1 /* 2 * Copyright (C) 2011 The Guava Authors 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package com.google.common.math; 18 19 import static java.math.BigInteger.ONE; 20 import static java.math.BigInteger.ZERO; 21 import static java.math.RoundingMode.CEILING; 22 import static java.math.RoundingMode.DOWN; 23 import static java.math.RoundingMode.FLOOR; 24 import static java.math.RoundingMode.HALF_DOWN; 25 import static java.math.RoundingMode.HALF_EVEN; 26 import static java.math.RoundingMode.HALF_UP; 27 import static java.math.RoundingMode.UP; 28 import static java.util.Arrays.asList; 29 30 import com.google.common.annotations.GwtCompatible; 31 import com.google.common.base.Function; 32 import com.google.common.base.Predicate; 33 import com.google.common.collect.ImmutableList; 34 import com.google.common.collect.ImmutableSet; 35 import com.google.common.collect.Iterables; 36 import com.google.common.primitives.Doubles; 37 38 import java.math.BigInteger; 39 import java.math.RoundingMode; 40 41 /** 42 * Exhaustive input sets for every integral type. 43 * 44 * @author lowasser@google.com (Louis Wasserman) 45 */ 46 @GwtCompatible 47 public class MathTesting { 48 static final ImmutableSet<RoundingMode> ALL_ROUNDING_MODES = ImmutableSet.copyOf(RoundingMode 49 .values()); 50 51 static final ImmutableList<RoundingMode> ALL_SAFE_ROUNDING_MODES = ImmutableList.of(DOWN, UP, 52 FLOOR, CEILING, HALF_EVEN, HALF_UP, HALF_DOWN); 53 54 // Exponents to test for the pow() function. 55 static final ImmutableList<Integer> EXPONENTS = ImmutableList.of(0, 1, 2, 3, 4, 5, 6, 7, 10, 15, 56 20, 25, 30, 40, 70); 57 58 /* Helper function to make a Long value from an Integer. */ 59 private static final Function<Integer, Long> TO_LONG = new Function<Integer, Long>() { 60 @Override 61 public Long apply(Integer n) { 62 return Long.valueOf(n); 63 } 64 }; 65 66 /* Helper function to make a BigInteger value from a Long. */ 67 private static final Function<Long, BigInteger> TO_BIGINTEGER = 68 new Function<Long, BigInteger>() { 69 @Override 70 public BigInteger apply(Long n) { 71 return BigInteger.valueOf(n); 72 } 73 }; 74 75 private static final Function<Integer, Integer> NEGATE_INT = new Function<Integer, Integer>() { 76 @Override 77 public Integer apply(Integer x) { 78 return -x; 79 } 80 }; 81 82 private static final Function<Long, Long> NEGATE_LONG = new Function<Long, Long>() { 83 @Override 84 public Long apply(Long x) { 85 return -x; 86 } 87 }; 88 89 private static final Function<BigInteger, BigInteger> NEGATE_BIGINT = 90 new Function<BigInteger, BigInteger>() { 91 @Override 92 public BigInteger apply(BigInteger x) { 93 return x.negate(); 94 } 95 }; 96 97 /* 98 * This list contains values that attempt to provoke overflow in integer operations. It contains 99 * positive values on or near 2^N for N near multiples of 8 (near byte boundaries). 100 */ 101 static final ImmutableSet<Integer> POSITIVE_INTEGER_CANDIDATES; 102 103 static final Iterable<Integer> NEGATIVE_INTEGER_CANDIDATES; 104 105 static final Iterable<Integer> NONZERO_INTEGER_CANDIDATES; 106 107 static final Iterable<Integer> ALL_INTEGER_CANDIDATES; 108 109 static { 110 ImmutableSet.Builder<Integer> intValues = ImmutableSet.builder(); 111 // Add boundary values manually to avoid over/under flow (this covers 2^N for 0 and 31). 112 intValues.add(Integer.MAX_VALUE - 1, Integer.MAX_VALUE); 113 // Add values up to 64. This covers cases like "square of a prime" and such. 114 for (int i = 1; i <= 64; i++) { 115 intValues.add(i); 116 } 117 // Now add values near 2^N for lots of values of N. 118 for (int exponent : asList(2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 17, 23, 24, 25)) { 119 int x = 1 << exponent; intValues.add(x, x + 1, x - 1)120 intValues.add(x, x + 1, x - 1); 121 } 122 intValues.add(9999).add(10000).add(10001).add(1000000); // near powers of 10 123 intValues.add(5792).add(5793); // sqrt(2^25) rounded up and down 124 POSITIVE_INTEGER_CANDIDATES = intValues.build(); 125 NEGATIVE_INTEGER_CANDIDATES = 126 Iterables.concat(Iterables.transform(POSITIVE_INTEGER_CANDIDATES, NEGATE_INT), 127 ImmutableList.of(Integer.MIN_VALUE)); 128 NONZERO_INTEGER_CANDIDATES = 129 Iterables.concat(POSITIVE_INTEGER_CANDIDATES, NEGATIVE_INTEGER_CANDIDATES); 130 ALL_INTEGER_CANDIDATES = Iterables.concat(NONZERO_INTEGER_CANDIDATES, ImmutableList.of(0)); 131 } 132 133 /* 134 * This list contains values that attempt to provoke overflow in long operations. It contains 135 * positive values on or near 2^N for N near multiples of 8 (near byte boundaries). This list is 136 * a superset of POSITIVE_INTEGER_CANDIDATES. 137 */ 138 static final ImmutableSet<Long> POSITIVE_LONG_CANDIDATES; 139 140 static final Iterable<Long> NEGATIVE_LONG_CANDIDATES; 141 142 static final Iterable<Long> NONZERO_LONG_CANDIDATES; 143 144 static final Iterable<Long> ALL_LONG_CANDIDATES; 145 146 static { 147 ImmutableSet.Builder<Long> longValues = ImmutableSet.builder(); 148 // First of all add all the integer candidate values. Iterables.transform(POSITIVE_INTEGER_CANDIDATES, TO_LONG)149 longValues.addAll(Iterables.transform(POSITIVE_INTEGER_CANDIDATES, TO_LONG)); 150 // Add boundary values manually to avoid over/under flow (this covers 2^N for 31 and 63). 151 longValues.add(Integer.MAX_VALUE + 1L, Long.MAX_VALUE - 1L, Long.MAX_VALUE); 152 // Now add values near 2^N for lots of values of N. 153 for (int exponent : asList(32, 33, 39, 40, 41, 47, 48, 49, 55, 56, 57)) { 154 long x = 1L << exponent; longValues.add(x, x + 1, x - 1)155 longValues.add(x, x + 1, x - 1); 156 } 157 longValues.add(194368031998L).add(194368031999L); // sqrt(2^75) rounded up and down 158 POSITIVE_LONG_CANDIDATES = longValues.build(); 159 NEGATIVE_LONG_CANDIDATES = 160 Iterables.concat(Iterables.transform(POSITIVE_LONG_CANDIDATES, NEGATE_LONG), 161 ImmutableList.of(Long.MIN_VALUE)); 162 NONZERO_LONG_CANDIDATES = Iterables.concat(POSITIVE_LONG_CANDIDATES, NEGATIVE_LONG_CANDIDATES); 163 ALL_LONG_CANDIDATES = Iterables.concat(NONZERO_LONG_CANDIDATES, ImmutableList.of(0L)); 164 } 165 166 /* 167 * This list contains values that attempt to provoke overflow in big integer operations. It 168 * contains positive values on or near 2^N for N near multiples of 8 (near byte boundaries). This 169 * list is a superset of POSITIVE_LONG_CANDIDATES. 170 */ 171 static final ImmutableSet<BigInteger> POSITIVE_BIGINTEGER_CANDIDATES; 172 173 static final Iterable<BigInteger> NEGATIVE_BIGINTEGER_CANDIDATES; 174 175 static final Iterable<BigInteger> NONZERO_BIGINTEGER_CANDIDATES; 176 177 static final Iterable<BigInteger> ALL_BIGINTEGER_CANDIDATES; 178 179 static { 180 ImmutableSet.Builder<BigInteger> bigValues = ImmutableSet.builder(); 181 // First of all add all the long candidate values. Iterables.transform(POSITIVE_LONG_CANDIDATES, TO_BIGINTEGER)182 bigValues.addAll(Iterables.transform(POSITIVE_LONG_CANDIDATES, TO_BIGINTEGER)); 183 // Add boundary values manually to avoid over/under flow. 184 bigValues.add(BigInteger.valueOf(Long.MAX_VALUE).add(ONE)); 185 // Now add values near 2^N for lots of values of N. 186 for (int exponent : asList(64, 65, 71, 72, 73, 79, 80, 81, 255, 256, 257, 511, 512, 513, 187 Double.MAX_EXPONENT - 1, Double.MAX_EXPONENT, Double.MAX_EXPONENT + 1)) { 188 BigInteger x = ONE.shiftLeft(exponent); bigValues.add(x, x.add(ONE), x.subtract(ONE))189 bigValues.add(x, x.add(ONE), x.subtract(ONE)); 190 } bigValues.add(new BigInteger("218838949120258359057546633"))191 bigValues.add(new BigInteger("218838949120258359057546633")); // sqrt(2^175) rounded up and 192 // down bigValues.add(new BigInteger("218838949120258359057546634"))193 bigValues.add(new BigInteger("218838949120258359057546634")); 194 POSITIVE_BIGINTEGER_CANDIDATES = bigValues.build(); 195 NEGATIVE_BIGINTEGER_CANDIDATES = 196 Iterables.transform(POSITIVE_BIGINTEGER_CANDIDATES, NEGATE_BIGINT); 197 NONZERO_BIGINTEGER_CANDIDATES = 198 Iterables.concat(POSITIVE_BIGINTEGER_CANDIDATES, NEGATIVE_BIGINTEGER_CANDIDATES); 199 ALL_BIGINTEGER_CANDIDATES = 200 Iterables.concat(NONZERO_BIGINTEGER_CANDIDATES, ImmutableList.of(ZERO)); 201 } 202 203 static final ImmutableSet<Double> INTEGRAL_DOUBLE_CANDIDATES; 204 static final ImmutableSet<Double> FRACTIONAL_DOUBLE_CANDIDATES; 205 static final Iterable<Double> FINITE_DOUBLE_CANDIDATES; 206 static final Iterable<Double> POSITIVE_FINITE_DOUBLE_CANDIDATES; 207 static final Iterable<Double> ALL_DOUBLE_CANDIDATES; 208 static { 209 ImmutableSet.Builder<Double> integralBuilder = ImmutableSet.builder(); 210 ImmutableSet.Builder<Double> fractionalBuilder = ImmutableSet.builder(); 211 integralBuilder.addAll(Doubles.asList(0.0, -0.0, Double.MAX_VALUE, -Double.MAX_VALUE)); 212 // Add small multiples of MIN_VALUE and MIN_NORMAL 213 for (int scale = 1; scale <= 4; scale++) { 214 for (double d : Doubles.asList(Double.MIN_VALUE, Double.MIN_NORMAL)) { 215 fractionalBuilder.add(d * scale).add(-d * scale); 216 } 217 } 218 for (double d : Doubles.asList(0, 1, 2, 7, 51, 102, Math.scalb(1.0, 53), Integer.MIN_VALUE, 219 Integer.MAX_VALUE, Long.MIN_VALUE, Long.MAX_VALUE)) { 220 for (double delta : Doubles.asList(0.0, 1.0, 2.0)) { 221 integralBuilder.addAll(Doubles.asList(d + delta, d - delta, -d - delta, -d + delta)); 222 } 223 for (double delta : Doubles.asList(0.01, 0.1, 0.25, 0.499, 0.5, 0.501, 0.7, 0.8)) { 224 double x = d + delta; 225 if (x != Math.round(x)) { 226 fractionalBuilder.add(x); 227 } 228 } 229 } 230 INTEGRAL_DOUBLE_CANDIDATES = integralBuilder.build(); 231 fractionalBuilder.add(1.414).add(1.415).add(Math.sqrt(2)); 232 fractionalBuilder.add(5.656).add(5.657).add(4 * Math.sqrt(2)); 233 for (double d : INTEGRAL_DOUBLE_CANDIDATES) { 234 double x = 1 / d; 235 if (x != Math.rint(x)) { 236 fractionalBuilder.add(x); 237 } 238 } 239 FRACTIONAL_DOUBLE_CANDIDATES = fractionalBuilder.build(); 240 FINITE_DOUBLE_CANDIDATES = 241 Iterables.concat(FRACTIONAL_DOUBLE_CANDIDATES, INTEGRAL_DOUBLE_CANDIDATES); 242 POSITIVE_FINITE_DOUBLE_CANDIDATES = 243 Iterables.filter(FINITE_DOUBLE_CANDIDATES, new Predicate<Double>() { 244 @Override 245 public boolean apply(Double input) { 246 return input.doubleValue() > 0.0; 247 } 248 }); 249 ALL_DOUBLE_CANDIDATES = 250 Iterables.concat(FINITE_DOUBLE_CANDIDATES, 251 asList(Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, Double.NaN)); 252 } 253 } 254