1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 // 18 // Definitions of resource data structures. 19 // 20 #ifndef _LIBS_UTILS_RESOURCE_TYPES_H 21 #define _LIBS_UTILS_RESOURCE_TYPES_H 22 23 #include <androidfw/Asset.h> 24 #include <utils/ByteOrder.h> 25 #include <utils/Errors.h> 26 #include <utils/String16.h> 27 #include <utils/Vector.h> 28 #include <utils/KeyedVector.h> 29 30 #include <utils/threads.h> 31 32 #include <stdint.h> 33 #include <sys/types.h> 34 35 #include <android/configuration.h> 36 37 namespace android { 38 39 /** 40 * In C++11, char16_t is defined as *at least* 16 bits. We do a lot of 41 * casting on raw data and expect char16_t to be exactly 16 bits. 42 */ 43 #if __cplusplus >= 201103L 44 struct __assertChar16Size { 45 static_assert(sizeof(char16_t) == sizeof(uint16_t), "char16_t is not 16 bits"); 46 static_assert(alignof(char16_t) == alignof(uint16_t), "char16_t is not 16-bit aligned"); 47 }; 48 #endif 49 50 /** ******************************************************************** 51 * PNG Extensions 52 * 53 * New private chunks that may be placed in PNG images. 54 * 55 *********************************************************************** */ 56 57 /** 58 * This chunk specifies how to split an image into segments for 59 * scaling. 60 * 61 * There are J horizontal and K vertical segments. These segments divide 62 * the image into J*K regions as follows (where J=4 and K=3): 63 * 64 * F0 S0 F1 S1 65 * +-----+----+------+-------+ 66 * S2| 0 | 1 | 2 | 3 | 67 * +-----+----+------+-------+ 68 * | | | | | 69 * | | | | | 70 * F2| 4 | 5 | 6 | 7 | 71 * | | | | | 72 * | | | | | 73 * +-----+----+------+-------+ 74 * S3| 8 | 9 | 10 | 11 | 75 * +-----+----+------+-------+ 76 * 77 * Each horizontal and vertical segment is considered to by either 78 * stretchable (marked by the Sx labels) or fixed (marked by the Fy 79 * labels), in the horizontal or vertical axis, respectively. In the 80 * above example, the first is horizontal segment (F0) is fixed, the 81 * next is stretchable and then they continue to alternate. Note that 82 * the segment list for each axis can begin or end with a stretchable 83 * or fixed segment. 84 * 85 * The relative sizes of the stretchy segments indicates the relative 86 * amount of stretchiness of the regions bordered by the segments. For 87 * example, regions 3, 7 and 11 above will take up more horizontal space 88 * than regions 1, 5 and 9 since the horizontal segment associated with 89 * the first set of regions is larger than the other set of regions. The 90 * ratios of the amount of horizontal (or vertical) space taken by any 91 * two stretchable slices is exactly the ratio of their corresponding 92 * segment lengths. 93 * 94 * xDivs and yDivs are arrays of horizontal and vertical pixel 95 * indices. The first pair of Divs (in either array) indicate the 96 * starting and ending points of the first stretchable segment in that 97 * axis. The next pair specifies the next stretchable segment, etc. So 98 * in the above example xDiv[0] and xDiv[1] specify the horizontal 99 * coordinates for the regions labeled 1, 5 and 9. xDiv[2] and 100 * xDiv[3] specify the coordinates for regions 3, 7 and 11. Note that 101 * the leftmost slices always start at x=0 and the rightmost slices 102 * always end at the end of the image. So, for example, the regions 0, 103 * 4 and 8 (which are fixed along the X axis) start at x value 0 and 104 * go to xDiv[0] and slices 2, 6 and 10 start at xDiv[1] and end at 105 * xDiv[2]. 106 * 107 * The colors array contains hints for each of the regions. They are 108 * ordered according left-to-right and top-to-bottom as indicated above. 109 * For each segment that is a solid color the array entry will contain 110 * that color value; otherwise it will contain NO_COLOR. Segments that 111 * are completely transparent will always have the value TRANSPARENT_COLOR. 112 * 113 * The PNG chunk type is "npTc". 114 */ 115 struct Res_png_9patch 116 { Res_png_9patchRes_png_9patch117 Res_png_9patch() : wasDeserialized(false), xDivsOffset(0), 118 yDivsOffset(0), colorsOffset(0) { } 119 120 int8_t wasDeserialized; 121 uint8_t numXDivs; 122 uint8_t numYDivs; 123 uint8_t numColors; 124 125 // The offset (from the start of this structure) to the xDivs & yDivs 126 // array for this 9patch. To get a pointer to this array, call 127 // getXDivs or getYDivs. Note that the serialized form for 9patches places 128 // the xDivs, yDivs and colors arrays immediately after the location 129 // of the Res_png_9patch struct. 130 uint32_t xDivsOffset; 131 uint32_t yDivsOffset; 132 133 int32_t paddingLeft, paddingRight; 134 int32_t paddingTop, paddingBottom; 135 136 enum { 137 // The 9 patch segment is not a solid color. 138 NO_COLOR = 0x00000001, 139 140 // The 9 patch segment is completely transparent. 141 TRANSPARENT_COLOR = 0x00000000 142 }; 143 144 // The offset (from the start of this structure) to the colors array 145 // for this 9patch. 146 uint32_t colorsOffset; 147 148 // Convert data from device representation to PNG file representation. 149 void deviceToFile(); 150 // Convert data from PNG file representation to device representation. 151 void fileToDevice(); 152 153 // Serialize/Marshall the patch data into a newly malloc-ed block. 154 static void* serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs, 155 const int32_t* yDivs, const uint32_t* colors); 156 // Serialize/Marshall the patch data into |outData|. 157 static void serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs, 158 const int32_t* yDivs, const uint32_t* colors, void* outData); 159 // Deserialize/Unmarshall the patch data 160 static Res_png_9patch* deserialize(void* data); 161 // Compute the size of the serialized data structure 162 size_t serializedSize() const; 163 164 // These tell where the next section of a patch starts. 165 // For example, the first patch includes the pixels from 166 // 0 to xDivs[0]-1 and the second patch includes the pixels 167 // from xDivs[0] to xDivs[1]-1. getXDivsRes_png_9patch168 inline int32_t* getXDivs() const { 169 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + xDivsOffset); 170 } getYDivsRes_png_9patch171 inline int32_t* getYDivs() const { 172 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + yDivsOffset); 173 } getColorsRes_png_9patch174 inline uint32_t* getColors() const { 175 return reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(this) + colorsOffset); 176 } 177 178 } __attribute__((packed)); 179 180 /** ******************************************************************** 181 * Base Types 182 * 183 * These are standard types that are shared between multiple specific 184 * resource types. 185 * 186 *********************************************************************** */ 187 188 /** 189 * Header that appears at the front of every data chunk in a resource. 190 */ 191 struct ResChunk_header 192 { 193 // Type identifier for this chunk. The meaning of this value depends 194 // on the containing chunk. 195 uint16_t type; 196 197 // Size of the chunk header (in bytes). Adding this value to 198 // the address of the chunk allows you to find its associated data 199 // (if any). 200 uint16_t headerSize; 201 202 // Total size of this chunk (in bytes). This is the chunkSize plus 203 // the size of any data associated with the chunk. Adding this value 204 // to the chunk allows you to completely skip its contents (including 205 // any child chunks). If this value is the same as chunkSize, there is 206 // no data associated with the chunk. 207 uint32_t size; 208 }; 209 210 enum { 211 RES_NULL_TYPE = 0x0000, 212 RES_STRING_POOL_TYPE = 0x0001, 213 RES_TABLE_TYPE = 0x0002, 214 RES_XML_TYPE = 0x0003, 215 216 // Chunk types in RES_XML_TYPE 217 RES_XML_FIRST_CHUNK_TYPE = 0x0100, 218 RES_XML_START_NAMESPACE_TYPE= 0x0100, 219 RES_XML_END_NAMESPACE_TYPE = 0x0101, 220 RES_XML_START_ELEMENT_TYPE = 0x0102, 221 RES_XML_END_ELEMENT_TYPE = 0x0103, 222 RES_XML_CDATA_TYPE = 0x0104, 223 RES_XML_LAST_CHUNK_TYPE = 0x017f, 224 // This contains a uint32_t array mapping strings in the string 225 // pool back to resource identifiers. It is optional. 226 RES_XML_RESOURCE_MAP_TYPE = 0x0180, 227 228 // Chunk types in RES_TABLE_TYPE 229 RES_TABLE_PACKAGE_TYPE = 0x0200, 230 RES_TABLE_TYPE_TYPE = 0x0201, 231 RES_TABLE_TYPE_SPEC_TYPE = 0x0202, 232 RES_TABLE_LIBRARY_TYPE = 0x0203 233 }; 234 235 /** 236 * Macros for building/splitting resource identifiers. 237 */ 238 #define Res_VALIDID(resid) (resid != 0) 239 #define Res_CHECKID(resid) ((resid&0xFFFF0000) != 0) 240 #define Res_MAKEID(package, type, entry) \ 241 (((package+1)<<24) | (((type+1)&0xFF)<<16) | (entry&0xFFFF)) 242 #define Res_GETPACKAGE(id) ((id>>24)-1) 243 #define Res_GETTYPE(id) (((id>>16)&0xFF)-1) 244 #define Res_GETENTRY(id) (id&0xFFFF) 245 246 #define Res_INTERNALID(resid) ((resid&0xFFFF0000) != 0 && (resid&0xFF0000) == 0) 247 #define Res_MAKEINTERNAL(entry) (0x01000000 | (entry&0xFFFF)) 248 #define Res_MAKEARRAY(entry) (0x02000000 | (entry&0xFFFF)) 249 250 #define Res_MAXPACKAGE 255 251 #define Res_MAXTYPE 255 252 253 /** 254 * Representation of a value in a resource, supplying type 255 * information. 256 */ 257 struct Res_value 258 { 259 // Number of bytes in this structure. 260 uint16_t size; 261 262 // Always set to 0. 263 uint8_t res0; 264 265 // Type of the data value. 266 enum { 267 // The 'data' is either 0 or 1, specifying this resource is either 268 // undefined or empty, respectively. 269 TYPE_NULL = 0x00, 270 // The 'data' holds a ResTable_ref, a reference to another resource 271 // table entry. 272 TYPE_REFERENCE = 0x01, 273 // The 'data' holds an attribute resource identifier. 274 TYPE_ATTRIBUTE = 0x02, 275 // The 'data' holds an index into the containing resource table's 276 // global value string pool. 277 TYPE_STRING = 0x03, 278 // The 'data' holds a single-precision floating point number. 279 TYPE_FLOAT = 0x04, 280 // The 'data' holds a complex number encoding a dimension value, 281 // such as "100in". 282 TYPE_DIMENSION = 0x05, 283 // The 'data' holds a complex number encoding a fraction of a 284 // container. 285 TYPE_FRACTION = 0x06, 286 // The 'data' holds a dynamic ResTable_ref, which needs to be 287 // resolved before it can be used like a TYPE_REFERENCE. 288 TYPE_DYNAMIC_REFERENCE = 0x07, 289 290 // Beginning of integer flavors... 291 TYPE_FIRST_INT = 0x10, 292 293 // The 'data' is a raw integer value of the form n..n. 294 TYPE_INT_DEC = 0x10, 295 // The 'data' is a raw integer value of the form 0xn..n. 296 TYPE_INT_HEX = 0x11, 297 // The 'data' is either 0 or 1, for input "false" or "true" respectively. 298 TYPE_INT_BOOLEAN = 0x12, 299 300 // Beginning of color integer flavors... 301 TYPE_FIRST_COLOR_INT = 0x1c, 302 303 // The 'data' is a raw integer value of the form #aarrggbb. 304 TYPE_INT_COLOR_ARGB8 = 0x1c, 305 // The 'data' is a raw integer value of the form #rrggbb. 306 TYPE_INT_COLOR_RGB8 = 0x1d, 307 // The 'data' is a raw integer value of the form #argb. 308 TYPE_INT_COLOR_ARGB4 = 0x1e, 309 // The 'data' is a raw integer value of the form #rgb. 310 TYPE_INT_COLOR_RGB4 = 0x1f, 311 312 // ...end of integer flavors. 313 TYPE_LAST_COLOR_INT = 0x1f, 314 315 // ...end of integer flavors. 316 TYPE_LAST_INT = 0x1f 317 }; 318 uint8_t dataType; 319 320 // Structure of complex data values (TYPE_UNIT and TYPE_FRACTION) 321 enum { 322 // Where the unit type information is. This gives us 16 possible 323 // types, as defined below. 324 COMPLEX_UNIT_SHIFT = 0, 325 COMPLEX_UNIT_MASK = 0xf, 326 327 // TYPE_DIMENSION: Value is raw pixels. 328 COMPLEX_UNIT_PX = 0, 329 // TYPE_DIMENSION: Value is Device Independent Pixels. 330 COMPLEX_UNIT_DIP = 1, 331 // TYPE_DIMENSION: Value is a Scaled device independent Pixels. 332 COMPLEX_UNIT_SP = 2, 333 // TYPE_DIMENSION: Value is in points. 334 COMPLEX_UNIT_PT = 3, 335 // TYPE_DIMENSION: Value is in inches. 336 COMPLEX_UNIT_IN = 4, 337 // TYPE_DIMENSION: Value is in millimeters. 338 COMPLEX_UNIT_MM = 5, 339 340 // TYPE_FRACTION: A basic fraction of the overall size. 341 COMPLEX_UNIT_FRACTION = 0, 342 // TYPE_FRACTION: A fraction of the parent size. 343 COMPLEX_UNIT_FRACTION_PARENT = 1, 344 345 // Where the radix information is, telling where the decimal place 346 // appears in the mantissa. This give us 4 possible fixed point 347 // representations as defined below. 348 COMPLEX_RADIX_SHIFT = 4, 349 COMPLEX_RADIX_MASK = 0x3, 350 351 // The mantissa is an integral number -- i.e., 0xnnnnnn.0 352 COMPLEX_RADIX_23p0 = 0, 353 // The mantissa magnitude is 16 bits -- i.e, 0xnnnn.nn 354 COMPLEX_RADIX_16p7 = 1, 355 // The mantissa magnitude is 8 bits -- i.e, 0xnn.nnnn 356 COMPLEX_RADIX_8p15 = 2, 357 // The mantissa magnitude is 0 bits -- i.e, 0x0.nnnnnn 358 COMPLEX_RADIX_0p23 = 3, 359 360 // Where the actual value is. This gives us 23 bits of 361 // precision. The top bit is the sign. 362 COMPLEX_MANTISSA_SHIFT = 8, 363 COMPLEX_MANTISSA_MASK = 0xffffff 364 }; 365 366 // Possible data values for TYPE_NULL. 367 enum { 368 // The value is not defined. 369 DATA_NULL_UNDEFINED = 0, 370 // The value is explicitly defined as empty. 371 DATA_NULL_EMPTY = 1 372 }; 373 374 // The data for this item, as interpreted according to dataType. 375 uint32_t data; 376 377 void copyFrom_dtoh(const Res_value& src); 378 }; 379 380 /** 381 * This is a reference to a unique entry (a ResTable_entry structure) 382 * in a resource table. The value is structured as: 0xpptteeee, 383 * where pp is the package index, tt is the type index in that 384 * package, and eeee is the entry index in that type. The package 385 * and type values start at 1 for the first item, to help catch cases 386 * where they have not been supplied. 387 */ 388 struct ResTable_ref 389 { 390 uint32_t ident; 391 }; 392 393 /** 394 * Reference to a string in a string pool. 395 */ 396 struct ResStringPool_ref 397 { 398 // Index into the string pool table (uint32_t-offset from the indices 399 // immediately after ResStringPool_header) at which to find the location 400 // of the string data in the pool. 401 uint32_t index; 402 }; 403 404 /** ******************************************************************** 405 * String Pool 406 * 407 * A set of strings that can be references by others through a 408 * ResStringPool_ref. 409 * 410 *********************************************************************** */ 411 412 /** 413 * Definition for a pool of strings. The data of this chunk is an 414 * array of uint32_t providing indices into the pool, relative to 415 * stringsStart. At stringsStart are all of the UTF-16 strings 416 * concatenated together; each starts with a uint16_t of the string's 417 * length and each ends with a 0x0000 terminator. If a string is > 418 * 32767 characters, the high bit of the length is set meaning to take 419 * those 15 bits as a high word and it will be followed by another 420 * uint16_t containing the low word. 421 * 422 * If styleCount is not zero, then immediately following the array of 423 * uint32_t indices into the string table is another array of indices 424 * into a style table starting at stylesStart. Each entry in the 425 * style table is an array of ResStringPool_span structures. 426 */ 427 struct ResStringPool_header 428 { 429 struct ResChunk_header header; 430 431 // Number of strings in this pool (number of uint32_t indices that follow 432 // in the data). 433 uint32_t stringCount; 434 435 // Number of style span arrays in the pool (number of uint32_t indices 436 // follow the string indices). 437 uint32_t styleCount; 438 439 // Flags. 440 enum { 441 // If set, the string index is sorted by the string values (based 442 // on strcmp16()). 443 SORTED_FLAG = 1<<0, 444 445 // String pool is encoded in UTF-8 446 UTF8_FLAG = 1<<8 447 }; 448 uint32_t flags; 449 450 // Index from header of the string data. 451 uint32_t stringsStart; 452 453 // Index from header of the style data. 454 uint32_t stylesStart; 455 }; 456 457 /** 458 * This structure defines a span of style information associated with 459 * a string in the pool. 460 */ 461 struct ResStringPool_span 462 { 463 enum { 464 END = 0xFFFFFFFF 465 }; 466 467 // This is the name of the span -- that is, the name of the XML 468 // tag that defined it. The special value END (0xFFFFFFFF) indicates 469 // the end of an array of spans. 470 ResStringPool_ref name; 471 472 // The range of characters in the string that this span applies to. 473 uint32_t firstChar, lastChar; 474 }; 475 476 /** 477 * Convenience class for accessing data in a ResStringPool resource. 478 */ 479 class ResStringPool 480 { 481 public: 482 ResStringPool(); 483 ResStringPool(const void* data, size_t size, bool copyData=false); 484 ~ResStringPool(); 485 486 void setToEmpty(); 487 status_t setTo(const void* data, size_t size, bool copyData=false); 488 489 status_t getError() const; 490 491 void uninit(); 492 493 // Return string entry as UTF16; if the pool is UTF8, the string will 494 // be converted before returning. stringAt(const ResStringPool_ref & ref,size_t * outLen)495 inline const char16_t* stringAt(const ResStringPool_ref& ref, size_t* outLen) const { 496 return stringAt(ref.index, outLen); 497 } 498 const char16_t* stringAt(size_t idx, size_t* outLen) const; 499 500 // Note: returns null if the string pool is not UTF8. 501 const char* string8At(size_t idx, size_t* outLen) const; 502 503 // Return string whether the pool is UTF8 or UTF16. Does not allow you 504 // to distinguish null. 505 const String8 string8ObjectAt(size_t idx) const; 506 507 const ResStringPool_span* styleAt(const ResStringPool_ref& ref) const; 508 const ResStringPool_span* styleAt(size_t idx) const; 509 510 ssize_t indexOfString(const char16_t* str, size_t strLen) const; 511 512 size_t size() const; 513 size_t styleCount() const; 514 size_t bytes() const; 515 516 bool isSorted() const; 517 bool isUTF8() const; 518 519 private: 520 status_t mError; 521 void* mOwnedData; 522 const ResStringPool_header* mHeader; 523 size_t mSize; 524 mutable Mutex mDecodeLock; 525 const uint32_t* mEntries; 526 const uint32_t* mEntryStyles; 527 const void* mStrings; 528 char16_t mutable** mCache; 529 uint32_t mStringPoolSize; // number of uint16_t 530 const uint32_t* mStyles; 531 uint32_t mStylePoolSize; // number of uint32_t 532 }; 533 534 /** 535 * Wrapper class that allows the caller to retrieve a string from 536 * a string pool without knowing which string pool to look. 537 */ 538 class StringPoolRef { 539 public: 540 StringPoolRef(); 541 StringPoolRef(const ResStringPool* pool, uint32_t index); 542 543 const char* string8(size_t* outLen) const; 544 const char16_t* string16(size_t* outLen) const; 545 546 private: 547 const ResStringPool* mPool; 548 uint32_t mIndex; 549 }; 550 551 /** ******************************************************************** 552 * XML Tree 553 * 554 * Binary representation of an XML document. This is designed to 555 * express everything in an XML document, in a form that is much 556 * easier to parse on the device. 557 * 558 *********************************************************************** */ 559 560 /** 561 * XML tree header. This appears at the front of an XML tree, 562 * describing its content. It is followed by a flat array of 563 * ResXMLTree_node structures; the hierarchy of the XML document 564 * is described by the occurrance of RES_XML_START_ELEMENT_TYPE 565 * and corresponding RES_XML_END_ELEMENT_TYPE nodes in the array. 566 */ 567 struct ResXMLTree_header 568 { 569 struct ResChunk_header header; 570 }; 571 572 /** 573 * Basic XML tree node. A single item in the XML document. Extended info 574 * about the node can be found after header.headerSize. 575 */ 576 struct ResXMLTree_node 577 { 578 struct ResChunk_header header; 579 580 // Line number in original source file at which this element appeared. 581 uint32_t lineNumber; 582 583 // Optional XML comment that was associated with this element; -1 if none. 584 struct ResStringPool_ref comment; 585 }; 586 587 /** 588 * Extended XML tree node for CDATA tags -- includes the CDATA string. 589 * Appears header.headerSize bytes after a ResXMLTree_node. 590 */ 591 struct ResXMLTree_cdataExt 592 { 593 // The raw CDATA character data. 594 struct ResStringPool_ref data; 595 596 // The typed value of the character data if this is a CDATA node. 597 struct Res_value typedData; 598 }; 599 600 /** 601 * Extended XML tree node for namespace start/end nodes. 602 * Appears header.headerSize bytes after a ResXMLTree_node. 603 */ 604 struct ResXMLTree_namespaceExt 605 { 606 // The prefix of the namespace. 607 struct ResStringPool_ref prefix; 608 609 // The URI of the namespace. 610 struct ResStringPool_ref uri; 611 }; 612 613 /** 614 * Extended XML tree node for element start/end nodes. 615 * Appears header.headerSize bytes after a ResXMLTree_node. 616 */ 617 struct ResXMLTree_endElementExt 618 { 619 // String of the full namespace of this element. 620 struct ResStringPool_ref ns; 621 622 // String name of this node if it is an ELEMENT; the raw 623 // character data if this is a CDATA node. 624 struct ResStringPool_ref name; 625 }; 626 627 /** 628 * Extended XML tree node for start tags -- includes attribute 629 * information. 630 * Appears header.headerSize bytes after a ResXMLTree_node. 631 */ 632 struct ResXMLTree_attrExt 633 { 634 // String of the full namespace of this element. 635 struct ResStringPool_ref ns; 636 637 // String name of this node if it is an ELEMENT; the raw 638 // character data if this is a CDATA node. 639 struct ResStringPool_ref name; 640 641 // Byte offset from the start of this structure where the attributes start. 642 uint16_t attributeStart; 643 644 // Size of the ResXMLTree_attribute structures that follow. 645 uint16_t attributeSize; 646 647 // Number of attributes associated with an ELEMENT. These are 648 // available as an array of ResXMLTree_attribute structures 649 // immediately following this node. 650 uint16_t attributeCount; 651 652 // Index (1-based) of the "id" attribute. 0 if none. 653 uint16_t idIndex; 654 655 // Index (1-based) of the "class" attribute. 0 if none. 656 uint16_t classIndex; 657 658 // Index (1-based) of the "style" attribute. 0 if none. 659 uint16_t styleIndex; 660 }; 661 662 struct ResXMLTree_attribute 663 { 664 // Namespace of this attribute. 665 struct ResStringPool_ref ns; 666 667 // Name of this attribute. 668 struct ResStringPool_ref name; 669 670 // The original raw string value of this attribute. 671 struct ResStringPool_ref rawValue; 672 673 // Processesd typed value of this attribute. 674 struct Res_value typedValue; 675 }; 676 677 class ResXMLTree; 678 679 class ResXMLParser 680 { 681 public: 682 ResXMLParser(const ResXMLTree& tree); 683 684 enum event_code_t { 685 BAD_DOCUMENT = -1, 686 START_DOCUMENT = 0, 687 END_DOCUMENT = 1, 688 689 FIRST_CHUNK_CODE = RES_XML_FIRST_CHUNK_TYPE, 690 691 START_NAMESPACE = RES_XML_START_NAMESPACE_TYPE, 692 END_NAMESPACE = RES_XML_END_NAMESPACE_TYPE, 693 START_TAG = RES_XML_START_ELEMENT_TYPE, 694 END_TAG = RES_XML_END_ELEMENT_TYPE, 695 TEXT = RES_XML_CDATA_TYPE 696 }; 697 698 struct ResXMLPosition 699 { 700 event_code_t eventCode; 701 const ResXMLTree_node* curNode; 702 const void* curExt; 703 }; 704 705 void restart(); 706 707 const ResStringPool& getStrings() const; 708 709 event_code_t getEventType() const; 710 // Note, unlike XmlPullParser, the first call to next() will return 711 // START_TAG of the first element. 712 event_code_t next(); 713 714 // These are available for all nodes: 715 int32_t getCommentID() const; 716 const char16_t* getComment(size_t* outLen) const; 717 uint32_t getLineNumber() const; 718 719 // This is available for TEXT: 720 int32_t getTextID() const; 721 const char16_t* getText(size_t* outLen) const; 722 ssize_t getTextValue(Res_value* outValue) const; 723 724 // These are available for START_NAMESPACE and END_NAMESPACE: 725 int32_t getNamespacePrefixID() const; 726 const char16_t* getNamespacePrefix(size_t* outLen) const; 727 int32_t getNamespaceUriID() const; 728 const char16_t* getNamespaceUri(size_t* outLen) const; 729 730 // These are available for START_TAG and END_TAG: 731 int32_t getElementNamespaceID() const; 732 const char16_t* getElementNamespace(size_t* outLen) const; 733 int32_t getElementNameID() const; 734 const char16_t* getElementName(size_t* outLen) const; 735 736 // Remaining methods are for retrieving information about attributes 737 // associated with a START_TAG: 738 739 size_t getAttributeCount() const; 740 741 // Returns -1 if no namespace, -2 if idx out of range. 742 int32_t getAttributeNamespaceID(size_t idx) const; 743 const char16_t* getAttributeNamespace(size_t idx, size_t* outLen) const; 744 745 int32_t getAttributeNameID(size_t idx) const; 746 const char16_t* getAttributeName(size_t idx, size_t* outLen) const; 747 uint32_t getAttributeNameResID(size_t idx) const; 748 749 // These will work only if the underlying string pool is UTF-8. 750 const char* getAttributeNamespace8(size_t idx, size_t* outLen) const; 751 const char* getAttributeName8(size_t idx, size_t* outLen) const; 752 753 int32_t getAttributeValueStringID(size_t idx) const; 754 const char16_t* getAttributeStringValue(size_t idx, size_t* outLen) const; 755 756 int32_t getAttributeDataType(size_t idx) const; 757 int32_t getAttributeData(size_t idx) const; 758 ssize_t getAttributeValue(size_t idx, Res_value* outValue) const; 759 760 ssize_t indexOfAttribute(const char* ns, const char* attr) const; 761 ssize_t indexOfAttribute(const char16_t* ns, size_t nsLen, 762 const char16_t* attr, size_t attrLen) const; 763 764 ssize_t indexOfID() const; 765 ssize_t indexOfClass() const; 766 ssize_t indexOfStyle() const; 767 768 void getPosition(ResXMLPosition* pos) const; 769 void setPosition(const ResXMLPosition& pos); 770 771 private: 772 friend class ResXMLTree; 773 774 event_code_t nextNode(); 775 776 const ResXMLTree& mTree; 777 event_code_t mEventCode; 778 const ResXMLTree_node* mCurNode; 779 const void* mCurExt; 780 }; 781 782 class DynamicRefTable; 783 784 /** 785 * Convenience class for accessing data in a ResXMLTree resource. 786 */ 787 class ResXMLTree : public ResXMLParser 788 { 789 public: 790 ResXMLTree(const DynamicRefTable* dynamicRefTable); 791 ResXMLTree(); 792 ~ResXMLTree(); 793 794 status_t setTo(const void* data, size_t size, bool copyData=false); 795 796 status_t getError() const; 797 798 void uninit(); 799 800 private: 801 friend class ResXMLParser; 802 803 status_t validateNode(const ResXMLTree_node* node) const; 804 805 const DynamicRefTable* const mDynamicRefTable; 806 807 status_t mError; 808 void* mOwnedData; 809 const ResXMLTree_header* mHeader; 810 size_t mSize; 811 const uint8_t* mDataEnd; 812 ResStringPool mStrings; 813 const uint32_t* mResIds; 814 size_t mNumResIds; 815 const ResXMLTree_node* mRootNode; 816 const void* mRootExt; 817 event_code_t mRootCode; 818 }; 819 820 /** ******************************************************************** 821 * RESOURCE TABLE 822 * 823 *********************************************************************** */ 824 825 /** 826 * Header for a resource table. Its data contains a series of 827 * additional chunks: 828 * * A ResStringPool_header containing all table values. This string pool 829 * contains all of the string values in the entire resource table (not 830 * the names of entries or type identifiers however). 831 * * One or more ResTable_package chunks. 832 * 833 * Specific entries within a resource table can be uniquely identified 834 * with a single integer as defined by the ResTable_ref structure. 835 */ 836 struct ResTable_header 837 { 838 struct ResChunk_header header; 839 840 // The number of ResTable_package structures. 841 uint32_t packageCount; 842 }; 843 844 /** 845 * A collection of resource data types within a package. Followed by 846 * one or more ResTable_type and ResTable_typeSpec structures containing the 847 * entry values for each resource type. 848 */ 849 struct ResTable_package 850 { 851 struct ResChunk_header header; 852 853 // If this is a base package, its ID. Package IDs start 854 // at 1 (corresponding to the value of the package bits in a 855 // resource identifier). 0 means this is not a base package. 856 uint32_t id; 857 858 // Actual name of this package, \0-terminated. 859 uint16_t name[128]; 860 861 // Offset to a ResStringPool_header defining the resource 862 // type symbol table. If zero, this package is inheriting from 863 // another base package (overriding specific values in it). 864 uint32_t typeStrings; 865 866 // Last index into typeStrings that is for public use by others. 867 uint32_t lastPublicType; 868 869 // Offset to a ResStringPool_header defining the resource 870 // key symbol table. If zero, this package is inheriting from 871 // another base package (overriding specific values in it). 872 uint32_t keyStrings; 873 874 // Last index into keyStrings that is for public use by others. 875 uint32_t lastPublicKey; 876 877 uint32_t typeIdOffset; 878 }; 879 880 // The most specific locale can consist of: 881 // 882 // - a 3 char language code 883 // - a 3 char region code prefixed by a 'r' 884 // - a 4 char script code prefixed by a 's' 885 // - a 8 char variant code prefixed by a 'v' 886 // 887 // each separated by a single char separator, which sums up to a total of 24 888 // chars, (25 include the string terminator) rounded up to 28 to be 4 byte 889 // aligned. 890 #define RESTABLE_MAX_LOCALE_LEN 28 891 892 893 /** 894 * Describes a particular resource configuration. 895 */ 896 struct ResTable_config 897 { 898 // Number of bytes in this structure. 899 uint32_t size; 900 901 union { 902 struct { 903 // Mobile country code (from SIM). 0 means "any". 904 uint16_t mcc; 905 // Mobile network code (from SIM). 0 means "any". 906 uint16_t mnc; 907 }; 908 uint32_t imsi; 909 }; 910 911 union { 912 struct { 913 // This field can take three different forms: 914 // - \0\0 means "any". 915 // 916 // - Two 7 bit ascii values interpreted as ISO-639-1 language 917 // codes ('fr', 'en' etc. etc.). The high bit for both bytes is 918 // zero. 919 // 920 // - A single 16 bit little endian packed value representing an 921 // ISO-639-2 3 letter language code. This will be of the form: 922 // 923 // {1, t, t, t, t, t, s, s, s, s, s, f, f, f, f, f} 924 // 925 // bit[0, 4] = first letter of the language code 926 // bit[5, 9] = second letter of the language code 927 // bit[10, 14] = third letter of the language code. 928 // bit[15] = 1 always 929 // 930 // For backwards compatibility, languages that have unambiguous 931 // two letter codes are represented in that format. 932 // 933 // The layout is always bigendian irrespective of the runtime 934 // architecture. 935 char language[2]; 936 937 // This field can take three different forms: 938 // - \0\0 means "any". 939 // 940 // - Two 7 bit ascii values interpreted as 2 letter region 941 // codes ('US', 'GB' etc.). The high bit for both bytes is zero. 942 // 943 // - An UN M.49 3 digit region code. For simplicity, these are packed 944 // in the same manner as the language codes, though we should need 945 // only 10 bits to represent them, instead of the 15. 946 // 947 // The layout is always bigendian irrespective of the runtime 948 // architecture. 949 char country[2]; 950 }; 951 uint32_t locale; 952 }; 953 954 enum { 955 ORIENTATION_ANY = ACONFIGURATION_ORIENTATION_ANY, 956 ORIENTATION_PORT = ACONFIGURATION_ORIENTATION_PORT, 957 ORIENTATION_LAND = ACONFIGURATION_ORIENTATION_LAND, 958 ORIENTATION_SQUARE = ACONFIGURATION_ORIENTATION_SQUARE, 959 }; 960 961 enum { 962 TOUCHSCREEN_ANY = ACONFIGURATION_TOUCHSCREEN_ANY, 963 TOUCHSCREEN_NOTOUCH = ACONFIGURATION_TOUCHSCREEN_NOTOUCH, 964 TOUCHSCREEN_STYLUS = ACONFIGURATION_TOUCHSCREEN_STYLUS, 965 TOUCHSCREEN_FINGER = ACONFIGURATION_TOUCHSCREEN_FINGER, 966 }; 967 968 enum { 969 DENSITY_DEFAULT = ACONFIGURATION_DENSITY_DEFAULT, 970 DENSITY_LOW = ACONFIGURATION_DENSITY_LOW, 971 DENSITY_MEDIUM = ACONFIGURATION_DENSITY_MEDIUM, 972 DENSITY_TV = ACONFIGURATION_DENSITY_TV, 973 DENSITY_HIGH = ACONFIGURATION_DENSITY_HIGH, 974 DENSITY_XHIGH = ACONFIGURATION_DENSITY_XHIGH, 975 DENSITY_XXHIGH = ACONFIGURATION_DENSITY_XXHIGH, 976 DENSITY_XXXHIGH = ACONFIGURATION_DENSITY_XXXHIGH, 977 DENSITY_ANY = ACONFIGURATION_DENSITY_ANY, 978 DENSITY_NONE = ACONFIGURATION_DENSITY_NONE 979 }; 980 981 union { 982 struct { 983 uint8_t orientation; 984 uint8_t touchscreen; 985 uint16_t density; 986 }; 987 uint32_t screenType; 988 }; 989 990 enum { 991 KEYBOARD_ANY = ACONFIGURATION_KEYBOARD_ANY, 992 KEYBOARD_NOKEYS = ACONFIGURATION_KEYBOARD_NOKEYS, 993 KEYBOARD_QWERTY = ACONFIGURATION_KEYBOARD_QWERTY, 994 KEYBOARD_12KEY = ACONFIGURATION_KEYBOARD_12KEY, 995 }; 996 997 enum { 998 NAVIGATION_ANY = ACONFIGURATION_NAVIGATION_ANY, 999 NAVIGATION_NONAV = ACONFIGURATION_NAVIGATION_NONAV, 1000 NAVIGATION_DPAD = ACONFIGURATION_NAVIGATION_DPAD, 1001 NAVIGATION_TRACKBALL = ACONFIGURATION_NAVIGATION_TRACKBALL, 1002 NAVIGATION_WHEEL = ACONFIGURATION_NAVIGATION_WHEEL, 1003 }; 1004 1005 enum { 1006 MASK_KEYSHIDDEN = 0x0003, 1007 KEYSHIDDEN_ANY = ACONFIGURATION_KEYSHIDDEN_ANY, 1008 KEYSHIDDEN_NO = ACONFIGURATION_KEYSHIDDEN_NO, 1009 KEYSHIDDEN_YES = ACONFIGURATION_KEYSHIDDEN_YES, 1010 KEYSHIDDEN_SOFT = ACONFIGURATION_KEYSHIDDEN_SOFT, 1011 }; 1012 1013 enum { 1014 MASK_NAVHIDDEN = 0x000c, 1015 SHIFT_NAVHIDDEN = 2, 1016 NAVHIDDEN_ANY = ACONFIGURATION_NAVHIDDEN_ANY << SHIFT_NAVHIDDEN, 1017 NAVHIDDEN_NO = ACONFIGURATION_NAVHIDDEN_NO << SHIFT_NAVHIDDEN, 1018 NAVHIDDEN_YES = ACONFIGURATION_NAVHIDDEN_YES << SHIFT_NAVHIDDEN, 1019 }; 1020 1021 union { 1022 struct { 1023 uint8_t keyboard; 1024 uint8_t navigation; 1025 uint8_t inputFlags; 1026 uint8_t inputPad0; 1027 }; 1028 uint32_t input; 1029 }; 1030 1031 enum { 1032 SCREENWIDTH_ANY = 0 1033 }; 1034 1035 enum { 1036 SCREENHEIGHT_ANY = 0 1037 }; 1038 1039 union { 1040 struct { 1041 uint16_t screenWidth; 1042 uint16_t screenHeight; 1043 }; 1044 uint32_t screenSize; 1045 }; 1046 1047 enum { 1048 SDKVERSION_ANY = 0 1049 }; 1050 1051 enum { 1052 MINORVERSION_ANY = 0 1053 }; 1054 1055 union { 1056 struct { 1057 uint16_t sdkVersion; 1058 // For now minorVersion must always be 0!!! Its meaning 1059 // is currently undefined. 1060 uint16_t minorVersion; 1061 }; 1062 uint32_t version; 1063 }; 1064 1065 enum { 1066 // screenLayout bits for screen size class. 1067 MASK_SCREENSIZE = 0x0f, 1068 SCREENSIZE_ANY = ACONFIGURATION_SCREENSIZE_ANY, 1069 SCREENSIZE_SMALL = ACONFIGURATION_SCREENSIZE_SMALL, 1070 SCREENSIZE_NORMAL = ACONFIGURATION_SCREENSIZE_NORMAL, 1071 SCREENSIZE_LARGE = ACONFIGURATION_SCREENSIZE_LARGE, 1072 SCREENSIZE_XLARGE = ACONFIGURATION_SCREENSIZE_XLARGE, 1073 1074 // screenLayout bits for wide/long screen variation. 1075 MASK_SCREENLONG = 0x30, 1076 SHIFT_SCREENLONG = 4, 1077 SCREENLONG_ANY = ACONFIGURATION_SCREENLONG_ANY << SHIFT_SCREENLONG, 1078 SCREENLONG_NO = ACONFIGURATION_SCREENLONG_NO << SHIFT_SCREENLONG, 1079 SCREENLONG_YES = ACONFIGURATION_SCREENLONG_YES << SHIFT_SCREENLONG, 1080 1081 // screenLayout bits for layout direction. 1082 MASK_LAYOUTDIR = 0xC0, 1083 SHIFT_LAYOUTDIR = 6, 1084 LAYOUTDIR_ANY = ACONFIGURATION_LAYOUTDIR_ANY << SHIFT_LAYOUTDIR, 1085 LAYOUTDIR_LTR = ACONFIGURATION_LAYOUTDIR_LTR << SHIFT_LAYOUTDIR, 1086 LAYOUTDIR_RTL = ACONFIGURATION_LAYOUTDIR_RTL << SHIFT_LAYOUTDIR, 1087 }; 1088 1089 enum { 1090 // uiMode bits for the mode type. 1091 MASK_UI_MODE_TYPE = 0x0f, 1092 UI_MODE_TYPE_ANY = ACONFIGURATION_UI_MODE_TYPE_ANY, 1093 UI_MODE_TYPE_NORMAL = ACONFIGURATION_UI_MODE_TYPE_NORMAL, 1094 UI_MODE_TYPE_DESK = ACONFIGURATION_UI_MODE_TYPE_DESK, 1095 UI_MODE_TYPE_CAR = ACONFIGURATION_UI_MODE_TYPE_CAR, 1096 UI_MODE_TYPE_TELEVISION = ACONFIGURATION_UI_MODE_TYPE_TELEVISION, 1097 UI_MODE_TYPE_APPLIANCE = ACONFIGURATION_UI_MODE_TYPE_APPLIANCE, 1098 UI_MODE_TYPE_WATCH = ACONFIGURATION_UI_MODE_TYPE_WATCH, 1099 1100 // uiMode bits for the night switch. 1101 MASK_UI_MODE_NIGHT = 0x30, 1102 SHIFT_UI_MODE_NIGHT = 4, 1103 UI_MODE_NIGHT_ANY = ACONFIGURATION_UI_MODE_NIGHT_ANY << SHIFT_UI_MODE_NIGHT, 1104 UI_MODE_NIGHT_NO = ACONFIGURATION_UI_MODE_NIGHT_NO << SHIFT_UI_MODE_NIGHT, 1105 UI_MODE_NIGHT_YES = ACONFIGURATION_UI_MODE_NIGHT_YES << SHIFT_UI_MODE_NIGHT, 1106 }; 1107 1108 union { 1109 struct { 1110 uint8_t screenLayout; 1111 uint8_t uiMode; 1112 uint16_t smallestScreenWidthDp; 1113 }; 1114 uint32_t screenConfig; 1115 }; 1116 1117 union { 1118 struct { 1119 uint16_t screenWidthDp; 1120 uint16_t screenHeightDp; 1121 }; 1122 uint32_t screenSizeDp; 1123 }; 1124 1125 // The ISO-15924 short name for the script corresponding to this 1126 // configuration. (eg. Hant, Latn, etc.). Interpreted in conjunction with 1127 // the locale field. 1128 char localeScript[4]; 1129 1130 // A single BCP-47 variant subtag. Will vary in length between 5 and 8 1131 // chars. Interpreted in conjunction with the locale field. 1132 char localeVariant[8]; 1133 1134 void copyFromDeviceNoSwap(const ResTable_config& o); 1135 1136 void copyFromDtoH(const ResTable_config& o); 1137 1138 void swapHtoD(); 1139 1140 int compare(const ResTable_config& o) const; 1141 int compareLogical(const ResTable_config& o) const; 1142 1143 // Flags indicating a set of config values. These flag constants must 1144 // match the corresponding ones in android.content.pm.ActivityInfo and 1145 // attrs_manifest.xml. 1146 enum { 1147 CONFIG_MCC = ACONFIGURATION_MCC, 1148 CONFIG_MNC = ACONFIGURATION_MNC, 1149 CONFIG_LOCALE = ACONFIGURATION_LOCALE, 1150 CONFIG_TOUCHSCREEN = ACONFIGURATION_TOUCHSCREEN, 1151 CONFIG_KEYBOARD = ACONFIGURATION_KEYBOARD, 1152 CONFIG_KEYBOARD_HIDDEN = ACONFIGURATION_KEYBOARD_HIDDEN, 1153 CONFIG_NAVIGATION = ACONFIGURATION_NAVIGATION, 1154 CONFIG_ORIENTATION = ACONFIGURATION_ORIENTATION, 1155 CONFIG_DENSITY = ACONFIGURATION_DENSITY, 1156 CONFIG_SCREEN_SIZE = ACONFIGURATION_SCREEN_SIZE, 1157 CONFIG_SMALLEST_SCREEN_SIZE = ACONFIGURATION_SMALLEST_SCREEN_SIZE, 1158 CONFIG_VERSION = ACONFIGURATION_VERSION, 1159 CONFIG_SCREEN_LAYOUT = ACONFIGURATION_SCREEN_LAYOUT, 1160 CONFIG_UI_MODE = ACONFIGURATION_UI_MODE, 1161 CONFIG_LAYOUTDIR = ACONFIGURATION_LAYOUTDIR, 1162 }; 1163 1164 // Compare two configuration, returning CONFIG_* flags set for each value 1165 // that is different. 1166 int diff(const ResTable_config& o) const; 1167 1168 // Return true if 'this' is more specific than 'o'. 1169 bool isMoreSpecificThan(const ResTable_config& o) const; 1170 1171 // Return true if 'this' is a better match than 'o' for the 'requested' 1172 // configuration. This assumes that match() has already been used to 1173 // remove any configurations that don't match the requested configuration 1174 // at all; if they are not first filtered, non-matching results can be 1175 // considered better than matching ones. 1176 // The general rule per attribute: if the request cares about an attribute 1177 // (it normally does), if the two (this and o) are equal it's a tie. If 1178 // they are not equal then one must be generic because only generic and 1179 // '==requested' will pass the match() call. So if this is not generic, 1180 // it wins. If this IS generic, o wins (return false). 1181 bool isBetterThan(const ResTable_config& o, const ResTable_config* requested) const; 1182 1183 // Return true if 'this' can be considered a match for the parameters in 1184 // 'settings'. 1185 // Note this is asymetric. A default piece of data will match every request 1186 // but a request for the default should not match odd specifics 1187 // (ie, request with no mcc should not match a particular mcc's data) 1188 // settings is the requested settings 1189 bool match(const ResTable_config& settings) const; 1190 1191 // Get the string representation of the locale component of this 1192 // Config. The maximum size of this representation will be 1193 // |RESTABLE_MAX_LOCALE_LEN| (including a terminating '\0'). 1194 // 1195 // Example: en-US, en-Latn-US, en-POSIX. 1196 void getBcp47Locale(char* out) const; 1197 1198 // Sets the values of language, region, script and variant to the 1199 // well formed BCP-47 locale contained in |in|. The input locale is 1200 // assumed to be valid and no validation is performed. 1201 void setBcp47Locale(const char* in); 1202 clearLocaleResTable_config1203 inline void clearLocale() { 1204 locale = 0; 1205 memset(localeScript, 0, sizeof(localeScript)); 1206 memset(localeVariant, 0, sizeof(localeVariant)); 1207 } 1208 1209 // Get the 2 or 3 letter language code of this configuration. Trailing 1210 // bytes are set to '\0'. 1211 size_t unpackLanguage(char language[4]) const; 1212 // Get the 2 or 3 letter language code of this configuration. Trailing 1213 // bytes are set to '\0'. 1214 size_t unpackRegion(char region[4]) const; 1215 1216 // Sets the language code of this configuration to the first three 1217 // chars at |language|. 1218 // 1219 // If |language| is a 2 letter code, the trailing byte must be '\0' or 1220 // the BCP-47 separator '-'. 1221 void packLanguage(const char* language); 1222 // Sets the region code of this configuration to the first three bytes 1223 // at |region|. If |region| is a 2 letter code, the trailing byte must be '\0' 1224 // or the BCP-47 separator '-'. 1225 void packRegion(const char* region); 1226 1227 // Returns a positive integer if this config is more specific than |o| 1228 // with respect to their locales, a negative integer if |o| is more specific 1229 // and 0 if they're equally specific. 1230 int isLocaleMoreSpecificThan(const ResTable_config &o) const; 1231 1232 String8 toString() const; 1233 }; 1234 1235 /** 1236 * A specification of the resources defined by a particular type. 1237 * 1238 * There should be one of these chunks for each resource type. 1239 * 1240 * This structure is followed by an array of integers providing the set of 1241 * configuration change flags (ResTable_config::CONFIG_*) that have multiple 1242 * resources for that configuration. In addition, the high bit is set if that 1243 * resource has been made public. 1244 */ 1245 struct ResTable_typeSpec 1246 { 1247 struct ResChunk_header header; 1248 1249 // The type identifier this chunk is holding. Type IDs start 1250 // at 1 (corresponding to the value of the type bits in a 1251 // resource identifier). 0 is invalid. 1252 uint8_t id; 1253 1254 // Must be 0. 1255 uint8_t res0; 1256 // Must be 0. 1257 uint16_t res1; 1258 1259 // Number of uint32_t entry configuration masks that follow. 1260 uint32_t entryCount; 1261 1262 enum { 1263 // Additional flag indicating an entry is public. 1264 SPEC_PUBLIC = 0x40000000 1265 }; 1266 }; 1267 1268 /** 1269 * A collection of resource entries for a particular resource data 1270 * type. Followed by an array of uint32_t defining the resource 1271 * values, corresponding to the array of type strings in the 1272 * ResTable_package::typeStrings string block. Each of these hold an 1273 * index from entriesStart; a value of NO_ENTRY means that entry is 1274 * not defined. 1275 * 1276 * There may be multiple of these chunks for a particular resource type, 1277 * supply different configuration variations for the resource values of 1278 * that type. 1279 * 1280 * It would be nice to have an additional ordered index of entries, so 1281 * we can do a binary search if trying to find a resource by string name. 1282 */ 1283 struct ResTable_type 1284 { 1285 struct ResChunk_header header; 1286 1287 enum { 1288 NO_ENTRY = 0xFFFFFFFF 1289 }; 1290 1291 // The type identifier this chunk is holding. Type IDs start 1292 // at 1 (corresponding to the value of the type bits in a 1293 // resource identifier). 0 is invalid. 1294 uint8_t id; 1295 1296 // Must be 0. 1297 uint8_t res0; 1298 // Must be 0. 1299 uint16_t res1; 1300 1301 // Number of uint32_t entry indices that follow. 1302 uint32_t entryCount; 1303 1304 // Offset from header where ResTable_entry data starts. 1305 uint32_t entriesStart; 1306 1307 // Configuration this collection of entries is designed for. 1308 ResTable_config config; 1309 }; 1310 1311 /** 1312 * This is the beginning of information about an entry in the resource 1313 * table. It holds the reference to the name of this entry, and is 1314 * immediately followed by one of: 1315 * * A Res_value structure, if FLAG_COMPLEX is -not- set. 1316 * * An array of ResTable_map structures, if FLAG_COMPLEX is set. 1317 * These supply a set of name/value mappings of data. 1318 */ 1319 struct ResTable_entry 1320 { 1321 // Number of bytes in this structure. 1322 uint16_t size; 1323 1324 enum { 1325 // If set, this is a complex entry, holding a set of name/value 1326 // mappings. It is followed by an array of ResTable_map structures. 1327 FLAG_COMPLEX = 0x0001, 1328 // If set, this resource has been declared public, so libraries 1329 // are allowed to reference it. 1330 FLAG_PUBLIC = 0x0002 1331 }; 1332 uint16_t flags; 1333 1334 // Reference into ResTable_package::keyStrings identifying this entry. 1335 struct ResStringPool_ref key; 1336 }; 1337 1338 /** 1339 * Extended form of a ResTable_entry for map entries, defining a parent map 1340 * resource from which to inherit values. 1341 */ 1342 struct ResTable_map_entry : public ResTable_entry 1343 { 1344 // Resource identifier of the parent mapping, or 0 if there is none. 1345 // This is always treated as a TYPE_DYNAMIC_REFERENCE. 1346 ResTable_ref parent; 1347 // Number of name/value pairs that follow for FLAG_COMPLEX. 1348 uint32_t count; 1349 }; 1350 1351 /** 1352 * A single name/value mapping that is part of a complex resource 1353 * entry. 1354 */ 1355 struct ResTable_map 1356 { 1357 // The resource identifier defining this mapping's name. For attribute 1358 // resources, 'name' can be one of the following special resource types 1359 // to supply meta-data about the attribute; for all other resource types 1360 // it must be an attribute resource. 1361 ResTable_ref name; 1362 1363 // Special values for 'name' when defining attribute resources. 1364 enum { 1365 // This entry holds the attribute's type code. 1366 ATTR_TYPE = Res_MAKEINTERNAL(0), 1367 1368 // For integral attributes, this is the minimum value it can hold. 1369 ATTR_MIN = Res_MAKEINTERNAL(1), 1370 1371 // For integral attributes, this is the maximum value it can hold. 1372 ATTR_MAX = Res_MAKEINTERNAL(2), 1373 1374 // Localization of this resource is can be encouraged or required with 1375 // an aapt flag if this is set 1376 ATTR_L10N = Res_MAKEINTERNAL(3), 1377 1378 // for plural support, see android.content.res.PluralRules#attrForQuantity(int) 1379 ATTR_OTHER = Res_MAKEINTERNAL(4), 1380 ATTR_ZERO = Res_MAKEINTERNAL(5), 1381 ATTR_ONE = Res_MAKEINTERNAL(6), 1382 ATTR_TWO = Res_MAKEINTERNAL(7), 1383 ATTR_FEW = Res_MAKEINTERNAL(8), 1384 ATTR_MANY = Res_MAKEINTERNAL(9) 1385 1386 }; 1387 1388 // Bit mask of allowed types, for use with ATTR_TYPE. 1389 enum { 1390 // No type has been defined for this attribute, use generic 1391 // type handling. The low 16 bits are for types that can be 1392 // handled generically; the upper 16 require additional information 1393 // in the bag so can not be handled generically for TYPE_ANY. 1394 TYPE_ANY = 0x0000FFFF, 1395 1396 // Attribute holds a references to another resource. 1397 TYPE_REFERENCE = 1<<0, 1398 1399 // Attribute holds a generic string. 1400 TYPE_STRING = 1<<1, 1401 1402 // Attribute holds an integer value. ATTR_MIN and ATTR_MIN can 1403 // optionally specify a constrained range of possible integer values. 1404 TYPE_INTEGER = 1<<2, 1405 1406 // Attribute holds a boolean integer. 1407 TYPE_BOOLEAN = 1<<3, 1408 1409 // Attribute holds a color value. 1410 TYPE_COLOR = 1<<4, 1411 1412 // Attribute holds a floating point value. 1413 TYPE_FLOAT = 1<<5, 1414 1415 // Attribute holds a dimension value, such as "20px". 1416 TYPE_DIMENSION = 1<<6, 1417 1418 // Attribute holds a fraction value, such as "20%". 1419 TYPE_FRACTION = 1<<7, 1420 1421 // Attribute holds an enumeration. The enumeration values are 1422 // supplied as additional entries in the map. 1423 TYPE_ENUM = 1<<16, 1424 1425 // Attribute holds a bitmaks of flags. The flag bit values are 1426 // supplied as additional entries in the map. 1427 TYPE_FLAGS = 1<<17 1428 }; 1429 1430 // Enum of localization modes, for use with ATTR_L10N. 1431 enum { 1432 L10N_NOT_REQUIRED = 0, 1433 L10N_SUGGESTED = 1 1434 }; 1435 1436 // This mapping's value. 1437 Res_value value; 1438 }; 1439 1440 /** 1441 * A package-id to package name mapping for any shared libraries used 1442 * in this resource table. The package-id's encoded in this resource 1443 * table may be different than the id's assigned at runtime. We must 1444 * be able to translate the package-id's based on the package name. 1445 */ 1446 struct ResTable_lib_header 1447 { 1448 struct ResChunk_header header; 1449 1450 // The number of shared libraries linked in this resource table. 1451 uint32_t count; 1452 }; 1453 1454 /** 1455 * A shared library package-id to package name entry. 1456 */ 1457 struct ResTable_lib_entry 1458 { 1459 // The package-id this shared library was assigned at build time. 1460 // We use a uint32 to keep the structure aligned on a uint32 boundary. 1461 uint32_t packageId; 1462 1463 // The package name of the shared library. \0 terminated. 1464 uint16_t packageName[128]; 1465 }; 1466 1467 /** 1468 * Holds the shared library ID table. Shared libraries are assigned package IDs at 1469 * build time, but they may be loaded in a different order, so we need to maintain 1470 * a mapping of build-time package ID to run-time assigned package ID. 1471 * 1472 * Dynamic references are not currently supported in overlays. Only the base package 1473 * may have dynamic references. 1474 */ 1475 class DynamicRefTable 1476 { 1477 public: 1478 DynamicRefTable(uint8_t packageId); 1479 1480 // Loads an unmapped reference table from the package. 1481 status_t load(const ResTable_lib_header* const header); 1482 1483 // Adds mappings from the other DynamicRefTable 1484 status_t addMappings(const DynamicRefTable& other); 1485 1486 // Creates a mapping from build-time package ID to run-time package ID for 1487 // the given package. 1488 status_t addMapping(const String16& packageName, uint8_t packageId); 1489 1490 // Performs the actual conversion of build-time resource ID to run-time 1491 // resource ID. 1492 inline status_t lookupResourceId(uint32_t* resId) const; 1493 inline status_t lookupResourceValue(Res_value* value) const; 1494 entries()1495 inline const KeyedVector<String16, uint8_t>& entries() const { 1496 return mEntries; 1497 } 1498 1499 private: 1500 const uint8_t mAssignedPackageId; 1501 uint8_t mLookupTable[256]; 1502 KeyedVector<String16, uint8_t> mEntries; 1503 }; 1504 1505 /** 1506 * Convenience class for accessing data in a ResTable resource. 1507 */ 1508 class ResTable 1509 { 1510 public: 1511 ResTable(); 1512 ResTable(const void* data, size_t size, const int32_t cookie, 1513 bool copyData=false); 1514 ~ResTable(); 1515 1516 status_t add(const void* data, size_t size, const int32_t cookie=-1, bool copyData=false); 1517 status_t add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize, 1518 const int32_t cookie=-1, bool copyData=false); 1519 1520 status_t add(Asset* asset, const int32_t cookie=-1, bool copyData=false); 1521 status_t add(Asset* asset, Asset* idmapAsset, const int32_t cookie=-1, bool copyData=false); 1522 1523 status_t add(ResTable* src); 1524 status_t addEmpty(const int32_t cookie); 1525 1526 status_t getError() const; 1527 1528 void uninit(); 1529 1530 struct resource_name 1531 { 1532 const char16_t* package; 1533 size_t packageLen; 1534 const char16_t* type; 1535 const char* type8; 1536 size_t typeLen; 1537 const char16_t* name; 1538 const char* name8; 1539 size_t nameLen; 1540 }; 1541 1542 bool getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const; 1543 1544 bool getResourceFlags(uint32_t resID, uint32_t* outFlags) const; 1545 1546 /** 1547 * Retrieve the value of a resource. If the resource is found, returns a 1548 * value >= 0 indicating the table it is in (for use with 1549 * getTableStringBlock() and getTableCookie()) and fills in 'outValue'. If 1550 * not found, returns a negative error code. 1551 * 1552 * Note that this function does not do reference traversal. If you want 1553 * to follow references to other resources to get the "real" value to 1554 * use, you need to call resolveReference() after this function. 1555 * 1556 * @param resID The desired resoruce identifier. 1557 * @param outValue Filled in with the resource data that was found. 1558 * 1559 * @return ssize_t Either a >= 0 table index or a negative error code. 1560 */ 1561 ssize_t getResource(uint32_t resID, Res_value* outValue, bool mayBeBag = false, 1562 uint16_t density = 0, 1563 uint32_t* outSpecFlags = NULL, 1564 ResTable_config* outConfig = NULL) const; 1565 1566 inline ssize_t getResource(const ResTable_ref& res, Res_value* outValue, 1567 uint32_t* outSpecFlags=NULL) const { 1568 return getResource(res.ident, outValue, false, 0, outSpecFlags, NULL); 1569 } 1570 1571 ssize_t resolveReference(Res_value* inOutValue, 1572 ssize_t blockIndex, 1573 uint32_t* outLastRef = NULL, 1574 uint32_t* inoutTypeSpecFlags = NULL, 1575 ResTable_config* outConfig = NULL) const; 1576 1577 enum { 1578 TMP_BUFFER_SIZE = 16 1579 }; 1580 const char16_t* valueToString(const Res_value* value, size_t stringBlock, 1581 char16_t tmpBuffer[TMP_BUFFER_SIZE], 1582 size_t* outLen) const; 1583 1584 struct bag_entry { 1585 ssize_t stringBlock; 1586 ResTable_map map; 1587 }; 1588 1589 /** 1590 * Retrieve the bag of a resource. If the resoruce is found, returns the 1591 * number of bags it contains and 'outBag' points to an array of their 1592 * values. If not found, a negative error code is returned. 1593 * 1594 * Note that this function -does- do reference traversal of the bag data. 1595 * 1596 * @param resID The desired resource identifier. 1597 * @param outBag Filled inm with a pointer to the bag mappings. 1598 * 1599 * @return ssize_t Either a >= 0 bag count of negative error code. 1600 */ 1601 ssize_t lockBag(uint32_t resID, const bag_entry** outBag) const; 1602 1603 void unlockBag(const bag_entry* bag) const; 1604 1605 void lock() const; 1606 1607 ssize_t getBagLocked(uint32_t resID, const bag_entry** outBag, 1608 uint32_t* outTypeSpecFlags=NULL) const; 1609 1610 void unlock() const; 1611 1612 class Theme { 1613 public: 1614 Theme(const ResTable& table); 1615 ~Theme(); 1616 getResTable()1617 inline const ResTable& getResTable() const { return mTable; } 1618 1619 status_t applyStyle(uint32_t resID, bool force=false); 1620 status_t setTo(const Theme& other); 1621 1622 /** 1623 * Retrieve a value in the theme. If the theme defines this 1624 * value, returns a value >= 0 indicating the table it is in 1625 * (for use with getTableStringBlock() and getTableCookie) and 1626 * fills in 'outValue'. If not found, returns a negative error 1627 * code. 1628 * 1629 * Note that this function does not do reference traversal. If you want 1630 * to follow references to other resources to get the "real" value to 1631 * use, you need to call resolveReference() after this function. 1632 * 1633 * @param resID A resource identifier naming the desired theme 1634 * attribute. 1635 * @param outValue Filled in with the theme value that was 1636 * found. 1637 * 1638 * @return ssize_t Either a >= 0 table index or a negative error code. 1639 */ 1640 ssize_t getAttribute(uint32_t resID, Res_value* outValue, 1641 uint32_t* outTypeSpecFlags = NULL) const; 1642 1643 /** 1644 * This is like ResTable::resolveReference(), but also takes 1645 * care of resolving attribute references to the theme. 1646 */ 1647 ssize_t resolveAttributeReference(Res_value* inOutValue, 1648 ssize_t blockIndex, uint32_t* outLastRef = NULL, 1649 uint32_t* inoutTypeSpecFlags = NULL, 1650 ResTable_config* inoutConfig = NULL) const; 1651 1652 void dumpToLog() const; 1653 1654 private: 1655 Theme(const Theme&); 1656 Theme& operator=(const Theme&); 1657 1658 struct theme_entry { 1659 ssize_t stringBlock; 1660 uint32_t typeSpecFlags; 1661 Res_value value; 1662 }; 1663 1664 struct type_info { 1665 size_t numEntries; 1666 theme_entry* entries; 1667 }; 1668 1669 struct package_info { 1670 type_info types[Res_MAXTYPE + 1]; 1671 }; 1672 1673 void free_package(package_info* pi); 1674 package_info* copy_package(package_info* pi); 1675 1676 const ResTable& mTable; 1677 package_info* mPackages[Res_MAXPACKAGE]; 1678 }; 1679 1680 void setParameters(const ResTable_config* params); 1681 void getParameters(ResTable_config* params) const; 1682 1683 // Retrieve an identifier (which can be passed to getResource) 1684 // for a given resource name. The 'name' can be fully qualified 1685 // (<package>:<type>.<basename>) or the package or type components 1686 // can be dropped if default values are supplied here. 1687 // 1688 // Returns 0 if no such resource was found, else a valid resource ID. 1689 uint32_t identifierForName(const char16_t* name, size_t nameLen, 1690 const char16_t* type = 0, size_t typeLen = 0, 1691 const char16_t* defPackage = 0, 1692 size_t defPackageLen = 0, 1693 uint32_t* outTypeSpecFlags = NULL) const; 1694 1695 static bool expandResourceRef(const char16_t* refStr, size_t refLen, 1696 String16* outPackage, 1697 String16* outType, 1698 String16* outName, 1699 const String16* defType = NULL, 1700 const String16* defPackage = NULL, 1701 const char** outErrorMsg = NULL, 1702 bool* outPublicOnly = NULL); 1703 1704 static bool stringToInt(const char16_t* s, size_t len, Res_value* outValue); 1705 static bool stringToFloat(const char16_t* s, size_t len, Res_value* outValue); 1706 1707 // Used with stringToValue. 1708 class Accessor 1709 { 1710 public: ~Accessor()1711 inline virtual ~Accessor() { } 1712 1713 virtual const String16& getAssetsPackage() const = 0; 1714 1715 virtual uint32_t getCustomResource(const String16& package, 1716 const String16& type, 1717 const String16& name) const = 0; 1718 virtual uint32_t getCustomResourceWithCreation(const String16& package, 1719 const String16& type, 1720 const String16& name, 1721 const bool createIfNeeded = false) = 0; 1722 virtual uint32_t getRemappedPackage(uint32_t origPackage) const = 0; 1723 virtual bool getAttributeType(uint32_t attrID, uint32_t* outType) = 0; 1724 virtual bool getAttributeMin(uint32_t attrID, uint32_t* outMin) = 0; 1725 virtual bool getAttributeMax(uint32_t attrID, uint32_t* outMax) = 0; 1726 virtual bool getAttributeEnum(uint32_t attrID, 1727 const char16_t* name, size_t nameLen, 1728 Res_value* outValue) = 0; 1729 virtual bool getAttributeFlags(uint32_t attrID, 1730 const char16_t* name, size_t nameLen, 1731 Res_value* outValue) = 0; 1732 virtual uint32_t getAttributeL10N(uint32_t attrID) = 0; 1733 virtual bool getLocalizationSetting() = 0; 1734 virtual void reportError(void* accessorCookie, const char* fmt, ...) = 0; 1735 }; 1736 1737 // Convert a string to a resource value. Handles standard "@res", 1738 // "#color", "123", and "0x1bd" types; performs escaping of strings. 1739 // The resulting value is placed in 'outValue'; if it is a string type, 1740 // 'outString' receives the string. If 'attrID' is supplied, the value is 1741 // type checked against this attribute and it is used to perform enum 1742 // evaluation. If 'acccessor' is supplied, it will be used to attempt to 1743 // resolve resources that do not exist in this ResTable. If 'attrType' is 1744 // supplied, the value will be type checked for this format if 'attrID' 1745 // is not supplied or found. 1746 bool stringToValue(Res_value* outValue, String16* outString, 1747 const char16_t* s, size_t len, 1748 bool preserveSpaces, bool coerceType, 1749 uint32_t attrID = 0, 1750 const String16* defType = NULL, 1751 const String16* defPackage = NULL, 1752 Accessor* accessor = NULL, 1753 void* accessorCookie = NULL, 1754 uint32_t attrType = ResTable_map::TYPE_ANY, 1755 bool enforcePrivate = true) const; 1756 1757 // Perform processing of escapes and quotes in a string. 1758 static bool collectString(String16* outString, 1759 const char16_t* s, size_t len, 1760 bool preserveSpaces, 1761 const char** outErrorMsg = NULL, 1762 bool append = false); 1763 1764 size_t getBasePackageCount() const; 1765 const String16 getBasePackageName(size_t idx) const; 1766 uint32_t getBasePackageId(size_t idx) const; 1767 uint32_t getLastTypeIdForPackage(size_t idx) const; 1768 1769 // Return the number of resource tables that the object contains. 1770 size_t getTableCount() const; 1771 // Return the values string pool for the resource table at the given 1772 // index. This string pool contains all of the strings for values 1773 // contained in the resource table -- that is the item values themselves, 1774 // but not the names their entries or types. 1775 const ResStringPool* getTableStringBlock(size_t index) const; 1776 // Return unique cookie identifier for the given resource table. 1777 int32_t getTableCookie(size_t index) const; 1778 1779 const DynamicRefTable* getDynamicRefTableForCookie(int32_t cookie) const; 1780 1781 // Return the configurations (ResTable_config) that we know about 1782 void getConfigurations(Vector<ResTable_config>* configs, bool ignoreMipmap=false) const; 1783 1784 void getLocales(Vector<String8>* locales) const; 1785 1786 // Generate an idmap. 1787 // 1788 // Return value: on success: NO_ERROR; caller is responsible for free-ing 1789 // outData (using free(3)). On failure, any status_t value other than 1790 // NO_ERROR; the caller should not free outData. 1791 status_t createIdmap(const ResTable& overlay, 1792 uint32_t targetCrc, uint32_t overlayCrc, 1793 const char* targetPath, const char* overlayPath, 1794 void** outData, size_t* outSize) const; 1795 1796 enum { 1797 IDMAP_HEADER_SIZE_BYTES = 4 * sizeof(uint32_t) + 2 * 256, 1798 }; 1799 1800 // Retrieve idmap meta-data. 1801 // 1802 // This function only requires the idmap header (the first 1803 // IDMAP_HEADER_SIZE_BYTES) bytes of an idmap file. 1804 static bool getIdmapInfo(const void* idmap, size_t size, 1805 uint32_t* pVersion, 1806 uint32_t* pTargetCrc, uint32_t* pOverlayCrc, 1807 String8* pTargetPath, String8* pOverlayPath); 1808 1809 void print(bool inclValues) const; 1810 static String8 normalizeForOutput(const char* input); 1811 1812 private: 1813 struct Header; 1814 struct Type; 1815 struct Entry; 1816 struct Package; 1817 struct PackageGroup; 1818 struct bag_set; 1819 typedef Vector<Type*> TypeList; 1820 1821 status_t addInternal(const void* data, size_t size, const void* idmapData, size_t idmapDataSize, 1822 const int32_t cookie, bool copyData); 1823 1824 ssize_t getResourcePackageIndex(uint32_t resID) const; 1825 1826 status_t getEntry( 1827 const PackageGroup* packageGroup, int typeIndex, int entryIndex, 1828 const ResTable_config* config, 1829 Entry* outEntry) const; 1830 1831 uint32_t findEntry(const PackageGroup* group, ssize_t typeIndex, const char16_t* name, 1832 size_t nameLen, uint32_t* outTypeSpecFlags) const; 1833 1834 status_t parsePackage( 1835 const ResTable_package* const pkg, const Header* const header); 1836 1837 void print_value(const Package* pkg, const Res_value& value) const; 1838 1839 mutable Mutex mLock; 1840 1841 status_t mError; 1842 1843 ResTable_config mParams; 1844 1845 // Array of all resource tables. 1846 Vector<Header*> mHeaders; 1847 1848 // Array of packages in all resource tables. 1849 Vector<PackageGroup*> mPackageGroups; 1850 1851 // Mapping from resource package IDs to indices into the internal 1852 // package array. 1853 uint8_t mPackageMap[256]; 1854 1855 uint8_t mNextPackageId; 1856 }; 1857 1858 } // namespace android 1859 1860 #endif // _LIBS_UTILS_RESOURCE_TYPES_H 1861