• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright 2014 the V8 project authors. All rights reserved.
2  // Use of this source code is governed by a BSD-style license that can be
3  // found in the LICENSE file.
4  
5  #include "src/factory.h"
6  
7  #include "src/allocation-site-scopes.h"
8  #include "src/base/bits.h"
9  #include "src/conversions.h"
10  #include "src/isolate-inl.h"
11  #include "src/macro-assembler.h"
12  
13  namespace v8 {
14  namespace internal {
15  
16  
17  template<typename T>
New(Handle<Map> map,AllocationSpace space)18  Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
19    CALL_HEAP_FUNCTION(
20        isolate(),
21        isolate()->heap()->Allocate(*map, space),
22        T);
23  }
24  
25  
26  template<typename T>
New(Handle<Map> map,AllocationSpace space,Handle<AllocationSite> allocation_site)27  Handle<T> Factory::New(Handle<Map> map,
28                         AllocationSpace space,
29                         Handle<AllocationSite> allocation_site) {
30    CALL_HEAP_FUNCTION(
31        isolate(),
32        isolate()->heap()->Allocate(*map, space, *allocation_site),
33        T);
34  }
35  
36  
NewFillerObject(int size,bool double_align,AllocationSpace space)37  Handle<HeapObject> Factory::NewFillerObject(int size,
38                                              bool double_align,
39                                              AllocationSpace space) {
40    CALL_HEAP_FUNCTION(
41        isolate(),
42        isolate()->heap()->AllocateFillerObject(size, double_align, space),
43        HeapObject);
44  }
45  
46  
NewBox(Handle<Object> value)47  Handle<Box> Factory::NewBox(Handle<Object> value) {
48    Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
49    result->set_value(*value);
50    return result;
51  }
52  
53  
NewOddball(Handle<Map> map,const char * to_string,Handle<Object> to_number,byte kind)54  Handle<Oddball> Factory::NewOddball(Handle<Map> map,
55                                      const char* to_string,
56                                      Handle<Object> to_number,
57                                      byte kind) {
58    Handle<Oddball> oddball = New<Oddball>(map, OLD_POINTER_SPACE);
59    Oddball::Initialize(isolate(), oddball, to_string, to_number, kind);
60    return oddball;
61  }
62  
63  
NewFixedArray(int size,PretenureFlag pretenure)64  Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
65    DCHECK(0 <= size);
66    CALL_HEAP_FUNCTION(
67        isolate(),
68        isolate()->heap()->AllocateFixedArray(size, pretenure),
69        FixedArray);
70  }
71  
72  
NewFixedArrayWithHoles(int size,PretenureFlag pretenure)73  Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
74                                                     PretenureFlag pretenure) {
75    DCHECK(0 <= size);
76    CALL_HEAP_FUNCTION(
77        isolate(),
78        isolate()->heap()->AllocateFixedArrayWithFiller(size,
79                                                        pretenure,
80                                                        *the_hole_value()),
81        FixedArray);
82  }
83  
84  
NewUninitializedFixedArray(int size)85  Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
86    CALL_HEAP_FUNCTION(
87        isolate(),
88        isolate()->heap()->AllocateUninitializedFixedArray(size),
89        FixedArray);
90  }
91  
92  
NewFixedDoubleArray(int size,PretenureFlag pretenure)93  Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
94                                                      PretenureFlag pretenure) {
95    DCHECK(0 <= size);
96    CALL_HEAP_FUNCTION(
97        isolate(),
98        isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
99        FixedArrayBase);
100  }
101  
102  
NewFixedDoubleArrayWithHoles(int size,PretenureFlag pretenure)103  Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
104      int size,
105      PretenureFlag pretenure) {
106    DCHECK(0 <= size);
107    Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
108    if (size > 0) {
109      Handle<FixedDoubleArray> double_array =
110          Handle<FixedDoubleArray>::cast(array);
111      for (int i = 0; i < size; ++i) {
112        double_array->set_the_hole(i);
113      }
114    }
115    return array;
116  }
117  
118  
NewConstantPoolArray(const ConstantPoolArray::NumberOfEntries & small)119  Handle<ConstantPoolArray> Factory::NewConstantPoolArray(
120      const ConstantPoolArray::NumberOfEntries& small) {
121    DCHECK(small.total_count() > 0);
122    CALL_HEAP_FUNCTION(
123        isolate(),
124        isolate()->heap()->AllocateConstantPoolArray(small),
125        ConstantPoolArray);
126  }
127  
128  
NewExtendedConstantPoolArray(const ConstantPoolArray::NumberOfEntries & small,const ConstantPoolArray::NumberOfEntries & extended)129  Handle<ConstantPoolArray> Factory::NewExtendedConstantPoolArray(
130      const ConstantPoolArray::NumberOfEntries& small,
131      const ConstantPoolArray::NumberOfEntries& extended) {
132    DCHECK(small.total_count() > 0);
133    DCHECK(extended.total_count() > 0);
134    CALL_HEAP_FUNCTION(
135        isolate(),
136        isolate()->heap()->AllocateExtendedConstantPoolArray(small, extended),
137        ConstantPoolArray);
138  }
139  
140  
NewOrderedHashSet()141  Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
142    return OrderedHashSet::Allocate(isolate(), 4);
143  }
144  
145  
NewOrderedHashMap()146  Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
147    return OrderedHashMap::Allocate(isolate(), 4);
148  }
149  
150  
NewAccessorPair()151  Handle<AccessorPair> Factory::NewAccessorPair() {
152    Handle<AccessorPair> accessors =
153        Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
154    accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER);
155    accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER);
156    return accessors;
157  }
158  
159  
NewTypeFeedbackInfo()160  Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
161    Handle<TypeFeedbackInfo> info =
162        Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
163    info->initialize_storage();
164    return info;
165  }
166  
167  
168  // Internalized strings are created in the old generation (data space).
InternalizeUtf8String(Vector<const char> string)169  Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
170    Utf8StringKey key(string, isolate()->heap()->HashSeed());
171    return InternalizeStringWithKey(&key);
172  }
173  
174  
175  // Internalized strings are created in the old generation (data space).
InternalizeString(Handle<String> string)176  Handle<String> Factory::InternalizeString(Handle<String> string) {
177    if (string->IsInternalizedString()) return string;
178    return StringTable::LookupString(isolate(), string);
179  }
180  
181  
InternalizeOneByteString(Vector<const uint8_t> string)182  Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
183    OneByteStringKey key(string, isolate()->heap()->HashSeed());
184    return InternalizeStringWithKey(&key);
185  }
186  
187  
InternalizeOneByteString(Handle<SeqOneByteString> string,int from,int length)188  Handle<String> Factory::InternalizeOneByteString(
189      Handle<SeqOneByteString> string, int from, int length) {
190    SeqOneByteSubStringKey key(string, from, length);
191    return InternalizeStringWithKey(&key);
192  }
193  
194  
InternalizeTwoByteString(Vector<const uc16> string)195  Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
196    TwoByteStringKey key(string, isolate()->heap()->HashSeed());
197    return InternalizeStringWithKey(&key);
198  }
199  
200  
201  template<class StringTableKey>
InternalizeStringWithKey(StringTableKey * key)202  Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
203    return StringTable::LookupKey(isolate(), key);
204  }
205  
206  
NewStringFromOneByte(Vector<const uint8_t> string,PretenureFlag pretenure)207  MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
208                                                    PretenureFlag pretenure) {
209    int length = string.length();
210    if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
211    Handle<SeqOneByteString> result;
212    ASSIGN_RETURN_ON_EXCEPTION(
213        isolate(),
214        result,
215        NewRawOneByteString(string.length(), pretenure),
216        String);
217  
218    DisallowHeapAllocation no_gc;
219    // Copy the characters into the new object.
220    CopyChars(SeqOneByteString::cast(*result)->GetChars(),
221              string.start(),
222              length);
223    return result;
224  }
225  
NewStringFromUtf8(Vector<const char> string,PretenureFlag pretenure)226  MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
227                                                 PretenureFlag pretenure) {
228    // Check for ASCII first since this is the common case.
229    const char* start = string.start();
230    int length = string.length();
231    int non_ascii_start = String::NonAsciiStart(start, length);
232    if (non_ascii_start >= length) {
233      // If the string is ASCII, we do not need to convert the characters
234      // since UTF8 is backwards compatible with ASCII.
235      return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
236    }
237  
238    // Non-ASCII and we need to decode.
239    Access<UnicodeCache::Utf8Decoder>
240        decoder(isolate()->unicode_cache()->utf8_decoder());
241    decoder->Reset(string.start() + non_ascii_start,
242                   length - non_ascii_start);
243    int utf16_length = decoder->Utf16Length();
244    DCHECK(utf16_length > 0);
245    // Allocate string.
246    Handle<SeqTwoByteString> result;
247    ASSIGN_RETURN_ON_EXCEPTION(
248        isolate(), result,
249        NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
250        String);
251    // Copy ASCII portion.
252    uint16_t* data = result->GetChars();
253    const char* ascii_data = string.start();
254    for (int i = 0; i < non_ascii_start; i++) {
255      *data++ = *ascii_data++;
256    }
257    // Now write the remainder.
258    decoder->WriteUtf16(data, utf16_length);
259    return result;
260  }
261  
262  
NewStringFromTwoByte(Vector<const uc16> string,PretenureFlag pretenure)263  MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
264                                                    PretenureFlag pretenure) {
265    int length = string.length();
266    const uc16* start = string.start();
267    if (String::IsOneByte(start, length)) {
268      if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
269      Handle<SeqOneByteString> result;
270      ASSIGN_RETURN_ON_EXCEPTION(
271          isolate(),
272          result,
273          NewRawOneByteString(length, pretenure),
274          String);
275      CopyChars(result->GetChars(), start, length);
276      return result;
277    } else {
278      Handle<SeqTwoByteString> result;
279      ASSIGN_RETURN_ON_EXCEPTION(
280          isolate(),
281          result,
282          NewRawTwoByteString(length, pretenure),
283          String);
284      CopyChars(result->GetChars(), start, length);
285      return result;
286    }
287  }
288  
289  
NewInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)290  Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
291                                                        int chars,
292                                                        uint32_t hash_field) {
293    CALL_HEAP_FUNCTION(
294        isolate(),
295        isolate()->heap()->AllocateInternalizedStringFromUtf8(
296            str, chars, hash_field),
297        String);
298  }
299  
300  
NewOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)301  MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
302        Vector<const uint8_t> str,
303        uint32_t hash_field) {
304    CALL_HEAP_FUNCTION(
305        isolate(),
306        isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
307        String);
308  }
309  
310  
NewOneByteInternalizedSubString(Handle<SeqOneByteString> string,int offset,int length,uint32_t hash_field)311  MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString(
312      Handle<SeqOneByteString> string, int offset, int length,
313      uint32_t hash_field) {
314    CALL_HEAP_FUNCTION(
315        isolate(), isolate()->heap()->AllocateOneByteInternalizedString(
316                       Vector<const uint8_t>(string->GetChars() + offset, length),
317                       hash_field),
318        String);
319  }
320  
321  
NewTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)322  MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
323        Vector<const uc16> str,
324        uint32_t hash_field) {
325    CALL_HEAP_FUNCTION(
326        isolate(),
327        isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
328        String);
329  }
330  
331  
NewInternalizedStringImpl(Handle<String> string,int chars,uint32_t hash_field)332  Handle<String> Factory::NewInternalizedStringImpl(
333      Handle<String> string, int chars, uint32_t hash_field) {
334    CALL_HEAP_FUNCTION(
335        isolate(),
336        isolate()->heap()->AllocateInternalizedStringImpl(
337            *string, chars, hash_field),
338        String);
339  }
340  
341  
InternalizedStringMapForString(Handle<String> string)342  MaybeHandle<Map> Factory::InternalizedStringMapForString(
343      Handle<String> string) {
344    // If the string is in new space it cannot be used as internalized.
345    if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
346  
347    // Find the corresponding internalized string map for strings.
348    switch (string->map()->instance_type()) {
349      case STRING_TYPE: return internalized_string_map();
350      case ONE_BYTE_STRING_TYPE:
351        return one_byte_internalized_string_map();
352      case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
353      case EXTERNAL_ONE_BYTE_STRING_TYPE:
354        return external_one_byte_internalized_string_map();
355      case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
356        return external_internalized_string_with_one_byte_data_map();
357      case SHORT_EXTERNAL_STRING_TYPE:
358        return short_external_internalized_string_map();
359      case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
360        return short_external_one_byte_internalized_string_map();
361      case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
362        return short_external_internalized_string_with_one_byte_data_map();
363      default: return MaybeHandle<Map>();  // No match found.
364    }
365  }
366  
367  
NewRawOneByteString(int length,PretenureFlag pretenure)368  MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
369      int length, PretenureFlag pretenure) {
370    if (length > String::kMaxLength || length < 0) {
371      THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
372    }
373    CALL_HEAP_FUNCTION(
374        isolate(),
375        isolate()->heap()->AllocateRawOneByteString(length, pretenure),
376        SeqOneByteString);
377  }
378  
379  
NewRawTwoByteString(int length,PretenureFlag pretenure)380  MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
381      int length, PretenureFlag pretenure) {
382    if (length > String::kMaxLength || length < 0) {
383      THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
384    }
385    CALL_HEAP_FUNCTION(
386        isolate(),
387        isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
388        SeqTwoByteString);
389  }
390  
391  
LookupSingleCharacterStringFromCode(uint32_t code)392  Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
393    if (code <= String::kMaxOneByteCharCodeU) {
394      {
395        DisallowHeapAllocation no_allocation;
396        Object* value = single_character_string_cache()->get(code);
397        if (value != *undefined_value()) {
398          return handle(String::cast(value), isolate());
399        }
400      }
401      uint8_t buffer[1];
402      buffer[0] = static_cast<uint8_t>(code);
403      Handle<String> result =
404          InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
405      single_character_string_cache()->set(code, *result);
406      return result;
407    }
408    DCHECK(code <= String::kMaxUtf16CodeUnitU);
409  
410    Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
411    result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
412    return result;
413  }
414  
415  
416  // Returns true for a character in a range.  Both limits are inclusive.
Between(uint32_t character,uint32_t from,uint32_t to)417  static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
418    // This makes uses of the the unsigned wraparound.
419    return character - from <= to - from;
420  }
421  
422  
MakeOrFindTwoCharacterString(Isolate * isolate,uint16_t c1,uint16_t c2)423  static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
424                                                            uint16_t c1,
425                                                            uint16_t c2) {
426    // Numeric strings have a different hash algorithm not known by
427    // LookupTwoCharsStringIfExists, so we skip this step for such strings.
428    if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
429      Handle<String> result;
430      if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
431          ToHandle(&result)) {
432        return result;
433      }
434    }
435  
436    // Now we know the length is 2, we might as well make use of that fact
437    // when building the new string.
438    if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
439      // We can do this.
440      DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU +
441                                        1));  // because of this.
442      Handle<SeqOneByteString> str =
443          isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
444      uint8_t* dest = str->GetChars();
445      dest[0] = static_cast<uint8_t>(c1);
446      dest[1] = static_cast<uint8_t>(c2);
447      return str;
448    } else {
449      Handle<SeqTwoByteString> str =
450          isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
451      uc16* dest = str->GetChars();
452      dest[0] = c1;
453      dest[1] = c2;
454      return str;
455    }
456  }
457  
458  
459  template<typename SinkChar, typename StringType>
ConcatStringContent(Handle<StringType> result,Handle<String> first,Handle<String> second)460  Handle<String> ConcatStringContent(Handle<StringType> result,
461                                     Handle<String> first,
462                                     Handle<String> second) {
463    DisallowHeapAllocation pointer_stays_valid;
464    SinkChar* sink = result->GetChars();
465    String::WriteToFlat(*first, sink, 0, first->length());
466    String::WriteToFlat(*second, sink + first->length(), 0, second->length());
467    return result;
468  }
469  
470  
NewConsString(Handle<String> left,Handle<String> right)471  MaybeHandle<String> Factory::NewConsString(Handle<String> left,
472                                             Handle<String> right) {
473    int left_length = left->length();
474    if (left_length == 0) return right;
475    int right_length = right->length();
476    if (right_length == 0) return left;
477  
478    int length = left_length + right_length;
479  
480    if (length == 2) {
481      uint16_t c1 = left->Get(0);
482      uint16_t c2 = right->Get(0);
483      return MakeOrFindTwoCharacterString(isolate(), c1, c2);
484    }
485  
486    // Make sure that an out of memory exception is thrown if the length
487    // of the new cons string is too large.
488    if (length > String::kMaxLength || length < 0) {
489      THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
490    }
491  
492    bool left_is_one_byte = left->IsOneByteRepresentation();
493    bool right_is_one_byte = right->IsOneByteRepresentation();
494    bool is_one_byte = left_is_one_byte && right_is_one_byte;
495    bool is_one_byte_data_in_two_byte_string = false;
496    if (!is_one_byte) {
497      // At least one of the strings uses two-byte representation so we
498      // can't use the fast case code for short one-byte strings below, but
499      // we can try to save memory if all chars actually fit in one-byte.
500      is_one_byte_data_in_two_byte_string =
501          left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
502      if (is_one_byte_data_in_two_byte_string) {
503        isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
504      }
505    }
506  
507    // If the resulting string is small make a flat string.
508    if (length < ConsString::kMinLength) {
509      // Note that neither of the two inputs can be a slice because:
510      STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
511      DCHECK(left->IsFlat());
512      DCHECK(right->IsFlat());
513  
514      STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
515      if (is_one_byte) {
516        Handle<SeqOneByteString> result =
517            NewRawOneByteString(length).ToHandleChecked();
518        DisallowHeapAllocation no_gc;
519        uint8_t* dest = result->GetChars();
520        // Copy left part.
521        const uint8_t* src =
522            left->IsExternalString()
523                ? Handle<ExternalOneByteString>::cast(left)->GetChars()
524                : Handle<SeqOneByteString>::cast(left)->GetChars();
525        for (int i = 0; i < left_length; i++) *dest++ = src[i];
526        // Copy right part.
527        src = right->IsExternalString()
528                  ? Handle<ExternalOneByteString>::cast(right)->GetChars()
529                  : Handle<SeqOneByteString>::cast(right)->GetChars();
530        for (int i = 0; i < right_length; i++) *dest++ = src[i];
531        return result;
532      }
533  
534      return (is_one_byte_data_in_two_byte_string)
535          ? ConcatStringContent<uint8_t>(
536              NewRawOneByteString(length).ToHandleChecked(), left, right)
537          : ConcatStringContent<uc16>(
538              NewRawTwoByteString(length).ToHandleChecked(), left, right);
539    }
540  
541    Handle<Map> map = (is_one_byte || is_one_byte_data_in_two_byte_string)
542                          ? cons_one_byte_string_map()
543                          : cons_string_map();
544    Handle<ConsString> result =  New<ConsString>(map, NEW_SPACE);
545  
546    DisallowHeapAllocation no_gc;
547    WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
548  
549    result->set_hash_field(String::kEmptyHashField);
550    result->set_length(length);
551    result->set_first(*left, mode);
552    result->set_second(*right, mode);
553    return result;
554  }
555  
556  
NewProperSubString(Handle<String> str,int begin,int end)557  Handle<String> Factory::NewProperSubString(Handle<String> str,
558                                             int begin,
559                                             int end) {
560  #if VERIFY_HEAP
561    if (FLAG_verify_heap) str->StringVerify();
562  #endif
563    DCHECK(begin > 0 || end < str->length());
564  
565    str = String::Flatten(str);
566  
567    int length = end - begin;
568    if (length <= 0) return empty_string();
569    if (length == 1) {
570      return LookupSingleCharacterStringFromCode(str->Get(begin));
571    }
572    if (length == 2) {
573      // Optimization for 2-byte strings often used as keys in a decompression
574      // dictionary.  Check whether we already have the string in the string
575      // table to prevent creation of many unnecessary strings.
576      uint16_t c1 = str->Get(begin);
577      uint16_t c2 = str->Get(begin + 1);
578      return MakeOrFindTwoCharacterString(isolate(), c1, c2);
579    }
580  
581    if (!FLAG_string_slices || length < SlicedString::kMinLength) {
582      if (str->IsOneByteRepresentation()) {
583        Handle<SeqOneByteString> result =
584            NewRawOneByteString(length).ToHandleChecked();
585        uint8_t* dest = result->GetChars();
586        DisallowHeapAllocation no_gc;
587        String::WriteToFlat(*str, dest, begin, end);
588        return result;
589      } else {
590        Handle<SeqTwoByteString> result =
591            NewRawTwoByteString(length).ToHandleChecked();
592        uc16* dest = result->GetChars();
593        DisallowHeapAllocation no_gc;
594        String::WriteToFlat(*str, dest, begin, end);
595        return result;
596      }
597    }
598  
599    int offset = begin;
600  
601    if (str->IsSlicedString()) {
602      Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
603      str = Handle<String>(slice->parent(), isolate());
604      offset += slice->offset();
605    }
606  
607    DCHECK(str->IsSeqString() || str->IsExternalString());
608    Handle<Map> map = str->IsOneByteRepresentation()
609                          ? sliced_one_byte_string_map()
610                          : sliced_string_map();
611    Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
612  
613    slice->set_hash_field(String::kEmptyHashField);
614    slice->set_length(length);
615    slice->set_parent(*str);
616    slice->set_offset(offset);
617    return slice;
618  }
619  
620  
NewExternalStringFromOneByte(const ExternalOneByteString::Resource * resource)621  MaybeHandle<String> Factory::NewExternalStringFromOneByte(
622      const ExternalOneByteString::Resource* resource) {
623    size_t length = resource->length();
624    if (length > static_cast<size_t>(String::kMaxLength)) {
625      THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
626    }
627  
628    Handle<Map> map = external_one_byte_string_map();
629    Handle<ExternalOneByteString> external_string =
630        New<ExternalOneByteString>(map, NEW_SPACE);
631    external_string->set_length(static_cast<int>(length));
632    external_string->set_hash_field(String::kEmptyHashField);
633    external_string->set_resource(resource);
634  
635    return external_string;
636  }
637  
638  
NewExternalStringFromTwoByte(const ExternalTwoByteString::Resource * resource)639  MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
640      const ExternalTwoByteString::Resource* resource) {
641    size_t length = resource->length();
642    if (length > static_cast<size_t>(String::kMaxLength)) {
643      THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
644    }
645  
646    // For small strings we check whether the resource contains only
647    // one byte characters.  If yes, we use a different string map.
648    static const size_t kOneByteCheckLengthLimit = 32;
649    bool is_one_byte = length <= kOneByteCheckLengthLimit &&
650        String::IsOneByte(resource->data(), static_cast<int>(length));
651    Handle<Map> map = is_one_byte ?
652        external_string_with_one_byte_data_map() : external_string_map();
653    Handle<ExternalTwoByteString> external_string =
654        New<ExternalTwoByteString>(map, NEW_SPACE);
655    external_string->set_length(static_cast<int>(length));
656    external_string->set_hash_field(String::kEmptyHashField);
657    external_string->set_resource(resource);
658  
659    return external_string;
660  }
661  
662  
NewSymbol()663  Handle<Symbol> Factory::NewSymbol() {
664    CALL_HEAP_FUNCTION(
665        isolate(),
666        isolate()->heap()->AllocateSymbol(),
667        Symbol);
668  }
669  
670  
NewPrivateSymbol()671  Handle<Symbol> Factory::NewPrivateSymbol() {
672    Handle<Symbol> symbol = NewSymbol();
673    symbol->set_is_private(true);
674    return symbol;
675  }
676  
677  
NewPrivateOwnSymbol()678  Handle<Symbol> Factory::NewPrivateOwnSymbol() {
679    Handle<Symbol> symbol = NewSymbol();
680    symbol->set_is_private(true);
681    symbol->set_is_own(true);
682    return symbol;
683  }
684  
685  
NewNativeContext()686  Handle<Context> Factory::NewNativeContext() {
687    Handle<FixedArray> array = NewFixedArray(Context::NATIVE_CONTEXT_SLOTS);
688    array->set_map_no_write_barrier(*native_context_map());
689    Handle<Context> context = Handle<Context>::cast(array);
690    context->set_js_array_maps(*undefined_value());
691    DCHECK(context->IsNativeContext());
692    return context;
693  }
694  
695  
NewGlobalContext(Handle<JSFunction> function,Handle<ScopeInfo> scope_info)696  Handle<Context> Factory::NewGlobalContext(Handle<JSFunction> function,
697                                            Handle<ScopeInfo> scope_info) {
698    Handle<FixedArray> array =
699        NewFixedArray(scope_info->ContextLength(), TENURED);
700    array->set_map_no_write_barrier(*global_context_map());
701    Handle<Context> context = Handle<Context>::cast(array);
702    context->set_closure(*function);
703    context->set_previous(function->context());
704    context->set_extension(*scope_info);
705    context->set_global_object(function->context()->global_object());
706    DCHECK(context->IsGlobalContext());
707    return context;
708  }
709  
710  
NewModuleContext(Handle<ScopeInfo> scope_info)711  Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
712    Handle<FixedArray> array =
713        NewFixedArray(scope_info->ContextLength(), TENURED);
714    array->set_map_no_write_barrier(*module_context_map());
715    // Instance link will be set later.
716    Handle<Context> context = Handle<Context>::cast(array);
717    context->set_extension(Smi::FromInt(0));
718    return context;
719  }
720  
721  
NewFunctionContext(int length,Handle<JSFunction> function)722  Handle<Context> Factory::NewFunctionContext(int length,
723                                              Handle<JSFunction> function) {
724    DCHECK(length >= Context::MIN_CONTEXT_SLOTS);
725    Handle<FixedArray> array = NewFixedArray(length);
726    array->set_map_no_write_barrier(*function_context_map());
727    Handle<Context> context = Handle<Context>::cast(array);
728    context->set_closure(*function);
729    context->set_previous(function->context());
730    context->set_extension(Smi::FromInt(0));
731    context->set_global_object(function->context()->global_object());
732    return context;
733  }
734  
735  
NewCatchContext(Handle<JSFunction> function,Handle<Context> previous,Handle<String> name,Handle<Object> thrown_object)736  Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
737                                           Handle<Context> previous,
738                                           Handle<String> name,
739                                           Handle<Object> thrown_object) {
740    STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
741    Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
742    array->set_map_no_write_barrier(*catch_context_map());
743    Handle<Context> context = Handle<Context>::cast(array);
744    context->set_closure(*function);
745    context->set_previous(*previous);
746    context->set_extension(*name);
747    context->set_global_object(previous->global_object());
748    context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
749    return context;
750  }
751  
752  
NewWithContext(Handle<JSFunction> function,Handle<Context> previous,Handle<JSReceiver> extension)753  Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
754                                          Handle<Context> previous,
755                                          Handle<JSReceiver> extension) {
756    Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
757    array->set_map_no_write_barrier(*with_context_map());
758    Handle<Context> context = Handle<Context>::cast(array);
759    context->set_closure(*function);
760    context->set_previous(*previous);
761    context->set_extension(*extension);
762    context->set_global_object(previous->global_object());
763    return context;
764  }
765  
766  
NewBlockContext(Handle<JSFunction> function,Handle<Context> previous,Handle<ScopeInfo> scope_info)767  Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
768                                           Handle<Context> previous,
769                                           Handle<ScopeInfo> scope_info) {
770    Handle<FixedArray> array =
771        NewFixedArrayWithHoles(scope_info->ContextLength());
772    array->set_map_no_write_barrier(*block_context_map());
773    Handle<Context> context = Handle<Context>::cast(array);
774    context->set_closure(*function);
775    context->set_previous(*previous);
776    context->set_extension(*scope_info);
777    context->set_global_object(previous->global_object());
778    return context;
779  }
780  
781  
NewStruct(InstanceType type)782  Handle<Struct> Factory::NewStruct(InstanceType type) {
783    CALL_HEAP_FUNCTION(
784        isolate(),
785        isolate()->heap()->AllocateStruct(type),
786        Struct);
787  }
788  
789  
NewCodeCache()790  Handle<CodeCache> Factory::NewCodeCache() {
791    Handle<CodeCache> code_cache =
792        Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE));
793    code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER);
794    code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER);
795    return code_cache;
796  }
797  
798  
NewAliasedArgumentsEntry(int aliased_context_slot)799  Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
800      int aliased_context_slot) {
801    Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
802        NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
803    entry->set_aliased_context_slot(aliased_context_slot);
804    return entry;
805  }
806  
807  
NewDeclaredAccessorDescriptor()808  Handle<DeclaredAccessorDescriptor> Factory::NewDeclaredAccessorDescriptor() {
809    return Handle<DeclaredAccessorDescriptor>::cast(
810        NewStruct(DECLARED_ACCESSOR_DESCRIPTOR_TYPE));
811  }
812  
813  
NewDeclaredAccessorInfo()814  Handle<DeclaredAccessorInfo> Factory::NewDeclaredAccessorInfo() {
815    Handle<DeclaredAccessorInfo> info =
816        Handle<DeclaredAccessorInfo>::cast(
817            NewStruct(DECLARED_ACCESSOR_INFO_TYPE));
818    info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
819    return info;
820  }
821  
822  
NewExecutableAccessorInfo()823  Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() {
824    Handle<ExecutableAccessorInfo> info =
825        Handle<ExecutableAccessorInfo>::cast(
826            NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE));
827    info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
828    return info;
829  }
830  
831  
NewScript(Handle<String> source)832  Handle<Script> Factory::NewScript(Handle<String> source) {
833    // Generate id for this script.
834    Heap* heap = isolate()->heap();
835    int id = heap->last_script_id()->value() + 1;
836    if (!Smi::IsValid(id) || id < 0) id = 1;
837    heap->set_last_script_id(Smi::FromInt(id));
838  
839    // Create and initialize script object.
840    Handle<Foreign> wrapper = NewForeign(0, TENURED);
841    Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
842    script->set_source(*source);
843    script->set_name(heap->undefined_value());
844    script->set_id(Smi::FromInt(id));
845    script->set_line_offset(Smi::FromInt(0));
846    script->set_column_offset(Smi::FromInt(0));
847    script->set_context_data(heap->undefined_value());
848    script->set_type(Smi::FromInt(Script::TYPE_NORMAL));
849    script->set_wrapper(*wrapper);
850    script->set_line_ends(heap->undefined_value());
851    script->set_eval_from_shared(heap->undefined_value());
852    script->set_eval_from_instructions_offset(Smi::FromInt(0));
853    script->set_flags(Smi::FromInt(0));
854  
855    return script;
856  }
857  
858  
NewForeign(Address addr,PretenureFlag pretenure)859  Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
860    CALL_HEAP_FUNCTION(isolate(),
861                       isolate()->heap()->AllocateForeign(addr, pretenure),
862                       Foreign);
863  }
864  
865  
NewForeign(const AccessorDescriptor * desc)866  Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
867    return NewForeign((Address) desc, TENURED);
868  }
869  
870  
NewByteArray(int length,PretenureFlag pretenure)871  Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
872    DCHECK(0 <= length);
873    CALL_HEAP_FUNCTION(
874        isolate(),
875        isolate()->heap()->AllocateByteArray(length, pretenure),
876        ByteArray);
877  }
878  
879  
NewExternalArray(int length,ExternalArrayType array_type,void * external_pointer,PretenureFlag pretenure)880  Handle<ExternalArray> Factory::NewExternalArray(int length,
881                                                  ExternalArrayType array_type,
882                                                  void* external_pointer,
883                                                  PretenureFlag pretenure) {
884    DCHECK(0 <= length && length <= Smi::kMaxValue);
885    CALL_HEAP_FUNCTION(
886        isolate(),
887        isolate()->heap()->AllocateExternalArray(length,
888                                                 array_type,
889                                                 external_pointer,
890                                                 pretenure),
891        ExternalArray);
892  }
893  
894  
NewFixedTypedArray(int length,ExternalArrayType array_type,PretenureFlag pretenure)895  Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
896      int length,
897      ExternalArrayType array_type,
898      PretenureFlag pretenure) {
899    DCHECK(0 <= length && length <= Smi::kMaxValue);
900    CALL_HEAP_FUNCTION(
901        isolate(),
902        isolate()->heap()->AllocateFixedTypedArray(length,
903                                                   array_type,
904                                                   pretenure),
905        FixedTypedArrayBase);
906  }
907  
908  
NewCell(Handle<Object> value)909  Handle<Cell> Factory::NewCell(Handle<Object> value) {
910    AllowDeferredHandleDereference convert_to_cell;
911    CALL_HEAP_FUNCTION(
912        isolate(),
913        isolate()->heap()->AllocateCell(*value),
914        Cell);
915  }
916  
917  
NewPropertyCellWithHole()918  Handle<PropertyCell> Factory::NewPropertyCellWithHole() {
919    CALL_HEAP_FUNCTION(
920        isolate(),
921        isolate()->heap()->AllocatePropertyCell(),
922        PropertyCell);
923  }
924  
925  
NewPropertyCell(Handle<Object> value)926  Handle<PropertyCell> Factory::NewPropertyCell(Handle<Object> value) {
927    AllowDeferredHandleDereference convert_to_cell;
928    Handle<PropertyCell> cell = NewPropertyCellWithHole();
929    PropertyCell::SetValueInferType(cell, value);
930    return cell;
931  }
932  
933  
NewAllocationSite()934  Handle<AllocationSite> Factory::NewAllocationSite() {
935    Handle<Map> map = allocation_site_map();
936    Handle<AllocationSite> site = New<AllocationSite>(map, OLD_POINTER_SPACE);
937    site->Initialize();
938  
939    // Link the site
940    site->set_weak_next(isolate()->heap()->allocation_sites_list());
941    isolate()->heap()->set_allocation_sites_list(*site);
942    return site;
943  }
944  
945  
NewMap(InstanceType type,int instance_size,ElementsKind elements_kind)946  Handle<Map> Factory::NewMap(InstanceType type,
947                              int instance_size,
948                              ElementsKind elements_kind) {
949    CALL_HEAP_FUNCTION(
950        isolate(),
951        isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
952        Map);
953  }
954  
955  
CopyJSObject(Handle<JSObject> object)956  Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
957    CALL_HEAP_FUNCTION(isolate(),
958                       isolate()->heap()->CopyJSObject(*object, NULL),
959                       JSObject);
960  }
961  
962  
CopyJSObjectWithAllocationSite(Handle<JSObject> object,Handle<AllocationSite> site)963  Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
964      Handle<JSObject> object,
965      Handle<AllocationSite> site) {
966    CALL_HEAP_FUNCTION(isolate(),
967                       isolate()->heap()->CopyJSObject(
968                           *object,
969                           site.is_null() ? NULL : *site),
970                       JSObject);
971  }
972  
973  
CopyFixedArrayWithMap(Handle<FixedArray> array,Handle<Map> map)974  Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
975                                                    Handle<Map> map) {
976    CALL_HEAP_FUNCTION(isolate(),
977                       isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
978                       FixedArray);
979  }
980  
981  
CopyFixedArray(Handle<FixedArray> array)982  Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
983    CALL_HEAP_FUNCTION(isolate(),
984                       isolate()->heap()->CopyFixedArray(*array),
985                       FixedArray);
986  }
987  
988  
CopyAndTenureFixedCOWArray(Handle<FixedArray> array)989  Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
990      Handle<FixedArray> array) {
991    DCHECK(isolate()->heap()->InNewSpace(*array));
992    CALL_HEAP_FUNCTION(isolate(),
993                       isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
994                       FixedArray);
995  }
996  
997  
CopyFixedDoubleArray(Handle<FixedDoubleArray> array)998  Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
999      Handle<FixedDoubleArray> array) {
1000    CALL_HEAP_FUNCTION(isolate(),
1001                       isolate()->heap()->CopyFixedDoubleArray(*array),
1002                       FixedDoubleArray);
1003  }
1004  
1005  
CopyConstantPoolArray(Handle<ConstantPoolArray> array)1006  Handle<ConstantPoolArray> Factory::CopyConstantPoolArray(
1007      Handle<ConstantPoolArray> array) {
1008    CALL_HEAP_FUNCTION(isolate(),
1009                       isolate()->heap()->CopyConstantPoolArray(*array),
1010                       ConstantPoolArray);
1011  }
1012  
1013  
NewNumber(double value,PretenureFlag pretenure)1014  Handle<Object> Factory::NewNumber(double value,
1015                                    PretenureFlag pretenure) {
1016    // We need to distinguish the minus zero value and this cannot be
1017    // done after conversion to int. Doing this by comparing bit
1018    // patterns is faster than using fpclassify() et al.
1019    if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure);
1020  
1021    int int_value = FastD2I(value);
1022    if (value == int_value && Smi::IsValid(int_value)) {
1023      return handle(Smi::FromInt(int_value), isolate());
1024    }
1025  
1026    // Materialize the value in the heap.
1027    return NewHeapNumber(value, IMMUTABLE, pretenure);
1028  }
1029  
1030  
NewNumberFromInt(int32_t value,PretenureFlag pretenure)1031  Handle<Object> Factory::NewNumberFromInt(int32_t value,
1032                                           PretenureFlag pretenure) {
1033    if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
1034    // Bypass NewNumber to avoid various redundant checks.
1035    return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure);
1036  }
1037  
1038  
NewNumberFromUint(uint32_t value,PretenureFlag pretenure)1039  Handle<Object> Factory::NewNumberFromUint(uint32_t value,
1040                                            PretenureFlag pretenure) {
1041    int32_t int32v = static_cast<int32_t>(value);
1042    if (int32v >= 0 && Smi::IsValid(int32v)) {
1043      return handle(Smi::FromInt(int32v), isolate());
1044    }
1045    return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure);
1046  }
1047  
1048  
NewHeapNumber(double value,MutableMode mode,PretenureFlag pretenure)1049  Handle<HeapNumber> Factory::NewHeapNumber(double value,
1050                                            MutableMode mode,
1051                                            PretenureFlag pretenure) {
1052    CALL_HEAP_FUNCTION(
1053        isolate(),
1054        isolate()->heap()->AllocateHeapNumber(value, mode, pretenure),
1055        HeapNumber);
1056  }
1057  
1058  
NewTypeError(const char * message,Vector<Handle<Object>> args)1059  MaybeHandle<Object> Factory::NewTypeError(const char* message,
1060                                            Vector<Handle<Object> > args) {
1061    return NewError("MakeTypeError", message, args);
1062  }
1063  
1064  
NewTypeError(Handle<String> message)1065  MaybeHandle<Object> Factory::NewTypeError(Handle<String> message) {
1066    return NewError("$TypeError", message);
1067  }
1068  
1069  
NewRangeError(const char * message,Vector<Handle<Object>> args)1070  MaybeHandle<Object> Factory::NewRangeError(const char* message,
1071                                             Vector<Handle<Object> > args) {
1072    return NewError("MakeRangeError", message, args);
1073  }
1074  
1075  
NewRangeError(Handle<String> message)1076  MaybeHandle<Object> Factory::NewRangeError(Handle<String> message) {
1077    return NewError("$RangeError", message);
1078  }
1079  
1080  
NewSyntaxError(const char * message,Handle<JSArray> args)1081  MaybeHandle<Object> Factory::NewSyntaxError(const char* message,
1082                                              Handle<JSArray> args) {
1083    return NewError("MakeSyntaxError", message, args);
1084  }
1085  
1086  
NewSyntaxError(Handle<String> message)1087  MaybeHandle<Object> Factory::NewSyntaxError(Handle<String> message) {
1088    return NewError("$SyntaxError", message);
1089  }
1090  
1091  
NewReferenceError(const char * message,Vector<Handle<Object>> args)1092  MaybeHandle<Object> Factory::NewReferenceError(const char* message,
1093                                                 Vector<Handle<Object> > args) {
1094    return NewError("MakeReferenceError", message, args);
1095  }
1096  
1097  
NewReferenceError(const char * message,Handle<JSArray> args)1098  MaybeHandle<Object> Factory::NewReferenceError(const char* message,
1099                                                 Handle<JSArray> args) {
1100    return NewError("MakeReferenceError", message, args);
1101  }
1102  
1103  
NewReferenceError(Handle<String> message)1104  MaybeHandle<Object> Factory::NewReferenceError(Handle<String> message) {
1105    return NewError("$ReferenceError", message);
1106  }
1107  
1108  
NewError(const char * maker,const char * message,Vector<Handle<Object>> args)1109  MaybeHandle<Object> Factory::NewError(const char* maker, const char* message,
1110                                        Vector<Handle<Object> > args) {
1111    // Instantiate a closeable HandleScope for EscapeFrom.
1112    v8::EscapableHandleScope scope(reinterpret_cast<v8::Isolate*>(isolate()));
1113    Handle<FixedArray> array = NewFixedArray(args.length());
1114    for (int i = 0; i < args.length(); i++) {
1115      array->set(i, *args[i]);
1116    }
1117    Handle<JSArray> object = NewJSArrayWithElements(array);
1118    Handle<Object> result;
1119    ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
1120                               NewError(maker, message, object), Object);
1121    return result.EscapeFrom(&scope);
1122  }
1123  
1124  
NewEvalError(const char * message,Vector<Handle<Object>> args)1125  MaybeHandle<Object> Factory::NewEvalError(const char* message,
1126                                            Vector<Handle<Object> > args) {
1127    return NewError("MakeEvalError", message, args);
1128  }
1129  
1130  
NewError(const char * message,Vector<Handle<Object>> args)1131  MaybeHandle<Object> Factory::NewError(const char* message,
1132                                        Vector<Handle<Object> > args) {
1133    return NewError("MakeError", message, args);
1134  }
1135  
1136  
EmergencyNewError(const char * message,Handle<JSArray> args)1137  Handle<String> Factory::EmergencyNewError(const char* message,
1138                                            Handle<JSArray> args) {
1139    const int kBufferSize = 1000;
1140    char buffer[kBufferSize];
1141    size_t space = kBufferSize;
1142    char* p = &buffer[0];
1143  
1144    Vector<char> v(buffer, kBufferSize);
1145    StrNCpy(v, message, space);
1146    space -= Min(space, strlen(message));
1147    p = &buffer[kBufferSize] - space;
1148  
1149    for (int i = 0; i < Smi::cast(args->length())->value(); i++) {
1150      if (space > 0) {
1151        *p++ = ' ';
1152        space--;
1153        if (space > 0) {
1154          Handle<String> arg_str = Handle<String>::cast(
1155              Object::GetElement(isolate(), args, i).ToHandleChecked());
1156          SmartArrayPointer<char> arg = arg_str->ToCString();
1157          Vector<char> v2(p, static_cast<int>(space));
1158          StrNCpy(v2, arg.get(), space);
1159          space -= Min(space, strlen(arg.get()));
1160          p = &buffer[kBufferSize] - space;
1161        }
1162      }
1163    }
1164    if (space > 0) {
1165      *p = '\0';
1166    } else {
1167      buffer[kBufferSize - 1] = '\0';
1168    }
1169    return NewStringFromUtf8(CStrVector(buffer), TENURED).ToHandleChecked();
1170  }
1171  
1172  
NewError(const char * maker,const char * message,Handle<JSArray> args)1173  MaybeHandle<Object> Factory::NewError(const char* maker, const char* message,
1174                                        Handle<JSArray> args) {
1175    Handle<String> make_str = InternalizeUtf8String(maker);
1176    Handle<Object> fun_obj = Object::GetProperty(
1177        isolate()->js_builtins_object(), make_str).ToHandleChecked();
1178    // If the builtins haven't been properly configured yet this error
1179    // constructor may not have been defined.  Bail out.
1180    if (!fun_obj->IsJSFunction()) {
1181      return EmergencyNewError(message, args);
1182    }
1183    Handle<JSFunction> fun = Handle<JSFunction>::cast(fun_obj);
1184    Handle<Object> message_obj = InternalizeUtf8String(message);
1185    Handle<Object> argv[] = { message_obj, args };
1186  
1187    // Invoke the JavaScript factory method. If an exception is thrown while
1188    // running the factory method, use the exception as the result.
1189    Handle<Object> result;
1190    MaybeHandle<Object> exception;
1191    if (!Execution::TryCall(fun,
1192                            isolate()->js_builtins_object(),
1193                            arraysize(argv),
1194                            argv,
1195                            &exception).ToHandle(&result)) {
1196      return exception;
1197    }
1198    return result;
1199  }
1200  
1201  
NewError(Handle<String> message)1202  MaybeHandle<Object> Factory::NewError(Handle<String> message) {
1203    return NewError("$Error", message);
1204  }
1205  
1206  
NewError(const char * constructor,Handle<String> message)1207  MaybeHandle<Object> Factory::NewError(const char* constructor,
1208                                        Handle<String> message) {
1209    Handle<String> constr = InternalizeUtf8String(constructor);
1210    Handle<JSFunction> fun = Handle<JSFunction>::cast(Object::GetProperty(
1211        isolate()->js_builtins_object(), constr).ToHandleChecked());
1212    Handle<Object> argv[] = { message };
1213  
1214    // Invoke the JavaScript factory method. If an exception is thrown while
1215    // running the factory method, use the exception as the result.
1216    Handle<Object> result;
1217    MaybeHandle<Object> exception;
1218    if (!Execution::TryCall(fun,
1219                            isolate()->js_builtins_object(),
1220                            arraysize(argv),
1221                            argv,
1222                            &exception).ToHandle(&result)) {
1223      return exception;
1224    }
1225    return result;
1226  }
1227  
1228  
InitializeFunction(Handle<JSFunction> function,Handle<SharedFunctionInfo> info,Handle<Context> context)1229  void Factory::InitializeFunction(Handle<JSFunction> function,
1230                                   Handle<SharedFunctionInfo> info,
1231                                   Handle<Context> context) {
1232    function->initialize_properties();
1233    function->initialize_elements();
1234    function->set_shared(*info);
1235    function->set_code(info->code());
1236    function->set_context(*context);
1237    function->set_prototype_or_initial_map(*the_hole_value());
1238    function->set_literals_or_bindings(*empty_fixed_array());
1239    function->set_next_function_link(*undefined_value());
1240  }
1241  
1242  
NewFunction(Handle<Map> map,Handle<SharedFunctionInfo> info,Handle<Context> context,PretenureFlag pretenure)1243  Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1244                                          Handle<SharedFunctionInfo> info,
1245                                          Handle<Context> context,
1246                                          PretenureFlag pretenure) {
1247    AllocationSpace space = pretenure == TENURED ? OLD_POINTER_SPACE : NEW_SPACE;
1248    Handle<JSFunction> result = New<JSFunction>(map, space);
1249    InitializeFunction(result, info, context);
1250    return result;
1251  }
1252  
1253  
NewFunction(Handle<Map> map,Handle<String> name,MaybeHandle<Code> code)1254  Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1255                                          Handle<String> name,
1256                                          MaybeHandle<Code> code) {
1257    Handle<Context> context(isolate()->native_context());
1258    Handle<SharedFunctionInfo> info = NewSharedFunctionInfo(name, code);
1259    DCHECK((info->strict_mode() == SLOPPY) &&
1260           (map.is_identical_to(isolate()->sloppy_function_map()) ||
1261            map.is_identical_to(
1262                isolate()->sloppy_function_without_prototype_map()) ||
1263            map.is_identical_to(
1264                isolate()->sloppy_function_with_readonly_prototype_map())));
1265    return NewFunction(map, info, context);
1266  }
1267  
1268  
NewFunction(Handle<String> name)1269  Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
1270    return NewFunction(
1271        isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
1272  }
1273  
1274  
NewFunctionWithoutPrototype(Handle<String> name,Handle<Code> code)1275  Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
1276                                                          Handle<Code> code) {
1277    return NewFunction(
1278        isolate()->sloppy_function_without_prototype_map(), name, code);
1279  }
1280  
1281  
NewFunction(Handle<String> name,Handle<Code> code,Handle<Object> prototype,bool read_only_prototype)1282  Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1283                                          Handle<Code> code,
1284                                          Handle<Object> prototype,
1285                                          bool read_only_prototype) {
1286    Handle<Map> map = read_only_prototype
1287        ? isolate()->sloppy_function_with_readonly_prototype_map()
1288        : isolate()->sloppy_function_map();
1289    Handle<JSFunction> result = NewFunction(map, name, code);
1290    result->set_prototype_or_initial_map(*prototype);
1291    return result;
1292  }
1293  
1294  
NewFunction(Handle<String> name,Handle<Code> code,Handle<Object> prototype,InstanceType type,int instance_size,bool read_only_prototype)1295  Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1296                                          Handle<Code> code,
1297                                          Handle<Object> prototype,
1298                                          InstanceType type,
1299                                          int instance_size,
1300                                          bool read_only_prototype) {
1301    // Allocate the function
1302    Handle<JSFunction> function = NewFunction(
1303        name, code, prototype, read_only_prototype);
1304  
1305    Handle<Map> initial_map = NewMap(
1306        type, instance_size, GetInitialFastElementsKind());
1307    if (prototype->IsTheHole() && !function->shared()->is_generator()) {
1308      prototype = NewFunctionPrototype(function);
1309    }
1310  
1311    JSFunction::SetInitialMap(function, initial_map,
1312                              Handle<JSReceiver>::cast(prototype));
1313  
1314    return function;
1315  }
1316  
1317  
NewFunction(Handle<String> name,Handle<Code> code,InstanceType type,int instance_size)1318  Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1319                                          Handle<Code> code,
1320                                          InstanceType type,
1321                                          int instance_size) {
1322    return NewFunction(name, code, the_hole_value(), type, instance_size);
1323  }
1324  
1325  
NewFunctionPrototype(Handle<JSFunction> function)1326  Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1327    // Make sure to use globals from the function's context, since the function
1328    // can be from a different context.
1329    Handle<Context> native_context(function->context()->native_context());
1330    Handle<Map> new_map;
1331    if (function->shared()->is_generator()) {
1332      // Generator prototypes can share maps since they don't have "constructor"
1333      // properties.
1334      new_map = handle(native_context->generator_object_prototype_map());
1335    } else {
1336      // Each function prototype gets a fresh map to avoid unwanted sharing of
1337      // maps between prototypes of different constructors.
1338      Handle<JSFunction> object_function(native_context->object_function());
1339      DCHECK(object_function->has_initial_map());
1340      new_map = handle(object_function->initial_map());
1341    }
1342  
1343    DCHECK(!new_map->is_prototype_map());
1344    Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1345  
1346    if (!function->shared()->is_generator()) {
1347      JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM);
1348    }
1349  
1350    return prototype;
1351  }
1352  
1353  
NewFunctionFromSharedFunctionInfo(Handle<SharedFunctionInfo> info,Handle<Context> context,PretenureFlag pretenure)1354  Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1355      Handle<SharedFunctionInfo> info,
1356      Handle<Context> context,
1357      PretenureFlag pretenure) {
1358    int map_index = Context::FunctionMapIndex(info->strict_mode(), info->kind());
1359    Handle<Map> map(Map::cast(context->native_context()->get(map_index)));
1360    Handle<JSFunction> result = NewFunction(map, info, context, pretenure);
1361  
1362    if (info->ic_age() != isolate()->heap()->global_ic_age()) {
1363      info->ResetForNewContext(isolate()->heap()->global_ic_age());
1364    }
1365  
1366    int index = info->SearchOptimizedCodeMap(context->native_context(),
1367                                             BailoutId::None());
1368    if (!info->bound() && index < 0) {
1369      int number_of_literals = info->num_literals();
1370      Handle<FixedArray> literals = NewFixedArray(number_of_literals, pretenure);
1371      if (number_of_literals > 0) {
1372        // Store the native context in the literals array prefix. This
1373        // context will be used when creating object, regexp and array
1374        // literals in this function.
1375        literals->set(JSFunction::kLiteralNativeContextIndex,
1376                      context->native_context());
1377      }
1378      result->set_literals(*literals);
1379    }
1380  
1381    if (index > 0) {
1382      // Caching of optimized code enabled and optimized code found.
1383      FixedArray* literals = info->GetLiteralsFromOptimizedCodeMap(index);
1384      if (literals != NULL) result->set_literals(literals);
1385      Code* code = info->GetCodeFromOptimizedCodeMap(index);
1386      DCHECK(!code->marked_for_deoptimization());
1387      result->ReplaceCode(code);
1388      return result;
1389    }
1390  
1391    if (isolate()->use_crankshaft() &&
1392        FLAG_always_opt &&
1393        result->is_compiled() &&
1394        !info->is_toplevel() &&
1395        info->allows_lazy_compilation() &&
1396        !info->optimization_disabled() &&
1397        !isolate()->DebuggerHasBreakPoints()) {
1398      result->MarkForOptimization();
1399    }
1400    return result;
1401  }
1402  
1403  
NewScopeInfo(int length)1404  Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
1405    Handle<FixedArray> array = NewFixedArray(length, TENURED);
1406    array->set_map_no_write_barrier(*scope_info_map());
1407    Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
1408    return scope_info;
1409  }
1410  
1411  
NewExternal(void * value)1412  Handle<JSObject> Factory::NewExternal(void* value) {
1413    Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
1414    Handle<JSObject> external = NewJSObjectFromMap(external_map());
1415    external->SetInternalField(0, *foreign);
1416    return external;
1417  }
1418  
1419  
NewCodeRaw(int object_size,bool immovable)1420  Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
1421    CALL_HEAP_FUNCTION(isolate(),
1422                       isolate()->heap()->AllocateCode(object_size, immovable),
1423                       Code);
1424  }
1425  
1426  
NewCode(const CodeDesc & desc,Code::Flags flags,Handle<Object> self_ref,bool immovable,bool crankshafted,int prologue_offset,bool is_debug)1427  Handle<Code> Factory::NewCode(const CodeDesc& desc,
1428                                Code::Flags flags,
1429                                Handle<Object> self_ref,
1430                                bool immovable,
1431                                bool crankshafted,
1432                                int prologue_offset,
1433                                bool is_debug) {
1434    Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
1435    Handle<ConstantPoolArray> constant_pool =
1436        desc.origin->NewConstantPool(isolate());
1437  
1438    // Compute size.
1439    int body_size = RoundUp(desc.instr_size, kObjectAlignment);
1440    int obj_size = Code::SizeFor(body_size);
1441  
1442    Handle<Code> code = NewCodeRaw(obj_size, immovable);
1443    DCHECK(isolate()->code_range() == NULL ||
1444           !isolate()->code_range()->valid() ||
1445           isolate()->code_range()->contains(code->address()));
1446  
1447    // The code object has not been fully initialized yet.  We rely on the
1448    // fact that no allocation will happen from this point on.
1449    DisallowHeapAllocation no_gc;
1450    code->set_gc_metadata(Smi::FromInt(0));
1451    code->set_ic_age(isolate()->heap()->global_ic_age());
1452    code->set_instruction_size(desc.instr_size);
1453    code->set_relocation_info(*reloc_info);
1454    code->set_flags(flags);
1455    code->set_raw_kind_specific_flags1(0);
1456    code->set_raw_kind_specific_flags2(0);
1457    code->set_is_crankshafted(crankshafted);
1458    code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1459    code->set_raw_type_feedback_info(Smi::FromInt(0));
1460    code->set_next_code_link(*undefined_value());
1461    code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1462    code->set_prologue_offset(prologue_offset);
1463    if (code->kind() == Code::OPTIMIZED_FUNCTION) {
1464      code->set_marked_for_deoptimization(false);
1465    }
1466  
1467    if (is_debug) {
1468      DCHECK(code->kind() == Code::FUNCTION);
1469      code->set_has_debug_break_slots(true);
1470    }
1471  
1472    desc.origin->PopulateConstantPool(*constant_pool);
1473    code->set_constant_pool(*constant_pool);
1474  
1475    // Allow self references to created code object by patching the handle to
1476    // point to the newly allocated Code object.
1477    if (!self_ref.is_null()) *(self_ref.location()) = *code;
1478  
1479    // Migrate generated code.
1480    // The generated code can contain Object** values (typically from handles)
1481    // that are dereferenced during the copy to point directly to the actual heap
1482    // objects. These pointers can include references to the code object itself,
1483    // through the self_reference parameter.
1484    code->CopyFrom(desc);
1485  
1486  #ifdef VERIFY_HEAP
1487    if (FLAG_verify_heap) code->ObjectVerify();
1488  #endif
1489    return code;
1490  }
1491  
1492  
CopyCode(Handle<Code> code)1493  Handle<Code> Factory::CopyCode(Handle<Code> code) {
1494    CALL_HEAP_FUNCTION(isolate(),
1495                       isolate()->heap()->CopyCode(*code),
1496                       Code);
1497  }
1498  
1499  
CopyCode(Handle<Code> code,Vector<byte> reloc_info)1500  Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) {
1501    CALL_HEAP_FUNCTION(isolate(),
1502                       isolate()->heap()->CopyCode(*code, reloc_info),
1503                       Code);
1504  }
1505  
1506  
NewJSObject(Handle<JSFunction> constructor,PretenureFlag pretenure)1507  Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1508                                        PretenureFlag pretenure) {
1509    JSFunction::EnsureHasInitialMap(constructor);
1510    CALL_HEAP_FUNCTION(
1511        isolate(),
1512        isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
1513  }
1514  
1515  
NewJSObjectWithMemento(Handle<JSFunction> constructor,Handle<AllocationSite> site)1516  Handle<JSObject> Factory::NewJSObjectWithMemento(
1517      Handle<JSFunction> constructor,
1518      Handle<AllocationSite> site) {
1519    JSFunction::EnsureHasInitialMap(constructor);
1520    CALL_HEAP_FUNCTION(
1521        isolate(),
1522        isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
1523        JSObject);
1524  }
1525  
1526  
NewJSModule(Handle<Context> context,Handle<ScopeInfo> scope_info)1527  Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
1528                                        Handle<ScopeInfo> scope_info) {
1529    // Allocate a fresh map. Modules do not have a prototype.
1530    Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
1531    // Allocate the object based on the map.
1532    Handle<JSModule> module =
1533        Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
1534    module->set_context(*context);
1535    module->set_scope_info(*scope_info);
1536    return module;
1537  }
1538  
1539  
NewGlobalObject(Handle<JSFunction> constructor)1540  Handle<GlobalObject> Factory::NewGlobalObject(Handle<JSFunction> constructor) {
1541    DCHECK(constructor->has_initial_map());
1542    Handle<Map> map(constructor->initial_map());
1543    DCHECK(map->is_dictionary_map());
1544  
1545    // Make sure no field properties are described in the initial map.
1546    // This guarantees us that normalizing the properties does not
1547    // require us to change property values to PropertyCells.
1548    DCHECK(map->NextFreePropertyIndex() == 0);
1549  
1550    // Make sure we don't have a ton of pre-allocated slots in the
1551    // global objects. They will be unused once we normalize the object.
1552    DCHECK(map->unused_property_fields() == 0);
1553    DCHECK(map->inobject_properties() == 0);
1554  
1555    // Initial size of the backing store to avoid resize of the storage during
1556    // bootstrapping. The size differs between the JS global object ad the
1557    // builtins object.
1558    int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
1559  
1560    // Allocate a dictionary object for backing storage.
1561    int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
1562    Handle<NameDictionary> dictionary =
1563        NameDictionary::New(isolate(), at_least_space_for);
1564  
1565    // The global object might be created from an object template with accessors.
1566    // Fill these accessors into the dictionary.
1567    Handle<DescriptorArray> descs(map->instance_descriptors());
1568    for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
1569      PropertyDetails details = descs->GetDetails(i);
1570      DCHECK(details.type() == CALLBACKS);  // Only accessors are expected.
1571      PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, i + 1);
1572      Handle<Name> name(descs->GetKey(i));
1573      Handle<Object> value(descs->GetCallbacksObject(i), isolate());
1574      Handle<PropertyCell> cell = NewPropertyCell(value);
1575      // |dictionary| already contains enough space for all properties.
1576      USE(NameDictionary::Add(dictionary, name, cell, d));
1577    }
1578  
1579    // Allocate the global object and initialize it with the backing store.
1580    Handle<GlobalObject> global = New<GlobalObject>(map, OLD_POINTER_SPACE);
1581    isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
1582  
1583    // Create a new map for the global object.
1584    Handle<Map> new_map = Map::CopyDropDescriptors(map);
1585    new_map->set_dictionary_map(true);
1586  
1587    // Set up the global object as a normalized object.
1588    global->set_map(*new_map);
1589    global->set_properties(*dictionary);
1590  
1591    // Make sure result is a global object with properties in dictionary.
1592    DCHECK(global->IsGlobalObject() && !global->HasFastProperties());
1593    return global;
1594  }
1595  
1596  
NewJSObjectFromMap(Handle<Map> map,PretenureFlag pretenure,bool alloc_props,Handle<AllocationSite> allocation_site)1597  Handle<JSObject> Factory::NewJSObjectFromMap(
1598      Handle<Map> map,
1599      PretenureFlag pretenure,
1600      bool alloc_props,
1601      Handle<AllocationSite> allocation_site) {
1602    CALL_HEAP_FUNCTION(
1603        isolate(),
1604        isolate()->heap()->AllocateJSObjectFromMap(
1605            *map,
1606            pretenure,
1607            alloc_props,
1608            allocation_site.is_null() ? NULL : *allocation_site),
1609        JSObject);
1610  }
1611  
1612  
NewJSArray(ElementsKind elements_kind,PretenureFlag pretenure)1613  Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1614                                      PretenureFlag pretenure) {
1615    Context* native_context = isolate()->context()->native_context();
1616    JSFunction* array_function = native_context->array_function();
1617    Map* map = array_function->initial_map();
1618    Map* transition_map = isolate()->get_initial_js_array_map(elements_kind);
1619    if (transition_map != NULL) map = transition_map;
1620    return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
1621  }
1622  
1623  
NewJSArray(ElementsKind elements_kind,int length,int capacity,ArrayStorageAllocationMode mode,PretenureFlag pretenure)1624  Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1625                                      int length,
1626                                      int capacity,
1627                                      ArrayStorageAllocationMode mode,
1628                                      PretenureFlag pretenure) {
1629    Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1630    NewJSArrayStorage(array, length, capacity, mode);
1631    return array;
1632  }
1633  
1634  
NewJSArrayWithElements(Handle<FixedArrayBase> elements,ElementsKind elements_kind,int length,PretenureFlag pretenure)1635  Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
1636                                                  ElementsKind elements_kind,
1637                                                  int length,
1638                                                  PretenureFlag pretenure) {
1639    DCHECK(length <= elements->length());
1640    Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1641  
1642    array->set_elements(*elements);
1643    array->set_length(Smi::FromInt(length));
1644    JSObject::ValidateElements(array);
1645    return array;
1646  }
1647  
1648  
NewJSArrayStorage(Handle<JSArray> array,int length,int capacity,ArrayStorageAllocationMode mode)1649  void Factory::NewJSArrayStorage(Handle<JSArray> array,
1650                                  int length,
1651                                  int capacity,
1652                                  ArrayStorageAllocationMode mode) {
1653    DCHECK(capacity >= length);
1654  
1655    if (capacity == 0) {
1656      array->set_length(Smi::FromInt(0));
1657      array->set_elements(*empty_fixed_array());
1658      return;
1659    }
1660  
1661    Handle<FixedArrayBase> elms;
1662    ElementsKind elements_kind = array->GetElementsKind();
1663    if (IsFastDoubleElementsKind(elements_kind)) {
1664      if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1665        elms = NewFixedDoubleArray(capacity);
1666      } else {
1667        DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1668        elms = NewFixedDoubleArrayWithHoles(capacity);
1669      }
1670    } else {
1671      DCHECK(IsFastSmiOrObjectElementsKind(elements_kind));
1672      if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1673        elms = NewUninitializedFixedArray(capacity);
1674      } else {
1675        DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1676        elms = NewFixedArrayWithHoles(capacity);
1677      }
1678    }
1679  
1680    array->set_elements(*elms);
1681    array->set_length(Smi::FromInt(length));
1682  }
1683  
1684  
NewJSGeneratorObject(Handle<JSFunction> function)1685  Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
1686      Handle<JSFunction> function) {
1687    DCHECK(function->shared()->is_generator());
1688    JSFunction::EnsureHasInitialMap(function);
1689    Handle<Map> map(function->initial_map());
1690    DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE);
1691    CALL_HEAP_FUNCTION(
1692        isolate(),
1693        isolate()->heap()->AllocateJSObjectFromMap(*map),
1694        JSGeneratorObject);
1695  }
1696  
1697  
NewJSArrayBuffer()1698  Handle<JSArrayBuffer> Factory::NewJSArrayBuffer() {
1699    Handle<JSFunction> array_buffer_fun(
1700        isolate()->native_context()->array_buffer_fun());
1701    CALL_HEAP_FUNCTION(
1702        isolate(),
1703        isolate()->heap()->AllocateJSObject(*array_buffer_fun),
1704        JSArrayBuffer);
1705  }
1706  
1707  
NewJSDataView()1708  Handle<JSDataView> Factory::NewJSDataView() {
1709    Handle<JSFunction> data_view_fun(
1710        isolate()->native_context()->data_view_fun());
1711    CALL_HEAP_FUNCTION(
1712        isolate(),
1713        isolate()->heap()->AllocateJSObject(*data_view_fun),
1714        JSDataView);
1715  }
1716  
1717  
GetTypedArrayFun(ExternalArrayType type,Isolate * isolate)1718  static JSFunction* GetTypedArrayFun(ExternalArrayType type,
1719                                      Isolate* isolate) {
1720    Context* native_context = isolate->context()->native_context();
1721    switch (type) {
1722  #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size)                        \
1723      case kExternal##Type##Array:                                              \
1724        return native_context->type##_array_fun();
1725  
1726      TYPED_ARRAYS(TYPED_ARRAY_FUN)
1727  #undef TYPED_ARRAY_FUN
1728  
1729      default:
1730        UNREACHABLE();
1731        return NULL;
1732    }
1733  }
1734  
1735  
NewJSTypedArray(ExternalArrayType type)1736  Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type) {
1737    Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
1738  
1739    CALL_HEAP_FUNCTION(
1740        isolate(),
1741        isolate()->heap()->AllocateJSObject(*typed_array_fun_handle),
1742        JSTypedArray);
1743  }
1744  
1745  
NewJSProxy(Handle<Object> handler,Handle<Object> prototype)1746  Handle<JSProxy> Factory::NewJSProxy(Handle<Object> handler,
1747                                      Handle<Object> prototype) {
1748    // Allocate map.
1749    // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1750    // maps. Will probably depend on the identity of the handler object, too.
1751    Handle<Map> map = NewMap(JS_PROXY_TYPE, JSProxy::kSize);
1752    map->set_prototype(*prototype);
1753  
1754    // Allocate the proxy object.
1755    Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
1756    result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1757    result->set_handler(*handler);
1758    result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1759    return result;
1760  }
1761  
1762  
NewJSFunctionProxy(Handle<Object> handler,Handle<Object> call_trap,Handle<Object> construct_trap,Handle<Object> prototype)1763  Handle<JSProxy> Factory::NewJSFunctionProxy(Handle<Object> handler,
1764                                              Handle<Object> call_trap,
1765                                              Handle<Object> construct_trap,
1766                                              Handle<Object> prototype) {
1767    // Allocate map.
1768    // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1769    // maps. Will probably depend on the identity of the handler object, too.
1770    Handle<Map> map = NewMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
1771    map->set_prototype(*prototype);
1772  
1773    // Allocate the proxy object.
1774    Handle<JSFunctionProxy> result = New<JSFunctionProxy>(map, NEW_SPACE);
1775    result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1776    result->set_handler(*handler);
1777    result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1778    result->set_call_trap(*call_trap);
1779    result->set_construct_trap(*construct_trap);
1780    return result;
1781  }
1782  
1783  
ReinitializeJSProxy(Handle<JSProxy> proxy,InstanceType type,int size)1784  void Factory::ReinitializeJSProxy(Handle<JSProxy> proxy, InstanceType type,
1785                                    int size) {
1786    DCHECK(type == JS_OBJECT_TYPE || type == JS_FUNCTION_TYPE);
1787  
1788    // Allocate fresh map.
1789    // TODO(rossberg): Once we optimize proxies, cache these maps.
1790    Handle<Map> map = NewMap(type, size);
1791  
1792    // Check that the receiver has at least the size of the fresh object.
1793    int size_difference = proxy->map()->instance_size() - map->instance_size();
1794    DCHECK(size_difference >= 0);
1795  
1796    map->set_prototype(proxy->map()->prototype());
1797  
1798    // Allocate the backing storage for the properties.
1799    int prop_size = map->InitialPropertiesLength();
1800    Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1801  
1802    Heap* heap = isolate()->heap();
1803    MaybeHandle<SharedFunctionInfo> shared;
1804    if (type == JS_FUNCTION_TYPE) {
1805      OneByteStringKey key(STATIC_CHAR_VECTOR("<freezing call trap>"),
1806                           heap->HashSeed());
1807      Handle<String> name = InternalizeStringWithKey(&key);
1808      shared = NewSharedFunctionInfo(name, MaybeHandle<Code>());
1809    }
1810  
1811    // In order to keep heap in consistent state there must be no allocations
1812    // before object re-initialization is finished and filler object is installed.
1813    DisallowHeapAllocation no_allocation;
1814  
1815    // Put in filler if the new object is smaller than the old.
1816    if (size_difference > 0) {
1817      Address address = proxy->address();
1818      heap->CreateFillerObjectAt(address + map->instance_size(), size_difference);
1819      heap->AdjustLiveBytes(address, -size_difference, Heap::FROM_MUTATOR);
1820    }
1821  
1822    // Reset the map for the object.
1823    proxy->synchronized_set_map(*map);
1824    Handle<JSObject> jsobj = Handle<JSObject>::cast(proxy);
1825  
1826    // Reinitialize the object from the constructor map.
1827    heap->InitializeJSObjectFromMap(*jsobj, *properties, *map);
1828  
1829    // The current native context is used to set up certain bits.
1830    // TODO(adamk): Using the current context seems wrong, it should be whatever
1831    // context the JSProxy originated in. But that context isn't stored anywhere.
1832    Handle<Context> context(isolate()->native_context());
1833  
1834    // Functions require some minimal initialization.
1835    if (type == JS_FUNCTION_TYPE) {
1836      map->set_function_with_prototype(true);
1837      Handle<JSFunction> js_function = Handle<JSFunction>::cast(proxy);
1838      InitializeFunction(js_function, shared.ToHandleChecked(), context);
1839    } else {
1840      // Provide JSObjects with a constructor.
1841      map->set_constructor(context->object_function());
1842    }
1843  }
1844  
1845  
ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,Handle<JSFunction> constructor)1846  void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
1847                                          Handle<JSFunction> constructor) {
1848    DCHECK(constructor->has_initial_map());
1849    Handle<Map> map(constructor->initial_map(), isolate());
1850  
1851    // The proxy's hash should be retained across reinitialization.
1852    Handle<Object> hash(object->hash(), isolate());
1853  
1854    // Check that the already allocated object has the same size and type as
1855    // objects allocated using the constructor.
1856    DCHECK(map->instance_size() == object->map()->instance_size());
1857    DCHECK(map->instance_type() == object->map()->instance_type());
1858  
1859    // Allocate the backing storage for the properties.
1860    int prop_size = map->InitialPropertiesLength();
1861    Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1862  
1863    // In order to keep heap in consistent state there must be no allocations
1864    // before object re-initialization is finished.
1865    DisallowHeapAllocation no_allocation;
1866  
1867    // Reset the map for the object.
1868    object->synchronized_set_map(*map);
1869  
1870    Heap* heap = isolate()->heap();
1871    // Reinitialize the object from the constructor map.
1872    heap->InitializeJSObjectFromMap(*object, *properties, *map);
1873  
1874    // Restore the saved hash.
1875    object->set_hash(*hash);
1876  }
1877  
1878  
BecomeJSObject(Handle<JSProxy> proxy)1879  void Factory::BecomeJSObject(Handle<JSProxy> proxy) {
1880    ReinitializeJSProxy(proxy, JS_OBJECT_TYPE, JSObject::kHeaderSize);
1881  }
1882  
1883  
BecomeJSFunction(Handle<JSProxy> proxy)1884  void Factory::BecomeJSFunction(Handle<JSProxy> proxy) {
1885    ReinitializeJSProxy(proxy, JS_FUNCTION_TYPE, JSFunction::kSize);
1886  }
1887  
1888  
NewTypeFeedbackVector(int slot_count)1889  Handle<TypeFeedbackVector> Factory::NewTypeFeedbackVector(int slot_count) {
1890    // Ensure we can skip the write barrier
1891    DCHECK_EQ(isolate()->heap()->uninitialized_symbol(),
1892              *TypeFeedbackVector::UninitializedSentinel(isolate()));
1893  
1894    if (slot_count == 0) {
1895      return Handle<TypeFeedbackVector>::cast(empty_fixed_array());
1896    }
1897  
1898    CALL_HEAP_FUNCTION(isolate(),
1899                       isolate()->heap()->AllocateFixedArrayWithFiller(
1900                           slot_count, TENURED,
1901                           *TypeFeedbackVector::UninitializedSentinel(isolate())),
1902                       TypeFeedbackVector);
1903  }
1904  
1905  
NewSharedFunctionInfo(Handle<String> name,int number_of_literals,FunctionKind kind,Handle<Code> code,Handle<ScopeInfo> scope_info,Handle<TypeFeedbackVector> feedback_vector)1906  Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1907      Handle<String> name, int number_of_literals, FunctionKind kind,
1908      Handle<Code> code, Handle<ScopeInfo> scope_info,
1909      Handle<TypeFeedbackVector> feedback_vector) {
1910    DCHECK(IsValidFunctionKind(kind));
1911    Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(name, code);
1912    shared->set_scope_info(*scope_info);
1913    shared->set_feedback_vector(*feedback_vector);
1914    shared->set_kind(kind);
1915    int literals_array_size = number_of_literals;
1916    // If the function contains object, regexp or array literals,
1917    // allocate extra space for a literals array prefix containing the
1918    // context.
1919    if (number_of_literals > 0) {
1920      literals_array_size += JSFunction::kLiteralsPrefixSize;
1921    }
1922    shared->set_num_literals(literals_array_size);
1923    if (IsGeneratorFunction(kind)) {
1924      shared->set_instance_class_name(isolate()->heap()->Generator_string());
1925      shared->DisableOptimization(kGenerator);
1926    }
1927    return shared;
1928  }
1929  
1930  
NewJSMessageObject(Handle<String> type,Handle<JSArray> arguments,int start_position,int end_position,Handle<Object> script,Handle<Object> stack_frames)1931  Handle<JSMessageObject> Factory::NewJSMessageObject(
1932      Handle<String> type,
1933      Handle<JSArray> arguments,
1934      int start_position,
1935      int end_position,
1936      Handle<Object> script,
1937      Handle<Object> stack_frames) {
1938    Handle<Map> map = message_object_map();
1939    Handle<JSMessageObject> message = New<JSMessageObject>(map, NEW_SPACE);
1940    message->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1941    message->initialize_elements();
1942    message->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1943    message->set_type(*type);
1944    message->set_arguments(*arguments);
1945    message->set_start_position(start_position);
1946    message->set_end_position(end_position);
1947    message->set_script(*script);
1948    message->set_stack_frames(*stack_frames);
1949    return message;
1950  }
1951  
1952  
NewSharedFunctionInfo(Handle<String> name,MaybeHandle<Code> maybe_code)1953  Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1954      Handle<String> name,
1955      MaybeHandle<Code> maybe_code) {
1956    Handle<Map> map = shared_function_info_map();
1957    Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map,
1958                                                               OLD_POINTER_SPACE);
1959  
1960    // Set pointer fields.
1961    share->set_name(*name);
1962    Handle<Code> code;
1963    if (!maybe_code.ToHandle(&code)) {
1964      code = handle(isolate()->builtins()->builtin(Builtins::kIllegal));
1965    }
1966    share->set_code(*code);
1967    share->set_optimized_code_map(Smi::FromInt(0));
1968    share->set_scope_info(ScopeInfo::Empty(isolate()));
1969    Code* construct_stub =
1970        isolate()->builtins()->builtin(Builtins::kJSConstructStubGeneric);
1971    share->set_construct_stub(construct_stub);
1972    share->set_instance_class_name(*Object_string());
1973    share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
1974    share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
1975    share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
1976    share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER);
1977    Handle<TypeFeedbackVector> feedback_vector = NewTypeFeedbackVector(0);
1978    share->set_feedback_vector(*feedback_vector, SKIP_WRITE_BARRIER);
1979    share->set_profiler_ticks(0);
1980    share->set_ast_node_count(0);
1981    share->set_counters(0);
1982  
1983    // Set integer fields (smi or int, depending on the architecture).
1984    share->set_length(0);
1985    share->set_formal_parameter_count(0);
1986    share->set_expected_nof_properties(0);
1987    share->set_num_literals(0);
1988    share->set_start_position_and_type(0);
1989    share->set_end_position(0);
1990    share->set_function_token_position(0);
1991    // All compiler hints default to false or 0.
1992    share->set_compiler_hints(0);
1993    share->set_opt_count_and_bailout_reason(0);
1994  
1995    return share;
1996  }
1997  
1998  
NumberCacheHash(Handle<FixedArray> cache,Handle<Object> number)1999  static inline int NumberCacheHash(Handle<FixedArray> cache,
2000                                    Handle<Object> number) {
2001    int mask = (cache->length() >> 1) - 1;
2002    if (number->IsSmi()) {
2003      return Handle<Smi>::cast(number)->value() & mask;
2004    } else {
2005      DoubleRepresentation rep(number->Number());
2006      return
2007          (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
2008    }
2009  }
2010  
2011  
GetNumberStringCache(Handle<Object> number)2012  Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
2013    DisallowHeapAllocation no_gc;
2014    int hash = NumberCacheHash(number_string_cache(), number);
2015    Object* key = number_string_cache()->get(hash * 2);
2016    if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
2017                           key->Number() == number->Number())) {
2018      return Handle<String>(
2019          String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2020    }
2021    return undefined_value();
2022  }
2023  
2024  
SetNumberStringCache(Handle<Object> number,Handle<String> string)2025  void Factory::SetNumberStringCache(Handle<Object> number,
2026                                     Handle<String> string) {
2027    int hash = NumberCacheHash(number_string_cache(), number);
2028    if (number_string_cache()->get(hash * 2) != *undefined_value()) {
2029      int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
2030      if (number_string_cache()->length() != full_size) {
2031        // The first time we have a hash collision, we move to the full sized
2032        // number string cache.  The idea is to have a small number string
2033        // cache in the snapshot to keep  boot-time memory usage down.
2034        // If we expand the number string cache already while creating
2035        // the snapshot then that didn't work out.
2036        DCHECK(!isolate()->serializer_enabled() || FLAG_extra_code != NULL);
2037        Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
2038        isolate()->heap()->set_number_string_cache(*new_cache);
2039        return;
2040      }
2041    }
2042    number_string_cache()->set(hash * 2, *number);
2043    number_string_cache()->set(hash * 2 + 1, *string);
2044  }
2045  
2046  
NumberToString(Handle<Object> number,bool check_number_string_cache)2047  Handle<String> Factory::NumberToString(Handle<Object> number,
2048                                         bool check_number_string_cache) {
2049    isolate()->counters()->number_to_string_runtime()->Increment();
2050    if (check_number_string_cache) {
2051      Handle<Object> cached = GetNumberStringCache(number);
2052      if (!cached->IsUndefined()) return Handle<String>::cast(cached);
2053    }
2054  
2055    char arr[100];
2056    Vector<char> buffer(arr, arraysize(arr));
2057    const char* str;
2058    if (number->IsSmi()) {
2059      int num = Handle<Smi>::cast(number)->value();
2060      str = IntToCString(num, buffer);
2061    } else {
2062      double num = Handle<HeapNumber>::cast(number)->value();
2063      str = DoubleToCString(num, buffer);
2064    }
2065  
2066    // We tenure the allocated string since it is referenced from the
2067    // number-string cache which lives in the old space.
2068    Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
2069    SetNumberStringCache(number, js_string);
2070    return js_string;
2071  }
2072  
2073  
NewDebugInfo(Handle<SharedFunctionInfo> shared)2074  Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2075    // Get the original code of the function.
2076    Handle<Code> code(shared->code());
2077  
2078    // Create a copy of the code before allocating the debug info object to avoid
2079    // allocation while setting up the debug info object.
2080    Handle<Code> original_code(*Factory::CopyCode(code));
2081  
2082    // Allocate initial fixed array for active break points before allocating the
2083    // debug info object to avoid allocation while setting up the debug info
2084    // object.
2085    Handle<FixedArray> break_points(
2086        NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
2087  
2088    // Create and set up the debug info object. Debug info contains function, a
2089    // copy of the original code, the executing code and initial fixed array for
2090    // active break points.
2091    Handle<DebugInfo> debug_info =
2092        Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
2093    debug_info->set_shared(*shared);
2094    debug_info->set_original_code(*original_code);
2095    debug_info->set_code(*code);
2096    debug_info->set_break_points(*break_points);
2097  
2098    // Link debug info to function.
2099    shared->set_debug_info(*debug_info);
2100  
2101    return debug_info;
2102  }
2103  
2104  
NewArgumentsObject(Handle<JSFunction> callee,int length)2105  Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
2106                                               int length) {
2107    bool strict_mode_callee = callee->shared()->strict_mode() == STRICT;
2108    Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
2109                                         : isolate()->sloppy_arguments_map();
2110  
2111    AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
2112                                       false);
2113    DCHECK(!isolate()->has_pending_exception());
2114    Handle<JSObject> result = NewJSObjectFromMap(map);
2115    Handle<Smi> value(Smi::FromInt(length), isolate());
2116    Object::SetProperty(result, length_string(), value, STRICT).Assert();
2117    if (!strict_mode_callee) {
2118      Object::SetProperty(result, callee_string(), callee, STRICT).Assert();
2119    }
2120    return result;
2121  }
2122  
2123  
CreateApiFunction(Handle<FunctionTemplateInfo> obj,Handle<Object> prototype,ApiInstanceType instance_type)2124  Handle<JSFunction> Factory::CreateApiFunction(
2125      Handle<FunctionTemplateInfo> obj,
2126      Handle<Object> prototype,
2127      ApiInstanceType instance_type) {
2128    Handle<Code> code = isolate()->builtins()->HandleApiCall();
2129    Handle<Code> construct_stub = isolate()->builtins()->JSConstructStubApi();
2130  
2131    Handle<JSFunction> result;
2132    if (obj->remove_prototype()) {
2133      result = NewFunctionWithoutPrototype(empty_string(), code);
2134    } else {
2135      int internal_field_count = 0;
2136      if (!obj->instance_template()->IsUndefined()) {
2137        Handle<ObjectTemplateInfo> instance_template =
2138            Handle<ObjectTemplateInfo>(
2139                ObjectTemplateInfo::cast(obj->instance_template()));
2140        internal_field_count =
2141            Smi::cast(instance_template->internal_field_count())->value();
2142      }
2143  
2144      // TODO(svenpanne) Kill ApiInstanceType and refactor things by generalizing
2145      // JSObject::GetHeaderSize.
2146      int instance_size = kPointerSize * internal_field_count;
2147      InstanceType type;
2148      switch (instance_type) {
2149        case JavaScriptObjectType:
2150          type = JS_OBJECT_TYPE;
2151          instance_size += JSObject::kHeaderSize;
2152          break;
2153        case GlobalObjectType:
2154          type = JS_GLOBAL_OBJECT_TYPE;
2155          instance_size += JSGlobalObject::kSize;
2156          break;
2157        case GlobalProxyType:
2158          type = JS_GLOBAL_PROXY_TYPE;
2159          instance_size += JSGlobalProxy::kSize;
2160          break;
2161        default:
2162          UNREACHABLE();
2163          type = JS_OBJECT_TYPE;  // Keep the compiler happy.
2164          break;
2165      }
2166  
2167      result = NewFunction(empty_string(), code, prototype, type,
2168                           instance_size, obj->read_only_prototype());
2169    }
2170  
2171    result->shared()->set_length(obj->length());
2172    Handle<Object> class_name(obj->class_name(), isolate());
2173    if (class_name->IsString()) {
2174      result->shared()->set_instance_class_name(*class_name);
2175      result->shared()->set_name(*class_name);
2176    }
2177    result->shared()->set_function_data(*obj);
2178    result->shared()->set_construct_stub(*construct_stub);
2179    result->shared()->DontAdaptArguments();
2180  
2181    if (obj->remove_prototype()) {
2182      DCHECK(result->shared()->IsApiFunction());
2183      DCHECK(!result->has_initial_map());
2184      DCHECK(!result->has_prototype());
2185      return result;
2186    }
2187  
2188    if (prototype->IsTheHole()) {
2189  #ifdef DEBUG
2190      LookupIterator it(handle(JSObject::cast(result->prototype())),
2191                        constructor_string(),
2192                        LookupIterator::OWN_SKIP_INTERCEPTOR);
2193      MaybeHandle<Object> maybe_prop = Object::GetProperty(&it);
2194      DCHECK(it.IsFound());
2195      DCHECK(maybe_prop.ToHandleChecked().is_identical_to(result));
2196  #endif
2197    } else {
2198      JSObject::AddProperty(handle(JSObject::cast(result->prototype())),
2199                            constructor_string(), result, DONT_ENUM);
2200    }
2201  
2202    // Down from here is only valid for API functions that can be used as a
2203    // constructor (don't set the "remove prototype" flag).
2204  
2205    Handle<Map> map(result->initial_map());
2206  
2207    // Mark as undetectable if needed.
2208    if (obj->undetectable()) {
2209      map->set_is_undetectable();
2210    }
2211  
2212    // Mark as hidden for the __proto__ accessor if needed.
2213    if (obj->hidden_prototype()) {
2214      map->set_is_hidden_prototype();
2215    }
2216  
2217    // Mark as needs_access_check if needed.
2218    if (obj->needs_access_check()) {
2219      map->set_is_access_check_needed(true);
2220    }
2221  
2222    // Set interceptor information in the map.
2223    if (!obj->named_property_handler()->IsUndefined()) {
2224      map->set_has_named_interceptor();
2225    }
2226    if (!obj->indexed_property_handler()->IsUndefined()) {
2227      map->set_has_indexed_interceptor();
2228    }
2229  
2230    // Set instance call-as-function information in the map.
2231    if (!obj->instance_call_handler()->IsUndefined()) {
2232      map->set_has_instance_call_handler();
2233    }
2234  
2235    // Recursively copy parent instance templates' accessors,
2236    // 'data' may be modified.
2237    int max_number_of_additional_properties = 0;
2238    int max_number_of_static_properties = 0;
2239    FunctionTemplateInfo* info = *obj;
2240    while (true) {
2241      if (!info->instance_template()->IsUndefined()) {
2242        Object* props =
2243            ObjectTemplateInfo::cast(
2244                info->instance_template())->property_accessors();
2245        if (!props->IsUndefined()) {
2246          Handle<Object> props_handle(props, isolate());
2247          NeanderArray props_array(props_handle);
2248          max_number_of_additional_properties += props_array.length();
2249        }
2250      }
2251      if (!info->property_accessors()->IsUndefined()) {
2252        Object* props = info->property_accessors();
2253        if (!props->IsUndefined()) {
2254          Handle<Object> props_handle(props, isolate());
2255          NeanderArray props_array(props_handle);
2256          max_number_of_static_properties += props_array.length();
2257        }
2258      }
2259      Object* parent = info->parent_template();
2260      if (parent->IsUndefined()) break;
2261      info = FunctionTemplateInfo::cast(parent);
2262    }
2263  
2264    Map::EnsureDescriptorSlack(map, max_number_of_additional_properties);
2265  
2266    // Use a temporary FixedArray to acculumate static accessors
2267    int valid_descriptors = 0;
2268    Handle<FixedArray> array;
2269    if (max_number_of_static_properties > 0) {
2270      array = NewFixedArray(max_number_of_static_properties);
2271    }
2272  
2273    while (true) {
2274      // Install instance descriptors
2275      if (!obj->instance_template()->IsUndefined()) {
2276        Handle<ObjectTemplateInfo> instance =
2277            Handle<ObjectTemplateInfo>(
2278                ObjectTemplateInfo::cast(obj->instance_template()), isolate());
2279        Handle<Object> props = Handle<Object>(instance->property_accessors(),
2280                                              isolate());
2281        if (!props->IsUndefined()) {
2282          Map::AppendCallbackDescriptors(map, props);
2283        }
2284      }
2285      // Accumulate static accessors
2286      if (!obj->property_accessors()->IsUndefined()) {
2287        Handle<Object> props = Handle<Object>(obj->property_accessors(),
2288                                              isolate());
2289        valid_descriptors =
2290            AccessorInfo::AppendUnique(props, array, valid_descriptors);
2291      }
2292      // Climb parent chain
2293      Handle<Object> parent = Handle<Object>(obj->parent_template(), isolate());
2294      if (parent->IsUndefined()) break;
2295      obj = Handle<FunctionTemplateInfo>::cast(parent);
2296    }
2297  
2298    // Install accumulated static accessors
2299    for (int i = 0; i < valid_descriptors; i++) {
2300      Handle<AccessorInfo> accessor(AccessorInfo::cast(array->get(i)));
2301      JSObject::SetAccessor(result, accessor).Assert();
2302    }
2303  
2304    DCHECK(result->shared()->IsApiFunction());
2305    return result;
2306  }
2307  
2308  
AddToMapCache(Handle<Context> context,Handle<FixedArray> keys,Handle<Map> map)2309  Handle<MapCache> Factory::AddToMapCache(Handle<Context> context,
2310                                          Handle<FixedArray> keys,
2311                                          Handle<Map> map) {
2312    Handle<MapCache> map_cache = handle(MapCache::cast(context->map_cache()));
2313    Handle<MapCache> result = MapCache::Put(map_cache, keys, map);
2314    context->set_map_cache(*result);
2315    return result;
2316  }
2317  
2318  
ObjectLiteralMapFromCache(Handle<Context> context,Handle<FixedArray> keys)2319  Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
2320                                                 Handle<FixedArray> keys) {
2321    if (context->map_cache()->IsUndefined()) {
2322      // Allocate the new map cache for the native context.
2323      Handle<MapCache> new_cache = MapCache::New(isolate(), 24);
2324      context->set_map_cache(*new_cache);
2325    }
2326    // Check to see whether there is a matching element in the cache.
2327    Handle<MapCache> cache =
2328        Handle<MapCache>(MapCache::cast(context->map_cache()));
2329    Handle<Object> result = Handle<Object>(cache->Lookup(*keys), isolate());
2330    if (result->IsMap()) return Handle<Map>::cast(result);
2331    int length = keys->length();
2332    // Create a new map and add it to the cache. Reuse the initial map of the
2333    // Object function if the literal has no predeclared properties.
2334    Handle<Map> map = length == 0
2335                          ? handle(context->object_function()->initial_map())
2336                          : Map::Create(isolate(), length);
2337    AddToMapCache(context, keys, map);
2338    return map;
2339  }
2340  
2341  
SetRegExpAtomData(Handle<JSRegExp> regexp,JSRegExp::Type type,Handle<String> source,JSRegExp::Flags flags,Handle<Object> data)2342  void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
2343                                  JSRegExp::Type type,
2344                                  Handle<String> source,
2345                                  JSRegExp::Flags flags,
2346                                  Handle<Object> data) {
2347    Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
2348  
2349    store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2350    store->set(JSRegExp::kSourceIndex, *source);
2351    store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2352    store->set(JSRegExp::kAtomPatternIndex, *data);
2353    regexp->set_data(*store);
2354  }
2355  
SetRegExpIrregexpData(Handle<JSRegExp> regexp,JSRegExp::Type type,Handle<String> source,JSRegExp::Flags flags,int capture_count)2356  void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
2357                                      JSRegExp::Type type,
2358                                      Handle<String> source,
2359                                      JSRegExp::Flags flags,
2360                                      int capture_count) {
2361    Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
2362    Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
2363    store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2364    store->set(JSRegExp::kSourceIndex, *source);
2365    store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2366    store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
2367    store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
2368    store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized);
2369    store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
2370    store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
2371    store->set(JSRegExp::kIrregexpCaptureCountIndex,
2372               Smi::FromInt(capture_count));
2373    regexp->set_data(*store);
2374  }
2375  
2376  
2377  
ConfigureInstance(Handle<FunctionTemplateInfo> desc,Handle<JSObject> instance)2378  MaybeHandle<FunctionTemplateInfo> Factory::ConfigureInstance(
2379      Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance) {
2380    // Configure the instance by adding the properties specified by the
2381    // instance template.
2382    Handle<Object> instance_template(desc->instance_template(), isolate());
2383    if (!instance_template->IsUndefined()) {
2384        RETURN_ON_EXCEPTION(
2385            isolate(),
2386            Execution::ConfigureInstance(isolate(), instance, instance_template),
2387            FunctionTemplateInfo);
2388    }
2389    return desc;
2390  }
2391  
2392  
GlobalConstantFor(Handle<String> name)2393  Handle<Object> Factory::GlobalConstantFor(Handle<String> name) {
2394    if (String::Equals(name, undefined_string())) return undefined_value();
2395    if (String::Equals(name, nan_string())) return nan_value();
2396    if (String::Equals(name, infinity_string())) return infinity_value();
2397    return Handle<Object>::null();
2398  }
2399  
2400  
ToBoolean(bool value)2401  Handle<Object> Factory::ToBoolean(bool value) {
2402    return value ? true_value() : false_value();
2403  }
2404  
2405  
2406  } }  // namespace v8::internal
2407