1 // Copyright (c) 2010 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef BASE_BASICTYPES_H_
6 #define BASE_BASICTYPES_H_
7
8 #include <limits.h> // So we can set the bounds of our types
9 #include <stddef.h> // For size_t
10 #include <string.h> // for memcpy
11
12 #include "base/port.h" // Types that only need exist on certain systems
13
14 #ifndef COMPILER_MSVC
15 // stdint.h is part of C99 but MSVC doesn't have it.
16 #include <stdint.h> // For intptr_t.
17 #endif
18
19 typedef signed char schar;
20 typedef signed char int8;
21 typedef short int16;
22 // TODO(mbelshe) Remove these type guards. These are
23 // temporary to avoid conflicts with npapi.h.
24 #ifndef _INT32
25 #define _INT32
26 typedef int int32;
27 #endif
28
29 // The NSPR system headers define 64-bit as |long| when possible. In order to
30 // not have typedef mismatches, we do the same on LP64.
31 #if __LP64__
32 typedef long int64;
33 #else
34 typedef long long int64;
35 #endif
36
37 // NOTE: unsigned types are DANGEROUS in loops and other arithmetical
38 // places. Use the signed types unless your variable represents a bit
39 // pattern (eg a hash value) or you really need the extra bit. Do NOT
40 // use 'unsigned' to express "this value should always be positive";
41 // use assertions for this.
42
43 typedef unsigned char uint8;
44 typedef unsigned short uint16;
45 // TODO(mbelshe) Remove these type guards. These are
46 // temporary to avoid conflicts with npapi.h.
47 #ifndef _UINT32
48 #define _UINT32
49 typedef unsigned int uint32;
50 #endif
51
52 // See the comment above about NSPR and 64-bit.
53 #if __LP64__
54 typedef unsigned long uint64;
55 #else
56 typedef unsigned long long uint64;
57 #endif
58
59 // A type to represent a Unicode code-point value. As of Unicode 4.0,
60 // such values require up to 21 bits.
61 // (For type-checking on pointers, make this explicitly signed,
62 // and it should always be the signed version of whatever int32 is.)
63 typedef signed int char32;
64
65 const uint8 kuint8max = (( uint8) 0xFF);
66 const uint16 kuint16max = ((uint16) 0xFFFF);
67 const uint32 kuint32max = ((uint32) 0xFFFFFFFF);
68 const uint64 kuint64max = ((uint64) GG_LONGLONG(0xFFFFFFFFFFFFFFFF));
69 const int8 kint8min = (( int8) 0x80);
70 const int8 kint8max = (( int8) 0x7F);
71 const int16 kint16min = (( int16) 0x8000);
72 const int16 kint16max = (( int16) 0x7FFF);
73 const int32 kint32min = (( int32) 0x80000000);
74 const int32 kint32max = (( int32) 0x7FFFFFFF);
75 const int64 kint64min = (( int64) GG_LONGLONG(0x8000000000000000));
76 const int64 kint64max = (( int64) GG_LONGLONG(0x7FFFFFFFFFFFFFFF));
77
78 // A macro to disallow the copy constructor and operator= functions
79 // This should be used in the private: declarations for a class
80 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \
81 TypeName(const TypeName&); \
82 void operator=(const TypeName&)
83
84 // An older, deprecated, politically incorrect name for the above.
85 #define DISALLOW_EVIL_CONSTRUCTORS(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName)
86
87 // A macro to disallow all the implicit constructors, namely the
88 // default constructor, copy constructor and operator= functions.
89 //
90 // This should be used in the private: declarations for a class
91 // that wants to prevent anyone from instantiating it. This is
92 // especially useful for classes containing only static methods.
93 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
94 TypeName(); \
95 DISALLOW_COPY_AND_ASSIGN(TypeName)
96
97 // The arraysize(arr) macro returns the # of elements in an array arr.
98 // The expression is a compile-time constant, and therefore can be
99 // used in defining new arrays, for example. If you use arraysize on
100 // a pointer by mistake, you will get a compile-time error.
101 //
102 // One caveat is that arraysize() doesn't accept any array of an
103 // anonymous type or a type defined inside a function. In these rare
104 // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is
105 // due to a limitation in C++'s template system. The limitation might
106 // eventually be removed, but it hasn't happened yet.
107
108 // This template function declaration is used in defining arraysize.
109 // Note that the function doesn't need an implementation, as we only
110 // use its type.
111 template <typename T, size_t N>
112 char (&ArraySizeHelper(T (&array)[N]))[N];
113
114 // That gcc wants both of these prototypes seems mysterious. VC, for
115 // its part, can't decide which to use (another mystery). Matching of
116 // template overloads: the final frontier.
117 #ifndef _MSC_VER
118 template <typename T, size_t N>
119 char (&ArraySizeHelper(const T (&array)[N]))[N];
120 #endif
121
122 #define arraysize(array) (sizeof(ArraySizeHelper(array)))
123
124 // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize,
125 // but can be used on anonymous types or types defined inside
126 // functions. It's less safe than arraysize as it accepts some
127 // (although not all) pointers. Therefore, you should use arraysize
128 // whenever possible.
129 //
130 // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type
131 // size_t.
132 //
133 // ARRAYSIZE_UNSAFE catches a few type errors. If you see a compiler error
134 //
135 // "warning: division by zero in ..."
136 //
137 // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer.
138 // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays.
139 //
140 // The following comments are on the implementation details, and can
141 // be ignored by the users.
142 //
143 // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in
144 // the array) and sizeof(*(arr)) (the # of bytes in one array
145 // element). If the former is divisible by the latter, perhaps arr is
146 // indeed an array, in which case the division result is the # of
147 // elements in the array. Otherwise, arr cannot possibly be an array,
148 // and we generate a compiler error to prevent the code from
149 // compiling.
150 //
151 // Since the size of bool is implementation-defined, we need to cast
152 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
153 // result has type size_t.
154 //
155 // This macro is not perfect as it wrongfully accepts certain
156 // pointers, namely where the pointer size is divisible by the pointee
157 // size. Since all our code has to go through a 32-bit compiler,
158 // where a pointer is 4 bytes, this means all pointers to a type whose
159 // size is 3 or greater than 4 will be (righteously) rejected.
160
161 #define ARRAYSIZE_UNSAFE(a) \
162 ((sizeof(a) / sizeof(*(a))) / \
163 static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
164
165
166 // Use implicit_cast as a safe version of static_cast or const_cast
167 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo
168 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to
169 // a const pointer to Foo).
170 // When you use implicit_cast, the compiler checks that the cast is safe.
171 // Such explicit implicit_casts are necessary in surprisingly many
172 // situations where C++ demands an exact type match instead of an
173 // argument type convertable to a target type.
174 //
175 // The From type can be inferred, so the preferred syntax for using
176 // implicit_cast is the same as for static_cast etc.:
177 //
178 // implicit_cast<ToType>(expr)
179 //
180 // implicit_cast would have been part of the C++ standard library,
181 // but the proposal was submitted too late. It will probably make
182 // its way into the language in the future.
183 template<typename To, typename From>
implicit_cast(From const & f)184 inline To implicit_cast(From const &f) {
185 return f;
186 }
187
188 // The COMPILE_ASSERT macro can be used to verify that a compile time
189 // expression is true. For example, you could use it to verify the
190 // size of a static array:
191 //
192 // COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES,
193 // content_type_names_incorrect_size);
194 //
195 // or to make sure a struct is smaller than a certain size:
196 //
197 // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
198 //
199 // The second argument to the macro is the name of the variable. If
200 // the expression is false, most compilers will issue a warning/error
201 // containing the name of the variable.
202
203 template <bool>
204 struct CompileAssert {
205 };
206
207 #undef COMPILE_ASSERT
208 #define COMPILE_ASSERT(expr, msg) \
209 typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
210
211 // Implementation details of COMPILE_ASSERT:
212 //
213 // - COMPILE_ASSERT works by defining an array type that has -1
214 // elements (and thus is invalid) when the expression is false.
215 //
216 // - The simpler definition
217 //
218 // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
219 //
220 // does not work, as gcc supports variable-length arrays whose sizes
221 // are determined at run-time (this is gcc's extension and not part
222 // of the C++ standard). As a result, gcc fails to reject the
223 // following code with the simple definition:
224 //
225 // int foo;
226 // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
227 // // not a compile-time constant.
228 //
229 // - By using the type CompileAssert<(bool(expr))>, we ensures that
230 // expr is a compile-time constant. (Template arguments must be
231 // determined at compile-time.)
232 //
233 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary
234 // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written
235 //
236 // CompileAssert<bool(expr)>
237 //
238 // instead, these compilers will refuse to compile
239 //
240 // COMPILE_ASSERT(5 > 0, some_message);
241 //
242 // (They seem to think the ">" in "5 > 0" marks the end of the
243 // template argument list.)
244 //
245 // - The array size is (bool(expr) ? 1 : -1), instead of simply
246 //
247 // ((expr) ? 1 : -1).
248 //
249 // This is to avoid running into a bug in MS VC 7.1, which
250 // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
251
252
253 // MetatagId refers to metatag-id that we assign to
254 // each metatag <name, value> pair..
255 typedef uint32 MetatagId;
256
257 // Argument type used in interfaces that can optionally take ownership
258 // of a passed in argument. If TAKE_OWNERSHIP is passed, the called
259 // object takes ownership of the argument. Otherwise it does not.
260 enum Ownership {
261 DO_NOT_TAKE_OWNERSHIP,
262 TAKE_OWNERSHIP
263 };
264
265 // bit_cast<Dest,Source> is a template function that implements the
266 // equivalent of "*reinterpret_cast<Dest*>(&source)". We need this in
267 // very low-level functions like the protobuf library and fast math
268 // support.
269 //
270 // float f = 3.14159265358979;
271 // int i = bit_cast<int32>(f);
272 // // i = 0x40490fdb
273 //
274 // The classical address-casting method is:
275 //
276 // // WRONG
277 // float f = 3.14159265358979; // WRONG
278 // int i = * reinterpret_cast<int*>(&f); // WRONG
279 //
280 // The address-casting method actually produces undefined behavior
281 // according to ISO C++ specification section 3.10 -15 -. Roughly, this
282 // section says: if an object in memory has one type, and a program
283 // accesses it with a different type, then the result is undefined
284 // behavior for most values of "different type".
285 //
286 // This is true for any cast syntax, either *(int*)&f or
287 // *reinterpret_cast<int*>(&f). And it is particularly true for
288 // conversions betweeen integral lvalues and floating-point lvalues.
289 //
290 // The purpose of 3.10 -15- is to allow optimizing compilers to assume
291 // that expressions with different types refer to different memory. gcc
292 // 4.0.1 has an optimizer that takes advantage of this. So a
293 // non-conforming program quietly produces wildly incorrect output.
294 //
295 // The problem is not the use of reinterpret_cast. The problem is type
296 // punning: holding an object in memory of one type and reading its bits
297 // back using a different type.
298 //
299 // The C++ standard is more subtle and complex than this, but that
300 // is the basic idea.
301 //
302 // Anyways ...
303 //
304 // bit_cast<> calls memcpy() which is blessed by the standard,
305 // especially by the example in section 3.9 . Also, of course,
306 // bit_cast<> wraps up the nasty logic in one place.
307 //
308 // Fortunately memcpy() is very fast. In optimized mode, with a
309 // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline
310 // code with the minimal amount of data movement. On a 32-bit system,
311 // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8)
312 // compiles to two loads and two stores.
313 //
314 // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1.
315 //
316 // WARNING: if Dest or Source is a non-POD type, the result of the memcpy
317 // is likely to surprise you.
318
319 template <class Dest, class Source>
bit_cast(const Source & source)320 inline Dest bit_cast(const Source& source) {
321 // Compile time assertion: sizeof(Dest) == sizeof(Source)
322 // A compile error here means your Dest and Source have different sizes.
323 typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1];
324
325 Dest dest;
326 memcpy(&dest, &source, sizeof(dest));
327 return dest;
328 }
329
330 // The following enum should be used only as a constructor argument to indicate
331 // that the variable has static storage class, and that the constructor should
332 // do nothing to its state. It indicates to the reader that it is legal to
333 // declare a static instance of the class, provided the constructor is given
334 // the base::LINKER_INITIALIZED argument. Normally, it is unsafe to declare a
335 // static variable that has a constructor or a destructor because invocation
336 // order is undefined. However, IF the type can be initialized by filling with
337 // zeroes (which the loader does for static variables), AND the destructor also
338 // does nothing to the storage, AND there are no virtual methods, then a
339 // constructor declared as
340 // explicit MyClass(base::LinkerInitialized x) {}
341 // and invoked as
342 // static MyClass my_variable_name(base::LINKER_INITIALIZED);
343 namespace base {
344 enum LinkerInitialized { LINKER_INITIALIZED };
345 } // base
346
347 // UnaligndLoad32 is put here instead of base/port.h to
348 // avoid the circular dependency between port.h and basictypes.h
349 // ARM does not support unaligned memory access.
350 #if defined(ARCH_CPU_X86_FAMILY)
351 // x86 and x86-64 can perform unaligned loads/stores directly;
UnalignedLoad32(const void * p)352 inline uint32 UnalignedLoad32(const void* p) {
353 return *reinterpret_cast<const uint32*>(p);
354 }
355 #else
356 #define NEED_ALIGNED_LOADS
357 // If target architecture does not support unaligned loads and stores,
358 // use memcpy version of UNALIGNED_LOAD32.
UnalignedLoad32(const void * p)359 inline uint32 UnalignedLoad32(const void* p) {
360 uint32 t;
361 memcpy(&t, reinterpret_cast<const uint8*>(p), sizeof(t));
362 return t;
363 }
364
365 #endif
366 #endif // BASE_BASICTYPES_H_
367