Module *>::iterator I = LookupModules.begin(),
1253 E = LookupModules.end();
1254 I != E; ++I)
1255 if ((*I)->isModuleVisible(DeclModule))
1256 return true;
1257 return false;
1258 }
1259
1260 /// \brief Retrieve the visible declaration corresponding to D, if any.
1261 ///
1262 /// This routine determines whether the declaration D is visible in the current
1263 /// module, with the current imports. If not, it checks whether any
1264 /// redeclaration of D is visible, and if so, returns that declaration.
1265 ///
1266 /// \returns D, or a visible previous declaration of D, whichever is more recent
1267 /// and visible. If no declaration of D is visible, returns null.
findAcceptableDecl(Sema & SemaRef,NamedDecl * D)1268 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
1269 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1270
1271 for (auto RD : D->redecls()) {
1272 if (auto ND = dyn_cast<NamedDecl>(RD)) {
1273 if (LookupResult::isVisible(SemaRef, ND))
1274 return ND;
1275 }
1276 }
1277
1278 return nullptr;
1279 }
1280
getAcceptableDeclSlow(NamedDecl * D) const1281 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1282 return findAcceptableDecl(SemaRef, D);
1283 }
1284
1285 /// @brief Perform unqualified name lookup starting from a given
1286 /// scope.
1287 ///
1288 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1289 /// used to find names within the current scope. For example, 'x' in
1290 /// @code
1291 /// int x;
1292 /// int f() {
1293 /// return x; // unqualified name look finds 'x' in the global scope
1294 /// }
1295 /// @endcode
1296 ///
1297 /// Different lookup criteria can find different names. For example, a
1298 /// particular scope can have both a struct and a function of the same
1299 /// name, and each can be found by certain lookup criteria. For more
1300 /// information about lookup criteria, see the documentation for the
1301 /// class LookupCriteria.
1302 ///
1303 /// @param S The scope from which unqualified name lookup will
1304 /// begin. If the lookup criteria permits, name lookup may also search
1305 /// in the parent scopes.
1306 ///
1307 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1308 /// look up and the lookup kind), and is updated with the results of lookup
1309 /// including zero or more declarations and possibly additional information
1310 /// used to diagnose ambiguities.
1311 ///
1312 /// @returns \c true if lookup succeeded and false otherwise.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1313 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1314 DeclarationName Name = R.getLookupName();
1315 if (!Name) return false;
1316
1317 LookupNameKind NameKind = R.getLookupKind();
1318
1319 if (!getLangOpts().CPlusPlus) {
1320 // Unqualified name lookup in C/Objective-C is purely lexical, so
1321 // search in the declarations attached to the name.
1322 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1323 // Find the nearest non-transparent declaration scope.
1324 while (!(S->getFlags() & Scope::DeclScope) ||
1325 (S->getEntity() && S->getEntity()->isTransparentContext()))
1326 S = S->getParent();
1327 }
1328
1329 // When performing a scope lookup, we want to find local extern decls.
1330 FindLocalExternScope FindLocals(R);
1331
1332 // Scan up the scope chain looking for a decl that matches this
1333 // identifier that is in the appropriate namespace. This search
1334 // should not take long, as shadowing of names is uncommon, and
1335 // deep shadowing is extremely uncommon.
1336 bool LeftStartingScope = false;
1337
1338 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1339 IEnd = IdResolver.end();
1340 I != IEnd; ++I)
1341 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1342 if (NameKind == LookupRedeclarationWithLinkage) {
1343 // Determine whether this (or a previous) declaration is
1344 // out-of-scope.
1345 if (!LeftStartingScope && !S->isDeclScope(*I))
1346 LeftStartingScope = true;
1347
1348 // If we found something outside of our starting scope that
1349 // does not have linkage, skip it.
1350 if (LeftStartingScope && !((*I)->hasLinkage())) {
1351 R.setShadowed();
1352 continue;
1353 }
1354 }
1355 else if (NameKind == LookupObjCImplicitSelfParam &&
1356 !isa<ImplicitParamDecl>(*I))
1357 continue;
1358
1359 R.addDecl(D);
1360
1361 // Check whether there are any other declarations with the same name
1362 // and in the same scope.
1363 if (I != IEnd) {
1364 // Find the scope in which this declaration was declared (if it
1365 // actually exists in a Scope).
1366 while (S && !S->isDeclScope(D))
1367 S = S->getParent();
1368
1369 // If the scope containing the declaration is the translation unit,
1370 // then we'll need to perform our checks based on the matching
1371 // DeclContexts rather than matching scopes.
1372 if (S && isNamespaceOrTranslationUnitScope(S))
1373 S = nullptr;
1374
1375 // Compute the DeclContext, if we need it.
1376 DeclContext *DC = nullptr;
1377 if (!S)
1378 DC = (*I)->getDeclContext()->getRedeclContext();
1379
1380 IdentifierResolver::iterator LastI = I;
1381 for (++LastI; LastI != IEnd; ++LastI) {
1382 if (S) {
1383 // Match based on scope.
1384 if (!S->isDeclScope(*LastI))
1385 break;
1386 } else {
1387 // Match based on DeclContext.
1388 DeclContext *LastDC
1389 = (*LastI)->getDeclContext()->getRedeclContext();
1390 if (!LastDC->Equals(DC))
1391 break;
1392 }
1393
1394 // If the declaration is in the right namespace and visible, add it.
1395 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1396 R.addDecl(LastD);
1397 }
1398
1399 R.resolveKind();
1400 }
1401
1402 return true;
1403 }
1404 } else {
1405 // Perform C++ unqualified name lookup.
1406 if (CppLookupName(R, S))
1407 return true;
1408 }
1409
1410 // If we didn't find a use of this identifier, and if the identifier
1411 // corresponds to a compiler builtin, create the decl object for the builtin
1412 // now, injecting it into translation unit scope, and return it.
1413 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1414 return true;
1415
1416 // If we didn't find a use of this identifier, the ExternalSource
1417 // may be able to handle the situation.
1418 // Note: some lookup failures are expected!
1419 // See e.g. R.isForRedeclaration().
1420 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1421 }
1422
1423 /// @brief Perform qualified name lookup in the namespaces nominated by
1424 /// using directives by the given context.
1425 ///
1426 /// C++98 [namespace.qual]p2:
1427 /// Given X::m (where X is a user-declared namespace), or given \::m
1428 /// (where X is the global namespace), let S be the set of all
1429 /// declarations of m in X and in the transitive closure of all
1430 /// namespaces nominated by using-directives in X and its used
1431 /// namespaces, except that using-directives are ignored in any
1432 /// namespace, including X, directly containing one or more
1433 /// declarations of m. No namespace is searched more than once in
1434 /// the lookup of a name. If S is the empty set, the program is
1435 /// ill-formed. Otherwise, if S has exactly one member, or if the
1436 /// context of the reference is a using-declaration
1437 /// (namespace.udecl), S is the required set of declarations of
1438 /// m. Otherwise if the use of m is not one that allows a unique
1439 /// declaration to be chosen from S, the program is ill-formed.
1440 ///
1441 /// C++98 [namespace.qual]p5:
1442 /// During the lookup of a qualified namespace member name, if the
1443 /// lookup finds more than one declaration of the member, and if one
1444 /// declaration introduces a class name or enumeration name and the
1445 /// other declarations either introduce the same object, the same
1446 /// enumerator or a set of functions, the non-type name hides the
1447 /// class or enumeration name if and only if the declarations are
1448 /// from the same namespace; otherwise (the declarations are from
1449 /// different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)1450 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1451 DeclContext *StartDC) {
1452 assert(StartDC->isFileContext() && "start context is not a file context");
1453
1454 DeclContext::udir_range UsingDirectives = StartDC->using_directives();
1455 if (UsingDirectives.begin() == UsingDirectives.end()) return false;
1456
1457 // We have at least added all these contexts to the queue.
1458 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1459 Visited.insert(StartDC);
1460
1461 // We have not yet looked into these namespaces, much less added
1462 // their "using-children" to the queue.
1463 SmallVector<NamespaceDecl*, 8> Queue;
1464
1465 // We have already looked into the initial namespace; seed the queue
1466 // with its using-children.
1467 for (auto *I : UsingDirectives) {
1468 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1469 if (Visited.insert(ND))
1470 Queue.push_back(ND);
1471 }
1472
1473 // The easiest way to implement the restriction in [namespace.qual]p5
1474 // is to check whether any of the individual results found a tag
1475 // and, if so, to declare an ambiguity if the final result is not
1476 // a tag.
1477 bool FoundTag = false;
1478 bool FoundNonTag = false;
1479
1480 LookupResult LocalR(LookupResult::Temporary, R);
1481
1482 bool Found = false;
1483 while (!Queue.empty()) {
1484 NamespaceDecl *ND = Queue.pop_back_val();
1485
1486 // We go through some convolutions here to avoid copying results
1487 // between LookupResults.
1488 bool UseLocal = !R.empty();
1489 LookupResult &DirectR = UseLocal ? LocalR : R;
1490 bool FoundDirect = LookupDirect(S, DirectR, ND);
1491
1492 if (FoundDirect) {
1493 // First do any local hiding.
1494 DirectR.resolveKind();
1495
1496 // If the local result is a tag, remember that.
1497 if (DirectR.isSingleTagDecl())
1498 FoundTag = true;
1499 else
1500 FoundNonTag = true;
1501
1502 // Append the local results to the total results if necessary.
1503 if (UseLocal) {
1504 R.addAllDecls(LocalR);
1505 LocalR.clear();
1506 }
1507 }
1508
1509 // If we find names in this namespace, ignore its using directives.
1510 if (FoundDirect) {
1511 Found = true;
1512 continue;
1513 }
1514
1515 for (auto I : ND->using_directives()) {
1516 NamespaceDecl *Nom = I->getNominatedNamespace();
1517 if (Visited.insert(Nom))
1518 Queue.push_back(Nom);
1519 }
1520 }
1521
1522 if (Found) {
1523 if (FoundTag && FoundNonTag)
1524 R.setAmbiguousQualifiedTagHiding();
1525 else
1526 R.resolveKind();
1527 }
1528
1529 return Found;
1530 }
1531
1532 /// \brief Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)1533 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1534 CXXBasePath &Path,
1535 void *Name) {
1536 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1537
1538 DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1539 Path.Decls = BaseRecord->lookup(N);
1540 return !Path.Decls.empty();
1541 }
1542
1543 /// \brief Determine whether the given set of member declarations contains only
1544 /// static members, nested types, and enumerators.
1545 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)1546 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1547 Decl *D = (*First)->getUnderlyingDecl();
1548 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1549 return true;
1550
1551 if (isa<CXXMethodDecl>(D)) {
1552 // Determine whether all of the methods are static.
1553 bool AllMethodsAreStatic = true;
1554 for(; First != Last; ++First) {
1555 D = (*First)->getUnderlyingDecl();
1556
1557 if (!isa<CXXMethodDecl>(D)) {
1558 assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1559 break;
1560 }
1561
1562 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1563 AllMethodsAreStatic = false;
1564 break;
1565 }
1566 }
1567
1568 if (AllMethodsAreStatic)
1569 return true;
1570 }
1571
1572 return false;
1573 }
1574
1575 /// \brief Perform qualified name lookup into a given context.
1576 ///
1577 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1578 /// names when the context of those names is explicit specified, e.g.,
1579 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1580 ///
1581 /// Different lookup criteria can find different names. For example, a
1582 /// particular scope can have both a struct and a function of the same
1583 /// name, and each can be found by certain lookup criteria. For more
1584 /// information about lookup criteria, see the documentation for the
1585 /// class LookupCriteria.
1586 ///
1587 /// \param R captures both the lookup criteria and any lookup results found.
1588 ///
1589 /// \param LookupCtx The context in which qualified name lookup will
1590 /// search. If the lookup criteria permits, name lookup may also search
1591 /// in the parent contexts or (for C++ classes) base classes.
1592 ///
1593 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1594 /// occurs as part of unqualified name lookup.
1595 ///
1596 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)1597 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1598 bool InUnqualifiedLookup) {
1599 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1600
1601 if (!R.getLookupName())
1602 return false;
1603
1604 // Make sure that the declaration context is complete.
1605 assert((!isa<TagDecl>(LookupCtx) ||
1606 LookupCtx->isDependentContext() ||
1607 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1608 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1609 "Declaration context must already be complete!");
1610
1611 // Perform qualified name lookup into the LookupCtx.
1612 if (LookupDirect(*this, R, LookupCtx)) {
1613 R.resolveKind();
1614 if (isa<CXXRecordDecl>(LookupCtx))
1615 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1616 return true;
1617 }
1618
1619 // Don't descend into implied contexts for redeclarations.
1620 // C++98 [namespace.qual]p6:
1621 // In a declaration for a namespace member in which the
1622 // declarator-id is a qualified-id, given that the qualified-id
1623 // for the namespace member has the form
1624 // nested-name-specifier unqualified-id
1625 // the unqualified-id shall name a member of the namespace
1626 // designated by the nested-name-specifier.
1627 // See also [class.mfct]p5 and [class.static.data]p2.
1628 if (R.isForRedeclaration())
1629 return false;
1630
1631 // If this is a namespace, look it up in the implied namespaces.
1632 if (LookupCtx->isFileContext())
1633 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1634
1635 // If this isn't a C++ class, we aren't allowed to look into base
1636 // classes, we're done.
1637 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1638 if (!LookupRec || !LookupRec->getDefinition())
1639 return false;
1640
1641 // If we're performing qualified name lookup into a dependent class,
1642 // then we are actually looking into a current instantiation. If we have any
1643 // dependent base classes, then we either have to delay lookup until
1644 // template instantiation time (at which point all bases will be available)
1645 // or we have to fail.
1646 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1647 LookupRec->hasAnyDependentBases()) {
1648 R.setNotFoundInCurrentInstantiation();
1649 return false;
1650 }
1651
1652 // Perform lookup into our base classes.
1653 CXXBasePaths Paths;
1654 Paths.setOrigin(LookupRec);
1655
1656 // Look for this member in our base classes
1657 CXXRecordDecl::BaseMatchesCallback *BaseCallback = nullptr;
1658 switch (R.getLookupKind()) {
1659 case LookupObjCImplicitSelfParam:
1660 case LookupOrdinaryName:
1661 case LookupMemberName:
1662 case LookupRedeclarationWithLinkage:
1663 case LookupLocalFriendName:
1664 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1665 break;
1666
1667 case LookupTagName:
1668 BaseCallback = &CXXRecordDecl::FindTagMember;
1669 break;
1670
1671 case LookupAnyName:
1672 BaseCallback = &LookupAnyMember;
1673 break;
1674
1675 case LookupUsingDeclName:
1676 // This lookup is for redeclarations only.
1677
1678 case LookupOperatorName:
1679 case LookupNamespaceName:
1680 case LookupObjCProtocolName:
1681 case LookupLabel:
1682 // These lookups will never find a member in a C++ class (or base class).
1683 return false;
1684
1685 case LookupNestedNameSpecifierName:
1686 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1687 break;
1688 }
1689
1690 if (!LookupRec->lookupInBases(BaseCallback,
1691 R.getLookupName().getAsOpaquePtr(), Paths))
1692 return false;
1693
1694 R.setNamingClass(LookupRec);
1695
1696 // C++ [class.member.lookup]p2:
1697 // [...] If the resulting set of declarations are not all from
1698 // sub-objects of the same type, or the set has a nonstatic member
1699 // and includes members from distinct sub-objects, there is an
1700 // ambiguity and the program is ill-formed. Otherwise that set is
1701 // the result of the lookup.
1702 QualType SubobjectType;
1703 int SubobjectNumber = 0;
1704 AccessSpecifier SubobjectAccess = AS_none;
1705
1706 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1707 Path != PathEnd; ++Path) {
1708 const CXXBasePathElement &PathElement = Path->back();
1709
1710 // Pick the best (i.e. most permissive i.e. numerically lowest) access
1711 // across all paths.
1712 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1713
1714 // Determine whether we're looking at a distinct sub-object or not.
1715 if (SubobjectType.isNull()) {
1716 // This is the first subobject we've looked at. Record its type.
1717 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1718 SubobjectNumber = PathElement.SubobjectNumber;
1719 continue;
1720 }
1721
1722 if (SubobjectType
1723 != Context.getCanonicalType(PathElement.Base->getType())) {
1724 // We found members of the given name in two subobjects of
1725 // different types. If the declaration sets aren't the same, this
1726 // lookup is ambiguous.
1727 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
1728 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1729 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
1730 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
1731
1732 while (FirstD != FirstPath->Decls.end() &&
1733 CurrentD != Path->Decls.end()) {
1734 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1735 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1736 break;
1737
1738 ++FirstD;
1739 ++CurrentD;
1740 }
1741
1742 if (FirstD == FirstPath->Decls.end() &&
1743 CurrentD == Path->Decls.end())
1744 continue;
1745 }
1746
1747 R.setAmbiguousBaseSubobjectTypes(Paths);
1748 return true;
1749 }
1750
1751 if (SubobjectNumber != PathElement.SubobjectNumber) {
1752 // We have a different subobject of the same type.
1753
1754 // C++ [class.member.lookup]p5:
1755 // A static member, a nested type or an enumerator defined in
1756 // a base class T can unambiguously be found even if an object
1757 // has more than one base class subobject of type T.
1758 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
1759 continue;
1760
1761 // We have found a nonstatic member name in multiple, distinct
1762 // subobjects. Name lookup is ambiguous.
1763 R.setAmbiguousBaseSubobjects(Paths);
1764 return true;
1765 }
1766 }
1767
1768 // Lookup in a base class succeeded; return these results.
1769
1770 DeclContext::lookup_result DR = Paths.front().Decls;
1771 for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E; ++I) {
1772 NamedDecl *D = *I;
1773 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1774 D->getAccess());
1775 R.addDecl(D, AS);
1776 }
1777 R.resolveKind();
1778 return true;
1779 }
1780
1781 /// @brief Performs name lookup for a name that was parsed in the
1782 /// source code, and may contain a C++ scope specifier.
1783 ///
1784 /// This routine is a convenience routine meant to be called from
1785 /// contexts that receive a name and an optional C++ scope specifier
1786 /// (e.g., "N::M::x"). It will then perform either qualified or
1787 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1788 /// respectively) on the given name and return those results.
1789 ///
1790 /// @param S The scope from which unqualified name lookup will
1791 /// begin.
1792 ///
1793 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
1794 ///
1795 /// @param EnteringContext Indicates whether we are going to enter the
1796 /// context of the scope-specifier SS (if present).
1797 ///
1798 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)1799 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1800 bool AllowBuiltinCreation, bool EnteringContext) {
1801 if (SS && SS->isInvalid()) {
1802 // When the scope specifier is invalid, don't even look for
1803 // anything.
1804 return false;
1805 }
1806
1807 if (SS && SS->isSet()) {
1808 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1809 // We have resolved the scope specifier to a particular declaration
1810 // contex, and will perform name lookup in that context.
1811 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1812 return false;
1813
1814 R.setContextRange(SS->getRange());
1815 return LookupQualifiedName(R, DC);
1816 }
1817
1818 // We could not resolve the scope specified to a specific declaration
1819 // context, which means that SS refers to an unknown specialization.
1820 // Name lookup can't find anything in this case.
1821 R.setNotFoundInCurrentInstantiation();
1822 R.setContextRange(SS->getRange());
1823 return false;
1824 }
1825
1826 // Perform unqualified name lookup starting in the given scope.
1827 return LookupName(R, S, AllowBuiltinCreation);
1828 }
1829
1830
1831 /// \brief Produce a diagnostic describing the ambiguity that resulted
1832 /// from name lookup.
1833 ///
1834 /// \param Result The result of the ambiguous lookup to be diagnosed.
DiagnoseAmbiguousLookup(LookupResult & Result)1835 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1836 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1837
1838 DeclarationName Name = Result.getLookupName();
1839 SourceLocation NameLoc = Result.getNameLoc();
1840 SourceRange LookupRange = Result.getContextRange();
1841
1842 switch (Result.getAmbiguityKind()) {
1843 case LookupResult::AmbiguousBaseSubobjects: {
1844 CXXBasePaths *Paths = Result.getBasePaths();
1845 QualType SubobjectType = Paths->front().back().Base->getType();
1846 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1847 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1848 << LookupRange;
1849
1850 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
1851 while (isa<CXXMethodDecl>(*Found) &&
1852 cast<CXXMethodDecl>(*Found)->isStatic())
1853 ++Found;
1854
1855 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1856 break;
1857 }
1858
1859 case LookupResult::AmbiguousBaseSubobjectTypes: {
1860 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1861 << Name << LookupRange;
1862
1863 CXXBasePaths *Paths = Result.getBasePaths();
1864 std::set<Decl *> DeclsPrinted;
1865 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1866 PathEnd = Paths->end();
1867 Path != PathEnd; ++Path) {
1868 Decl *D = Path->Decls.front();
1869 if (DeclsPrinted.insert(D).second)
1870 Diag(D->getLocation(), diag::note_ambiguous_member_found);
1871 }
1872 break;
1873 }
1874
1875 case LookupResult::AmbiguousTagHiding: {
1876 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1877
1878 llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1879
1880 LookupResult::iterator DI, DE = Result.end();
1881 for (DI = Result.begin(); DI != DE; ++DI)
1882 if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1883 TagDecls.insert(TD);
1884 Diag(TD->getLocation(), diag::note_hidden_tag);
1885 }
1886
1887 for (DI = Result.begin(); DI != DE; ++DI)
1888 if (!isa<TagDecl>(*DI))
1889 Diag((*DI)->getLocation(), diag::note_hiding_object);
1890
1891 // For recovery purposes, go ahead and implement the hiding.
1892 LookupResult::Filter F = Result.makeFilter();
1893 while (F.hasNext()) {
1894 if (TagDecls.count(F.next()))
1895 F.erase();
1896 }
1897 F.done();
1898 break;
1899 }
1900
1901 case LookupResult::AmbiguousReference: {
1902 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1903
1904 LookupResult::iterator DI = Result.begin(), DE = Result.end();
1905 for (; DI != DE; ++DI)
1906 Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1907 break;
1908 }
1909 }
1910 }
1911
1912 namespace {
1913 struct AssociatedLookup {
AssociatedLookup__anonf7278da80311::AssociatedLookup1914 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1915 Sema::AssociatedNamespaceSet &Namespaces,
1916 Sema::AssociatedClassSet &Classes)
1917 : S(S), Namespaces(Namespaces), Classes(Classes),
1918 InstantiationLoc(InstantiationLoc) {
1919 }
1920
1921 Sema &S;
1922 Sema::AssociatedNamespaceSet &Namespaces;
1923 Sema::AssociatedClassSet &Classes;
1924 SourceLocation InstantiationLoc;
1925 };
1926 }
1927
1928 static void
1929 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1930
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)1931 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1932 DeclContext *Ctx) {
1933 // Add the associated namespace for this class.
1934
1935 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1936 // be a locally scoped record.
1937
1938 // We skip out of inline namespaces. The innermost non-inline namespace
1939 // contains all names of all its nested inline namespaces anyway, so we can
1940 // replace the entire inline namespace tree with its root.
1941 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1942 Ctx->isInlineNamespace())
1943 Ctx = Ctx->getParent();
1944
1945 if (Ctx->isFileContext())
1946 Namespaces.insert(Ctx->getPrimaryContext());
1947 }
1948
1949 // \brief Add the associated classes and namespaces for argument-dependent
1950 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1951 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)1952 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1953 const TemplateArgument &Arg) {
1954 // C++ [basic.lookup.koenig]p2, last bullet:
1955 // -- [...] ;
1956 switch (Arg.getKind()) {
1957 case TemplateArgument::Null:
1958 break;
1959
1960 case TemplateArgument::Type:
1961 // [...] the namespaces and classes associated with the types of the
1962 // template arguments provided for template type parameters (excluding
1963 // template template parameters)
1964 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1965 break;
1966
1967 case TemplateArgument::Template:
1968 case TemplateArgument::TemplateExpansion: {
1969 // [...] the namespaces in which any template template arguments are
1970 // defined; and the classes in which any member templates used as
1971 // template template arguments are defined.
1972 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1973 if (ClassTemplateDecl *ClassTemplate
1974 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1975 DeclContext *Ctx = ClassTemplate->getDeclContext();
1976 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1977 Result.Classes.insert(EnclosingClass);
1978 // Add the associated namespace for this class.
1979 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1980 }
1981 break;
1982 }
1983
1984 case TemplateArgument::Declaration:
1985 case TemplateArgument::Integral:
1986 case TemplateArgument::Expression:
1987 case TemplateArgument::NullPtr:
1988 // [Note: non-type template arguments do not contribute to the set of
1989 // associated namespaces. ]
1990 break;
1991
1992 case TemplateArgument::Pack:
1993 for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1994 PEnd = Arg.pack_end();
1995 P != PEnd; ++P)
1996 addAssociatedClassesAndNamespaces(Result, *P);
1997 break;
1998 }
1999 }
2000
2001 // \brief Add the associated classes and namespaces for
2002 // argument-dependent lookup with an argument of class type
2003 // (C++ [basic.lookup.koenig]p2).
2004 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)2005 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2006 CXXRecordDecl *Class) {
2007
2008 // Just silently ignore anything whose name is __va_list_tag.
2009 if (Class->getDeclName() == Result.S.VAListTagName)
2010 return;
2011
2012 // C++ [basic.lookup.koenig]p2:
2013 // [...]
2014 // -- If T is a class type (including unions), its associated
2015 // classes are: the class itself; the class of which it is a
2016 // member, if any; and its direct and indirect base
2017 // classes. Its associated namespaces are the namespaces in
2018 // which its associated classes are defined.
2019
2020 // Add the class of which it is a member, if any.
2021 DeclContext *Ctx = Class->getDeclContext();
2022 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2023 Result.Classes.insert(EnclosingClass);
2024 // Add the associated namespace for this class.
2025 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2026
2027 // Add the class itself. If we've already seen this class, we don't
2028 // need to visit base classes.
2029 //
2030 // FIXME: That's not correct, we may have added this class only because it
2031 // was the enclosing class of another class, and in that case we won't have
2032 // added its base classes yet.
2033 if (!Result.Classes.insert(Class))
2034 return;
2035
2036 // -- If T is a template-id, its associated namespaces and classes are
2037 // the namespace in which the template is defined; for member
2038 // templates, the member template's class; the namespaces and classes
2039 // associated with the types of the template arguments provided for
2040 // template type parameters (excluding template template parameters); the
2041 // namespaces in which any template template arguments are defined; and
2042 // the classes in which any member templates used as template template
2043 // arguments are defined. [Note: non-type template arguments do not
2044 // contribute to the set of associated namespaces. ]
2045 if (ClassTemplateSpecializationDecl *Spec
2046 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2047 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2048 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2049 Result.Classes.insert(EnclosingClass);
2050 // Add the associated namespace for this class.
2051 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2052
2053 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2054 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2055 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2056 }
2057
2058 // Only recurse into base classes for complete types.
2059 if (!Class->hasDefinition())
2060 return;
2061
2062 // Add direct and indirect base classes along with their associated
2063 // namespaces.
2064 SmallVector<CXXRecordDecl *, 32> Bases;
2065 Bases.push_back(Class);
2066 while (!Bases.empty()) {
2067 // Pop this class off the stack.
2068 Class = Bases.pop_back_val();
2069
2070 // Visit the base classes.
2071 for (const auto &Base : Class->bases()) {
2072 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2073 // In dependent contexts, we do ADL twice, and the first time around,
2074 // the base type might be a dependent TemplateSpecializationType, or a
2075 // TemplateTypeParmType. If that happens, simply ignore it.
2076 // FIXME: If we want to support export, we probably need to add the
2077 // namespace of the template in a TemplateSpecializationType, or even
2078 // the classes and namespaces of known non-dependent arguments.
2079 if (!BaseType)
2080 continue;
2081 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2082 if (Result.Classes.insert(BaseDecl)) {
2083 // Find the associated namespace for this base class.
2084 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2085 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2086
2087 // Make sure we visit the bases of this base class.
2088 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2089 Bases.push_back(BaseDecl);
2090 }
2091 }
2092 }
2093 }
2094
2095 // \brief Add the associated classes and namespaces for
2096 // argument-dependent lookup with an argument of type T
2097 // (C++ [basic.lookup.koenig]p2).
2098 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)2099 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2100 // C++ [basic.lookup.koenig]p2:
2101 //
2102 // For each argument type T in the function call, there is a set
2103 // of zero or more associated namespaces and a set of zero or more
2104 // associated classes to be considered. The sets of namespaces and
2105 // classes is determined entirely by the types of the function
2106 // arguments (and the namespace of any template template
2107 // argument). Typedef names and using-declarations used to specify
2108 // the types do not contribute to this set. The sets of namespaces
2109 // and classes are determined in the following way:
2110
2111 SmallVector<const Type *, 16> Queue;
2112 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2113
2114 while (true) {
2115 switch (T->getTypeClass()) {
2116
2117 #define TYPE(Class, Base)
2118 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2119 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2120 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2121 #define ABSTRACT_TYPE(Class, Base)
2122 #include "clang/AST/TypeNodes.def"
2123 // T is canonical. We can also ignore dependent types because
2124 // we don't need to do ADL at the definition point, but if we
2125 // wanted to implement template export (or if we find some other
2126 // use for associated classes and namespaces...) this would be
2127 // wrong.
2128 break;
2129
2130 // -- If T is a pointer to U or an array of U, its associated
2131 // namespaces and classes are those associated with U.
2132 case Type::Pointer:
2133 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2134 continue;
2135 case Type::ConstantArray:
2136 case Type::IncompleteArray:
2137 case Type::VariableArray:
2138 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2139 continue;
2140
2141 // -- If T is a fundamental type, its associated sets of
2142 // namespaces and classes are both empty.
2143 case Type::Builtin:
2144 break;
2145
2146 // -- If T is a class type (including unions), its associated
2147 // classes are: the class itself; the class of which it is a
2148 // member, if any; and its direct and indirect base
2149 // classes. Its associated namespaces are the namespaces in
2150 // which its associated classes are defined.
2151 case Type::Record: {
2152 Result.S.RequireCompleteType(Result.InstantiationLoc, QualType(T, 0),
2153 /*no diagnostic*/ 0);
2154 CXXRecordDecl *Class
2155 = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2156 addAssociatedClassesAndNamespaces(Result, Class);
2157 break;
2158 }
2159
2160 // -- If T is an enumeration type, its associated namespace is
2161 // the namespace in which it is defined. If it is class
2162 // member, its associated class is the member's class; else
2163 // it has no associated class.
2164 case Type::Enum: {
2165 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2166
2167 DeclContext *Ctx = Enum->getDeclContext();
2168 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2169 Result.Classes.insert(EnclosingClass);
2170
2171 // Add the associated namespace for this class.
2172 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2173
2174 break;
2175 }
2176
2177 // -- If T is a function type, its associated namespaces and
2178 // classes are those associated with the function parameter
2179 // types and those associated with the return type.
2180 case Type::FunctionProto: {
2181 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2182 for (const auto &Arg : Proto->param_types())
2183 Queue.push_back(Arg.getTypePtr());
2184 // fallthrough
2185 }
2186 case Type::FunctionNoProto: {
2187 const FunctionType *FnType = cast<FunctionType>(T);
2188 T = FnType->getReturnType().getTypePtr();
2189 continue;
2190 }
2191
2192 // -- If T is a pointer to a member function of a class X, its
2193 // associated namespaces and classes are those associated
2194 // with the function parameter types and return type,
2195 // together with those associated with X.
2196 //
2197 // -- If T is a pointer to a data member of class X, its
2198 // associated namespaces and classes are those associated
2199 // with the member type together with those associated with
2200 // X.
2201 case Type::MemberPointer: {
2202 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2203
2204 // Queue up the class type into which this points.
2205 Queue.push_back(MemberPtr->getClass());
2206
2207 // And directly continue with the pointee type.
2208 T = MemberPtr->getPointeeType().getTypePtr();
2209 continue;
2210 }
2211
2212 // As an extension, treat this like a normal pointer.
2213 case Type::BlockPointer:
2214 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2215 continue;
2216
2217 // References aren't covered by the standard, but that's such an
2218 // obvious defect that we cover them anyway.
2219 case Type::LValueReference:
2220 case Type::RValueReference:
2221 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2222 continue;
2223
2224 // These are fundamental types.
2225 case Type::Vector:
2226 case Type::ExtVector:
2227 case Type::Complex:
2228 break;
2229
2230 // Non-deduced auto types only get here for error cases.
2231 case Type::Auto:
2232 break;
2233
2234 // If T is an Objective-C object or interface type, or a pointer to an
2235 // object or interface type, the associated namespace is the global
2236 // namespace.
2237 case Type::ObjCObject:
2238 case Type::ObjCInterface:
2239 case Type::ObjCObjectPointer:
2240 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2241 break;
2242
2243 // Atomic types are just wrappers; use the associations of the
2244 // contained type.
2245 case Type::Atomic:
2246 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2247 continue;
2248 }
2249
2250 if (Queue.empty())
2251 break;
2252 T = Queue.pop_back_val();
2253 }
2254 }
2255
2256 /// \brief Find the associated classes and namespaces for
2257 /// argument-dependent lookup for a call with the given set of
2258 /// arguments.
2259 ///
2260 /// This routine computes the sets of associated classes and associated
2261 /// namespaces searched by argument-dependent lookup
2262 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)2263 void Sema::FindAssociatedClassesAndNamespaces(
2264 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2265 AssociatedNamespaceSet &AssociatedNamespaces,
2266 AssociatedClassSet &AssociatedClasses) {
2267 AssociatedNamespaces.clear();
2268 AssociatedClasses.clear();
2269
2270 AssociatedLookup Result(*this, InstantiationLoc,
2271 AssociatedNamespaces, AssociatedClasses);
2272
2273 // C++ [basic.lookup.koenig]p2:
2274 // For each argument type T in the function call, there is a set
2275 // of zero or more associated namespaces and a set of zero or more
2276 // associated classes to be considered. The sets of namespaces and
2277 // classes is determined entirely by the types of the function
2278 // arguments (and the namespace of any template template
2279 // argument).
2280 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2281 Expr *Arg = Args[ArgIdx];
2282
2283 if (Arg->getType() != Context.OverloadTy) {
2284 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2285 continue;
2286 }
2287
2288 // [...] In addition, if the argument is the name or address of a
2289 // set of overloaded functions and/or function templates, its
2290 // associated classes and namespaces are the union of those
2291 // associated with each of the members of the set: the namespace
2292 // in which the function or function template is defined and the
2293 // classes and namespaces associated with its (non-dependent)
2294 // parameter types and return type.
2295 Arg = Arg->IgnoreParens();
2296 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2297 if (unaryOp->getOpcode() == UO_AddrOf)
2298 Arg = unaryOp->getSubExpr();
2299
2300 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2301 if (!ULE) continue;
2302
2303 for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2304 I != E; ++I) {
2305 // Look through any using declarations to find the underlying function.
2306 FunctionDecl *FDecl = (*I)->getUnderlyingDecl()->getAsFunction();
2307
2308 // Add the classes and namespaces associated with the parameter
2309 // types and return type of this function.
2310 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2311 }
2312 }
2313 }
2314
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)2315 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2316 SourceLocation Loc,
2317 LookupNameKind NameKind,
2318 RedeclarationKind Redecl) {
2319 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2320 LookupName(R, S);
2321 return R.getAsSingle<NamedDecl>();
2322 }
2323
2324 /// \brief Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)2325 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2326 SourceLocation IdLoc,
2327 RedeclarationKind Redecl) {
2328 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2329 LookupObjCProtocolName, Redecl);
2330 return cast_or_null<ObjCProtocolDecl>(D);
2331 }
2332
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)2333 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2334 QualType T1, QualType T2,
2335 UnresolvedSetImpl &Functions) {
2336 // C++ [over.match.oper]p3:
2337 // -- The set of non-member candidates is the result of the
2338 // unqualified lookup of operator@ in the context of the
2339 // expression according to the usual rules for name lookup in
2340 // unqualified function calls (3.4.2) except that all member
2341 // functions are ignored.
2342 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2343 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2344 LookupName(Operators, S);
2345
2346 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2347 Functions.append(Operators.begin(), Operators.end());
2348 }
2349
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)2350 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2351 CXXSpecialMember SM,
2352 bool ConstArg,
2353 bool VolatileArg,
2354 bool RValueThis,
2355 bool ConstThis,
2356 bool VolatileThis) {
2357 assert(CanDeclareSpecialMemberFunction(RD) &&
2358 "doing special member lookup into record that isn't fully complete");
2359 RD = RD->getDefinition();
2360 if (RValueThis || ConstThis || VolatileThis)
2361 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2362 "constructors and destructors always have unqualified lvalue this");
2363 if (ConstArg || VolatileArg)
2364 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2365 "parameter-less special members can't have qualified arguments");
2366
2367 llvm::FoldingSetNodeID ID;
2368 ID.AddPointer(RD);
2369 ID.AddInteger(SM);
2370 ID.AddInteger(ConstArg);
2371 ID.AddInteger(VolatileArg);
2372 ID.AddInteger(RValueThis);
2373 ID.AddInteger(ConstThis);
2374 ID.AddInteger(VolatileThis);
2375
2376 void *InsertPoint;
2377 SpecialMemberOverloadResult *Result =
2378 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2379
2380 // This was already cached
2381 if (Result)
2382 return Result;
2383
2384 Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2385 Result = new (Result) SpecialMemberOverloadResult(ID);
2386 SpecialMemberCache.InsertNode(Result, InsertPoint);
2387
2388 if (SM == CXXDestructor) {
2389 if (RD->needsImplicitDestructor())
2390 DeclareImplicitDestructor(RD);
2391 CXXDestructorDecl *DD = RD->getDestructor();
2392 assert(DD && "record without a destructor");
2393 Result->setMethod(DD);
2394 Result->setKind(DD->isDeleted() ?
2395 SpecialMemberOverloadResult::NoMemberOrDeleted :
2396 SpecialMemberOverloadResult::Success);
2397 return Result;
2398 }
2399
2400 // Prepare for overload resolution. Here we construct a synthetic argument
2401 // if necessary and make sure that implicit functions are declared.
2402 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2403 DeclarationName Name;
2404 Expr *Arg = nullptr;
2405 unsigned NumArgs;
2406
2407 QualType ArgType = CanTy;
2408 ExprValueKind VK = VK_LValue;
2409
2410 if (SM == CXXDefaultConstructor) {
2411 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2412 NumArgs = 0;
2413 if (RD->needsImplicitDefaultConstructor())
2414 DeclareImplicitDefaultConstructor(RD);
2415 } else {
2416 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2417 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2418 if (RD->needsImplicitCopyConstructor())
2419 DeclareImplicitCopyConstructor(RD);
2420 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2421 DeclareImplicitMoveConstructor(RD);
2422 } else {
2423 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2424 if (RD->needsImplicitCopyAssignment())
2425 DeclareImplicitCopyAssignment(RD);
2426 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2427 DeclareImplicitMoveAssignment(RD);
2428 }
2429
2430 if (ConstArg)
2431 ArgType.addConst();
2432 if (VolatileArg)
2433 ArgType.addVolatile();
2434
2435 // This isn't /really/ specified by the standard, but it's implied
2436 // we should be working from an RValue in the case of move to ensure
2437 // that we prefer to bind to rvalue references, and an LValue in the
2438 // case of copy to ensure we don't bind to rvalue references.
2439 // Possibly an XValue is actually correct in the case of move, but
2440 // there is no semantic difference for class types in this restricted
2441 // case.
2442 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2443 VK = VK_LValue;
2444 else
2445 VK = VK_RValue;
2446 }
2447
2448 OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2449
2450 if (SM != CXXDefaultConstructor) {
2451 NumArgs = 1;
2452 Arg = &FakeArg;
2453 }
2454
2455 // Create the object argument
2456 QualType ThisTy = CanTy;
2457 if (ConstThis)
2458 ThisTy.addConst();
2459 if (VolatileThis)
2460 ThisTy.addVolatile();
2461 Expr::Classification Classification =
2462 OpaqueValueExpr(SourceLocation(), ThisTy,
2463 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2464
2465 // Now we perform lookup on the name we computed earlier and do overload
2466 // resolution. Lookup is only performed directly into the class since there
2467 // will always be a (possibly implicit) declaration to shadow any others.
2468 OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
2469 DeclContext::lookup_result R = RD->lookup(Name);
2470 assert(!R.empty() &&
2471 "lookup for a constructor or assignment operator was empty");
2472
2473 // Copy the candidates as our processing of them may load new declarations
2474 // from an external source and invalidate lookup_result.
2475 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2476
2477 for (SmallVectorImpl<NamedDecl *>::iterator I = Candidates.begin(),
2478 E = Candidates.end();
2479 I != E; ++I) {
2480 NamedDecl *Cand = *I;
2481
2482 if (Cand->isInvalidDecl())
2483 continue;
2484
2485 if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2486 // FIXME: [namespace.udecl]p15 says that we should only consider a
2487 // using declaration here if it does not match a declaration in the
2488 // derived class. We do not implement this correctly in other cases
2489 // either.
2490 Cand = U->getTargetDecl();
2491
2492 if (Cand->isInvalidDecl())
2493 continue;
2494 }
2495
2496 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2497 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2498 AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2499 Classification, llvm::makeArrayRef(&Arg, NumArgs),
2500 OCS, true);
2501 else
2502 AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2503 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2504 } else if (FunctionTemplateDecl *Tmpl =
2505 dyn_cast<FunctionTemplateDecl>(Cand)) {
2506 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2507 AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2508 RD, nullptr, ThisTy, Classification,
2509 llvm::makeArrayRef(&Arg, NumArgs),
2510 OCS, true);
2511 else
2512 AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2513 nullptr, llvm::makeArrayRef(&Arg, NumArgs),
2514 OCS, true);
2515 } else {
2516 assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2517 }
2518 }
2519
2520 OverloadCandidateSet::iterator Best;
2521 switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2522 case OR_Success:
2523 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2524 Result->setKind(SpecialMemberOverloadResult::Success);
2525 break;
2526
2527 case OR_Deleted:
2528 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2529 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2530 break;
2531
2532 case OR_Ambiguous:
2533 Result->setMethod(nullptr);
2534 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2535 break;
2536
2537 case OR_No_Viable_Function:
2538 Result->setMethod(nullptr);
2539 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2540 break;
2541 }
2542
2543 return Result;
2544 }
2545
2546 /// \brief Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)2547 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2548 SpecialMemberOverloadResult *Result =
2549 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2550 false, false);
2551
2552 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2553 }
2554
2555 /// \brief Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals)2556 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2557 unsigned Quals) {
2558 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2559 "non-const, non-volatile qualifiers for copy ctor arg");
2560 SpecialMemberOverloadResult *Result =
2561 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2562 Quals & Qualifiers::Volatile, false, false, false);
2563
2564 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2565 }
2566
2567 /// \brief Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class,unsigned Quals)2568 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2569 unsigned Quals) {
2570 SpecialMemberOverloadResult *Result =
2571 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2572 Quals & Qualifiers::Volatile, false, false, false);
2573
2574 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2575 }
2576
2577 /// \brief Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)2578 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2579 // If the implicit constructors have not yet been declared, do so now.
2580 if (CanDeclareSpecialMemberFunction(Class)) {
2581 if (Class->needsImplicitDefaultConstructor())
2582 DeclareImplicitDefaultConstructor(Class);
2583 if (Class->needsImplicitCopyConstructor())
2584 DeclareImplicitCopyConstructor(Class);
2585 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2586 DeclareImplicitMoveConstructor(Class);
2587 }
2588
2589 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2590 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2591 return Class->lookup(Name);
2592 }
2593
2594 /// \brief Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2595 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2596 unsigned Quals, bool RValueThis,
2597 unsigned ThisQuals) {
2598 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2599 "non-const, non-volatile qualifiers for copy assignment arg");
2600 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2601 "non-const, non-volatile qualifiers for copy assignment this");
2602 SpecialMemberOverloadResult *Result =
2603 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2604 Quals & Qualifiers::Volatile, RValueThis,
2605 ThisQuals & Qualifiers::Const,
2606 ThisQuals & Qualifiers::Volatile);
2607
2608 return Result->getMethod();
2609 }
2610
2611 /// \brief Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2612 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2613 unsigned Quals,
2614 bool RValueThis,
2615 unsigned ThisQuals) {
2616 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2617 "non-const, non-volatile qualifiers for copy assignment this");
2618 SpecialMemberOverloadResult *Result =
2619 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2620 Quals & Qualifiers::Volatile, RValueThis,
2621 ThisQuals & Qualifiers::Const,
2622 ThisQuals & Qualifiers::Volatile);
2623
2624 return Result->getMethod();
2625 }
2626
2627 /// \brief Look for the destructor of the given class.
2628 ///
2629 /// During semantic analysis, this routine should be used in lieu of
2630 /// CXXRecordDecl::getDestructor().
2631 ///
2632 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)2633 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2634 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2635 false, false, false,
2636 false, false)->getMethod());
2637 }
2638
2639 /// LookupLiteralOperator - Determine which literal operator should be used for
2640 /// a user-defined literal, per C++11 [lex.ext].
2641 ///
2642 /// Normal overload resolution is not used to select which literal operator to
2643 /// call for a user-defined literal. Look up the provided literal operator name,
2644 /// and filter the results to the appropriate set for the given argument types.
2645 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRaw,bool AllowTemplate,bool AllowStringTemplate)2646 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2647 ArrayRef<QualType> ArgTys,
2648 bool AllowRaw, bool AllowTemplate,
2649 bool AllowStringTemplate) {
2650 LookupName(R, S);
2651 assert(R.getResultKind() != LookupResult::Ambiguous &&
2652 "literal operator lookup can't be ambiguous");
2653
2654 // Filter the lookup results appropriately.
2655 LookupResult::Filter F = R.makeFilter();
2656
2657 bool FoundRaw = false;
2658 bool FoundTemplate = false;
2659 bool FoundStringTemplate = false;
2660 bool FoundExactMatch = false;
2661
2662 while (F.hasNext()) {
2663 Decl *D = F.next();
2664 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2665 D = USD->getTargetDecl();
2666
2667 // If the declaration we found is invalid, skip it.
2668 if (D->isInvalidDecl()) {
2669 F.erase();
2670 continue;
2671 }
2672
2673 bool IsRaw = false;
2674 bool IsTemplate = false;
2675 bool IsStringTemplate = false;
2676 bool IsExactMatch = false;
2677
2678 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2679 if (FD->getNumParams() == 1 &&
2680 FD->getParamDecl(0)->getType()->getAs<PointerType>())
2681 IsRaw = true;
2682 else if (FD->getNumParams() == ArgTys.size()) {
2683 IsExactMatch = true;
2684 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2685 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2686 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2687 IsExactMatch = false;
2688 break;
2689 }
2690 }
2691 }
2692 }
2693 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
2694 TemplateParameterList *Params = FD->getTemplateParameters();
2695 if (Params->size() == 1)
2696 IsTemplate = true;
2697 else
2698 IsStringTemplate = true;
2699 }
2700
2701 if (IsExactMatch) {
2702 FoundExactMatch = true;
2703 AllowRaw = false;
2704 AllowTemplate = false;
2705 AllowStringTemplate = false;
2706 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
2707 // Go through again and remove the raw and template decls we've
2708 // already found.
2709 F.restart();
2710 FoundRaw = FoundTemplate = FoundStringTemplate = false;
2711 }
2712 } else if (AllowRaw && IsRaw) {
2713 FoundRaw = true;
2714 } else if (AllowTemplate && IsTemplate) {
2715 FoundTemplate = true;
2716 } else if (AllowStringTemplate && IsStringTemplate) {
2717 FoundStringTemplate = true;
2718 } else {
2719 F.erase();
2720 }
2721 }
2722
2723 F.done();
2724
2725 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2726 // parameter type, that is used in preference to a raw literal operator
2727 // or literal operator template.
2728 if (FoundExactMatch)
2729 return LOLR_Cooked;
2730
2731 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2732 // operator template, but not both.
2733 if (FoundRaw && FoundTemplate) {
2734 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2735 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
2736 NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
2737 return LOLR_Error;
2738 }
2739
2740 if (FoundRaw)
2741 return LOLR_Raw;
2742
2743 if (FoundTemplate)
2744 return LOLR_Template;
2745
2746 if (FoundStringTemplate)
2747 return LOLR_StringTemplate;
2748
2749 // Didn't find anything we could use.
2750 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2751 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2752 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
2753 << (AllowTemplate || AllowStringTemplate);
2754 return LOLR_Error;
2755 }
2756
insert(NamedDecl * New)2757 void ADLResult::insert(NamedDecl *New) {
2758 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2759
2760 // If we haven't yet seen a decl for this key, or the last decl
2761 // was exactly this one, we're done.
2762 if (Old == nullptr || Old == New) {
2763 Old = New;
2764 return;
2765 }
2766
2767 // Otherwise, decide which is a more recent redeclaration.
2768 FunctionDecl *OldFD = Old->getAsFunction();
2769 FunctionDecl *NewFD = New->getAsFunction();
2770
2771 FunctionDecl *Cursor = NewFD;
2772 while (true) {
2773 Cursor = Cursor->getPreviousDecl();
2774
2775 // If we got to the end without finding OldFD, OldFD is the newer
2776 // declaration; leave things as they are.
2777 if (!Cursor) return;
2778
2779 // If we do find OldFD, then NewFD is newer.
2780 if (Cursor == OldFD) break;
2781
2782 // Otherwise, keep looking.
2783 }
2784
2785 Old = New;
2786 }
2787
ArgumentDependentLookup(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,ADLResult & Result)2788 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
2789 ArrayRef<Expr *> Args, ADLResult &Result) {
2790 // Find all of the associated namespaces and classes based on the
2791 // arguments we have.
2792 AssociatedNamespaceSet AssociatedNamespaces;
2793 AssociatedClassSet AssociatedClasses;
2794 FindAssociatedClassesAndNamespaces(Loc, Args,
2795 AssociatedNamespaces,
2796 AssociatedClasses);
2797
2798 // C++ [basic.lookup.argdep]p3:
2799 // Let X be the lookup set produced by unqualified lookup (3.4.1)
2800 // and let Y be the lookup set produced by argument dependent
2801 // lookup (defined as follows). If X contains [...] then Y is
2802 // empty. Otherwise Y is the set of declarations found in the
2803 // namespaces associated with the argument types as described
2804 // below. The set of declarations found by the lookup of the name
2805 // is the union of X and Y.
2806 //
2807 // Here, we compute Y and add its members to the overloaded
2808 // candidate set.
2809 for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2810 NSEnd = AssociatedNamespaces.end();
2811 NS != NSEnd; ++NS) {
2812 // When considering an associated namespace, the lookup is the
2813 // same as the lookup performed when the associated namespace is
2814 // used as a qualifier (3.4.3.2) except that:
2815 //
2816 // -- Any using-directives in the associated namespace are
2817 // ignored.
2818 //
2819 // -- Any namespace-scope friend functions declared in
2820 // associated classes are visible within their respective
2821 // namespaces even if they are not visible during an ordinary
2822 // lookup (11.4).
2823 DeclContext::lookup_result R = (*NS)->lookup(Name);
2824 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
2825 ++I) {
2826 NamedDecl *D = *I;
2827 // If the only declaration here is an ordinary friend, consider
2828 // it only if it was declared in an associated classes.
2829 if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
2830 // If it's neither ordinarily visible nor a friend, we can't find it.
2831 if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
2832 continue;
2833
2834 bool DeclaredInAssociatedClass = false;
2835 for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
2836 DeclContext *LexDC = DI->getLexicalDeclContext();
2837 if (isa<CXXRecordDecl>(LexDC) &&
2838 AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
2839 DeclaredInAssociatedClass = true;
2840 break;
2841 }
2842 }
2843 if (!DeclaredInAssociatedClass)
2844 continue;
2845 }
2846
2847 if (isa<UsingShadowDecl>(D))
2848 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2849
2850 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
2851 continue;
2852
2853 Result.insert(D);
2854 }
2855 }
2856 }
2857
2858 //----------------------------------------------------------------------------
2859 // Search for all visible declarations.
2860 //----------------------------------------------------------------------------
~VisibleDeclConsumer()2861 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2862
includeHiddenDecls() const2863 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
2864
2865 namespace {
2866
2867 class ShadowContextRAII;
2868
2869 class VisibleDeclsRecord {
2870 public:
2871 /// \brief An entry in the shadow map, which is optimized to store a
2872 /// single declaration (the common case) but can also store a list
2873 /// of declarations.
2874 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2875
2876 private:
2877 /// \brief A mapping from declaration names to the declarations that have
2878 /// this name within a particular scope.
2879 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2880
2881 /// \brief A list of shadow maps, which is used to model name hiding.
2882 std::list<ShadowMap> ShadowMaps;
2883
2884 /// \brief The declaration contexts we have already visited.
2885 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2886
2887 friend class ShadowContextRAII;
2888
2889 public:
2890 /// \brief Determine whether we have already visited this context
2891 /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)2892 bool visitedContext(DeclContext *Ctx) {
2893 return !VisitedContexts.insert(Ctx);
2894 }
2895
alreadyVisitedContext(DeclContext * Ctx)2896 bool alreadyVisitedContext(DeclContext *Ctx) {
2897 return VisitedContexts.count(Ctx);
2898 }
2899
2900 /// \brief Determine whether the given declaration is hidden in the
2901 /// current scope.
2902 ///
2903 /// \returns the declaration that hides the given declaration, or
2904 /// NULL if no such declaration exists.
2905 NamedDecl *checkHidden(NamedDecl *ND);
2906
2907 /// \brief Add a declaration to the current shadow map.
add(NamedDecl * ND)2908 void add(NamedDecl *ND) {
2909 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2910 }
2911 };
2912
2913 /// \brief RAII object that records when we've entered a shadow context.
2914 class ShadowContextRAII {
2915 VisibleDeclsRecord &Visible;
2916
2917 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2918
2919 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)2920 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2921 Visible.ShadowMaps.push_back(ShadowMap());
2922 }
2923
~ShadowContextRAII()2924 ~ShadowContextRAII() {
2925 Visible.ShadowMaps.pop_back();
2926 }
2927 };
2928
2929 } // end anonymous namespace
2930
checkHidden(NamedDecl * ND)2931 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2932 // Look through using declarations.
2933 ND = ND->getUnderlyingDecl();
2934
2935 unsigned IDNS = ND->getIdentifierNamespace();
2936 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2937 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2938 SM != SMEnd; ++SM) {
2939 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2940 if (Pos == SM->end())
2941 continue;
2942
2943 for (ShadowMapEntry::iterator I = Pos->second.begin(),
2944 IEnd = Pos->second.end();
2945 I != IEnd; ++I) {
2946 // A tag declaration does not hide a non-tag declaration.
2947 if ((*I)->hasTagIdentifierNamespace() &&
2948 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2949 Decl::IDNS_ObjCProtocol)))
2950 continue;
2951
2952 // Protocols are in distinct namespaces from everything else.
2953 if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2954 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2955 (*I)->getIdentifierNamespace() != IDNS)
2956 continue;
2957
2958 // Functions and function templates in the same scope overload
2959 // rather than hide. FIXME: Look for hiding based on function
2960 // signatures!
2961 if ((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
2962 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
2963 SM == ShadowMaps.rbegin())
2964 continue;
2965
2966 // We've found a declaration that hides this one.
2967 return *I;
2968 }
2969 }
2970
2971 return nullptr;
2972 }
2973
LookupVisibleDecls(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)2974 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2975 bool QualifiedNameLookup,
2976 bool InBaseClass,
2977 VisibleDeclConsumer &Consumer,
2978 VisibleDeclsRecord &Visited) {
2979 if (!Ctx)
2980 return;
2981
2982 // Make sure we don't visit the same context twice.
2983 if (Visited.visitedContext(Ctx->getPrimaryContext()))
2984 return;
2985
2986 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2987 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2988
2989 // Enumerate all of the results in this context.
2990 for (const auto &R : Ctx->lookups()) {
2991 for (auto *I : R) {
2992 if (NamedDecl *ND = dyn_cast<NamedDecl>(I)) {
2993 if ((ND = Result.getAcceptableDecl(ND))) {
2994 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
2995 Visited.add(ND);
2996 }
2997 }
2998 }
2999 }
3000
3001 // Traverse using directives for qualified name lookup.
3002 if (QualifiedNameLookup) {
3003 ShadowContextRAII Shadow(Visited);
3004 for (auto I : Ctx->using_directives()) {
3005 LookupVisibleDecls(I->getNominatedNamespace(), Result,
3006 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3007 }
3008 }
3009
3010 // Traverse the contexts of inherited C++ classes.
3011 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3012 if (!Record->hasDefinition())
3013 return;
3014
3015 for (const auto &B : Record->bases()) {
3016 QualType BaseType = B.getType();
3017
3018 // Don't look into dependent bases, because name lookup can't look
3019 // there anyway.
3020 if (BaseType->isDependentType())
3021 continue;
3022
3023 const RecordType *Record = BaseType->getAs<RecordType>();
3024 if (!Record)
3025 continue;
3026
3027 // FIXME: It would be nice to be able to determine whether referencing
3028 // a particular member would be ambiguous. For example, given
3029 //
3030 // struct A { int member; };
3031 // struct B { int member; };
3032 // struct C : A, B { };
3033 //
3034 // void f(C *c) { c->### }
3035 //
3036 // accessing 'member' would result in an ambiguity. However, we
3037 // could be smart enough to qualify the member with the base
3038 // class, e.g.,
3039 //
3040 // c->B::member
3041 //
3042 // or
3043 //
3044 // c->A::member
3045
3046 // Find results in this base class (and its bases).
3047 ShadowContextRAII Shadow(Visited);
3048 LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
3049 true, Consumer, Visited);
3050 }
3051 }
3052
3053 // Traverse the contexts of Objective-C classes.
3054 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3055 // Traverse categories.
3056 for (auto *Cat : IFace->visible_categories()) {
3057 ShadowContextRAII Shadow(Visited);
3058 LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3059 Consumer, Visited);
3060 }
3061
3062 // Traverse protocols.
3063 for (auto *I : IFace->all_referenced_protocols()) {
3064 ShadowContextRAII Shadow(Visited);
3065 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3066 Visited);
3067 }
3068
3069 // Traverse the superclass.
3070 if (IFace->getSuperClass()) {
3071 ShadowContextRAII Shadow(Visited);
3072 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3073 true, Consumer, Visited);
3074 }
3075
3076 // If there is an implementation, traverse it. We do this to find
3077 // synthesized ivars.
3078 if (IFace->getImplementation()) {
3079 ShadowContextRAII Shadow(Visited);
3080 LookupVisibleDecls(IFace->getImplementation(), Result,
3081 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3082 }
3083 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3084 for (auto *I : Protocol->protocols()) {
3085 ShadowContextRAII Shadow(Visited);
3086 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3087 Visited);
3088 }
3089 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3090 for (auto *I : Category->protocols()) {
3091 ShadowContextRAII Shadow(Visited);
3092 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3093 Visited);
3094 }
3095
3096 // If there is an implementation, traverse it.
3097 if (Category->getImplementation()) {
3098 ShadowContextRAII Shadow(Visited);
3099 LookupVisibleDecls(Category->getImplementation(), Result,
3100 QualifiedNameLookup, true, Consumer, Visited);
3101 }
3102 }
3103 }
3104
LookupVisibleDecls(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)3105 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3106 UnqualUsingDirectiveSet &UDirs,
3107 VisibleDeclConsumer &Consumer,
3108 VisibleDeclsRecord &Visited) {
3109 if (!S)
3110 return;
3111
3112 if (!S->getEntity() ||
3113 (!S->getParent() &&
3114 !Visited.alreadyVisitedContext(S->getEntity())) ||
3115 (S->getEntity())->isFunctionOrMethod()) {
3116 FindLocalExternScope FindLocals(Result);
3117 // Walk through the declarations in this Scope.
3118 for (auto *D : S->decls()) {
3119 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3120 if ((ND = Result.getAcceptableDecl(ND))) {
3121 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3122 Visited.add(ND);
3123 }
3124 }
3125 }
3126
3127 // FIXME: C++ [temp.local]p8
3128 DeclContext *Entity = nullptr;
3129 if (S->getEntity()) {
3130 // Look into this scope's declaration context, along with any of its
3131 // parent lookup contexts (e.g., enclosing classes), up to the point
3132 // where we hit the context stored in the next outer scope.
3133 Entity = S->getEntity();
3134 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3135
3136 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3137 Ctx = Ctx->getLookupParent()) {
3138 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3139 if (Method->isInstanceMethod()) {
3140 // For instance methods, look for ivars in the method's interface.
3141 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3142 Result.getNameLoc(), Sema::LookupMemberName);
3143 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3144 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3145 /*InBaseClass=*/false, Consumer, Visited);
3146 }
3147 }
3148
3149 // We've already performed all of the name lookup that we need
3150 // to for Objective-C methods; the next context will be the
3151 // outer scope.
3152 break;
3153 }
3154
3155 if (Ctx->isFunctionOrMethod())
3156 continue;
3157
3158 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3159 /*InBaseClass=*/false, Consumer, Visited);
3160 }
3161 } else if (!S->getParent()) {
3162 // Look into the translation unit scope. We walk through the translation
3163 // unit's declaration context, because the Scope itself won't have all of
3164 // the declarations if we loaded a precompiled header.
3165 // FIXME: We would like the translation unit's Scope object to point to the
3166 // translation unit, so we don't need this special "if" branch. However,
3167 // doing so would force the normal C++ name-lookup code to look into the
3168 // translation unit decl when the IdentifierInfo chains would suffice.
3169 // Once we fix that problem (which is part of a more general "don't look
3170 // in DeclContexts unless we have to" optimization), we can eliminate this.
3171 Entity = Result.getSema().Context.getTranslationUnitDecl();
3172 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3173 /*InBaseClass=*/false, Consumer, Visited);
3174 }
3175
3176 if (Entity) {
3177 // Lookup visible declarations in any namespaces found by using
3178 // directives.
3179 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3180 std::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3181 for (; UI != UEnd; ++UI)
3182 LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3183 Result, /*QualifiedNameLookup=*/false,
3184 /*InBaseClass=*/false, Consumer, Visited);
3185 }
3186
3187 // Lookup names in the parent scope.
3188 ShadowContextRAII Shadow(Visited);
3189 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3190 }
3191
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3192 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3193 VisibleDeclConsumer &Consumer,
3194 bool IncludeGlobalScope) {
3195 // Determine the set of using directives available during
3196 // unqualified name lookup.
3197 Scope *Initial = S;
3198 UnqualUsingDirectiveSet UDirs;
3199 if (getLangOpts().CPlusPlus) {
3200 // Find the first namespace or translation-unit scope.
3201 while (S && !isNamespaceOrTranslationUnitScope(S))
3202 S = S->getParent();
3203
3204 UDirs.visitScopeChain(Initial, S);
3205 }
3206 UDirs.done();
3207
3208 // Look for visible declarations.
3209 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3210 Result.setAllowHidden(Consumer.includeHiddenDecls());
3211 VisibleDeclsRecord Visited;
3212 if (!IncludeGlobalScope)
3213 Visited.visitedContext(Context.getTranslationUnitDecl());
3214 ShadowContextRAII Shadow(Visited);
3215 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3216 }
3217
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3218 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3219 VisibleDeclConsumer &Consumer,
3220 bool IncludeGlobalScope) {
3221 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3222 Result.setAllowHidden(Consumer.includeHiddenDecls());
3223 VisibleDeclsRecord Visited;
3224 if (!IncludeGlobalScope)
3225 Visited.visitedContext(Context.getTranslationUnitDecl());
3226 ShadowContextRAII Shadow(Visited);
3227 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3228 /*InBaseClass=*/false, Consumer, Visited);
3229 }
3230
3231 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3232 /// If GnuLabelLoc is a valid source location, then this is a definition
3233 /// of an __label__ label name, otherwise it is a normal label definition
3234 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)3235 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3236 SourceLocation GnuLabelLoc) {
3237 // Do a lookup to see if we have a label with this name already.
3238 NamedDecl *Res = nullptr;
3239
3240 if (GnuLabelLoc.isValid()) {
3241 // Local label definitions always shadow existing labels.
3242 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3243 Scope *S = CurScope;
3244 PushOnScopeChains(Res, S, true);
3245 return cast<LabelDecl>(Res);
3246 }
3247
3248 // Not a GNU local label.
3249 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3250 // If we found a label, check to see if it is in the same context as us.
3251 // When in a Block, we don't want to reuse a label in an enclosing function.
3252 if (Res && Res->getDeclContext() != CurContext)
3253 Res = nullptr;
3254 if (!Res) {
3255 // If not forward referenced or defined already, create the backing decl.
3256 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3257 Scope *S = CurScope->getFnParent();
3258 assert(S && "Not in a function?");
3259 PushOnScopeChains(Res, S, true);
3260 }
3261 return cast<LabelDecl>(Res);
3262 }
3263
3264 //===----------------------------------------------------------------------===//
3265 // Typo correction
3266 //===----------------------------------------------------------------------===//
3267
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)3268 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3269 TypoCorrection &Candidate) {
3270 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3271 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3272 }
3273
3274 static void LookupPotentialTypoResult(Sema &SemaRef,
3275 LookupResult &Res,
3276 IdentifierInfo *Name,
3277 Scope *S, CXXScopeSpec *SS,
3278 DeclContext *MemberContext,
3279 bool EnteringContext,
3280 bool isObjCIvarLookup,
3281 bool FindHidden);
3282
3283 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3284 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3285 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)3286 static void getNestedNameSpecifierIdentifiers(
3287 NestedNameSpecifier *NNS,
3288 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3289 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3290 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3291 else
3292 Identifiers.clear();
3293
3294 const IdentifierInfo *II = nullptr;
3295
3296 switch (NNS->getKind()) {
3297 case NestedNameSpecifier::Identifier:
3298 II = NNS->getAsIdentifier();
3299 break;
3300
3301 case NestedNameSpecifier::Namespace:
3302 if (NNS->getAsNamespace()->isAnonymousNamespace())
3303 return;
3304 II = NNS->getAsNamespace()->getIdentifier();
3305 break;
3306
3307 case NestedNameSpecifier::NamespaceAlias:
3308 II = NNS->getAsNamespaceAlias()->getIdentifier();
3309 break;
3310
3311 case NestedNameSpecifier::TypeSpecWithTemplate:
3312 case NestedNameSpecifier::TypeSpec:
3313 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3314 break;
3315
3316 case NestedNameSpecifier::Global:
3317 return;
3318 }
3319
3320 if (II)
3321 Identifiers.push_back(II);
3322 }
3323
3324 namespace {
3325
3326 static const unsigned MaxTypoDistanceResultSets = 5;
3327
3328 class TypoCorrectionConsumer : public VisibleDeclConsumer {
3329 typedef SmallVector<TypoCorrection, 1> TypoResultList;
3330 typedef llvm::StringMap<TypoResultList> TypoResultsMap;
3331 typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3332
3333 public:
TypoCorrectionConsumer(Sema & SemaRef,const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,DeclContext * MemberContext,bool EnteringContext)3334 explicit TypoCorrectionConsumer(Sema &SemaRef,
3335 const DeclarationNameInfo &TypoName,
3336 Sema::LookupNameKind LookupKind,
3337 Scope *S, CXXScopeSpec *SS,
3338 CorrectionCandidateCallback &CCC,
3339 DeclContext *MemberContext,
3340 bool EnteringContext)
3341 : Typo(TypoName.getName().getAsIdentifierInfo()), SemaRef(SemaRef), S(S),
3342 SS(SS), CorrectionValidator(CCC), MemberContext(MemberContext),
3343 Result(SemaRef, TypoName, LookupKind),
3344 Namespaces(SemaRef.Context, SemaRef.CurContext, SS),
3345 EnteringContext(EnteringContext), SearchNamespaces(false) {
3346 Result.suppressDiagnostics();
3347 }
3348
includeHiddenDecls() const3349 bool includeHiddenDecls() const override { return true; }
3350
3351 // Methods for adding potential corrections to the consumer.
3352 void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3353 bool InBaseClass) override;
3354 void FoundName(StringRef Name);
3355 void addKeywordResult(StringRef Keyword);
3356 void addCorrection(TypoCorrection Correction);
3357
empty() const3358 bool empty() const { return CorrectionResults.empty(); }
3359
3360 /// \brief Return the list of TypoCorrections for the given identifier from
3361 /// the set of corrections that have the closest edit distance, if any.
operator [](StringRef Name)3362 TypoResultList &operator[](StringRef Name) {
3363 return CorrectionResults.begin()->second[Name];
3364 }
3365
3366 /// \brief Return the edit distance of the corrections that have the
3367 /// closest/best edit distance from the original typop.
getBestEditDistance(bool Normalized)3368 unsigned getBestEditDistance(bool Normalized) {
3369 if (CorrectionResults.empty())
3370 return (std::numeric_limits<unsigned>::max)();
3371
3372 unsigned BestED = CorrectionResults.begin()->first;
3373 return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3374 }
3375
3376 /// \brief Set-up method to add to the consumer the set of namespaces to use
3377 /// in performing corrections to nested name specifiers. This method also
3378 /// implicitly adds all of the known classes in the current AST context to the
3379 /// to the consumer for correcting nested name specifiers.
3380 void
3381 addNamespaces(const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces);
3382
3383 /// \brief Return the next typo correction that passes all internal filters
3384 /// and is deemed valid by the consumer's CorrectionCandidateCallback,
3385 /// starting with the corrections that have the closest edit distance. An
3386 /// empty TypoCorrection is returned once no more viable corrections remain
3387 /// in the consumer.
3388 TypoCorrection getNextCorrection();
3389
3390 private:
3391 class NamespaceSpecifierSet {
3392 struct SpecifierInfo {
3393 DeclContext* DeclCtx;
3394 NestedNameSpecifier* NameSpecifier;
3395 unsigned EditDistance;
3396 };
3397
3398 typedef SmallVector<DeclContext*, 4> DeclContextList;
3399 typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3400
3401 ASTContext &Context;
3402 DeclContextList CurContextChain;
3403 std::string CurNameSpecifier;
3404 SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3405 SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3406 bool isSorted;
3407
3408 SpecifierInfoList Specifiers;
3409 llvm::SmallSetVector<unsigned, 4> Distances;
3410 llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3411
3412 /// \brief Helper for building the list of DeclContexts between the current
3413 /// context and the top of the translation unit
3414 static DeclContextList buildContextChain(DeclContext *Start);
3415
3416 void sortNamespaces();
3417
3418 unsigned buildNestedNameSpecifier(DeclContextList &DeclChain,
3419 NestedNameSpecifier *&NNS);
3420
3421 public:
3422 NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3423 CXXScopeSpec *CurScopeSpec);
3424
3425 /// \brief Add the DeclContext (a namespace or record) to the set, computing
3426 /// the corresponding NestedNameSpecifier and its distance in the process.
3427 void addNameSpecifier(DeclContext *Ctx);
3428
3429 typedef SpecifierInfoList::iterator iterator;
begin()3430 iterator begin() {
3431 if (!isSorted) sortNamespaces();
3432 return Specifiers.begin();
3433 }
end()3434 iterator end() { return Specifiers.end(); }
3435 };
3436
3437 void addName(StringRef Name, NamedDecl *ND,
3438 NestedNameSpecifier *NNS = nullptr, bool isKeyword = false);
3439
3440 /// \brief Find any visible decls for the given typo correction candidate.
3441 /// If none are found, it to the set of candidates for which qualified lookups
3442 /// will be performed to find possible nested name specifier changes.
3443 bool resolveCorrection(TypoCorrection &Candidate);
3444
3445 /// \brief Perform qualified lookups on the queued set of typo correction
3446 /// candidates and add the nested name specifier changes to each candidate if
3447 /// a lookup succeeds (at which point the candidate will be returned to the
3448 /// main pool of potential corrections).
3449 void performQualifiedLookups();
3450
3451 /// \brief The name written that is a typo in the source.
3452 IdentifierInfo *Typo;
3453
3454 /// \brief The results found that have the smallest edit distance
3455 /// found (so far) with the typo name.
3456 ///
3457 /// The pointer value being set to the current DeclContext indicates
3458 /// whether there is a keyword with this name.
3459 TypoEditDistanceMap CorrectionResults;
3460
3461 Sema &SemaRef;
3462 Scope *S;
3463 CXXScopeSpec *SS;
3464 CorrectionCandidateCallback &CorrectionValidator;
3465 DeclContext *MemberContext;
3466 LookupResult Result;
3467 NamespaceSpecifierSet Namespaces;
3468 SmallVector<TypoCorrection, 2> QualifiedResults;
3469 bool EnteringContext;
3470 bool SearchNamespaces;
3471 };
3472
3473 }
3474
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)3475 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3476 DeclContext *Ctx, bool InBaseClass) {
3477 // Don't consider hidden names for typo correction.
3478 if (Hiding)
3479 return;
3480
3481 // Only consider entities with identifiers for names, ignoring
3482 // special names (constructors, overloaded operators, selectors,
3483 // etc.).
3484 IdentifierInfo *Name = ND->getIdentifier();
3485 if (!Name)
3486 return;
3487
3488 // Only consider visible declarations and declarations from modules with
3489 // names that exactly match.
3490 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3491 !findAcceptableDecl(SemaRef, ND))
3492 return;
3493
3494 FoundName(Name->getName());
3495 }
3496
FoundName(StringRef Name)3497 void TypoCorrectionConsumer::FoundName(StringRef Name) {
3498 // Compute the edit distance between the typo and the name of this
3499 // entity, and add the identifier to the list of results.
3500 addName(Name, nullptr);
3501 }
3502
addKeywordResult(StringRef Keyword)3503 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3504 // Compute the edit distance between the typo and this keyword,
3505 // and add the keyword to the list of results.
3506 addName(Keyword, nullptr, nullptr, true);
3507 }
3508
addName(StringRef Name,NamedDecl * ND,NestedNameSpecifier * NNS,bool isKeyword)3509 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3510 NestedNameSpecifier *NNS, bool isKeyword) {
3511 // Use a simple length-based heuristic to determine the minimum possible
3512 // edit distance. If the minimum isn't good enough, bail out early.
3513 StringRef TypoStr = Typo->getName();
3514 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3515 if (MinED && TypoStr.size() / MinED < 3)
3516 return;
3517
3518 // Compute an upper bound on the allowable edit distance, so that the
3519 // edit-distance algorithm can short-circuit.
3520 unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3521 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3522 if (ED >= UpperBound) return;
3523
3524 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3525 if (isKeyword) TC.makeKeyword();
3526 addCorrection(TC);
3527 }
3528
addCorrection(TypoCorrection Correction)3529 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3530 StringRef TypoStr = Typo->getName();
3531 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3532
3533 // For very short typos, ignore potential corrections that have a different
3534 // base identifier from the typo or which have a normalized edit distance
3535 // longer than the typo itself.
3536 if (TypoStr.size() < 3 &&
3537 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3538 return;
3539
3540 // If the correction is resolved but is not viable, ignore it.
3541 if (Correction.isResolved() &&
3542 !isCandidateViable(CorrectionValidator, Correction))
3543 return;
3544
3545 TypoResultList &CList =
3546 CorrectionResults[Correction.getEditDistance(false)][Name];
3547
3548 if (!CList.empty() && !CList.back().isResolved())
3549 CList.pop_back();
3550 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3551 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3552 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3553 RI != RIEnd; ++RI) {
3554 // If the Correction refers to a decl already in the result list,
3555 // replace the existing result if the string representation of Correction
3556 // comes before the current result alphabetically, then stop as there is
3557 // nothing more to be done to add Correction to the candidate set.
3558 if (RI->getCorrectionDecl() == NewND) {
3559 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3560 *RI = Correction;
3561 return;
3562 }
3563 }
3564 }
3565 if (CList.empty() || Correction.isResolved())
3566 CList.push_back(Correction);
3567
3568 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3569 CorrectionResults.erase(std::prev(CorrectionResults.end()));
3570 }
3571
addNamespaces(const llvm::MapVector<NamespaceDecl *,bool> & KnownNamespaces)3572 void TypoCorrectionConsumer::addNamespaces(
3573 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
3574 SearchNamespaces = true;
3575
3576 for (auto KNPair : KnownNamespaces)
3577 Namespaces.addNameSpecifier(KNPair.first);
3578
3579 bool SSIsTemplate = false;
3580 if (NestedNameSpecifier *NNS =
3581 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
3582 if (const Type *T = NNS->getAsType())
3583 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
3584 }
3585 for (const auto *TI : SemaRef.getASTContext().types()) {
3586 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
3587 CD = CD->getCanonicalDecl();
3588 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
3589 !CD->isUnion() && CD->getIdentifier() &&
3590 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
3591 (CD->isBeingDefined() || CD->isCompleteDefinition()))
3592 Namespaces.addNameSpecifier(CD);
3593 }
3594 }
3595 }
3596
getNextCorrection()3597 TypoCorrection TypoCorrectionConsumer::getNextCorrection() {
3598 while (!CorrectionResults.empty()) {
3599 auto DI = CorrectionResults.begin();
3600 if (DI->second.empty()) {
3601 CorrectionResults.erase(DI);
3602 continue;
3603 }
3604
3605 auto RI = DI->second.begin();
3606 if (RI->second.empty()) {
3607 DI->second.erase(RI);
3608 performQualifiedLookups();
3609 continue;
3610 }
3611
3612 TypoCorrection TC = RI->second.pop_back_val();
3613 if (TC.isResolved() || resolveCorrection(TC))
3614 return TC;
3615 }
3616 return TypoCorrection();
3617 }
3618
resolveCorrection(TypoCorrection & Candidate)3619 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
3620 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3621 DeclContext *TempMemberContext = MemberContext;
3622 CXXScopeSpec *TempSS = SS;
3623 retry_lookup:
3624 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
3625 EnteringContext,
3626 CorrectionValidator.IsObjCIvarLookup,
3627 Name == Typo && !Candidate.WillReplaceSpecifier());
3628 switch (Result.getResultKind()) {
3629 case LookupResult::NotFound:
3630 case LookupResult::NotFoundInCurrentInstantiation:
3631 case LookupResult::FoundUnresolvedValue:
3632 if (TempSS) {
3633 // Immediately retry the lookup without the given CXXScopeSpec
3634 TempSS = nullptr;
3635 Candidate.WillReplaceSpecifier(true);
3636 goto retry_lookup;
3637 }
3638 if (TempMemberContext) {
3639 if (SS && !TempSS)
3640 TempSS = SS;
3641 TempMemberContext = nullptr;
3642 goto retry_lookup;
3643 }
3644 if (SearchNamespaces)
3645 QualifiedResults.push_back(Candidate);
3646 break;
3647
3648 case LookupResult::Ambiguous:
3649 // We don't deal with ambiguities.
3650 break;
3651
3652 case LookupResult::Found:
3653 case LookupResult::FoundOverloaded:
3654 // Store all of the Decls for overloaded symbols
3655 for (auto *TRD : Result)
3656 Candidate.addCorrectionDecl(TRD);
3657 if (!isCandidateViable(CorrectionValidator, Candidate)) {
3658 if (SearchNamespaces)
3659 QualifiedResults.push_back(Candidate);
3660 break;
3661 }
3662 return true;
3663 }
3664 return false;
3665 }
3666
performQualifiedLookups()3667 void TypoCorrectionConsumer::performQualifiedLookups() {
3668 unsigned TypoLen = Typo->getName().size();
3669 for (auto QR : QualifiedResults) {
3670 for (auto NSI : Namespaces) {
3671 DeclContext *Ctx = NSI.DeclCtx;
3672 const Type *NSType = NSI.NameSpecifier->getAsType();
3673
3674 // If the current NestedNameSpecifier refers to a class and the
3675 // current correction candidate is the name of that class, then skip
3676 // it as it is unlikely a qualified version of the class' constructor
3677 // is an appropriate correction.
3678 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 0) {
3679 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
3680 continue;
3681 }
3682
3683 TypoCorrection TC(QR);
3684 TC.ClearCorrectionDecls();
3685 TC.setCorrectionSpecifier(NSI.NameSpecifier);
3686 TC.setQualifierDistance(NSI.EditDistance);
3687 TC.setCallbackDistance(0); // Reset the callback distance
3688
3689 // If the current correction candidate and namespace combination are
3690 // too far away from the original typo based on the normalized edit
3691 // distance, then skip performing a qualified name lookup.
3692 unsigned TmpED = TC.getEditDistance(true);
3693 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
3694 TypoLen / TmpED < 3)
3695 continue;
3696
3697 Result.clear();
3698 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
3699 if (!SemaRef.LookupQualifiedName(Result, Ctx))
3700 continue;
3701
3702 // Any corrections added below will be validated in subsequent
3703 // iterations of the main while() loop over the Consumer's contents.
3704 switch (Result.getResultKind()) {
3705 case LookupResult::Found:
3706 case LookupResult::FoundOverloaded: {
3707 if (SS && SS->isValid()) {
3708 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
3709 std::string OldQualified;
3710 llvm::raw_string_ostream OldOStream(OldQualified);
3711 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
3712 OldOStream << Typo->getName();
3713 // If correction candidate would be an identical written qualified
3714 // identifer, then the existing CXXScopeSpec probably included a
3715 // typedef that didn't get accounted for properly.
3716 if (OldOStream.str() == NewQualified)
3717 break;
3718 }
3719 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
3720 TRD != TRDEnd; ++TRD) {
3721 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
3722 NSType ? NSType->getAsCXXRecordDecl()
3723 : nullptr,
3724 TRD.getPair()) == Sema::AR_accessible)
3725 TC.addCorrectionDecl(*TRD);
3726 }
3727 if (TC.isResolved())
3728 addCorrection(TC);
3729 break;
3730 }
3731 case LookupResult::NotFound:
3732 case LookupResult::NotFoundInCurrentInstantiation:
3733 case LookupResult::Ambiguous:
3734 case LookupResult::FoundUnresolvedValue:
3735 break;
3736 }
3737 }
3738 }
3739 QualifiedResults.clear();
3740 }
3741
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)3742 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
3743 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
3744 : Context(Context), CurContextChain(buildContextChain(CurContext)),
3745 isSorted(false) {
3746 if (NestedNameSpecifier *NNS =
3747 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
3748 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
3749 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
3750
3751 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
3752 }
3753 // Build the list of identifiers that would be used for an absolute
3754 // (from the global context) NestedNameSpecifier referring to the current
3755 // context.
3756 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3757 CEnd = CurContextChain.rend();
3758 C != CEnd; ++C) {
3759 if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3760 CurContextIdentifiers.push_back(ND->getIdentifier());
3761 }
3762
3763 // Add the global context as a NestedNameSpecifier
3764 Distances.insert(1);
3765 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
3766 NestedNameSpecifier::GlobalSpecifier(Context), 1};
3767 DistanceMap[1].push_back(SI);
3768 }
3769
buildContextChain(DeclContext * Start)3770 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
3771 DeclContext *Start) -> DeclContextList {
3772 assert(Start && "Building a context chain from a null context");
3773 DeclContextList Chain;
3774 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
3775 DC = DC->getLookupParent()) {
3776 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3777 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3778 !(ND && ND->isAnonymousNamespace()))
3779 Chain.push_back(DC->getPrimaryContext());
3780 }
3781 return Chain;
3782 }
3783
sortNamespaces()3784 void TypoCorrectionConsumer::NamespaceSpecifierSet::sortNamespaces() {
3785 SmallVector<unsigned, 4> sortedDistances;
3786 sortedDistances.append(Distances.begin(), Distances.end());
3787
3788 if (sortedDistances.size() > 1)
3789 std::sort(sortedDistances.begin(), sortedDistances.end());
3790
3791 Specifiers.clear();
3792 for (SmallVectorImpl<unsigned>::iterator DI = sortedDistances.begin(),
3793 DIEnd = sortedDistances.end();
3794 DI != DIEnd; ++DI) {
3795 SpecifierInfoList &SpecList = DistanceMap[*DI];
3796 Specifiers.append(SpecList.begin(), SpecList.end());
3797 }
3798
3799 isSorted = true;
3800 }
3801
3802 unsigned
buildNestedNameSpecifier(DeclContextList & DeclChain,NestedNameSpecifier * & NNS)3803 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
3804 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
3805 unsigned NumSpecifiers = 0;
3806 for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
3807 CEnd = DeclChain.rend();
3808 C != CEnd; ++C) {
3809 if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
3810 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3811 ++NumSpecifiers;
3812 } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
3813 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
3814 RD->getTypeForDecl());
3815 ++NumSpecifiers;
3816 }
3817 }
3818 return NumSpecifiers;
3819 }
3820
addNameSpecifier(DeclContext * Ctx)3821 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
3822 DeclContext *Ctx) {
3823 NestedNameSpecifier *NNS = nullptr;
3824 unsigned NumSpecifiers = 0;
3825 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
3826 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3827
3828 // Eliminate common elements from the two DeclContext chains.
3829 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3830 CEnd = CurContextChain.rend();
3831 C != CEnd && !NamespaceDeclChain.empty() &&
3832 NamespaceDeclChain.back() == *C; ++C) {
3833 NamespaceDeclChain.pop_back();
3834 }
3835
3836 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3837 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
3838
3839 // Add an explicit leading '::' specifier if needed.
3840 if (NamespaceDeclChain.empty()) {
3841 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
3842 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3843 NumSpecifiers =
3844 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
3845 } else if (NamedDecl *ND =
3846 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
3847 IdentifierInfo *Name = ND->getIdentifier();
3848 bool SameNameSpecifier = false;
3849 if (std::find(CurNameSpecifierIdentifiers.begin(),
3850 CurNameSpecifierIdentifiers.end(),
3851 Name) != CurNameSpecifierIdentifiers.end()) {
3852 std::string NewNameSpecifier;
3853 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
3854 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
3855 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3856 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
3857 SpecifierOStream.flush();
3858 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
3859 }
3860 if (SameNameSpecifier ||
3861 std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3862 Name) != CurContextIdentifiers.end()) {
3863 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
3864 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3865 NumSpecifiers =
3866 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
3867 }
3868 }
3869
3870 // If the built NestedNameSpecifier would be replacing an existing
3871 // NestedNameSpecifier, use the number of component identifiers that
3872 // would need to be changed as the edit distance instead of the number
3873 // of components in the built NestedNameSpecifier.
3874 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3875 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3876 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3877 NumSpecifiers = llvm::ComputeEditDistance(
3878 ArrayRef<const IdentifierInfo *>(CurNameSpecifierIdentifiers),
3879 ArrayRef<const IdentifierInfo *>(NewNameSpecifierIdentifiers));
3880 }
3881
3882 isSorted = false;
3883 Distances.insert(NumSpecifiers);
3884 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
3885 DistanceMap[NumSpecifiers].push_back(SI);
3886 }
3887
3888 /// \brief Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup,bool FindHidden)3889 static void LookupPotentialTypoResult(Sema &SemaRef,
3890 LookupResult &Res,
3891 IdentifierInfo *Name,
3892 Scope *S, CXXScopeSpec *SS,
3893 DeclContext *MemberContext,
3894 bool EnteringContext,
3895 bool isObjCIvarLookup,
3896 bool FindHidden) {
3897 Res.suppressDiagnostics();
3898 Res.clear();
3899 Res.setLookupName(Name);
3900 Res.setAllowHidden(FindHidden);
3901 if (MemberContext) {
3902 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3903 if (isObjCIvarLookup) {
3904 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3905 Res.addDecl(Ivar);
3906 Res.resolveKind();
3907 return;
3908 }
3909 }
3910
3911 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3912 Res.addDecl(Prop);
3913 Res.resolveKind();
3914 return;
3915 }
3916 }
3917
3918 SemaRef.LookupQualifiedName(Res, MemberContext);
3919 return;
3920 }
3921
3922 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3923 EnteringContext);
3924
3925 // Fake ivar lookup; this should really be part of
3926 // LookupParsedName.
3927 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3928 if (Method->isInstanceMethod() && Method->getClassInterface() &&
3929 (Res.empty() ||
3930 (Res.isSingleResult() &&
3931 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3932 if (ObjCIvarDecl *IV
3933 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3934 Res.addDecl(IV);
3935 Res.resolveKind();
3936 }
3937 }
3938 }
3939 }
3940
3941 /// \brief Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC,bool AfterNestedNameSpecifier)3942 static void AddKeywordsToConsumer(Sema &SemaRef,
3943 TypoCorrectionConsumer &Consumer,
3944 Scope *S, CorrectionCandidateCallback &CCC,
3945 bool AfterNestedNameSpecifier) {
3946 if (AfterNestedNameSpecifier) {
3947 // For 'X::', we know exactly which keywords can appear next.
3948 Consumer.addKeywordResult("template");
3949 if (CCC.WantExpressionKeywords)
3950 Consumer.addKeywordResult("operator");
3951 return;
3952 }
3953
3954 if (CCC.WantObjCSuper)
3955 Consumer.addKeywordResult("super");
3956
3957 if (CCC.WantTypeSpecifiers) {
3958 // Add type-specifier keywords to the set of results.
3959 static const char *const CTypeSpecs[] = {
3960 "char", "const", "double", "enum", "float", "int", "long", "short",
3961 "signed", "struct", "union", "unsigned", "void", "volatile",
3962 "_Complex", "_Imaginary",
3963 // storage-specifiers as well
3964 "extern", "inline", "static", "typedef"
3965 };
3966
3967 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
3968 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3969 Consumer.addKeywordResult(CTypeSpecs[I]);
3970
3971 if (SemaRef.getLangOpts().C99)
3972 Consumer.addKeywordResult("restrict");
3973 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3974 Consumer.addKeywordResult("bool");
3975 else if (SemaRef.getLangOpts().C99)
3976 Consumer.addKeywordResult("_Bool");
3977
3978 if (SemaRef.getLangOpts().CPlusPlus) {
3979 Consumer.addKeywordResult("class");
3980 Consumer.addKeywordResult("typename");
3981 Consumer.addKeywordResult("wchar_t");
3982
3983 if (SemaRef.getLangOpts().CPlusPlus11) {
3984 Consumer.addKeywordResult("char16_t");
3985 Consumer.addKeywordResult("char32_t");
3986 Consumer.addKeywordResult("constexpr");
3987 Consumer.addKeywordResult("decltype");
3988 Consumer.addKeywordResult("thread_local");
3989 }
3990 }
3991
3992 if (SemaRef.getLangOpts().GNUMode)
3993 Consumer.addKeywordResult("typeof");
3994 }
3995
3996 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3997 Consumer.addKeywordResult("const_cast");
3998 Consumer.addKeywordResult("dynamic_cast");
3999 Consumer.addKeywordResult("reinterpret_cast");
4000 Consumer.addKeywordResult("static_cast");
4001 }
4002
4003 if (CCC.WantExpressionKeywords) {
4004 Consumer.addKeywordResult("sizeof");
4005 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4006 Consumer.addKeywordResult("false");
4007 Consumer.addKeywordResult("true");
4008 }
4009
4010 if (SemaRef.getLangOpts().CPlusPlus) {
4011 static const char *const CXXExprs[] = {
4012 "delete", "new", "operator", "throw", "typeid"
4013 };
4014 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4015 for (unsigned I = 0; I != NumCXXExprs; ++I)
4016 Consumer.addKeywordResult(CXXExprs[I]);
4017
4018 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4019 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4020 Consumer.addKeywordResult("this");
4021
4022 if (SemaRef.getLangOpts().CPlusPlus11) {
4023 Consumer.addKeywordResult("alignof");
4024 Consumer.addKeywordResult("nullptr");
4025 }
4026 }
4027
4028 if (SemaRef.getLangOpts().C11) {
4029 // FIXME: We should not suggest _Alignof if the alignof macro
4030 // is present.
4031 Consumer.addKeywordResult("_Alignof");
4032 }
4033 }
4034
4035 if (CCC.WantRemainingKeywords) {
4036 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4037 // Statements.
4038 static const char *const CStmts[] = {
4039 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4040 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4041 for (unsigned I = 0; I != NumCStmts; ++I)
4042 Consumer.addKeywordResult(CStmts[I]);
4043
4044 if (SemaRef.getLangOpts().CPlusPlus) {
4045 Consumer.addKeywordResult("catch");
4046 Consumer.addKeywordResult("try");
4047 }
4048
4049 if (S && S->getBreakParent())
4050 Consumer.addKeywordResult("break");
4051
4052 if (S && S->getContinueParent())
4053 Consumer.addKeywordResult("continue");
4054
4055 if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4056 Consumer.addKeywordResult("case");
4057 Consumer.addKeywordResult("default");
4058 }
4059 } else {
4060 if (SemaRef.getLangOpts().CPlusPlus) {
4061 Consumer.addKeywordResult("namespace");
4062 Consumer.addKeywordResult("template");
4063 }
4064
4065 if (S && S->isClassScope()) {
4066 Consumer.addKeywordResult("explicit");
4067 Consumer.addKeywordResult("friend");
4068 Consumer.addKeywordResult("mutable");
4069 Consumer.addKeywordResult("private");
4070 Consumer.addKeywordResult("protected");
4071 Consumer.addKeywordResult("public");
4072 Consumer.addKeywordResult("virtual");
4073 }
4074 }
4075
4076 if (SemaRef.getLangOpts().CPlusPlus) {
4077 Consumer.addKeywordResult("using");
4078
4079 if (SemaRef.getLangOpts().CPlusPlus11)
4080 Consumer.addKeywordResult("static_assert");
4081 }
4082 }
4083 }
4084
4085 /// \brief Check whether the declarations found for a typo correction are
4086 /// visible, and if none of them are, convert the correction to an 'import
4087 /// a module' correction.
checkCorrectionVisibility(Sema & SemaRef,TypoCorrection & TC)4088 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4089 if (TC.begin() == TC.end())
4090 return;
4091
4092 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4093
4094 for (/**/; DI != DE; ++DI)
4095 if (!LookupResult::isVisible(SemaRef, *DI))
4096 break;
4097 // Nothing to do if all decls are visible.
4098 if (DI == DE)
4099 return;
4100
4101 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4102 bool AnyVisibleDecls = !NewDecls.empty();
4103
4104 for (/**/; DI != DE; ++DI) {
4105 NamedDecl *VisibleDecl = *DI;
4106 if (!LookupResult::isVisible(SemaRef, *DI))
4107 VisibleDecl = findAcceptableDecl(SemaRef, *DI);
4108
4109 if (VisibleDecl) {
4110 if (!AnyVisibleDecls) {
4111 // Found a visible decl, discard all hidden ones.
4112 AnyVisibleDecls = true;
4113 NewDecls.clear();
4114 }
4115 NewDecls.push_back(VisibleDecl);
4116 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4117 NewDecls.push_back(*DI);
4118 }
4119
4120 if (NewDecls.empty())
4121 TC = TypoCorrection();
4122 else {
4123 TC.setCorrectionDecls(NewDecls);
4124 TC.setRequiresImport(!AnyVisibleDecls);
4125 }
4126 }
4127
4128 /// \brief Try to "correct" a typo in the source code by finding
4129 /// visible declarations whose names are similar to the name that was
4130 /// present in the source code.
4131 ///
4132 /// \param TypoName the \c DeclarationNameInfo structure that contains
4133 /// the name that was present in the source code along with its location.
4134 ///
4135 /// \param LookupKind the name-lookup criteria used to search for the name.
4136 ///
4137 /// \param S the scope in which name lookup occurs.
4138 ///
4139 /// \param SS the nested-name-specifier that precedes the name we're
4140 /// looking for, if present.
4141 ///
4142 /// \param CCC A CorrectionCandidateCallback object that provides further
4143 /// validation of typo correction candidates. It also provides flags for
4144 /// determining the set of keywords permitted.
4145 ///
4146 /// \param MemberContext if non-NULL, the context in which to look for
4147 /// a member access expression.
4148 ///
4149 /// \param EnteringContext whether we're entering the context described by
4150 /// the nested-name-specifier SS.
4151 ///
4152 /// \param OPT when non-NULL, the search for visible declarations will
4153 /// also walk the protocols in the qualified interfaces of \p OPT.
4154 ///
4155 /// \returns a \c TypoCorrection containing the corrected name if the typo
4156 /// along with information such as the \c NamedDecl where the corrected name
4157 /// was declared, and any additional \c NestedNameSpecifier needed to access
4158 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool RecordFailure)4159 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4160 Sema::LookupNameKind LookupKind,
4161 Scope *S, CXXScopeSpec *SS,
4162 CorrectionCandidateCallback &CCC,
4163 CorrectTypoKind Mode,
4164 DeclContext *MemberContext,
4165 bool EnteringContext,
4166 const ObjCObjectPointerType *OPT,
4167 bool RecordFailure) {
4168 // Always let the ExternalSource have the first chance at correction, even
4169 // if we would otherwise have given up.
4170 if (ExternalSource) {
4171 if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4172 TypoName, LookupKind, S, SS, CCC, MemberContext, EnteringContext, OPT))
4173 return Correction;
4174 }
4175
4176 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4177 DisableTypoCorrection)
4178 return TypoCorrection();
4179
4180 // In Microsoft mode, don't perform typo correction in a template member
4181 // function dependent context because it interferes with the "lookup into
4182 // dependent bases of class templates" feature.
4183 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4184 isa<CXXMethodDecl>(CurContext))
4185 return TypoCorrection();
4186
4187 // We only attempt to correct typos for identifiers.
4188 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4189 if (!Typo)
4190 return TypoCorrection();
4191
4192 // If the scope specifier itself was invalid, don't try to correct
4193 // typos.
4194 if (SS && SS->isInvalid())
4195 return TypoCorrection();
4196
4197 // Never try to correct typos during template deduction or
4198 // instantiation.
4199 if (!ActiveTemplateInstantiations.empty())
4200 return TypoCorrection();
4201
4202 // Don't try to correct 'super'.
4203 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4204 return TypoCorrection();
4205
4206 // Abort if typo correction already failed for this specific typo.
4207 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4208 if (locs != TypoCorrectionFailures.end() &&
4209 locs->second.count(TypoName.getLoc()))
4210 return TypoCorrection();
4211
4212 // Don't try to correct the identifier "vector" when in AltiVec mode.
4213 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4214 // remove this workaround.
4215 if (getLangOpts().AltiVec && Typo->isStr("vector"))
4216 return TypoCorrection();
4217
4218 // If we're handling a missing symbol error, using modules, and the
4219 // special search all modules option is used, look for a missing import.
4220 if ((Mode == CTK_ErrorRecovery) && getLangOpts().Modules &&
4221 getLangOpts().ModulesSearchAll) {
4222 // The following has the side effect of loading the missing module.
4223 getModuleLoader().lookupMissingImports(Typo->getName(),
4224 TypoName.getLocStart());
4225 }
4226
4227 TypoCorrectionConsumer Consumer(*this, TypoName, LookupKind, S, SS, CCC,
4228 MemberContext, EnteringContext);
4229
4230 // If a callback object considers an empty typo correction candidate to be
4231 // viable, assume it does not do any actual validation of the candidates.
4232 TypoCorrection EmptyCorrection;
4233 bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
4234
4235 // Perform name lookup to find visible, similarly-named entities.
4236 bool IsUnqualifiedLookup = false;
4237 DeclContext *QualifiedDC = MemberContext;
4238 if (MemberContext) {
4239 LookupVisibleDecls(MemberContext, LookupKind, Consumer);
4240
4241 // Look in qualified interfaces.
4242 if (OPT) {
4243 for (auto *I : OPT->quals())
4244 LookupVisibleDecls(I, LookupKind, Consumer);
4245 }
4246 } else if (SS && SS->isSet()) {
4247 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4248 if (!QualifiedDC)
4249 return TypoCorrection();
4250
4251 // Provide a stop gap for files that are just seriously broken. Trying
4252 // to correct all typos can turn into a HUGE performance penalty, causing
4253 // some files to take minutes to get rejected by the parser.
4254 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
4255 return TypoCorrection();
4256 ++TyposCorrected;
4257
4258 LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
4259 } else {
4260 IsUnqualifiedLookup = true;
4261 UnqualifiedTyposCorrectedMap::iterator Cached
4262 = UnqualifiedTyposCorrected.find(Typo);
4263 if (Cached != UnqualifiedTyposCorrected.end()) {
4264 // Add the cached value, unless it's a keyword or fails validation. In the
4265 // keyword case, we'll end up adding the keyword below.
4266 if (Cached->second) {
4267 if (!Cached->second.isKeyword() &&
4268 isCandidateViable(CCC, Cached->second)) {
4269 // Do not use correction that is unaccessible in the given scope.
4270 NamedDecl *CorrectionDecl = Cached->second.getCorrectionDecl();
4271 DeclarationNameInfo NameInfo(CorrectionDecl->getDeclName(),
4272 CorrectionDecl->getLocation());
4273 LookupResult R(*this, NameInfo, LookupOrdinaryName);
4274 if (LookupName(R, S))
4275 Consumer.addCorrection(Cached->second);
4276 }
4277 } else {
4278 // Only honor no-correction cache hits when a callback that will validate
4279 // correction candidates is not being used.
4280 if (!ValidatingCallback)
4281 return TypoCorrection();
4282 }
4283 }
4284 if (Cached == UnqualifiedTyposCorrected.end()) {
4285 // Provide a stop gap for files that are just seriously broken. Trying
4286 // to correct all typos can turn into a HUGE performance penalty, causing
4287 // some files to take minutes to get rejected by the parser.
4288 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
4289 return TypoCorrection();
4290 }
4291 }
4292
4293 // Determine whether we are going to search in the various namespaces for
4294 // corrections.
4295 bool SearchNamespaces
4296 = getLangOpts().CPlusPlus &&
4297 (IsUnqualifiedLookup || (SS && SS->isSet()));
4298 // In a few cases we *only* want to search for corrections based on just
4299 // adding or changing the nested name specifier.
4300 unsigned TypoLen = Typo->getName().size();
4301 bool AllowOnlyNNSChanges = TypoLen < 3;
4302
4303 if (IsUnqualifiedLookup || SearchNamespaces) {
4304 // For unqualified lookup, look through all of the names that we have
4305 // seen in this translation unit.
4306 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4307 for (IdentifierTable::iterator I = Context.Idents.begin(),
4308 IEnd = Context.Idents.end();
4309 I != IEnd; ++I)
4310 Consumer.FoundName(I->getKey());
4311
4312 // Walk through identifiers in external identifier sources.
4313 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4314 if (IdentifierInfoLookup *External
4315 = Context.Idents.getExternalIdentifierLookup()) {
4316 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4317 do {
4318 StringRef Name = Iter->Next();
4319 if (Name.empty())
4320 break;
4321
4322 Consumer.FoundName(Name);
4323 } while (true);
4324 }
4325 }
4326
4327 AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
4328
4329 // If we haven't found anything, we're done.
4330 if (Consumer.empty())
4331 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
4332 IsUnqualifiedLookup);
4333
4334 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4335 // is not more that about a third of the length of the typo's identifier.
4336 unsigned ED = Consumer.getBestEditDistance(true);
4337 if (ED > 0 && TypoLen / ED < 3)
4338 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
4339 IsUnqualifiedLookup);
4340
4341 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4342 // to search those namespaces.
4343 if (SearchNamespaces) {
4344 // Load any externally-known namespaces.
4345 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4346 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4347 LoadedExternalKnownNamespaces = true;
4348 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4349 for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
4350 KnownNamespaces[ExternalKnownNamespaces[I]] = true;
4351 }
4352
4353 Consumer.addNamespaces(KnownNamespaces);
4354 }
4355
4356 TypoCorrection BestTC = Consumer.getNextCorrection();
4357 TypoCorrection SecondBestTC = Consumer.getNextCorrection();
4358 if (!BestTC)
4359 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4360
4361 ED = BestTC.getEditDistance();
4362
4363 if (!AllowOnlyNNSChanges && ED > 0 && TypoLen / ED < 3) {
4364 // If this was an unqualified lookup and we believe the callback
4365 // object wouldn't have filtered out possible corrections, note
4366 // that no correction was found.
4367 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
4368 IsUnqualifiedLookup && !ValidatingCallback);
4369 }
4370
4371 // If only a single name remains, return that result.
4372 if (!SecondBestTC ||
4373 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4374 const TypoCorrection &Result = BestTC;
4375
4376 // Don't correct to a keyword that's the same as the typo; the keyword
4377 // wasn't actually in scope.
4378 if (ED == 0 && Result.isKeyword())
4379 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4380
4381 // Record the correction for unqualified lookup.
4382 if (IsUnqualifiedLookup)
4383 UnqualifiedTyposCorrected[Typo] = Result;
4384
4385 TypoCorrection TC = Result;
4386 TC.setCorrectionRange(SS, TypoName);
4387 checkCorrectionVisibility(*this, TC);
4388 return TC;
4389 }
4390 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4391 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4392 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4393 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4394 else if (SecondBestTC && CCC.WantObjCSuper && !CCC.WantRemainingKeywords) {
4395 // Prefer 'super' when we're completing in a message-receiver
4396 // context.
4397
4398 if (BestTC.getCorrection().getAsString() != "super") {
4399 if (SecondBestTC.getCorrection().getAsString() == "super")
4400 BestTC = SecondBestTC;
4401 else if (Consumer["super"].front().isKeyword())
4402 BestTC = Consumer["super"].front();
4403 }
4404 // Don't correct to a keyword that's the same as the typo; the keyword
4405 // wasn't actually in scope.
4406 if (BestTC.getEditDistance() == 0 ||
4407 BestTC.getCorrection().getAsString() != "super")
4408 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4409
4410 // Record the correction for unqualified lookup.
4411 if (IsUnqualifiedLookup)
4412 UnqualifiedTyposCorrected[Typo] = BestTC;
4413
4414 BestTC.setCorrectionRange(SS, TypoName);
4415 return BestTC;
4416 }
4417
4418 // Record the failure's location if needed and return an empty correction. If
4419 // this was an unqualified lookup and we believe the callback object did not
4420 // filter out possible corrections, also cache the failure for the typo.
4421 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
4422 IsUnqualifiedLookup && !ValidatingCallback);
4423 }
4424
addCorrectionDecl(NamedDecl * CDecl)4425 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4426 if (!CDecl) return;
4427
4428 if (isKeyword())
4429 CorrectionDecls.clear();
4430
4431 CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
4432
4433 if (!CorrectionName)
4434 CorrectionName = CDecl->getDeclName();
4435 }
4436
getAsString(const LangOptions & LO) const4437 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4438 if (CorrectionNameSpec) {
4439 std::string tmpBuffer;
4440 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4441 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4442 PrefixOStream << CorrectionName;
4443 return PrefixOStream.str();
4444 }
4445
4446 return CorrectionName.getAsString();
4447 }
4448
ValidateCandidate(const TypoCorrection & candidate)4449 bool CorrectionCandidateCallback::ValidateCandidate(const TypoCorrection &candidate) {
4450 if (!candidate.isResolved())
4451 return true;
4452
4453 if (candidate.isKeyword())
4454 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4455 WantRemainingKeywords || WantObjCSuper;
4456
4457 bool HasNonType = false;
4458 bool HasStaticMethod = false;
4459 bool HasNonStaticMethod = false;
4460 for (Decl *D : candidate) {
4461 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4462 D = FTD->getTemplatedDecl();
4463 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4464 if (Method->isStatic())
4465 HasStaticMethod = true;
4466 else
4467 HasNonStaticMethod = true;
4468 }
4469 if (!isa<TypeDecl>(D))
4470 HasNonType = true;
4471 }
4472
4473 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4474 !candidate.getCorrectionSpecifier())
4475 return false;
4476
4477 return WantTypeSpecifiers || HasNonType;
4478 }
4479
FunctionCallFilterCCC(Sema & SemaRef,unsigned NumArgs,bool HasExplicitTemplateArgs,MemberExpr * ME)4480 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4481 bool HasExplicitTemplateArgs,
4482 MemberExpr *ME)
4483 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4484 CurContext(SemaRef.CurContext), MemberFn(ME) {
4485 WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
4486 WantRemainingKeywords = false;
4487 }
4488
ValidateCandidate(const TypoCorrection & candidate)4489 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4490 if (!candidate.getCorrectionDecl())
4491 return candidate.isKeyword();
4492
4493 for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
4494 DIEnd = candidate.end();
4495 DI != DIEnd; ++DI) {
4496 FunctionDecl *FD = nullptr;
4497 NamedDecl *ND = (*DI)->getUnderlyingDecl();
4498 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4499 FD = FTD->getTemplatedDecl();
4500 if (!HasExplicitTemplateArgs && !FD) {
4501 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4502 // If the Decl is neither a function nor a template function,
4503 // determine if it is a pointer or reference to a function. If so,
4504 // check against the number of arguments expected for the pointee.
4505 QualType ValType = cast<ValueDecl>(ND)->getType();
4506 if (ValType->isAnyPointerType() || ValType->isReferenceType())
4507 ValType = ValType->getPointeeType();
4508 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4509 if (FPT->getNumParams() == NumArgs)
4510 return true;
4511 }
4512 }
4513
4514 // Skip the current candidate if it is not a FunctionDecl or does not accept
4515 // the current number of arguments.
4516 if (!FD || !(FD->getNumParams() >= NumArgs &&
4517 FD->getMinRequiredArguments() <= NumArgs))
4518 continue;
4519
4520 // If the current candidate is a non-static C++ method, skip the candidate
4521 // unless the method being corrected--or the current DeclContext, if the
4522 // function being corrected is not a method--is a method in the same class
4523 // or a descendent class of the candidate's parent class.
4524 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4525 if (MemberFn || !MD->isStatic()) {
4526 CXXMethodDecl *CurMD =
4527 MemberFn
4528 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4529 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4530 CXXRecordDecl *CurRD =
4531 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4532 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4533 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4534 continue;
4535 }
4536 }
4537 return true;
4538 }
4539 return false;
4540 }
4541
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,bool ErrorRecovery)4542 void Sema::diagnoseTypo(const TypoCorrection &Correction,
4543 const PartialDiagnostic &TypoDiag,
4544 bool ErrorRecovery) {
4545 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
4546 ErrorRecovery);
4547 }
4548
4549 /// Find which declaration we should import to provide the definition of
4550 /// the given declaration.
getDefinitionToImport(const NamedDecl * D)4551 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
4552 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4553 return VD->getDefinition();
4554 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4555 return FD->isDefined(FD) ? FD : nullptr;
4556 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
4557 return TD->getDefinition();
4558 if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
4559 return ID->getDefinition();
4560 if (const ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
4561 return PD->getDefinition();
4562 if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
4563 return getDefinitionToImport(TD->getTemplatedDecl());
4564 return nullptr;
4565 }
4566
4567 /// \brief Diagnose a successfully-corrected typo. Separated from the correction
4568 /// itself to allow external validation of the result, etc.
4569 ///
4570 /// \param Correction The result of performing typo correction.
4571 /// \param TypoDiag The diagnostic to produce. This will have the corrected
4572 /// string added to it (and usually also a fixit).
4573 /// \param PrevNote A note to use when indicating the location of the entity to
4574 /// which we are correcting. Will have the correction string added to it.
4575 /// \param ErrorRecovery If \c true (the default), the caller is going to
4576 /// recover from the typo as if the corrected string had been typed.
4577 /// In this case, \c PDiag must be an error, and we will attach a fixit
4578 /// to it.
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,const PartialDiagnostic & PrevNote,bool ErrorRecovery)4579 void Sema::diagnoseTypo(const TypoCorrection &Correction,
4580 const PartialDiagnostic &TypoDiag,
4581 const PartialDiagnostic &PrevNote,
4582 bool ErrorRecovery) {
4583 std::string CorrectedStr = Correction.getAsString(getLangOpts());
4584 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
4585 FixItHint FixTypo = FixItHint::CreateReplacement(
4586 Correction.getCorrectionRange(), CorrectedStr);
4587
4588 // Maybe we're just missing a module import.
4589 if (Correction.requiresImport()) {
4590 NamedDecl *Decl = Correction.getCorrectionDecl();
4591 assert(Decl && "import required but no declaration to import");
4592
4593 // Suggest importing a module providing the definition of this entity, if
4594 // possible.
4595 const NamedDecl *Def = getDefinitionToImport(Decl);
4596 if (!Def)
4597 Def = Decl;
4598 Module *Owner = Def->getOwningModule();
4599 assert(Owner && "definition of hidden declaration is not in a module");
4600
4601 Diag(Correction.getCorrectionRange().getBegin(),
4602 diag::err_module_private_declaration)
4603 << Def << Owner->getFullModuleName();
4604 Diag(Def->getLocation(), diag::note_previous_declaration);
4605
4606 // Recover by implicitly importing this module.
4607 if (ErrorRecovery)
4608 createImplicitModuleImportForErrorRecovery(
4609 Correction.getCorrectionRange().getBegin(), Owner);
4610 return;
4611 }
4612
4613 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
4614 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
4615
4616 NamedDecl *ChosenDecl =
4617 Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
4618 if (PrevNote.getDiagID() && ChosenDecl)
4619 Diag(ChosenDecl->getLocation(), PrevNote)
4620 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
4621 }
4622