1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===/
12
13 #include "clang/Sema/TemplateDeduction.h"
14 #include "TreeTransform.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "clang/Sema/Sema.h"
24 #include "clang/Sema/Template.h"
25 #include "llvm/ADT/SmallBitVector.h"
26 #include <algorithm>
27
28 namespace clang {
29 using namespace sema;
30 /// \brief Various flags that control template argument deduction.
31 ///
32 /// These flags can be bitwise-OR'd together.
33 enum TemplateDeductionFlags {
34 /// \brief No template argument deduction flags, which indicates the
35 /// strictest results for template argument deduction (as used for, e.g.,
36 /// matching class template partial specializations).
37 TDF_None = 0,
38 /// \brief Within template argument deduction from a function call, we are
39 /// matching with a parameter type for which the original parameter was
40 /// a reference.
41 TDF_ParamWithReferenceType = 0x1,
42 /// \brief Within template argument deduction from a function call, we
43 /// are matching in a case where we ignore cv-qualifiers.
44 TDF_IgnoreQualifiers = 0x02,
45 /// \brief Within template argument deduction from a function call,
46 /// we are matching in a case where we can perform template argument
47 /// deduction from a template-id of a derived class of the argument type.
48 TDF_DerivedClass = 0x04,
49 /// \brief Allow non-dependent types to differ, e.g., when performing
50 /// template argument deduction from a function call where conversions
51 /// may apply.
52 TDF_SkipNonDependent = 0x08,
53 /// \brief Whether we are performing template argument deduction for
54 /// parameters and arguments in a top-level template argument
55 TDF_TopLevelParameterTypeList = 0x10,
56 /// \brief Within template argument deduction from overload resolution per
57 /// C++ [over.over] allow matching function types that are compatible in
58 /// terms of noreturn and default calling convention adjustments.
59 TDF_InOverloadResolution = 0x20
60 };
61 }
62
63 using namespace clang;
64
65 /// \brief Compare two APSInts, extending and switching the sign as
66 /// necessary to compare their values regardless of underlying type.
hasSameExtendedValue(llvm::APSInt X,llvm::APSInt Y)67 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
68 if (Y.getBitWidth() > X.getBitWidth())
69 X = X.extend(Y.getBitWidth());
70 else if (Y.getBitWidth() < X.getBitWidth())
71 Y = Y.extend(X.getBitWidth());
72
73 // If there is a signedness mismatch, correct it.
74 if (X.isSigned() != Y.isSigned()) {
75 // If the signed value is negative, then the values cannot be the same.
76 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
77 return false;
78
79 Y.setIsSigned(true);
80 X.setIsSigned(true);
81 }
82
83 return X == Y;
84 }
85
86 static Sema::TemplateDeductionResult
87 DeduceTemplateArguments(Sema &S,
88 TemplateParameterList *TemplateParams,
89 const TemplateArgument &Param,
90 TemplateArgument Arg,
91 TemplateDeductionInfo &Info,
92 SmallVectorImpl<DeducedTemplateArgument> &Deduced);
93
94 /// \brief Whether template argument deduction for two reference parameters
95 /// resulted in the argument type, parameter type, or neither type being more
96 /// qualified than the other.
97 enum DeductionQualifierComparison {
98 NeitherMoreQualified = 0,
99 ParamMoreQualified,
100 ArgMoreQualified
101 };
102
103 /// \brief Stores the result of comparing two reference parameters while
104 /// performing template argument deduction for partial ordering of function
105 /// templates.
106 struct RefParamPartialOrderingComparison {
107 /// \brief Whether the parameter type is an rvalue reference type.
108 bool ParamIsRvalueRef;
109 /// \brief Whether the argument type is an rvalue reference type.
110 bool ArgIsRvalueRef;
111
112 /// \brief Whether the parameter or argument (or neither) is more qualified.
113 DeductionQualifierComparison Qualifiers;
114 };
115
116
117
118 static Sema::TemplateDeductionResult
119 DeduceTemplateArgumentsByTypeMatch(Sema &S,
120 TemplateParameterList *TemplateParams,
121 QualType Param,
122 QualType Arg,
123 TemplateDeductionInfo &Info,
124 SmallVectorImpl<DeducedTemplateArgument> &
125 Deduced,
126 unsigned TDF,
127 bool PartialOrdering = false,
128 SmallVectorImpl<RefParamPartialOrderingComparison> *
129 RefParamComparisons = nullptr);
130
131 static Sema::TemplateDeductionResult
132 DeduceTemplateArguments(Sema &S,
133 TemplateParameterList *TemplateParams,
134 const TemplateArgument *Params, unsigned NumParams,
135 const TemplateArgument *Args, unsigned NumArgs,
136 TemplateDeductionInfo &Info,
137 SmallVectorImpl<DeducedTemplateArgument> &Deduced);
138
139 /// \brief If the given expression is of a form that permits the deduction
140 /// of a non-type template parameter, return the declaration of that
141 /// non-type template parameter.
getDeducedParameterFromExpr(Expr * E)142 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
143 // If we are within an alias template, the expression may have undergone
144 // any number of parameter substitutions already.
145 while (1) {
146 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
147 E = IC->getSubExpr();
148 else if (SubstNonTypeTemplateParmExpr *Subst =
149 dyn_cast<SubstNonTypeTemplateParmExpr>(E))
150 E = Subst->getReplacement();
151 else
152 break;
153 }
154
155 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
156 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
157
158 return nullptr;
159 }
160
161 /// \brief Determine whether two declaration pointers refer to the same
162 /// declaration.
isSameDeclaration(Decl * X,Decl * Y)163 static bool isSameDeclaration(Decl *X, Decl *Y) {
164 if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
165 X = NX->getUnderlyingDecl();
166 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
167 Y = NY->getUnderlyingDecl();
168
169 return X->getCanonicalDecl() == Y->getCanonicalDecl();
170 }
171
172 /// \brief Verify that the given, deduced template arguments are compatible.
173 ///
174 /// \returns The deduced template argument, or a NULL template argument if
175 /// the deduced template arguments were incompatible.
176 static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext & Context,const DeducedTemplateArgument & X,const DeducedTemplateArgument & Y)177 checkDeducedTemplateArguments(ASTContext &Context,
178 const DeducedTemplateArgument &X,
179 const DeducedTemplateArgument &Y) {
180 // We have no deduction for one or both of the arguments; they're compatible.
181 if (X.isNull())
182 return Y;
183 if (Y.isNull())
184 return X;
185
186 switch (X.getKind()) {
187 case TemplateArgument::Null:
188 llvm_unreachable("Non-deduced template arguments handled above");
189
190 case TemplateArgument::Type:
191 // If two template type arguments have the same type, they're compatible.
192 if (Y.getKind() == TemplateArgument::Type &&
193 Context.hasSameType(X.getAsType(), Y.getAsType()))
194 return X;
195
196 return DeducedTemplateArgument();
197
198 case TemplateArgument::Integral:
199 // If we deduced a constant in one case and either a dependent expression or
200 // declaration in another case, keep the integral constant.
201 // If both are integral constants with the same value, keep that value.
202 if (Y.getKind() == TemplateArgument::Expression ||
203 Y.getKind() == TemplateArgument::Declaration ||
204 (Y.getKind() == TemplateArgument::Integral &&
205 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
206 return DeducedTemplateArgument(X,
207 X.wasDeducedFromArrayBound() &&
208 Y.wasDeducedFromArrayBound());
209
210 // All other combinations are incompatible.
211 return DeducedTemplateArgument();
212
213 case TemplateArgument::Template:
214 if (Y.getKind() == TemplateArgument::Template &&
215 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
216 return X;
217
218 // All other combinations are incompatible.
219 return DeducedTemplateArgument();
220
221 case TemplateArgument::TemplateExpansion:
222 if (Y.getKind() == TemplateArgument::TemplateExpansion &&
223 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
224 Y.getAsTemplateOrTemplatePattern()))
225 return X;
226
227 // All other combinations are incompatible.
228 return DeducedTemplateArgument();
229
230 case TemplateArgument::Expression:
231 // If we deduced a dependent expression in one case and either an integral
232 // constant or a declaration in another case, keep the integral constant
233 // or declaration.
234 if (Y.getKind() == TemplateArgument::Integral ||
235 Y.getKind() == TemplateArgument::Declaration)
236 return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
237 Y.wasDeducedFromArrayBound());
238
239 if (Y.getKind() == TemplateArgument::Expression) {
240 // Compare the expressions for equality
241 llvm::FoldingSetNodeID ID1, ID2;
242 X.getAsExpr()->Profile(ID1, Context, true);
243 Y.getAsExpr()->Profile(ID2, Context, true);
244 if (ID1 == ID2)
245 return X;
246 }
247
248 // All other combinations are incompatible.
249 return DeducedTemplateArgument();
250
251 case TemplateArgument::Declaration:
252 // If we deduced a declaration and a dependent expression, keep the
253 // declaration.
254 if (Y.getKind() == TemplateArgument::Expression)
255 return X;
256
257 // If we deduced a declaration and an integral constant, keep the
258 // integral constant.
259 if (Y.getKind() == TemplateArgument::Integral)
260 return Y;
261
262 // If we deduced two declarations, make sure they they refer to the
263 // same declaration.
264 if (Y.getKind() == TemplateArgument::Declaration &&
265 isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
266 X.isDeclForReferenceParam() == Y.isDeclForReferenceParam())
267 return X;
268
269 // All other combinations are incompatible.
270 return DeducedTemplateArgument();
271
272 case TemplateArgument::NullPtr:
273 // If we deduced a null pointer and a dependent expression, keep the
274 // null pointer.
275 if (Y.getKind() == TemplateArgument::Expression)
276 return X;
277
278 // If we deduced a null pointer and an integral constant, keep the
279 // integral constant.
280 if (Y.getKind() == TemplateArgument::Integral)
281 return Y;
282
283 // If we deduced two null pointers, make sure they have the same type.
284 if (Y.getKind() == TemplateArgument::NullPtr &&
285 Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
286 return X;
287
288 // All other combinations are incompatible.
289 return DeducedTemplateArgument();
290
291 case TemplateArgument::Pack:
292 if (Y.getKind() != TemplateArgument::Pack ||
293 X.pack_size() != Y.pack_size())
294 return DeducedTemplateArgument();
295
296 for (TemplateArgument::pack_iterator XA = X.pack_begin(),
297 XAEnd = X.pack_end(),
298 YA = Y.pack_begin();
299 XA != XAEnd; ++XA, ++YA) {
300 // FIXME: Do we need to merge the results together here?
301 if (checkDeducedTemplateArguments(Context,
302 DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
303 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
304 .isNull())
305 return DeducedTemplateArgument();
306 }
307
308 return X;
309 }
310
311 llvm_unreachable("Invalid TemplateArgument Kind!");
312 }
313
314 /// \brief Deduce the value of the given non-type template parameter
315 /// from the given constant.
316 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,llvm::APSInt Value,QualType ValueType,bool DeducedFromArrayBound,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)317 DeduceNonTypeTemplateArgument(Sema &S,
318 NonTypeTemplateParmDecl *NTTP,
319 llvm::APSInt Value, QualType ValueType,
320 bool DeducedFromArrayBound,
321 TemplateDeductionInfo &Info,
322 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
323 assert(NTTP->getDepth() == 0 &&
324 "Cannot deduce non-type template argument with depth > 0");
325
326 DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
327 DeducedFromArrayBound);
328 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
329 Deduced[NTTP->getIndex()],
330 NewDeduced);
331 if (Result.isNull()) {
332 Info.Param = NTTP;
333 Info.FirstArg = Deduced[NTTP->getIndex()];
334 Info.SecondArg = NewDeduced;
335 return Sema::TDK_Inconsistent;
336 }
337
338 Deduced[NTTP->getIndex()] = Result;
339 return Sema::TDK_Success;
340 }
341
342 /// \brief Deduce the value of the given non-type template parameter
343 /// from the given type- or value-dependent expression.
344 ///
345 /// \returns true if deduction succeeded, false otherwise.
346 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Expr * Value,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)347 DeduceNonTypeTemplateArgument(Sema &S,
348 NonTypeTemplateParmDecl *NTTP,
349 Expr *Value,
350 TemplateDeductionInfo &Info,
351 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
352 assert(NTTP->getDepth() == 0 &&
353 "Cannot deduce non-type template argument with depth > 0");
354 assert((Value->isTypeDependent() || Value->isValueDependent()) &&
355 "Expression template argument must be type- or value-dependent.");
356
357 DeducedTemplateArgument NewDeduced(Value);
358 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
359 Deduced[NTTP->getIndex()],
360 NewDeduced);
361
362 if (Result.isNull()) {
363 Info.Param = NTTP;
364 Info.FirstArg = Deduced[NTTP->getIndex()];
365 Info.SecondArg = NewDeduced;
366 return Sema::TDK_Inconsistent;
367 }
368
369 Deduced[NTTP->getIndex()] = Result;
370 return Sema::TDK_Success;
371 }
372
373 /// \brief Deduce the value of the given non-type template parameter
374 /// from the given declaration.
375 ///
376 /// \returns true if deduction succeeded, false otherwise.
377 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,ValueDecl * D,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)378 DeduceNonTypeTemplateArgument(Sema &S,
379 NonTypeTemplateParmDecl *NTTP,
380 ValueDecl *D,
381 TemplateDeductionInfo &Info,
382 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
383 assert(NTTP->getDepth() == 0 &&
384 "Cannot deduce non-type template argument with depth > 0");
385
386 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
387 TemplateArgument New(D, NTTP->getType()->isReferenceType());
388 DeducedTemplateArgument NewDeduced(New);
389 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
390 Deduced[NTTP->getIndex()],
391 NewDeduced);
392 if (Result.isNull()) {
393 Info.Param = NTTP;
394 Info.FirstArg = Deduced[NTTP->getIndex()];
395 Info.SecondArg = NewDeduced;
396 return Sema::TDK_Inconsistent;
397 }
398
399 Deduced[NTTP->getIndex()] = Result;
400 return Sema::TDK_Success;
401 }
402
403 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,TemplateName Param,TemplateName Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)404 DeduceTemplateArguments(Sema &S,
405 TemplateParameterList *TemplateParams,
406 TemplateName Param,
407 TemplateName Arg,
408 TemplateDeductionInfo &Info,
409 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
410 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
411 if (!ParamDecl) {
412 // The parameter type is dependent and is not a template template parameter,
413 // so there is nothing that we can deduce.
414 return Sema::TDK_Success;
415 }
416
417 if (TemplateTemplateParmDecl *TempParam
418 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
419 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
420 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
421 Deduced[TempParam->getIndex()],
422 NewDeduced);
423 if (Result.isNull()) {
424 Info.Param = TempParam;
425 Info.FirstArg = Deduced[TempParam->getIndex()];
426 Info.SecondArg = NewDeduced;
427 return Sema::TDK_Inconsistent;
428 }
429
430 Deduced[TempParam->getIndex()] = Result;
431 return Sema::TDK_Success;
432 }
433
434 // Verify that the two template names are equivalent.
435 if (S.Context.hasSameTemplateName(Param, Arg))
436 return Sema::TDK_Success;
437
438 // Mismatch of non-dependent template parameter to argument.
439 Info.FirstArg = TemplateArgument(Param);
440 Info.SecondArg = TemplateArgument(Arg);
441 return Sema::TDK_NonDeducedMismatch;
442 }
443
444 /// \brief Deduce the template arguments by comparing the template parameter
445 /// type (which is a template-id) with the template argument type.
446 ///
447 /// \param S the Sema
448 ///
449 /// \param TemplateParams the template parameters that we are deducing
450 ///
451 /// \param Param the parameter type
452 ///
453 /// \param Arg the argument type
454 ///
455 /// \param Info information about the template argument deduction itself
456 ///
457 /// \param Deduced the deduced template arguments
458 ///
459 /// \returns the result of template argument deduction so far. Note that a
460 /// "success" result means that template argument deduction has not yet failed,
461 /// but it may still fail, later, for other reasons.
462 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateSpecializationType * Param,QualType Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)463 DeduceTemplateArguments(Sema &S,
464 TemplateParameterList *TemplateParams,
465 const TemplateSpecializationType *Param,
466 QualType Arg,
467 TemplateDeductionInfo &Info,
468 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
469 assert(Arg.isCanonical() && "Argument type must be canonical");
470
471 // Check whether the template argument is a dependent template-id.
472 if (const TemplateSpecializationType *SpecArg
473 = dyn_cast<TemplateSpecializationType>(Arg)) {
474 // Perform template argument deduction for the template name.
475 if (Sema::TemplateDeductionResult Result
476 = DeduceTemplateArguments(S, TemplateParams,
477 Param->getTemplateName(),
478 SpecArg->getTemplateName(),
479 Info, Deduced))
480 return Result;
481
482
483 // Perform template argument deduction on each template
484 // argument. Ignore any missing/extra arguments, since they could be
485 // filled in by default arguments.
486 return DeduceTemplateArguments(S, TemplateParams,
487 Param->getArgs(), Param->getNumArgs(),
488 SpecArg->getArgs(), SpecArg->getNumArgs(),
489 Info, Deduced);
490 }
491
492 // If the argument type is a class template specialization, we
493 // perform template argument deduction using its template
494 // arguments.
495 const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
496 if (!RecordArg) {
497 Info.FirstArg = TemplateArgument(QualType(Param, 0));
498 Info.SecondArg = TemplateArgument(Arg);
499 return Sema::TDK_NonDeducedMismatch;
500 }
501
502 ClassTemplateSpecializationDecl *SpecArg
503 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
504 if (!SpecArg) {
505 Info.FirstArg = TemplateArgument(QualType(Param, 0));
506 Info.SecondArg = TemplateArgument(Arg);
507 return Sema::TDK_NonDeducedMismatch;
508 }
509
510 // Perform template argument deduction for the template name.
511 if (Sema::TemplateDeductionResult Result
512 = DeduceTemplateArguments(S,
513 TemplateParams,
514 Param->getTemplateName(),
515 TemplateName(SpecArg->getSpecializedTemplate()),
516 Info, Deduced))
517 return Result;
518
519 // Perform template argument deduction for the template arguments.
520 return DeduceTemplateArguments(S, TemplateParams,
521 Param->getArgs(), Param->getNumArgs(),
522 SpecArg->getTemplateArgs().data(),
523 SpecArg->getTemplateArgs().size(),
524 Info, Deduced);
525 }
526
527 /// \brief Determines whether the given type is an opaque type that
528 /// might be more qualified when instantiated.
IsPossiblyOpaquelyQualifiedType(QualType T)529 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
530 switch (T->getTypeClass()) {
531 case Type::TypeOfExpr:
532 case Type::TypeOf:
533 case Type::DependentName:
534 case Type::Decltype:
535 case Type::UnresolvedUsing:
536 case Type::TemplateTypeParm:
537 return true;
538
539 case Type::ConstantArray:
540 case Type::IncompleteArray:
541 case Type::VariableArray:
542 case Type::DependentSizedArray:
543 return IsPossiblyOpaquelyQualifiedType(
544 cast<ArrayType>(T)->getElementType());
545
546 default:
547 return false;
548 }
549 }
550
551 /// \brief Retrieve the depth and index of a template parameter.
552 static std::pair<unsigned, unsigned>
getDepthAndIndex(NamedDecl * ND)553 getDepthAndIndex(NamedDecl *ND) {
554 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
555 return std::make_pair(TTP->getDepth(), TTP->getIndex());
556
557 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
558 return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
559
560 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
561 return std::make_pair(TTP->getDepth(), TTP->getIndex());
562 }
563
564 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
565 static std::pair<unsigned, unsigned>
getDepthAndIndex(UnexpandedParameterPack UPP)566 getDepthAndIndex(UnexpandedParameterPack UPP) {
567 if (const TemplateTypeParmType *TTP
568 = UPP.first.dyn_cast<const TemplateTypeParmType *>())
569 return std::make_pair(TTP->getDepth(), TTP->getIndex());
570
571 return getDepthAndIndex(UPP.first.get<NamedDecl *>());
572 }
573
574 /// \brief Helper function to build a TemplateParameter when we don't
575 /// know its type statically.
makeTemplateParameter(Decl * D)576 static TemplateParameter makeTemplateParameter(Decl *D) {
577 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
578 return TemplateParameter(TTP);
579 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
580 return TemplateParameter(NTTP);
581
582 return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
583 }
584
585 /// A pack that we're currently deducing.
586 struct clang::DeducedPack {
DeducedPackclang::DeducedPack587 DeducedPack(unsigned Index) : Index(Index), Outer(nullptr) {}
588
589 // The index of the pack.
590 unsigned Index;
591
592 // The old value of the pack before we started deducing it.
593 DeducedTemplateArgument Saved;
594
595 // A deferred value of this pack from an inner deduction, that couldn't be
596 // deduced because this deduction hadn't happened yet.
597 DeducedTemplateArgument DeferredDeduction;
598
599 // The new value of the pack.
600 SmallVector<DeducedTemplateArgument, 4> New;
601
602 // The outer deduction for this pack, if any.
603 DeducedPack *Outer;
604 };
605
606 /// A scope in which we're performing pack deduction.
607 class PackDeductionScope {
608 public:
PackDeductionScope(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info,TemplateArgument Pattern)609 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
610 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
611 TemplateDeductionInfo &Info, TemplateArgument Pattern)
612 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
613 // Compute the set of template parameter indices that correspond to
614 // parameter packs expanded by the pack expansion.
615 {
616 llvm::SmallBitVector SawIndices(TemplateParams->size());
617 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
618 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
619 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
620 unsigned Depth, Index;
621 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
622 if (Depth == 0 && !SawIndices[Index]) {
623 SawIndices[Index] = true;
624
625 // Save the deduced template argument for the parameter pack expanded
626 // by this pack expansion, then clear out the deduction.
627 DeducedPack Pack(Index);
628 Pack.Saved = Deduced[Index];
629 Deduced[Index] = TemplateArgument();
630
631 Packs.push_back(Pack);
632 }
633 }
634 }
635 assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
636
637 for (auto &Pack : Packs) {
638 if (Info.PendingDeducedPacks.size() > Pack.Index)
639 Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
640 else
641 Info.PendingDeducedPacks.resize(Pack.Index + 1);
642 Info.PendingDeducedPacks[Pack.Index] = &Pack;
643
644 if (S.CurrentInstantiationScope) {
645 // If the template argument pack was explicitly specified, add that to
646 // the set of deduced arguments.
647 const TemplateArgument *ExplicitArgs;
648 unsigned NumExplicitArgs;
649 NamedDecl *PartiallySubstitutedPack =
650 S.CurrentInstantiationScope->getPartiallySubstitutedPack(
651 &ExplicitArgs, &NumExplicitArgs);
652 if (PartiallySubstitutedPack &&
653 getDepthAndIndex(PartiallySubstitutedPack).second == Pack.Index)
654 Pack.New.append(ExplicitArgs, ExplicitArgs + NumExplicitArgs);
655 }
656 }
657 }
658
~PackDeductionScope()659 ~PackDeductionScope() {
660 for (auto &Pack : Packs)
661 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
662 }
663
664 /// Move to deducing the next element in each pack that is being deduced.
nextPackElement()665 void nextPackElement() {
666 // Capture the deduced template arguments for each parameter pack expanded
667 // by this pack expansion, add them to the list of arguments we've deduced
668 // for that pack, then clear out the deduced argument.
669 for (auto &Pack : Packs) {
670 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
671 if (!DeducedArg.isNull()) {
672 Pack.New.push_back(DeducedArg);
673 DeducedArg = DeducedTemplateArgument();
674 }
675 }
676 }
677
678 /// \brief Finish template argument deduction for a set of argument packs,
679 /// producing the argument packs and checking for consistency with prior
680 /// deductions.
finish(bool HasAnyArguments)681 Sema::TemplateDeductionResult finish(bool HasAnyArguments) {
682 // Build argument packs for each of the parameter packs expanded by this
683 // pack expansion.
684 for (auto &Pack : Packs) {
685 // Put back the old value for this pack.
686 Deduced[Pack.Index] = Pack.Saved;
687
688 // Build or find a new value for this pack.
689 DeducedTemplateArgument NewPack;
690 if (HasAnyArguments && Pack.New.empty()) {
691 if (Pack.DeferredDeduction.isNull()) {
692 // We were not able to deduce anything for this parameter pack
693 // (because it only appeared in non-deduced contexts), so just
694 // restore the saved argument pack.
695 continue;
696 }
697
698 NewPack = Pack.DeferredDeduction;
699 Pack.DeferredDeduction = TemplateArgument();
700 } else if (Pack.New.empty()) {
701 // If we deduced an empty argument pack, create it now.
702 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
703 } else {
704 TemplateArgument *ArgumentPack =
705 new (S.Context) TemplateArgument[Pack.New.size()];
706 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
707 NewPack = DeducedTemplateArgument(
708 TemplateArgument(ArgumentPack, Pack.New.size()),
709 Pack.New[0].wasDeducedFromArrayBound());
710 }
711
712 // Pick where we're going to put the merged pack.
713 DeducedTemplateArgument *Loc;
714 if (Pack.Outer) {
715 if (Pack.Outer->DeferredDeduction.isNull()) {
716 // Defer checking this pack until we have a complete pack to compare
717 // it against.
718 Pack.Outer->DeferredDeduction = NewPack;
719 continue;
720 }
721 Loc = &Pack.Outer->DeferredDeduction;
722 } else {
723 Loc = &Deduced[Pack.Index];
724 }
725
726 // Check the new pack matches any previous value.
727 DeducedTemplateArgument OldPack = *Loc;
728 DeducedTemplateArgument Result =
729 checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
730
731 // If we deferred a deduction of this pack, check that one now too.
732 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
733 OldPack = Result;
734 NewPack = Pack.DeferredDeduction;
735 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
736 }
737
738 if (Result.isNull()) {
739 Info.Param =
740 makeTemplateParameter(TemplateParams->getParam(Pack.Index));
741 Info.FirstArg = OldPack;
742 Info.SecondArg = NewPack;
743 return Sema::TDK_Inconsistent;
744 }
745
746 *Loc = Result;
747 }
748
749 return Sema::TDK_Success;
750 }
751
752 private:
753 Sema &S;
754 TemplateParameterList *TemplateParams;
755 SmallVectorImpl<DeducedTemplateArgument> &Deduced;
756 TemplateDeductionInfo &Info;
757
758 SmallVector<DeducedPack, 2> Packs;
759 };
760
761 /// \brief Deduce the template arguments by comparing the list of parameter
762 /// types to the list of argument types, as in the parameter-type-lists of
763 /// function types (C++ [temp.deduct.type]p10).
764 ///
765 /// \param S The semantic analysis object within which we are deducing
766 ///
767 /// \param TemplateParams The template parameters that we are deducing
768 ///
769 /// \param Params The list of parameter types
770 ///
771 /// \param NumParams The number of types in \c Params
772 ///
773 /// \param Args The list of argument types
774 ///
775 /// \param NumArgs The number of types in \c Args
776 ///
777 /// \param Info information about the template argument deduction itself
778 ///
779 /// \param Deduced the deduced template arguments
780 ///
781 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
782 /// how template argument deduction is performed.
783 ///
784 /// \param PartialOrdering If true, we are performing template argument
785 /// deduction for during partial ordering for a call
786 /// (C++0x [temp.deduct.partial]).
787 ///
788 /// \param RefParamComparisons If we're performing template argument deduction
789 /// in the context of partial ordering, the set of qualifier comparisons.
790 ///
791 /// \returns the result of template argument deduction so far. Note that a
792 /// "success" result means that template argument deduction has not yet failed,
793 /// but it may still fail, later, for other reasons.
794 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType * Params,unsigned NumParams,const QualType * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering=false,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons=nullptr)795 DeduceTemplateArguments(Sema &S,
796 TemplateParameterList *TemplateParams,
797 const QualType *Params, unsigned NumParams,
798 const QualType *Args, unsigned NumArgs,
799 TemplateDeductionInfo &Info,
800 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
801 unsigned TDF,
802 bool PartialOrdering = false,
803 SmallVectorImpl<RefParamPartialOrderingComparison> *
804 RefParamComparisons = nullptr) {
805 // Fast-path check to see if we have too many/too few arguments.
806 if (NumParams != NumArgs &&
807 !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
808 !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
809 return Sema::TDK_MiscellaneousDeductionFailure;
810
811 // C++0x [temp.deduct.type]p10:
812 // Similarly, if P has a form that contains (T), then each parameter type
813 // Pi of the respective parameter-type- list of P is compared with the
814 // corresponding parameter type Ai of the corresponding parameter-type-list
815 // of A. [...]
816 unsigned ArgIdx = 0, ParamIdx = 0;
817 for (; ParamIdx != NumParams; ++ParamIdx) {
818 // Check argument types.
819 const PackExpansionType *Expansion
820 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
821 if (!Expansion) {
822 // Simple case: compare the parameter and argument types at this point.
823
824 // Make sure we have an argument.
825 if (ArgIdx >= NumArgs)
826 return Sema::TDK_MiscellaneousDeductionFailure;
827
828 if (isa<PackExpansionType>(Args[ArgIdx])) {
829 // C++0x [temp.deduct.type]p22:
830 // If the original function parameter associated with A is a function
831 // parameter pack and the function parameter associated with P is not
832 // a function parameter pack, then template argument deduction fails.
833 return Sema::TDK_MiscellaneousDeductionFailure;
834 }
835
836 if (Sema::TemplateDeductionResult Result
837 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
838 Params[ParamIdx], Args[ArgIdx],
839 Info, Deduced, TDF,
840 PartialOrdering,
841 RefParamComparisons))
842 return Result;
843
844 ++ArgIdx;
845 continue;
846 }
847
848 // C++0x [temp.deduct.type]p5:
849 // The non-deduced contexts are:
850 // - A function parameter pack that does not occur at the end of the
851 // parameter-declaration-clause.
852 if (ParamIdx + 1 < NumParams)
853 return Sema::TDK_Success;
854
855 // C++0x [temp.deduct.type]p10:
856 // If the parameter-declaration corresponding to Pi is a function
857 // parameter pack, then the type of its declarator- id is compared with
858 // each remaining parameter type in the parameter-type-list of A. Each
859 // comparison deduces template arguments for subsequent positions in the
860 // template parameter packs expanded by the function parameter pack.
861
862 QualType Pattern = Expansion->getPattern();
863 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
864
865 bool HasAnyArguments = false;
866 for (; ArgIdx < NumArgs; ++ArgIdx) {
867 HasAnyArguments = true;
868
869 // Deduce template arguments from the pattern.
870 if (Sema::TemplateDeductionResult Result
871 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
872 Args[ArgIdx], Info, Deduced,
873 TDF, PartialOrdering,
874 RefParamComparisons))
875 return Result;
876
877 PackScope.nextPackElement();
878 }
879
880 // Build argument packs for each of the parameter packs expanded by this
881 // pack expansion.
882 if (auto Result = PackScope.finish(HasAnyArguments))
883 return Result;
884 }
885
886 // Make sure we don't have any extra arguments.
887 if (ArgIdx < NumArgs)
888 return Sema::TDK_MiscellaneousDeductionFailure;
889
890 return Sema::TDK_Success;
891 }
892
893 /// \brief Determine whether the parameter has qualifiers that are either
894 /// inconsistent with or a superset of the argument's qualifiers.
hasInconsistentOrSupersetQualifiersOf(QualType ParamType,QualType ArgType)895 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
896 QualType ArgType) {
897 Qualifiers ParamQs = ParamType.getQualifiers();
898 Qualifiers ArgQs = ArgType.getQualifiers();
899
900 if (ParamQs == ArgQs)
901 return false;
902
903 // Mismatched (but not missing) Objective-C GC attributes.
904 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
905 ParamQs.hasObjCGCAttr())
906 return true;
907
908 // Mismatched (but not missing) address spaces.
909 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
910 ParamQs.hasAddressSpace())
911 return true;
912
913 // Mismatched (but not missing) Objective-C lifetime qualifiers.
914 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
915 ParamQs.hasObjCLifetime())
916 return true;
917
918 // CVR qualifier superset.
919 return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
920 ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
921 == ParamQs.getCVRQualifiers());
922 }
923
924 /// \brief Compare types for equality with respect to possibly compatible
925 /// function types (noreturn adjustment, implicit calling conventions). If any
926 /// of parameter and argument is not a function, just perform type comparison.
927 ///
928 /// \param Param the template parameter type.
929 ///
930 /// \param Arg the argument type.
isSameOrCompatibleFunctionType(CanQualType Param,CanQualType Arg)931 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
932 CanQualType Arg) {
933 const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
934 *ArgFunction = Arg->getAs<FunctionType>();
935
936 // Just compare if not functions.
937 if (!ParamFunction || !ArgFunction)
938 return Param == Arg;
939
940 // Noreturn adjustment.
941 QualType AdjustedParam;
942 if (IsNoReturnConversion(Param, Arg, AdjustedParam))
943 return Arg == Context.getCanonicalType(AdjustedParam);
944
945 // FIXME: Compatible calling conventions.
946
947 return Param == Arg;
948 }
949
950 /// \brief Deduce the template arguments by comparing the parameter type and
951 /// the argument type (C++ [temp.deduct.type]).
952 ///
953 /// \param S the semantic analysis object within which we are deducing
954 ///
955 /// \param TemplateParams the template parameters that we are deducing
956 ///
957 /// \param ParamIn the parameter type
958 ///
959 /// \param ArgIn the argument type
960 ///
961 /// \param Info information about the template argument deduction itself
962 ///
963 /// \param Deduced the deduced template arguments
964 ///
965 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
966 /// how template argument deduction is performed.
967 ///
968 /// \param PartialOrdering Whether we're performing template argument deduction
969 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
970 ///
971 /// \param RefParamComparisons If we're performing template argument deduction
972 /// in the context of partial ordering, the set of qualifier comparisons.
973 ///
974 /// \returns the result of template argument deduction so far. Note that a
975 /// "success" result means that template argument deduction has not yet failed,
976 /// but it may still fail, later, for other reasons.
977 static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema & S,TemplateParameterList * TemplateParams,QualType ParamIn,QualType ArgIn,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)978 DeduceTemplateArgumentsByTypeMatch(Sema &S,
979 TemplateParameterList *TemplateParams,
980 QualType ParamIn, QualType ArgIn,
981 TemplateDeductionInfo &Info,
982 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
983 unsigned TDF,
984 bool PartialOrdering,
985 SmallVectorImpl<RefParamPartialOrderingComparison> *
986 RefParamComparisons) {
987 // We only want to look at the canonical types, since typedefs and
988 // sugar are not part of template argument deduction.
989 QualType Param = S.Context.getCanonicalType(ParamIn);
990 QualType Arg = S.Context.getCanonicalType(ArgIn);
991
992 // If the argument type is a pack expansion, look at its pattern.
993 // This isn't explicitly called out
994 if (const PackExpansionType *ArgExpansion
995 = dyn_cast<PackExpansionType>(Arg))
996 Arg = ArgExpansion->getPattern();
997
998 if (PartialOrdering) {
999 // C++0x [temp.deduct.partial]p5:
1000 // Before the partial ordering is done, certain transformations are
1001 // performed on the types used for partial ordering:
1002 // - If P is a reference type, P is replaced by the type referred to.
1003 const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
1004 if (ParamRef)
1005 Param = ParamRef->getPointeeType();
1006
1007 // - If A is a reference type, A is replaced by the type referred to.
1008 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
1009 if (ArgRef)
1010 Arg = ArgRef->getPointeeType();
1011
1012 if (RefParamComparisons && ParamRef && ArgRef) {
1013 // C++0x [temp.deduct.partial]p6:
1014 // If both P and A were reference types (before being replaced with the
1015 // type referred to above), determine which of the two types (if any) is
1016 // more cv-qualified than the other; otherwise the types are considered
1017 // to be equally cv-qualified for partial ordering purposes. The result
1018 // of this determination will be used below.
1019 //
1020 // We save this information for later, using it only when deduction
1021 // succeeds in both directions.
1022 RefParamPartialOrderingComparison Comparison;
1023 Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
1024 Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
1025 Comparison.Qualifiers = NeitherMoreQualified;
1026
1027 Qualifiers ParamQuals = Param.getQualifiers();
1028 Qualifiers ArgQuals = Arg.getQualifiers();
1029 if (ParamQuals.isStrictSupersetOf(ArgQuals))
1030 Comparison.Qualifiers = ParamMoreQualified;
1031 else if (ArgQuals.isStrictSupersetOf(ParamQuals))
1032 Comparison.Qualifiers = ArgMoreQualified;
1033 else if (ArgQuals.getObjCLifetime() != ParamQuals.getObjCLifetime() &&
1034 ArgQuals.withoutObjCLifetime()
1035 == ParamQuals.withoutObjCLifetime()) {
1036 // Prefer binding to non-__unsafe_autoretained parameters.
1037 if (ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1038 ParamQuals.getObjCLifetime())
1039 Comparison.Qualifiers = ParamMoreQualified;
1040 else if (ParamQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1041 ArgQuals.getObjCLifetime())
1042 Comparison.Qualifiers = ArgMoreQualified;
1043 }
1044 RefParamComparisons->push_back(Comparison);
1045 }
1046
1047 // C++0x [temp.deduct.partial]p7:
1048 // Remove any top-level cv-qualifiers:
1049 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
1050 // version of P.
1051 Param = Param.getUnqualifiedType();
1052 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
1053 // version of A.
1054 Arg = Arg.getUnqualifiedType();
1055 } else {
1056 // C++0x [temp.deduct.call]p4 bullet 1:
1057 // - If the original P is a reference type, the deduced A (i.e., the type
1058 // referred to by the reference) can be more cv-qualified than the
1059 // transformed A.
1060 if (TDF & TDF_ParamWithReferenceType) {
1061 Qualifiers Quals;
1062 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1063 Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1064 Arg.getCVRQualifiers());
1065 Param = S.Context.getQualifiedType(UnqualParam, Quals);
1066 }
1067
1068 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1069 // C++0x [temp.deduct.type]p10:
1070 // If P and A are function types that originated from deduction when
1071 // taking the address of a function template (14.8.2.2) or when deducing
1072 // template arguments from a function declaration (14.8.2.6) and Pi and
1073 // Ai are parameters of the top-level parameter-type-list of P and A,
1074 // respectively, Pi is adjusted if it is an rvalue reference to a
1075 // cv-unqualified template parameter and Ai is an lvalue reference, in
1076 // which case the type of Pi is changed to be the template parameter
1077 // type (i.e., T&& is changed to simply T). [ Note: As a result, when
1078 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1079 // deduced as X&. - end note ]
1080 TDF &= ~TDF_TopLevelParameterTypeList;
1081
1082 if (const RValueReferenceType *ParamRef
1083 = Param->getAs<RValueReferenceType>()) {
1084 if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
1085 !ParamRef->getPointeeType().getQualifiers())
1086 if (Arg->isLValueReferenceType())
1087 Param = ParamRef->getPointeeType();
1088 }
1089 }
1090 }
1091
1092 // C++ [temp.deduct.type]p9:
1093 // A template type argument T, a template template argument TT or a
1094 // template non-type argument i can be deduced if P and A have one of
1095 // the following forms:
1096 //
1097 // T
1098 // cv-list T
1099 if (const TemplateTypeParmType *TemplateTypeParm
1100 = Param->getAs<TemplateTypeParmType>()) {
1101 // Just skip any attempts to deduce from a placeholder type.
1102 if (Arg->isPlaceholderType())
1103 return Sema::TDK_Success;
1104
1105 unsigned Index = TemplateTypeParm->getIndex();
1106 bool RecanonicalizeArg = false;
1107
1108 // If the argument type is an array type, move the qualifiers up to the
1109 // top level, so they can be matched with the qualifiers on the parameter.
1110 if (isa<ArrayType>(Arg)) {
1111 Qualifiers Quals;
1112 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1113 if (Quals) {
1114 Arg = S.Context.getQualifiedType(Arg, Quals);
1115 RecanonicalizeArg = true;
1116 }
1117 }
1118
1119 // The argument type can not be less qualified than the parameter
1120 // type.
1121 if (!(TDF & TDF_IgnoreQualifiers) &&
1122 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1123 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1124 Info.FirstArg = TemplateArgument(Param);
1125 Info.SecondArg = TemplateArgument(Arg);
1126 return Sema::TDK_Underqualified;
1127 }
1128
1129 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1130 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1131 QualType DeducedType = Arg;
1132
1133 // Remove any qualifiers on the parameter from the deduced type.
1134 // We checked the qualifiers for consistency above.
1135 Qualifiers DeducedQs = DeducedType.getQualifiers();
1136 Qualifiers ParamQs = Param.getQualifiers();
1137 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1138 if (ParamQs.hasObjCGCAttr())
1139 DeducedQs.removeObjCGCAttr();
1140 if (ParamQs.hasAddressSpace())
1141 DeducedQs.removeAddressSpace();
1142 if (ParamQs.hasObjCLifetime())
1143 DeducedQs.removeObjCLifetime();
1144
1145 // Objective-C ARC:
1146 // If template deduction would produce a lifetime qualifier on a type
1147 // that is not a lifetime type, template argument deduction fails.
1148 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1149 !DeducedType->isDependentType()) {
1150 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1151 Info.FirstArg = TemplateArgument(Param);
1152 Info.SecondArg = TemplateArgument(Arg);
1153 return Sema::TDK_Underqualified;
1154 }
1155
1156 // Objective-C ARC:
1157 // If template deduction would produce an argument type with lifetime type
1158 // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1159 if (S.getLangOpts().ObjCAutoRefCount &&
1160 DeducedType->isObjCLifetimeType() &&
1161 !DeducedQs.hasObjCLifetime())
1162 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1163
1164 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1165 DeducedQs);
1166
1167 if (RecanonicalizeArg)
1168 DeducedType = S.Context.getCanonicalType(DeducedType);
1169
1170 DeducedTemplateArgument NewDeduced(DeducedType);
1171 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1172 Deduced[Index],
1173 NewDeduced);
1174 if (Result.isNull()) {
1175 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1176 Info.FirstArg = Deduced[Index];
1177 Info.SecondArg = NewDeduced;
1178 return Sema::TDK_Inconsistent;
1179 }
1180
1181 Deduced[Index] = Result;
1182 return Sema::TDK_Success;
1183 }
1184
1185 // Set up the template argument deduction information for a failure.
1186 Info.FirstArg = TemplateArgument(ParamIn);
1187 Info.SecondArg = TemplateArgument(ArgIn);
1188
1189 // If the parameter is an already-substituted template parameter
1190 // pack, do nothing: we don't know which of its arguments to look
1191 // at, so we have to wait until all of the parameter packs in this
1192 // expansion have arguments.
1193 if (isa<SubstTemplateTypeParmPackType>(Param))
1194 return Sema::TDK_Success;
1195
1196 // Check the cv-qualifiers on the parameter and argument types.
1197 CanQualType CanParam = S.Context.getCanonicalType(Param);
1198 CanQualType CanArg = S.Context.getCanonicalType(Arg);
1199 if (!(TDF & TDF_IgnoreQualifiers)) {
1200 if (TDF & TDF_ParamWithReferenceType) {
1201 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1202 return Sema::TDK_NonDeducedMismatch;
1203 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1204 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1205 return Sema::TDK_NonDeducedMismatch;
1206 }
1207
1208 // If the parameter type is not dependent, there is nothing to deduce.
1209 if (!Param->isDependentType()) {
1210 if (!(TDF & TDF_SkipNonDependent)) {
1211 bool NonDeduced = (TDF & TDF_InOverloadResolution)?
1212 !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
1213 Param != Arg;
1214 if (NonDeduced) {
1215 return Sema::TDK_NonDeducedMismatch;
1216 }
1217 }
1218 return Sema::TDK_Success;
1219 }
1220 } else if (!Param->isDependentType()) {
1221 CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1222 ArgUnqualType = CanArg.getUnqualifiedType();
1223 bool Success = (TDF & TDF_InOverloadResolution)?
1224 S.isSameOrCompatibleFunctionType(ParamUnqualType,
1225 ArgUnqualType) :
1226 ParamUnqualType == ArgUnqualType;
1227 if (Success)
1228 return Sema::TDK_Success;
1229 }
1230
1231 switch (Param->getTypeClass()) {
1232 // Non-canonical types cannot appear here.
1233 #define NON_CANONICAL_TYPE(Class, Base) \
1234 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1235 #define TYPE(Class, Base)
1236 #include "clang/AST/TypeNodes.def"
1237
1238 case Type::TemplateTypeParm:
1239 case Type::SubstTemplateTypeParmPack:
1240 llvm_unreachable("Type nodes handled above");
1241
1242 // These types cannot be dependent, so simply check whether the types are
1243 // the same.
1244 case Type::Builtin:
1245 case Type::VariableArray:
1246 case Type::Vector:
1247 case Type::FunctionNoProto:
1248 case Type::Record:
1249 case Type::Enum:
1250 case Type::ObjCObject:
1251 case Type::ObjCInterface:
1252 case Type::ObjCObjectPointer: {
1253 if (TDF & TDF_SkipNonDependent)
1254 return Sema::TDK_Success;
1255
1256 if (TDF & TDF_IgnoreQualifiers) {
1257 Param = Param.getUnqualifiedType();
1258 Arg = Arg.getUnqualifiedType();
1259 }
1260
1261 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1262 }
1263
1264 // _Complex T [placeholder extension]
1265 case Type::Complex:
1266 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1267 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1268 cast<ComplexType>(Param)->getElementType(),
1269 ComplexArg->getElementType(),
1270 Info, Deduced, TDF);
1271
1272 return Sema::TDK_NonDeducedMismatch;
1273
1274 // _Atomic T [extension]
1275 case Type::Atomic:
1276 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1277 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1278 cast<AtomicType>(Param)->getValueType(),
1279 AtomicArg->getValueType(),
1280 Info, Deduced, TDF);
1281
1282 return Sema::TDK_NonDeducedMismatch;
1283
1284 // T *
1285 case Type::Pointer: {
1286 QualType PointeeType;
1287 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1288 PointeeType = PointerArg->getPointeeType();
1289 } else if (const ObjCObjectPointerType *PointerArg
1290 = Arg->getAs<ObjCObjectPointerType>()) {
1291 PointeeType = PointerArg->getPointeeType();
1292 } else {
1293 return Sema::TDK_NonDeducedMismatch;
1294 }
1295
1296 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1297 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1298 cast<PointerType>(Param)->getPointeeType(),
1299 PointeeType,
1300 Info, Deduced, SubTDF);
1301 }
1302
1303 // T &
1304 case Type::LValueReference: {
1305 const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1306 if (!ReferenceArg)
1307 return Sema::TDK_NonDeducedMismatch;
1308
1309 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1310 cast<LValueReferenceType>(Param)->getPointeeType(),
1311 ReferenceArg->getPointeeType(), Info, Deduced, 0);
1312 }
1313
1314 // T && [C++0x]
1315 case Type::RValueReference: {
1316 const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1317 if (!ReferenceArg)
1318 return Sema::TDK_NonDeducedMismatch;
1319
1320 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1321 cast<RValueReferenceType>(Param)->getPointeeType(),
1322 ReferenceArg->getPointeeType(),
1323 Info, Deduced, 0);
1324 }
1325
1326 // T [] (implied, but not stated explicitly)
1327 case Type::IncompleteArray: {
1328 const IncompleteArrayType *IncompleteArrayArg =
1329 S.Context.getAsIncompleteArrayType(Arg);
1330 if (!IncompleteArrayArg)
1331 return Sema::TDK_NonDeducedMismatch;
1332
1333 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1334 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1335 S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1336 IncompleteArrayArg->getElementType(),
1337 Info, Deduced, SubTDF);
1338 }
1339
1340 // T [integer-constant]
1341 case Type::ConstantArray: {
1342 const ConstantArrayType *ConstantArrayArg =
1343 S.Context.getAsConstantArrayType(Arg);
1344 if (!ConstantArrayArg)
1345 return Sema::TDK_NonDeducedMismatch;
1346
1347 const ConstantArrayType *ConstantArrayParm =
1348 S.Context.getAsConstantArrayType(Param);
1349 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1350 return Sema::TDK_NonDeducedMismatch;
1351
1352 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1353 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1354 ConstantArrayParm->getElementType(),
1355 ConstantArrayArg->getElementType(),
1356 Info, Deduced, SubTDF);
1357 }
1358
1359 // type [i]
1360 case Type::DependentSizedArray: {
1361 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1362 if (!ArrayArg)
1363 return Sema::TDK_NonDeducedMismatch;
1364
1365 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1366
1367 // Check the element type of the arrays
1368 const DependentSizedArrayType *DependentArrayParm
1369 = S.Context.getAsDependentSizedArrayType(Param);
1370 if (Sema::TemplateDeductionResult Result
1371 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1372 DependentArrayParm->getElementType(),
1373 ArrayArg->getElementType(),
1374 Info, Deduced, SubTDF))
1375 return Result;
1376
1377 // Determine the array bound is something we can deduce.
1378 NonTypeTemplateParmDecl *NTTP
1379 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1380 if (!NTTP)
1381 return Sema::TDK_Success;
1382
1383 // We can perform template argument deduction for the given non-type
1384 // template parameter.
1385 assert(NTTP->getDepth() == 0 &&
1386 "Cannot deduce non-type template argument at depth > 0");
1387 if (const ConstantArrayType *ConstantArrayArg
1388 = dyn_cast<ConstantArrayType>(ArrayArg)) {
1389 llvm::APSInt Size(ConstantArrayArg->getSize());
1390 return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1391 S.Context.getSizeType(),
1392 /*ArrayBound=*/true,
1393 Info, Deduced);
1394 }
1395 if (const DependentSizedArrayType *DependentArrayArg
1396 = dyn_cast<DependentSizedArrayType>(ArrayArg))
1397 if (DependentArrayArg->getSizeExpr())
1398 return DeduceNonTypeTemplateArgument(S, NTTP,
1399 DependentArrayArg->getSizeExpr(),
1400 Info, Deduced);
1401
1402 // Incomplete type does not match a dependently-sized array type
1403 return Sema::TDK_NonDeducedMismatch;
1404 }
1405
1406 // type(*)(T)
1407 // T(*)()
1408 // T(*)(T)
1409 case Type::FunctionProto: {
1410 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1411 const FunctionProtoType *FunctionProtoArg =
1412 dyn_cast<FunctionProtoType>(Arg);
1413 if (!FunctionProtoArg)
1414 return Sema::TDK_NonDeducedMismatch;
1415
1416 const FunctionProtoType *FunctionProtoParam =
1417 cast<FunctionProtoType>(Param);
1418
1419 if (FunctionProtoParam->getTypeQuals()
1420 != FunctionProtoArg->getTypeQuals() ||
1421 FunctionProtoParam->getRefQualifier()
1422 != FunctionProtoArg->getRefQualifier() ||
1423 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1424 return Sema::TDK_NonDeducedMismatch;
1425
1426 // Check return types.
1427 if (Sema::TemplateDeductionResult Result =
1428 DeduceTemplateArgumentsByTypeMatch(
1429 S, TemplateParams, FunctionProtoParam->getReturnType(),
1430 FunctionProtoArg->getReturnType(), Info, Deduced, 0))
1431 return Result;
1432
1433 return DeduceTemplateArguments(
1434 S, TemplateParams, FunctionProtoParam->param_type_begin(),
1435 FunctionProtoParam->getNumParams(),
1436 FunctionProtoArg->param_type_begin(),
1437 FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF);
1438 }
1439
1440 case Type::InjectedClassName: {
1441 // Treat a template's injected-class-name as if the template
1442 // specialization type had been used.
1443 Param = cast<InjectedClassNameType>(Param)
1444 ->getInjectedSpecializationType();
1445 assert(isa<TemplateSpecializationType>(Param) &&
1446 "injected class name is not a template specialization type");
1447 // fall through
1448 }
1449
1450 // template-name<T> (where template-name refers to a class template)
1451 // template-name<i>
1452 // TT<T>
1453 // TT<i>
1454 // TT<>
1455 case Type::TemplateSpecialization: {
1456 const TemplateSpecializationType *SpecParam
1457 = cast<TemplateSpecializationType>(Param);
1458
1459 // Try to deduce template arguments from the template-id.
1460 Sema::TemplateDeductionResult Result
1461 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1462 Info, Deduced);
1463
1464 if (Result && (TDF & TDF_DerivedClass)) {
1465 // C++ [temp.deduct.call]p3b3:
1466 // If P is a class, and P has the form template-id, then A can be a
1467 // derived class of the deduced A. Likewise, if P is a pointer to a
1468 // class of the form template-id, A can be a pointer to a derived
1469 // class pointed to by the deduced A.
1470 //
1471 // More importantly:
1472 // These alternatives are considered only if type deduction would
1473 // otherwise fail.
1474 if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1475 // We cannot inspect base classes as part of deduction when the type
1476 // is incomplete, so either instantiate any templates necessary to
1477 // complete the type, or skip over it if it cannot be completed.
1478 if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1479 return Result;
1480
1481 // Use data recursion to crawl through the list of base classes.
1482 // Visited contains the set of nodes we have already visited, while
1483 // ToVisit is our stack of records that we still need to visit.
1484 llvm::SmallPtrSet<const RecordType *, 8> Visited;
1485 SmallVector<const RecordType *, 8> ToVisit;
1486 ToVisit.push_back(RecordT);
1487 bool Successful = false;
1488 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1489 Deduced.end());
1490 while (!ToVisit.empty()) {
1491 // Retrieve the next class in the inheritance hierarchy.
1492 const RecordType *NextT = ToVisit.pop_back_val();
1493
1494 // If we have already seen this type, skip it.
1495 if (!Visited.insert(NextT))
1496 continue;
1497
1498 // If this is a base class, try to perform template argument
1499 // deduction from it.
1500 if (NextT != RecordT) {
1501 TemplateDeductionInfo BaseInfo(Info.getLocation());
1502 Sema::TemplateDeductionResult BaseResult
1503 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1504 QualType(NextT, 0), BaseInfo,
1505 Deduced);
1506
1507 // If template argument deduction for this base was successful,
1508 // note that we had some success. Otherwise, ignore any deductions
1509 // from this base class.
1510 if (BaseResult == Sema::TDK_Success) {
1511 Successful = true;
1512 DeducedOrig.clear();
1513 DeducedOrig.append(Deduced.begin(), Deduced.end());
1514 Info.Param = BaseInfo.Param;
1515 Info.FirstArg = BaseInfo.FirstArg;
1516 Info.SecondArg = BaseInfo.SecondArg;
1517 }
1518 else
1519 Deduced = DeducedOrig;
1520 }
1521
1522 // Visit base classes
1523 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1524 for (const auto &Base : Next->bases()) {
1525 assert(Base.getType()->isRecordType() &&
1526 "Base class that isn't a record?");
1527 ToVisit.push_back(Base.getType()->getAs<RecordType>());
1528 }
1529 }
1530
1531 if (Successful)
1532 return Sema::TDK_Success;
1533 }
1534
1535 }
1536
1537 return Result;
1538 }
1539
1540 // T type::*
1541 // T T::*
1542 // T (type::*)()
1543 // type (T::*)()
1544 // type (type::*)(T)
1545 // type (T::*)(T)
1546 // T (type::*)(T)
1547 // T (T::*)()
1548 // T (T::*)(T)
1549 case Type::MemberPointer: {
1550 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1551 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1552 if (!MemPtrArg)
1553 return Sema::TDK_NonDeducedMismatch;
1554
1555 if (Sema::TemplateDeductionResult Result
1556 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1557 MemPtrParam->getPointeeType(),
1558 MemPtrArg->getPointeeType(),
1559 Info, Deduced,
1560 TDF & TDF_IgnoreQualifiers))
1561 return Result;
1562
1563 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1564 QualType(MemPtrParam->getClass(), 0),
1565 QualType(MemPtrArg->getClass(), 0),
1566 Info, Deduced,
1567 TDF & TDF_IgnoreQualifiers);
1568 }
1569
1570 // (clang extension)
1571 //
1572 // type(^)(T)
1573 // T(^)()
1574 // T(^)(T)
1575 case Type::BlockPointer: {
1576 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1577 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1578
1579 if (!BlockPtrArg)
1580 return Sema::TDK_NonDeducedMismatch;
1581
1582 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1583 BlockPtrParam->getPointeeType(),
1584 BlockPtrArg->getPointeeType(),
1585 Info, Deduced, 0);
1586 }
1587
1588 // (clang extension)
1589 //
1590 // T __attribute__(((ext_vector_type(<integral constant>))))
1591 case Type::ExtVector: {
1592 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1593 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1594 // Make sure that the vectors have the same number of elements.
1595 if (VectorParam->getNumElements() != VectorArg->getNumElements())
1596 return Sema::TDK_NonDeducedMismatch;
1597
1598 // Perform deduction on the element types.
1599 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1600 VectorParam->getElementType(),
1601 VectorArg->getElementType(),
1602 Info, Deduced, TDF);
1603 }
1604
1605 if (const DependentSizedExtVectorType *VectorArg
1606 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1607 // We can't check the number of elements, since the argument has a
1608 // dependent number of elements. This can only occur during partial
1609 // ordering.
1610
1611 // Perform deduction on the element types.
1612 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1613 VectorParam->getElementType(),
1614 VectorArg->getElementType(),
1615 Info, Deduced, TDF);
1616 }
1617
1618 return Sema::TDK_NonDeducedMismatch;
1619 }
1620
1621 // (clang extension)
1622 //
1623 // T __attribute__(((ext_vector_type(N))))
1624 case Type::DependentSizedExtVector: {
1625 const DependentSizedExtVectorType *VectorParam
1626 = cast<DependentSizedExtVectorType>(Param);
1627
1628 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1629 // Perform deduction on the element types.
1630 if (Sema::TemplateDeductionResult Result
1631 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1632 VectorParam->getElementType(),
1633 VectorArg->getElementType(),
1634 Info, Deduced, TDF))
1635 return Result;
1636
1637 // Perform deduction on the vector size, if we can.
1638 NonTypeTemplateParmDecl *NTTP
1639 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1640 if (!NTTP)
1641 return Sema::TDK_Success;
1642
1643 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1644 ArgSize = VectorArg->getNumElements();
1645 return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1646 false, Info, Deduced);
1647 }
1648
1649 if (const DependentSizedExtVectorType *VectorArg
1650 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1651 // Perform deduction on the element types.
1652 if (Sema::TemplateDeductionResult Result
1653 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1654 VectorParam->getElementType(),
1655 VectorArg->getElementType(),
1656 Info, Deduced, TDF))
1657 return Result;
1658
1659 // Perform deduction on the vector size, if we can.
1660 NonTypeTemplateParmDecl *NTTP
1661 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1662 if (!NTTP)
1663 return Sema::TDK_Success;
1664
1665 return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1666 Info, Deduced);
1667 }
1668
1669 return Sema::TDK_NonDeducedMismatch;
1670 }
1671
1672 case Type::TypeOfExpr:
1673 case Type::TypeOf:
1674 case Type::DependentName:
1675 case Type::UnresolvedUsing:
1676 case Type::Decltype:
1677 case Type::UnaryTransform:
1678 case Type::Auto:
1679 case Type::DependentTemplateSpecialization:
1680 case Type::PackExpansion:
1681 // No template argument deduction for these types
1682 return Sema::TDK_Success;
1683 }
1684
1685 llvm_unreachable("Invalid Type Class!");
1686 }
1687
1688 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument & Param,TemplateArgument Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1689 DeduceTemplateArguments(Sema &S,
1690 TemplateParameterList *TemplateParams,
1691 const TemplateArgument &Param,
1692 TemplateArgument Arg,
1693 TemplateDeductionInfo &Info,
1694 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1695 // If the template argument is a pack expansion, perform template argument
1696 // deduction against the pattern of that expansion. This only occurs during
1697 // partial ordering.
1698 if (Arg.isPackExpansion())
1699 Arg = Arg.getPackExpansionPattern();
1700
1701 switch (Param.getKind()) {
1702 case TemplateArgument::Null:
1703 llvm_unreachable("Null template argument in parameter list");
1704
1705 case TemplateArgument::Type:
1706 if (Arg.getKind() == TemplateArgument::Type)
1707 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1708 Param.getAsType(),
1709 Arg.getAsType(),
1710 Info, Deduced, 0);
1711 Info.FirstArg = Param;
1712 Info.SecondArg = Arg;
1713 return Sema::TDK_NonDeducedMismatch;
1714
1715 case TemplateArgument::Template:
1716 if (Arg.getKind() == TemplateArgument::Template)
1717 return DeduceTemplateArguments(S, TemplateParams,
1718 Param.getAsTemplate(),
1719 Arg.getAsTemplate(), Info, Deduced);
1720 Info.FirstArg = Param;
1721 Info.SecondArg = Arg;
1722 return Sema::TDK_NonDeducedMismatch;
1723
1724 case TemplateArgument::TemplateExpansion:
1725 llvm_unreachable("caller should handle pack expansions");
1726
1727 case TemplateArgument::Declaration:
1728 if (Arg.getKind() == TemplateArgument::Declaration &&
1729 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) &&
1730 Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam())
1731 return Sema::TDK_Success;
1732
1733 Info.FirstArg = Param;
1734 Info.SecondArg = Arg;
1735 return Sema::TDK_NonDeducedMismatch;
1736
1737 case TemplateArgument::NullPtr:
1738 if (Arg.getKind() == TemplateArgument::NullPtr &&
1739 S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
1740 return Sema::TDK_Success;
1741
1742 Info.FirstArg = Param;
1743 Info.SecondArg = Arg;
1744 return Sema::TDK_NonDeducedMismatch;
1745
1746 case TemplateArgument::Integral:
1747 if (Arg.getKind() == TemplateArgument::Integral) {
1748 if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
1749 return Sema::TDK_Success;
1750
1751 Info.FirstArg = Param;
1752 Info.SecondArg = Arg;
1753 return Sema::TDK_NonDeducedMismatch;
1754 }
1755
1756 if (Arg.getKind() == TemplateArgument::Expression) {
1757 Info.FirstArg = Param;
1758 Info.SecondArg = Arg;
1759 return Sema::TDK_NonDeducedMismatch;
1760 }
1761
1762 Info.FirstArg = Param;
1763 Info.SecondArg = Arg;
1764 return Sema::TDK_NonDeducedMismatch;
1765
1766 case TemplateArgument::Expression: {
1767 if (NonTypeTemplateParmDecl *NTTP
1768 = getDeducedParameterFromExpr(Param.getAsExpr())) {
1769 if (Arg.getKind() == TemplateArgument::Integral)
1770 return DeduceNonTypeTemplateArgument(S, NTTP,
1771 Arg.getAsIntegral(),
1772 Arg.getIntegralType(),
1773 /*ArrayBound=*/false,
1774 Info, Deduced);
1775 if (Arg.getKind() == TemplateArgument::Expression)
1776 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1777 Info, Deduced);
1778 if (Arg.getKind() == TemplateArgument::Declaration)
1779 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1780 Info, Deduced);
1781
1782 Info.FirstArg = Param;
1783 Info.SecondArg = Arg;
1784 return Sema::TDK_NonDeducedMismatch;
1785 }
1786
1787 // Can't deduce anything, but that's okay.
1788 return Sema::TDK_Success;
1789 }
1790 case TemplateArgument::Pack:
1791 llvm_unreachable("Argument packs should be expanded by the caller!");
1792 }
1793
1794 llvm_unreachable("Invalid TemplateArgument Kind!");
1795 }
1796
1797 /// \brief Determine whether there is a template argument to be used for
1798 /// deduction.
1799 ///
1800 /// This routine "expands" argument packs in-place, overriding its input
1801 /// parameters so that \c Args[ArgIdx] will be the available template argument.
1802 ///
1803 /// \returns true if there is another template argument (which will be at
1804 /// \c Args[ArgIdx]), false otherwise.
hasTemplateArgumentForDeduction(const TemplateArgument * & Args,unsigned & ArgIdx,unsigned & NumArgs)1805 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1806 unsigned &ArgIdx,
1807 unsigned &NumArgs) {
1808 if (ArgIdx == NumArgs)
1809 return false;
1810
1811 const TemplateArgument &Arg = Args[ArgIdx];
1812 if (Arg.getKind() != TemplateArgument::Pack)
1813 return true;
1814
1815 assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1816 Args = Arg.pack_begin();
1817 NumArgs = Arg.pack_size();
1818 ArgIdx = 0;
1819 return ArgIdx < NumArgs;
1820 }
1821
1822 /// \brief Determine whether the given set of template arguments has a pack
1823 /// expansion that is not the last template argument.
hasPackExpansionBeforeEnd(const TemplateArgument * Args,unsigned NumArgs)1824 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1825 unsigned NumArgs) {
1826 unsigned ArgIdx = 0;
1827 while (ArgIdx < NumArgs) {
1828 const TemplateArgument &Arg = Args[ArgIdx];
1829
1830 // Unwrap argument packs.
1831 if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1832 Args = Arg.pack_begin();
1833 NumArgs = Arg.pack_size();
1834 ArgIdx = 0;
1835 continue;
1836 }
1837
1838 ++ArgIdx;
1839 if (ArgIdx == NumArgs)
1840 return false;
1841
1842 if (Arg.isPackExpansion())
1843 return true;
1844 }
1845
1846 return false;
1847 }
1848
1849 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument * Params,unsigned NumParams,const TemplateArgument * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1850 DeduceTemplateArguments(Sema &S,
1851 TemplateParameterList *TemplateParams,
1852 const TemplateArgument *Params, unsigned NumParams,
1853 const TemplateArgument *Args, unsigned NumArgs,
1854 TemplateDeductionInfo &Info,
1855 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1856 // C++0x [temp.deduct.type]p9:
1857 // If the template argument list of P contains a pack expansion that is not
1858 // the last template argument, the entire template argument list is a
1859 // non-deduced context.
1860 if (hasPackExpansionBeforeEnd(Params, NumParams))
1861 return Sema::TDK_Success;
1862
1863 // C++0x [temp.deduct.type]p9:
1864 // If P has a form that contains <T> or <i>, then each argument Pi of the
1865 // respective template argument list P is compared with the corresponding
1866 // argument Ai of the corresponding template argument list of A.
1867 unsigned ArgIdx = 0, ParamIdx = 0;
1868 for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1869 ++ParamIdx) {
1870 if (!Params[ParamIdx].isPackExpansion()) {
1871 // The simple case: deduce template arguments by matching Pi and Ai.
1872
1873 // Check whether we have enough arguments.
1874 if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1875 return Sema::TDK_Success;
1876
1877 if (Args[ArgIdx].isPackExpansion()) {
1878 // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1879 // but applied to pack expansions that are template arguments.
1880 return Sema::TDK_MiscellaneousDeductionFailure;
1881 }
1882
1883 // Perform deduction for this Pi/Ai pair.
1884 if (Sema::TemplateDeductionResult Result
1885 = DeduceTemplateArguments(S, TemplateParams,
1886 Params[ParamIdx], Args[ArgIdx],
1887 Info, Deduced))
1888 return Result;
1889
1890 // Move to the next argument.
1891 ++ArgIdx;
1892 continue;
1893 }
1894
1895 // The parameter is a pack expansion.
1896
1897 // C++0x [temp.deduct.type]p9:
1898 // If Pi is a pack expansion, then the pattern of Pi is compared with
1899 // each remaining argument in the template argument list of A. Each
1900 // comparison deduces template arguments for subsequent positions in the
1901 // template parameter packs expanded by Pi.
1902 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1903
1904 // FIXME: If there are no remaining arguments, we can bail out early
1905 // and set any deduced parameter packs to an empty argument pack.
1906 // The latter part of this is a (minor) correctness issue.
1907
1908 // Prepare to deduce the packs within the pattern.
1909 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
1910
1911 // Keep track of the deduced template arguments for each parameter pack
1912 // expanded by this pack expansion (the outer index) and for each
1913 // template argument (the inner SmallVectors).
1914 bool HasAnyArguments = false;
1915 for (; hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs); ++ArgIdx) {
1916 HasAnyArguments = true;
1917
1918 // Deduce template arguments from the pattern.
1919 if (Sema::TemplateDeductionResult Result
1920 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1921 Info, Deduced))
1922 return Result;
1923
1924 PackScope.nextPackElement();
1925 }
1926
1927 // Build argument packs for each of the parameter packs expanded by this
1928 // pack expansion.
1929 if (auto Result = PackScope.finish(HasAnyArguments))
1930 return Result;
1931 }
1932
1933 return Sema::TDK_Success;
1934 }
1935
1936 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgumentList & ParamList,const TemplateArgumentList & ArgList,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1937 DeduceTemplateArguments(Sema &S,
1938 TemplateParameterList *TemplateParams,
1939 const TemplateArgumentList &ParamList,
1940 const TemplateArgumentList &ArgList,
1941 TemplateDeductionInfo &Info,
1942 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1943 return DeduceTemplateArguments(S, TemplateParams,
1944 ParamList.data(), ParamList.size(),
1945 ArgList.data(), ArgList.size(),
1946 Info, Deduced);
1947 }
1948
1949 /// \brief Determine whether two template arguments are the same.
isSameTemplateArg(ASTContext & Context,const TemplateArgument & X,const TemplateArgument & Y)1950 static bool isSameTemplateArg(ASTContext &Context,
1951 const TemplateArgument &X,
1952 const TemplateArgument &Y) {
1953 if (X.getKind() != Y.getKind())
1954 return false;
1955
1956 switch (X.getKind()) {
1957 case TemplateArgument::Null:
1958 llvm_unreachable("Comparing NULL template argument");
1959
1960 case TemplateArgument::Type:
1961 return Context.getCanonicalType(X.getAsType()) ==
1962 Context.getCanonicalType(Y.getAsType());
1963
1964 case TemplateArgument::Declaration:
1965 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
1966 X.isDeclForReferenceParam() == Y.isDeclForReferenceParam();
1967
1968 case TemplateArgument::NullPtr:
1969 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
1970
1971 case TemplateArgument::Template:
1972 case TemplateArgument::TemplateExpansion:
1973 return Context.getCanonicalTemplateName(
1974 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1975 Context.getCanonicalTemplateName(
1976 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1977
1978 case TemplateArgument::Integral:
1979 return X.getAsIntegral() == Y.getAsIntegral();
1980
1981 case TemplateArgument::Expression: {
1982 llvm::FoldingSetNodeID XID, YID;
1983 X.getAsExpr()->Profile(XID, Context, true);
1984 Y.getAsExpr()->Profile(YID, Context, true);
1985 return XID == YID;
1986 }
1987
1988 case TemplateArgument::Pack:
1989 if (X.pack_size() != Y.pack_size())
1990 return false;
1991
1992 for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1993 XPEnd = X.pack_end(),
1994 YP = Y.pack_begin();
1995 XP != XPEnd; ++XP, ++YP)
1996 if (!isSameTemplateArg(Context, *XP, *YP))
1997 return false;
1998
1999 return true;
2000 }
2001
2002 llvm_unreachable("Invalid TemplateArgument Kind!");
2003 }
2004
2005 /// \brief Allocate a TemplateArgumentLoc where all locations have
2006 /// been initialized to the given location.
2007 ///
2008 /// \param S The semantic analysis object.
2009 ///
2010 /// \param Arg The template argument we are producing template argument
2011 /// location information for.
2012 ///
2013 /// \param NTTPType For a declaration template argument, the type of
2014 /// the non-type template parameter that corresponds to this template
2015 /// argument.
2016 ///
2017 /// \param Loc The source location to use for the resulting template
2018 /// argument.
2019 static TemplateArgumentLoc
getTrivialTemplateArgumentLoc(Sema & S,const TemplateArgument & Arg,QualType NTTPType,SourceLocation Loc)2020 getTrivialTemplateArgumentLoc(Sema &S,
2021 const TemplateArgument &Arg,
2022 QualType NTTPType,
2023 SourceLocation Loc) {
2024 switch (Arg.getKind()) {
2025 case TemplateArgument::Null:
2026 llvm_unreachable("Can't get a NULL template argument here");
2027
2028 case TemplateArgument::Type:
2029 return TemplateArgumentLoc(Arg,
2030 S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2031
2032 case TemplateArgument::Declaration: {
2033 Expr *E
2034 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2035 .getAs<Expr>();
2036 return TemplateArgumentLoc(TemplateArgument(E), E);
2037 }
2038
2039 case TemplateArgument::NullPtr: {
2040 Expr *E
2041 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2042 .getAs<Expr>();
2043 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2044 E);
2045 }
2046
2047 case TemplateArgument::Integral: {
2048 Expr *E
2049 = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
2050 return TemplateArgumentLoc(TemplateArgument(E), E);
2051 }
2052
2053 case TemplateArgument::Template:
2054 case TemplateArgument::TemplateExpansion: {
2055 NestedNameSpecifierLocBuilder Builder;
2056 TemplateName Template = Arg.getAsTemplate();
2057 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2058 Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
2059 else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2060 Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
2061
2062 if (Arg.getKind() == TemplateArgument::Template)
2063 return TemplateArgumentLoc(Arg,
2064 Builder.getWithLocInContext(S.Context),
2065 Loc);
2066
2067
2068 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
2069 Loc, Loc);
2070 }
2071
2072 case TemplateArgument::Expression:
2073 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2074
2075 case TemplateArgument::Pack:
2076 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2077 }
2078
2079 llvm_unreachable("Invalid TemplateArgument Kind!");
2080 }
2081
2082
2083 /// \brief Convert the given deduced template argument and add it to the set of
2084 /// fully-converted template arguments.
2085 static bool
ConvertDeducedTemplateArgument(Sema & S,NamedDecl * Param,DeducedTemplateArgument Arg,NamedDecl * Template,QualType NTTPType,unsigned ArgumentPackIndex,TemplateDeductionInfo & Info,bool InFunctionTemplate,SmallVectorImpl<TemplateArgument> & Output)2086 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2087 DeducedTemplateArgument Arg,
2088 NamedDecl *Template,
2089 QualType NTTPType,
2090 unsigned ArgumentPackIndex,
2091 TemplateDeductionInfo &Info,
2092 bool InFunctionTemplate,
2093 SmallVectorImpl<TemplateArgument> &Output) {
2094 if (Arg.getKind() == TemplateArgument::Pack) {
2095 // This is a template argument pack, so check each of its arguments against
2096 // the template parameter.
2097 SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2098 for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
2099 PAEnd = Arg.pack_end();
2100 PA != PAEnd; ++PA) {
2101 // When converting the deduced template argument, append it to the
2102 // general output list. We need to do this so that the template argument
2103 // checking logic has all of the prior template arguments available.
2104 DeducedTemplateArgument InnerArg(*PA);
2105 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2106 if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
2107 NTTPType, PackedArgsBuilder.size(),
2108 Info, InFunctionTemplate, Output))
2109 return true;
2110
2111 // Move the converted template argument into our argument pack.
2112 PackedArgsBuilder.push_back(Output.pop_back_val());
2113 }
2114
2115 // Create the resulting argument pack.
2116 Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2117 PackedArgsBuilder.data(),
2118 PackedArgsBuilder.size()));
2119 return false;
2120 }
2121
2122 // Convert the deduced template argument into a template
2123 // argument that we can check, almost as if the user had written
2124 // the template argument explicitly.
2125 TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2126 Info.getLocation());
2127
2128 // Check the template argument, converting it as necessary.
2129 return S.CheckTemplateArgument(Param, ArgLoc,
2130 Template,
2131 Template->getLocation(),
2132 Template->getSourceRange().getEnd(),
2133 ArgumentPackIndex,
2134 Output,
2135 InFunctionTemplate
2136 ? (Arg.wasDeducedFromArrayBound()
2137 ? Sema::CTAK_DeducedFromArrayBound
2138 : Sema::CTAK_Deduced)
2139 : Sema::CTAK_Specified);
2140 }
2141
2142 /// Complete template argument deduction for a class template partial
2143 /// specialization.
2144 static Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(Sema & S,ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2145 FinishTemplateArgumentDeduction(Sema &S,
2146 ClassTemplatePartialSpecializationDecl *Partial,
2147 const TemplateArgumentList &TemplateArgs,
2148 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2149 TemplateDeductionInfo &Info) {
2150 // Unevaluated SFINAE context.
2151 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2152 Sema::SFINAETrap Trap(S);
2153
2154 Sema::ContextRAII SavedContext(S, Partial);
2155
2156 // C++ [temp.deduct.type]p2:
2157 // [...] or if any template argument remains neither deduced nor
2158 // explicitly specified, template argument deduction fails.
2159 SmallVector<TemplateArgument, 4> Builder;
2160 TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2161 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2162 NamedDecl *Param = PartialParams->getParam(I);
2163 if (Deduced[I].isNull()) {
2164 Info.Param = makeTemplateParameter(Param);
2165 return Sema::TDK_Incomplete;
2166 }
2167
2168 // We have deduced this argument, so it still needs to be
2169 // checked and converted.
2170
2171 // First, for a non-type template parameter type that is
2172 // initialized by a declaration, we need the type of the
2173 // corresponding non-type template parameter.
2174 QualType NTTPType;
2175 if (NonTypeTemplateParmDecl *NTTP
2176 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2177 NTTPType = NTTP->getType();
2178 if (NTTPType->isDependentType()) {
2179 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2180 Builder.data(), Builder.size());
2181 NTTPType = S.SubstType(NTTPType,
2182 MultiLevelTemplateArgumentList(TemplateArgs),
2183 NTTP->getLocation(),
2184 NTTP->getDeclName());
2185 if (NTTPType.isNull()) {
2186 Info.Param = makeTemplateParameter(Param);
2187 // FIXME: These template arguments are temporary. Free them!
2188 Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2189 Builder.data(),
2190 Builder.size()));
2191 return Sema::TDK_SubstitutionFailure;
2192 }
2193 }
2194 }
2195
2196 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2197 Partial, NTTPType, 0, Info, false,
2198 Builder)) {
2199 Info.Param = makeTemplateParameter(Param);
2200 // FIXME: These template arguments are temporary. Free them!
2201 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2202 Builder.size()));
2203 return Sema::TDK_SubstitutionFailure;
2204 }
2205 }
2206
2207 // Form the template argument list from the deduced template arguments.
2208 TemplateArgumentList *DeducedArgumentList
2209 = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2210 Builder.size());
2211
2212 Info.reset(DeducedArgumentList);
2213
2214 // Substitute the deduced template arguments into the template
2215 // arguments of the class template partial specialization, and
2216 // verify that the instantiated template arguments are both valid
2217 // and are equivalent to the template arguments originally provided
2218 // to the class template.
2219 LocalInstantiationScope InstScope(S);
2220 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2221 const ASTTemplateArgumentListInfo *PartialTemplArgInfo
2222 = Partial->getTemplateArgsAsWritten();
2223 const TemplateArgumentLoc *PartialTemplateArgs
2224 = PartialTemplArgInfo->getTemplateArgs();
2225
2226 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2227 PartialTemplArgInfo->RAngleLoc);
2228
2229 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2230 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2231 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2232 if (ParamIdx >= Partial->getTemplateParameters()->size())
2233 ParamIdx = Partial->getTemplateParameters()->size() - 1;
2234
2235 Decl *Param
2236 = const_cast<NamedDecl *>(
2237 Partial->getTemplateParameters()->getParam(ParamIdx));
2238 Info.Param = makeTemplateParameter(Param);
2239 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2240 return Sema::TDK_SubstitutionFailure;
2241 }
2242
2243 SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2244 if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2245 InstArgs, false, ConvertedInstArgs))
2246 return Sema::TDK_SubstitutionFailure;
2247
2248 TemplateParameterList *TemplateParams
2249 = ClassTemplate->getTemplateParameters();
2250 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2251 TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2252 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2253 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2254 Info.FirstArg = TemplateArgs[I];
2255 Info.SecondArg = InstArg;
2256 return Sema::TDK_NonDeducedMismatch;
2257 }
2258 }
2259
2260 if (Trap.hasErrorOccurred())
2261 return Sema::TDK_SubstitutionFailure;
2262
2263 return Sema::TDK_Success;
2264 }
2265
2266 /// \brief Perform template argument deduction to determine whether
2267 /// the given template arguments match the given class template
2268 /// partial specialization per C++ [temp.class.spec.match].
2269 Sema::TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2270 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2271 const TemplateArgumentList &TemplateArgs,
2272 TemplateDeductionInfo &Info) {
2273 if (Partial->isInvalidDecl())
2274 return TDK_Invalid;
2275
2276 // C++ [temp.class.spec.match]p2:
2277 // A partial specialization matches a given actual template
2278 // argument list if the template arguments of the partial
2279 // specialization can be deduced from the actual template argument
2280 // list (14.8.2).
2281
2282 // Unevaluated SFINAE context.
2283 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2284 SFINAETrap Trap(*this);
2285
2286 SmallVector<DeducedTemplateArgument, 4> Deduced;
2287 Deduced.resize(Partial->getTemplateParameters()->size());
2288 if (TemplateDeductionResult Result
2289 = ::DeduceTemplateArguments(*this,
2290 Partial->getTemplateParameters(),
2291 Partial->getTemplateArgs(),
2292 TemplateArgs, Info, Deduced))
2293 return Result;
2294
2295 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2296 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2297 Info);
2298 if (Inst.isInvalid())
2299 return TDK_InstantiationDepth;
2300
2301 if (Trap.hasErrorOccurred())
2302 return Sema::TDK_SubstitutionFailure;
2303
2304 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2305 Deduced, Info);
2306 }
2307
2308 /// Complete template argument deduction for a variable template partial
2309 /// specialization.
2310 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
2311 /// May require unifying ClassTemplate(Partial)SpecializationDecl and
2312 /// VarTemplate(Partial)SpecializationDecl with a new data
2313 /// structure Template(Partial)SpecializationDecl, and
2314 /// using Template(Partial)SpecializationDecl as input type.
FinishTemplateArgumentDeduction(Sema & S,VarTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2315 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
2316 Sema &S, VarTemplatePartialSpecializationDecl *Partial,
2317 const TemplateArgumentList &TemplateArgs,
2318 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2319 TemplateDeductionInfo &Info) {
2320 // Unevaluated SFINAE context.
2321 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2322 Sema::SFINAETrap Trap(S);
2323
2324 // C++ [temp.deduct.type]p2:
2325 // [...] or if any template argument remains neither deduced nor
2326 // explicitly specified, template argument deduction fails.
2327 SmallVector<TemplateArgument, 4> Builder;
2328 TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2329 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2330 NamedDecl *Param = PartialParams->getParam(I);
2331 if (Deduced[I].isNull()) {
2332 Info.Param = makeTemplateParameter(Param);
2333 return Sema::TDK_Incomplete;
2334 }
2335
2336 // We have deduced this argument, so it still needs to be
2337 // checked and converted.
2338
2339 // First, for a non-type template parameter type that is
2340 // initialized by a declaration, we need the type of the
2341 // corresponding non-type template parameter.
2342 QualType NTTPType;
2343 if (NonTypeTemplateParmDecl *NTTP =
2344 dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2345 NTTPType = NTTP->getType();
2346 if (NTTPType->isDependentType()) {
2347 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2348 Builder.data(), Builder.size());
2349 NTTPType =
2350 S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
2351 NTTP->getLocation(), NTTP->getDeclName());
2352 if (NTTPType.isNull()) {
2353 Info.Param = makeTemplateParameter(Param);
2354 // FIXME: These template arguments are temporary. Free them!
2355 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2356 Builder.size()));
2357 return Sema::TDK_SubstitutionFailure;
2358 }
2359 }
2360 }
2361
2362 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
2363 0, Info, false, Builder)) {
2364 Info.Param = makeTemplateParameter(Param);
2365 // FIXME: These template arguments are temporary. Free them!
2366 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2367 Builder.size()));
2368 return Sema::TDK_SubstitutionFailure;
2369 }
2370 }
2371
2372 // Form the template argument list from the deduced template arguments.
2373 TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
2374 S.Context, Builder.data(), Builder.size());
2375
2376 Info.reset(DeducedArgumentList);
2377
2378 // Substitute the deduced template arguments into the template
2379 // arguments of the class template partial specialization, and
2380 // verify that the instantiated template arguments are both valid
2381 // and are equivalent to the template arguments originally provided
2382 // to the class template.
2383 LocalInstantiationScope InstScope(S);
2384 VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
2385 const ASTTemplateArgumentListInfo *PartialTemplArgInfo
2386 = Partial->getTemplateArgsAsWritten();
2387 const TemplateArgumentLoc *PartialTemplateArgs
2388 = PartialTemplArgInfo->getTemplateArgs();
2389
2390 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2391 PartialTemplArgInfo->RAngleLoc);
2392
2393 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2394 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2395 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2396 if (ParamIdx >= Partial->getTemplateParameters()->size())
2397 ParamIdx = Partial->getTemplateParameters()->size() - 1;
2398
2399 Decl *Param = const_cast<NamedDecl *>(
2400 Partial->getTemplateParameters()->getParam(ParamIdx));
2401 Info.Param = makeTemplateParameter(Param);
2402 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2403 return Sema::TDK_SubstitutionFailure;
2404 }
2405 SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2406 if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
2407 false, ConvertedInstArgs))
2408 return Sema::TDK_SubstitutionFailure;
2409
2410 TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
2411 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2412 TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2413 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2414 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2415 Info.FirstArg = TemplateArgs[I];
2416 Info.SecondArg = InstArg;
2417 return Sema::TDK_NonDeducedMismatch;
2418 }
2419 }
2420
2421 if (Trap.hasErrorOccurred())
2422 return Sema::TDK_SubstitutionFailure;
2423
2424 return Sema::TDK_Success;
2425 }
2426
2427 /// \brief Perform template argument deduction to determine whether
2428 /// the given template arguments match the given variable template
2429 /// partial specialization per C++ [temp.class.spec.match].
2430 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
2431 /// May require unifying ClassTemplate(Partial)SpecializationDecl and
2432 /// VarTemplate(Partial)SpecializationDecl with a new data
2433 /// structure Template(Partial)SpecializationDecl, and
2434 /// using Template(Partial)SpecializationDecl as input type.
2435 Sema::TemplateDeductionResult
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2436 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
2437 const TemplateArgumentList &TemplateArgs,
2438 TemplateDeductionInfo &Info) {
2439 if (Partial->isInvalidDecl())
2440 return TDK_Invalid;
2441
2442 // C++ [temp.class.spec.match]p2:
2443 // A partial specialization matches a given actual template
2444 // argument list if the template arguments of the partial
2445 // specialization can be deduced from the actual template argument
2446 // list (14.8.2).
2447
2448 // Unevaluated SFINAE context.
2449 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2450 SFINAETrap Trap(*this);
2451
2452 SmallVector<DeducedTemplateArgument, 4> Deduced;
2453 Deduced.resize(Partial->getTemplateParameters()->size());
2454 if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
2455 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
2456 TemplateArgs, Info, Deduced))
2457 return Result;
2458
2459 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2460 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2461 Info);
2462 if (Inst.isInvalid())
2463 return TDK_InstantiationDepth;
2464
2465 if (Trap.hasErrorOccurred())
2466 return Sema::TDK_SubstitutionFailure;
2467
2468 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2469 Deduced, Info);
2470 }
2471
2472 /// \brief Determine whether the given type T is a simple-template-id type.
isSimpleTemplateIdType(QualType T)2473 static bool isSimpleTemplateIdType(QualType T) {
2474 if (const TemplateSpecializationType *Spec
2475 = T->getAs<TemplateSpecializationType>())
2476 return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
2477
2478 return false;
2479 }
2480
2481 /// \brief Substitute the explicitly-provided template arguments into the
2482 /// given function template according to C++ [temp.arg.explicit].
2483 ///
2484 /// \param FunctionTemplate the function template into which the explicit
2485 /// template arguments will be substituted.
2486 ///
2487 /// \param ExplicitTemplateArgs the explicitly-specified template
2488 /// arguments.
2489 ///
2490 /// \param Deduced the deduced template arguments, which will be populated
2491 /// with the converted and checked explicit template arguments.
2492 ///
2493 /// \param ParamTypes will be populated with the instantiated function
2494 /// parameters.
2495 ///
2496 /// \param FunctionType if non-NULL, the result type of the function template
2497 /// will also be instantiated and the pointed-to value will be updated with
2498 /// the instantiated function type.
2499 ///
2500 /// \param Info if substitution fails for any reason, this object will be
2501 /// populated with more information about the failure.
2502 ///
2503 /// \returns TDK_Success if substitution was successful, or some failure
2504 /// condition.
2505 Sema::TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo & ExplicitTemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<QualType> & ParamTypes,QualType * FunctionType,TemplateDeductionInfo & Info)2506 Sema::SubstituteExplicitTemplateArguments(
2507 FunctionTemplateDecl *FunctionTemplate,
2508 TemplateArgumentListInfo &ExplicitTemplateArgs,
2509 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2510 SmallVectorImpl<QualType> &ParamTypes,
2511 QualType *FunctionType,
2512 TemplateDeductionInfo &Info) {
2513 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2514 TemplateParameterList *TemplateParams
2515 = FunctionTemplate->getTemplateParameters();
2516
2517 if (ExplicitTemplateArgs.size() == 0) {
2518 // No arguments to substitute; just copy over the parameter types and
2519 // fill in the function type.
2520 for (auto P : Function->params())
2521 ParamTypes.push_back(P->getType());
2522
2523 if (FunctionType)
2524 *FunctionType = Function->getType();
2525 return TDK_Success;
2526 }
2527
2528 // Unevaluated SFINAE context.
2529 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2530 SFINAETrap Trap(*this);
2531
2532 // C++ [temp.arg.explicit]p3:
2533 // Template arguments that are present shall be specified in the
2534 // declaration order of their corresponding template-parameters. The
2535 // template argument list shall not specify more template-arguments than
2536 // there are corresponding template-parameters.
2537 SmallVector<TemplateArgument, 4> Builder;
2538
2539 // Enter a new template instantiation context where we check the
2540 // explicitly-specified template arguments against this function template,
2541 // and then substitute them into the function parameter types.
2542 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2543 InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
2544 DeducedArgs,
2545 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2546 Info);
2547 if (Inst.isInvalid())
2548 return TDK_InstantiationDepth;
2549
2550 if (CheckTemplateArgumentList(FunctionTemplate,
2551 SourceLocation(),
2552 ExplicitTemplateArgs,
2553 true,
2554 Builder) || Trap.hasErrorOccurred()) {
2555 unsigned Index = Builder.size();
2556 if (Index >= TemplateParams->size())
2557 Index = TemplateParams->size() - 1;
2558 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2559 return TDK_InvalidExplicitArguments;
2560 }
2561
2562 // Form the template argument list from the explicitly-specified
2563 // template arguments.
2564 TemplateArgumentList *ExplicitArgumentList
2565 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2566 Info.reset(ExplicitArgumentList);
2567
2568 // Template argument deduction and the final substitution should be
2569 // done in the context of the templated declaration. Explicit
2570 // argument substitution, on the other hand, needs to happen in the
2571 // calling context.
2572 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2573
2574 // If we deduced template arguments for a template parameter pack,
2575 // note that the template argument pack is partially substituted and record
2576 // the explicit template arguments. They'll be used as part of deduction
2577 // for this template parameter pack.
2578 for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2579 const TemplateArgument &Arg = Builder[I];
2580 if (Arg.getKind() == TemplateArgument::Pack) {
2581 CurrentInstantiationScope->SetPartiallySubstitutedPack(
2582 TemplateParams->getParam(I),
2583 Arg.pack_begin(),
2584 Arg.pack_size());
2585 break;
2586 }
2587 }
2588
2589 const FunctionProtoType *Proto
2590 = Function->getType()->getAs<FunctionProtoType>();
2591 assert(Proto && "Function template does not have a prototype?");
2592
2593 // Instantiate the types of each of the function parameters given the
2594 // explicitly-specified template arguments. If the function has a trailing
2595 // return type, substitute it after the arguments to ensure we substitute
2596 // in lexical order.
2597 if (Proto->hasTrailingReturn()) {
2598 if (SubstParmTypes(Function->getLocation(),
2599 Function->param_begin(), Function->getNumParams(),
2600 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2601 ParamTypes))
2602 return TDK_SubstitutionFailure;
2603 }
2604
2605 // Instantiate the return type.
2606 QualType ResultType;
2607 {
2608 // C++11 [expr.prim.general]p3:
2609 // If a declaration declares a member function or member function
2610 // template of a class X, the expression this is a prvalue of type
2611 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2612 // and the end of the function-definition, member-declarator, or
2613 // declarator.
2614 unsigned ThisTypeQuals = 0;
2615 CXXRecordDecl *ThisContext = nullptr;
2616 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2617 ThisContext = Method->getParent();
2618 ThisTypeQuals = Method->getTypeQualifiers();
2619 }
2620
2621 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2622 getLangOpts().CPlusPlus11);
2623
2624 ResultType =
2625 SubstType(Proto->getReturnType(),
2626 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2627 Function->getTypeSpecStartLoc(), Function->getDeclName());
2628 if (ResultType.isNull() || Trap.hasErrorOccurred())
2629 return TDK_SubstitutionFailure;
2630 }
2631
2632 // Instantiate the types of each of the function parameters given the
2633 // explicitly-specified template arguments if we didn't do so earlier.
2634 if (!Proto->hasTrailingReturn() &&
2635 SubstParmTypes(Function->getLocation(),
2636 Function->param_begin(), Function->getNumParams(),
2637 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2638 ParamTypes))
2639 return TDK_SubstitutionFailure;
2640
2641 if (FunctionType) {
2642 *FunctionType = BuildFunctionType(ResultType, ParamTypes,
2643 Function->getLocation(),
2644 Function->getDeclName(),
2645 Proto->getExtProtoInfo());
2646 if (FunctionType->isNull() || Trap.hasErrorOccurred())
2647 return TDK_SubstitutionFailure;
2648 }
2649
2650 // C++ [temp.arg.explicit]p2:
2651 // Trailing template arguments that can be deduced (14.8.2) may be
2652 // omitted from the list of explicit template-arguments. If all of the
2653 // template arguments can be deduced, they may all be omitted; in this
2654 // case, the empty template argument list <> itself may also be omitted.
2655 //
2656 // Take all of the explicitly-specified arguments and put them into
2657 // the set of deduced template arguments. Explicitly-specified
2658 // parameter packs, however, will be set to NULL since the deduction
2659 // mechanisms handle explicitly-specified argument packs directly.
2660 Deduced.reserve(TemplateParams->size());
2661 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2662 const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2663 if (Arg.getKind() == TemplateArgument::Pack)
2664 Deduced.push_back(DeducedTemplateArgument());
2665 else
2666 Deduced.push_back(Arg);
2667 }
2668
2669 return TDK_Success;
2670 }
2671
2672 /// \brief Check whether the deduced argument type for a call to a function
2673 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
2674 static bool
CheckOriginalCallArgDeduction(Sema & S,Sema::OriginalCallArg OriginalArg,QualType DeducedA)2675 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2676 QualType DeducedA) {
2677 ASTContext &Context = S.Context;
2678
2679 QualType A = OriginalArg.OriginalArgType;
2680 QualType OriginalParamType = OriginalArg.OriginalParamType;
2681
2682 // Check for type equality (top-level cv-qualifiers are ignored).
2683 if (Context.hasSameUnqualifiedType(A, DeducedA))
2684 return false;
2685
2686 // Strip off references on the argument types; they aren't needed for
2687 // the following checks.
2688 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2689 DeducedA = DeducedARef->getPointeeType();
2690 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2691 A = ARef->getPointeeType();
2692
2693 // C++ [temp.deduct.call]p4:
2694 // [...] However, there are three cases that allow a difference:
2695 // - If the original P is a reference type, the deduced A (i.e., the
2696 // type referred to by the reference) can be more cv-qualified than
2697 // the transformed A.
2698 if (const ReferenceType *OriginalParamRef
2699 = OriginalParamType->getAs<ReferenceType>()) {
2700 // We don't want to keep the reference around any more.
2701 OriginalParamType = OriginalParamRef->getPointeeType();
2702
2703 Qualifiers AQuals = A.getQualifiers();
2704 Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2705
2706 // Under Objective-C++ ARC, the deduced type may have implicitly
2707 // been given strong or (when dealing with a const reference)
2708 // unsafe_unretained lifetime. If so, update the original
2709 // qualifiers to include this lifetime.
2710 if (S.getLangOpts().ObjCAutoRefCount &&
2711 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
2712 AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
2713 (DeducedAQuals.hasConst() &&
2714 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
2715 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
2716 }
2717
2718 if (AQuals == DeducedAQuals) {
2719 // Qualifiers match; there's nothing to do.
2720 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2721 return true;
2722 } else {
2723 // Qualifiers are compatible, so have the argument type adopt the
2724 // deduced argument type's qualifiers as if we had performed the
2725 // qualification conversion.
2726 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2727 }
2728 }
2729
2730 // - The transformed A can be another pointer or pointer to member
2731 // type that can be converted to the deduced A via a qualification
2732 // conversion.
2733 //
2734 // Also allow conversions which merely strip [[noreturn]] from function types
2735 // (recursively) as an extension.
2736 // FIXME: Currently, this doesn't play nicely with qualification conversions.
2737 bool ObjCLifetimeConversion = false;
2738 QualType ResultTy;
2739 if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2740 (S.IsQualificationConversion(A, DeducedA, false,
2741 ObjCLifetimeConversion) ||
2742 S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2743 return false;
2744
2745
2746 // - If P is a class and P has the form simple-template-id, then the
2747 // transformed A can be a derived class of the deduced A. [...]
2748 // [...] Likewise, if P is a pointer to a class of the form
2749 // simple-template-id, the transformed A can be a pointer to a
2750 // derived class pointed to by the deduced A.
2751 if (const PointerType *OriginalParamPtr
2752 = OriginalParamType->getAs<PointerType>()) {
2753 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2754 if (const PointerType *APtr = A->getAs<PointerType>()) {
2755 if (A->getPointeeType()->isRecordType()) {
2756 OriginalParamType = OriginalParamPtr->getPointeeType();
2757 DeducedA = DeducedAPtr->getPointeeType();
2758 A = APtr->getPointeeType();
2759 }
2760 }
2761 }
2762 }
2763
2764 if (Context.hasSameUnqualifiedType(A, DeducedA))
2765 return false;
2766
2767 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2768 S.IsDerivedFrom(A, DeducedA))
2769 return false;
2770
2771 return true;
2772 }
2773
2774 /// \brief Finish template argument deduction for a function template,
2775 /// checking the deduced template arguments for completeness and forming
2776 /// the function template specialization.
2777 ///
2778 /// \param OriginalCallArgs If non-NULL, the original call arguments against
2779 /// which the deduced argument types should be compared.
2780 Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl * FunctionTemplate,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned NumExplicitlySpecified,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,SmallVectorImpl<OriginalCallArg> const * OriginalCallArgs)2781 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2782 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2783 unsigned NumExplicitlySpecified,
2784 FunctionDecl *&Specialization,
2785 TemplateDeductionInfo &Info,
2786 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2787 TemplateParameterList *TemplateParams
2788 = FunctionTemplate->getTemplateParameters();
2789
2790 // Unevaluated SFINAE context.
2791 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2792 SFINAETrap Trap(*this);
2793
2794 // Enter a new template instantiation context while we instantiate the
2795 // actual function declaration.
2796 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2797 InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
2798 DeducedArgs,
2799 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2800 Info);
2801 if (Inst.isInvalid())
2802 return TDK_InstantiationDepth;
2803
2804 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2805
2806 // C++ [temp.deduct.type]p2:
2807 // [...] or if any template argument remains neither deduced nor
2808 // explicitly specified, template argument deduction fails.
2809 SmallVector<TemplateArgument, 4> Builder;
2810 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2811 NamedDecl *Param = TemplateParams->getParam(I);
2812
2813 if (!Deduced[I].isNull()) {
2814 if (I < NumExplicitlySpecified) {
2815 // We have already fully type-checked and converted this
2816 // argument, because it was explicitly-specified. Just record the
2817 // presence of this argument.
2818 Builder.push_back(Deduced[I]);
2819 // We may have had explicitly-specified template arguments for a
2820 // template parameter pack (that may or may not have been extended
2821 // via additional deduced arguments).
2822 if (Param->isParameterPack() && CurrentInstantiationScope) {
2823 if (CurrentInstantiationScope->getPartiallySubstitutedPack() ==
2824 Param) {
2825 // Forget the partially-substituted pack; its substitution is now
2826 // complete.
2827 CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2828 }
2829 }
2830 continue;
2831 }
2832 // We have deduced this argument, so it still needs to be
2833 // checked and converted.
2834
2835 // First, for a non-type template parameter type that is
2836 // initialized by a declaration, we need the type of the
2837 // corresponding non-type template parameter.
2838 QualType NTTPType;
2839 if (NonTypeTemplateParmDecl *NTTP
2840 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2841 NTTPType = NTTP->getType();
2842 if (NTTPType->isDependentType()) {
2843 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2844 Builder.data(), Builder.size());
2845 NTTPType = SubstType(NTTPType,
2846 MultiLevelTemplateArgumentList(TemplateArgs),
2847 NTTP->getLocation(),
2848 NTTP->getDeclName());
2849 if (NTTPType.isNull()) {
2850 Info.Param = makeTemplateParameter(Param);
2851 // FIXME: These template arguments are temporary. Free them!
2852 Info.reset(TemplateArgumentList::CreateCopy(Context,
2853 Builder.data(),
2854 Builder.size()));
2855 return TDK_SubstitutionFailure;
2856 }
2857 }
2858 }
2859
2860 if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2861 FunctionTemplate, NTTPType, 0, Info,
2862 true, Builder)) {
2863 Info.Param = makeTemplateParameter(Param);
2864 // FIXME: These template arguments are temporary. Free them!
2865 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2866 Builder.size()));
2867 return TDK_SubstitutionFailure;
2868 }
2869
2870 continue;
2871 }
2872
2873 // C++0x [temp.arg.explicit]p3:
2874 // A trailing template parameter pack (14.5.3) not otherwise deduced will
2875 // be deduced to an empty sequence of template arguments.
2876 // FIXME: Where did the word "trailing" come from?
2877 if (Param->isTemplateParameterPack()) {
2878 // We may have had explicitly-specified template arguments for this
2879 // template parameter pack. If so, our empty deduction extends the
2880 // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2881 const TemplateArgument *ExplicitArgs;
2882 unsigned NumExplicitArgs;
2883 if (CurrentInstantiationScope &&
2884 CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2885 &NumExplicitArgs)
2886 == Param) {
2887 Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2888
2889 // Forget the partially-substituted pack; it's substitution is now
2890 // complete.
2891 CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2892 } else {
2893 Builder.push_back(TemplateArgument::getEmptyPack());
2894 }
2895 continue;
2896 }
2897
2898 // Substitute into the default template argument, if available.
2899 bool HasDefaultArg = false;
2900 TemplateArgumentLoc DefArg
2901 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2902 FunctionTemplate->getLocation(),
2903 FunctionTemplate->getSourceRange().getEnd(),
2904 Param,
2905 Builder, HasDefaultArg);
2906
2907 // If there was no default argument, deduction is incomplete.
2908 if (DefArg.getArgument().isNull()) {
2909 Info.Param = makeTemplateParameter(
2910 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2911 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2912 Builder.size()));
2913 return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
2914 }
2915
2916 // Check whether we can actually use the default argument.
2917 if (CheckTemplateArgument(Param, DefArg,
2918 FunctionTemplate,
2919 FunctionTemplate->getLocation(),
2920 FunctionTemplate->getSourceRange().getEnd(),
2921 0, Builder,
2922 CTAK_Specified)) {
2923 Info.Param = makeTemplateParameter(
2924 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2925 // FIXME: These template arguments are temporary. Free them!
2926 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2927 Builder.size()));
2928 return TDK_SubstitutionFailure;
2929 }
2930
2931 // If we get here, we successfully used the default template argument.
2932 }
2933
2934 // Form the template argument list from the deduced template arguments.
2935 TemplateArgumentList *DeducedArgumentList
2936 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2937 Info.reset(DeducedArgumentList);
2938
2939 // Substitute the deduced template arguments into the function template
2940 // declaration to produce the function template specialization.
2941 DeclContext *Owner = FunctionTemplate->getDeclContext();
2942 if (FunctionTemplate->getFriendObjectKind())
2943 Owner = FunctionTemplate->getLexicalDeclContext();
2944 Specialization = cast_or_null<FunctionDecl>(
2945 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2946 MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2947 if (!Specialization || Specialization->isInvalidDecl())
2948 return TDK_SubstitutionFailure;
2949
2950 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2951 FunctionTemplate->getCanonicalDecl());
2952
2953 // If the template argument list is owned by the function template
2954 // specialization, release it.
2955 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2956 !Trap.hasErrorOccurred())
2957 Info.take();
2958
2959 // There may have been an error that did not prevent us from constructing a
2960 // declaration. Mark the declaration invalid and return with a substitution
2961 // failure.
2962 if (Trap.hasErrorOccurred()) {
2963 Specialization->setInvalidDecl(true);
2964 return TDK_SubstitutionFailure;
2965 }
2966
2967 if (OriginalCallArgs) {
2968 // C++ [temp.deduct.call]p4:
2969 // In general, the deduction process attempts to find template argument
2970 // values that will make the deduced A identical to A (after the type A
2971 // is transformed as described above). [...]
2972 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2973 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2974 unsigned ParamIdx = OriginalArg.ArgIdx;
2975
2976 if (ParamIdx >= Specialization->getNumParams())
2977 continue;
2978
2979 QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2980 if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2981 return Sema::TDK_SubstitutionFailure;
2982 }
2983 }
2984
2985 // If we suppressed any diagnostics while performing template argument
2986 // deduction, and if we haven't already instantiated this declaration,
2987 // keep track of these diagnostics. They'll be emitted if this specialization
2988 // is actually used.
2989 if (Info.diag_begin() != Info.diag_end()) {
2990 SuppressedDiagnosticsMap::iterator
2991 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2992 if (Pos == SuppressedDiagnostics.end())
2993 SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2994 .append(Info.diag_begin(), Info.diag_end());
2995 }
2996
2997 return TDK_Success;
2998 }
2999
3000 /// Gets the type of a function for template-argument-deducton
3001 /// purposes when it's considered as part of an overload set.
GetTypeOfFunction(Sema & S,const OverloadExpr::FindResult & R,FunctionDecl * Fn)3002 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
3003 FunctionDecl *Fn) {
3004 // We may need to deduce the return type of the function now.
3005 if (S.getLangOpts().CPlusPlus1y && Fn->getReturnType()->isUndeducedType() &&
3006 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
3007 return QualType();
3008
3009 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
3010 if (Method->isInstance()) {
3011 // An instance method that's referenced in a form that doesn't
3012 // look like a member pointer is just invalid.
3013 if (!R.HasFormOfMemberPointer) return QualType();
3014
3015 return S.Context.getMemberPointerType(Fn->getType(),
3016 S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
3017 }
3018
3019 if (!R.IsAddressOfOperand) return Fn->getType();
3020 return S.Context.getPointerType(Fn->getType());
3021 }
3022
3023 /// Apply the deduction rules for overload sets.
3024 ///
3025 /// \return the null type if this argument should be treated as an
3026 /// undeduced context
3027 static QualType
ResolveOverloadForDeduction(Sema & S,TemplateParameterList * TemplateParams,Expr * Arg,QualType ParamType,bool ParamWasReference)3028 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
3029 Expr *Arg, QualType ParamType,
3030 bool ParamWasReference) {
3031
3032 OverloadExpr::FindResult R = OverloadExpr::find(Arg);
3033
3034 OverloadExpr *Ovl = R.Expression;
3035
3036 // C++0x [temp.deduct.call]p4
3037 unsigned TDF = 0;
3038 if (ParamWasReference)
3039 TDF |= TDF_ParamWithReferenceType;
3040 if (R.IsAddressOfOperand)
3041 TDF |= TDF_IgnoreQualifiers;
3042
3043 // C++0x [temp.deduct.call]p6:
3044 // When P is a function type, pointer to function type, or pointer
3045 // to member function type:
3046
3047 if (!ParamType->isFunctionType() &&
3048 !ParamType->isFunctionPointerType() &&
3049 !ParamType->isMemberFunctionPointerType()) {
3050 if (Ovl->hasExplicitTemplateArgs()) {
3051 // But we can still look for an explicit specialization.
3052 if (FunctionDecl *ExplicitSpec
3053 = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3054 return GetTypeOfFunction(S, R, ExplicitSpec);
3055 }
3056
3057 return QualType();
3058 }
3059
3060 // Gather the explicit template arguments, if any.
3061 TemplateArgumentListInfo ExplicitTemplateArgs;
3062 if (Ovl->hasExplicitTemplateArgs())
3063 Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
3064 QualType Match;
3065 for (UnresolvedSetIterator I = Ovl->decls_begin(),
3066 E = Ovl->decls_end(); I != E; ++I) {
3067 NamedDecl *D = (*I)->getUnderlyingDecl();
3068
3069 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3070 // - If the argument is an overload set containing one or more
3071 // function templates, the parameter is treated as a
3072 // non-deduced context.
3073 if (!Ovl->hasExplicitTemplateArgs())
3074 return QualType();
3075
3076 // Otherwise, see if we can resolve a function type
3077 FunctionDecl *Specialization = nullptr;
3078 TemplateDeductionInfo Info(Ovl->getNameLoc());
3079 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3080 Specialization, Info))
3081 continue;
3082
3083 D = Specialization;
3084 }
3085
3086 FunctionDecl *Fn = cast<FunctionDecl>(D);
3087 QualType ArgType = GetTypeOfFunction(S, R, Fn);
3088 if (ArgType.isNull()) continue;
3089
3090 // Function-to-pointer conversion.
3091 if (!ParamWasReference && ParamType->isPointerType() &&
3092 ArgType->isFunctionType())
3093 ArgType = S.Context.getPointerType(ArgType);
3094
3095 // - If the argument is an overload set (not containing function
3096 // templates), trial argument deduction is attempted using each
3097 // of the members of the set. If deduction succeeds for only one
3098 // of the overload set members, that member is used as the
3099 // argument value for the deduction. If deduction succeeds for
3100 // more than one member of the overload set the parameter is
3101 // treated as a non-deduced context.
3102
3103 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3104 // Type deduction is done independently for each P/A pair, and
3105 // the deduced template argument values are then combined.
3106 // So we do not reject deductions which were made elsewhere.
3107 SmallVector<DeducedTemplateArgument, 8>
3108 Deduced(TemplateParams->size());
3109 TemplateDeductionInfo Info(Ovl->getNameLoc());
3110 Sema::TemplateDeductionResult Result
3111 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3112 ArgType, Info, Deduced, TDF);
3113 if (Result) continue;
3114 if (!Match.isNull()) return QualType();
3115 Match = ArgType;
3116 }
3117
3118 return Match;
3119 }
3120
3121 /// \brief Perform the adjustments to the parameter and argument types
3122 /// described in C++ [temp.deduct.call].
3123 ///
3124 /// \returns true if the caller should not attempt to perform any template
3125 /// argument deduction based on this P/A pair because the argument is an
3126 /// overloaded function set that could not be resolved.
AdjustFunctionParmAndArgTypesForDeduction(Sema & S,TemplateParameterList * TemplateParams,QualType & ParamType,QualType & ArgType,Expr * Arg,unsigned & TDF)3127 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
3128 TemplateParameterList *TemplateParams,
3129 QualType &ParamType,
3130 QualType &ArgType,
3131 Expr *Arg,
3132 unsigned &TDF) {
3133 // C++0x [temp.deduct.call]p3:
3134 // If P is a cv-qualified type, the top level cv-qualifiers of P's type
3135 // are ignored for type deduction.
3136 if (ParamType.hasQualifiers())
3137 ParamType = ParamType.getUnqualifiedType();
3138 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3139 if (ParamRefType) {
3140 QualType PointeeType = ParamRefType->getPointeeType();
3141
3142 // If the argument has incomplete array type, try to complete its type.
3143 if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
3144 ArgType = Arg->getType();
3145
3146 // [C++0x] If P is an rvalue reference to a cv-unqualified
3147 // template parameter and the argument is an lvalue, the type
3148 // "lvalue reference to A" is used in place of A for type
3149 // deduction.
3150 if (isa<RValueReferenceType>(ParamType)) {
3151 if (!PointeeType.getQualifiers() &&
3152 isa<TemplateTypeParmType>(PointeeType) &&
3153 Arg->Classify(S.Context).isLValue() &&
3154 Arg->getType() != S.Context.OverloadTy &&
3155 Arg->getType() != S.Context.BoundMemberTy)
3156 ArgType = S.Context.getLValueReferenceType(ArgType);
3157 }
3158
3159 // [...] If P is a reference type, the type referred to by P is used
3160 // for type deduction.
3161 ParamType = PointeeType;
3162 }
3163
3164 // Overload sets usually make this parameter an undeduced
3165 // context, but there are sometimes special circumstances.
3166 if (ArgType == S.Context.OverloadTy) {
3167 ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3168 Arg, ParamType,
3169 ParamRefType != nullptr);
3170 if (ArgType.isNull())
3171 return true;
3172 }
3173
3174 if (ParamRefType) {
3175 // C++0x [temp.deduct.call]p3:
3176 // [...] If P is of the form T&&, where T is a template parameter, and
3177 // the argument is an lvalue, the type A& is used in place of A for
3178 // type deduction.
3179 if (ParamRefType->isRValueReferenceType() &&
3180 ParamRefType->getAs<TemplateTypeParmType>() &&
3181 Arg->isLValue())
3182 ArgType = S.Context.getLValueReferenceType(ArgType);
3183 } else {
3184 // C++ [temp.deduct.call]p2:
3185 // If P is not a reference type:
3186 // - If A is an array type, the pointer type produced by the
3187 // array-to-pointer standard conversion (4.2) is used in place of
3188 // A for type deduction; otherwise,
3189 if (ArgType->isArrayType())
3190 ArgType = S.Context.getArrayDecayedType(ArgType);
3191 // - If A is a function type, the pointer type produced by the
3192 // function-to-pointer standard conversion (4.3) is used in place
3193 // of A for type deduction; otherwise,
3194 else if (ArgType->isFunctionType())
3195 ArgType = S.Context.getPointerType(ArgType);
3196 else {
3197 // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3198 // type are ignored for type deduction.
3199 ArgType = ArgType.getUnqualifiedType();
3200 }
3201 }
3202
3203 // C++0x [temp.deduct.call]p4:
3204 // In general, the deduction process attempts to find template argument
3205 // values that will make the deduced A identical to A (after the type A
3206 // is transformed as described above). [...]
3207 TDF = TDF_SkipNonDependent;
3208
3209 // - If the original P is a reference type, the deduced A (i.e., the
3210 // type referred to by the reference) can be more cv-qualified than
3211 // the transformed A.
3212 if (ParamRefType)
3213 TDF |= TDF_ParamWithReferenceType;
3214 // - The transformed A can be another pointer or pointer to member
3215 // type that can be converted to the deduced A via a qualification
3216 // conversion (4.4).
3217 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3218 ArgType->isObjCObjectPointerType())
3219 TDF |= TDF_IgnoreQualifiers;
3220 // - If P is a class and P has the form simple-template-id, then the
3221 // transformed A can be a derived class of the deduced A. Likewise,
3222 // if P is a pointer to a class of the form simple-template-id, the
3223 // transformed A can be a pointer to a derived class pointed to by
3224 // the deduced A.
3225 if (isSimpleTemplateIdType(ParamType) ||
3226 (isa<PointerType>(ParamType) &&
3227 isSimpleTemplateIdType(
3228 ParamType->getAs<PointerType>()->getPointeeType())))
3229 TDF |= TDF_DerivedClass;
3230
3231 return false;
3232 }
3233
3234 static bool hasDeducibleTemplateParameters(Sema &S,
3235 FunctionTemplateDecl *FunctionTemplate,
3236 QualType T);
3237
3238 /// \brief Perform template argument deduction by matching a parameter type
3239 /// against a single expression, where the expression is an element of
3240 /// an initializer list that was originally matched against a parameter
3241 /// of type \c initializer_list\<ParamType\>.
3242 static Sema::TemplateDeductionResult
DeduceTemplateArgumentByListElement(Sema & S,TemplateParameterList * TemplateParams,QualType ParamType,Expr * Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF)3243 DeduceTemplateArgumentByListElement(Sema &S,
3244 TemplateParameterList *TemplateParams,
3245 QualType ParamType, Expr *Arg,
3246 TemplateDeductionInfo &Info,
3247 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3248 unsigned TDF) {
3249 // Handle the case where an init list contains another init list as the
3250 // element.
3251 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3252 QualType X;
3253 if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
3254 return Sema::TDK_Success; // Just ignore this expression.
3255
3256 // Recurse down into the init list.
3257 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3258 if (Sema::TemplateDeductionResult Result =
3259 DeduceTemplateArgumentByListElement(S, TemplateParams, X,
3260 ILE->getInit(i),
3261 Info, Deduced, TDF))
3262 return Result;
3263 }
3264 return Sema::TDK_Success;
3265 }
3266
3267 // For all other cases, just match by type.
3268 QualType ArgType = Arg->getType();
3269 if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
3270 ArgType, Arg, TDF)) {
3271 Info.Expression = Arg;
3272 return Sema::TDK_FailedOverloadResolution;
3273 }
3274 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3275 ArgType, Info, Deduced, TDF);
3276 }
3277
3278 /// \brief Perform template argument deduction from a function call
3279 /// (C++ [temp.deduct.call]).
3280 ///
3281 /// \param FunctionTemplate the function template for which we are performing
3282 /// template argument deduction.
3283 ///
3284 /// \param ExplicitTemplateArgs the explicit template arguments provided
3285 /// for this call.
3286 ///
3287 /// \param Args the function call arguments
3288 ///
3289 /// \param Specialization if template argument deduction was successful,
3290 /// this will be set to the function template specialization produced by
3291 /// template argument deduction.
3292 ///
3293 /// \param Info the argument will be updated to provide additional information
3294 /// about template argument deduction.
3295 ///
3296 /// \returns the result of template argument deduction.
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3297 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
3298 FunctionTemplateDecl *FunctionTemplate,
3299 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3300 FunctionDecl *&Specialization, TemplateDeductionInfo &Info) {
3301 if (FunctionTemplate->isInvalidDecl())
3302 return TDK_Invalid;
3303
3304 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3305
3306 // C++ [temp.deduct.call]p1:
3307 // Template argument deduction is done by comparing each function template
3308 // parameter type (call it P) with the type of the corresponding argument
3309 // of the call (call it A) as described below.
3310 unsigned CheckArgs = Args.size();
3311 if (Args.size() < Function->getMinRequiredArguments())
3312 return TDK_TooFewArguments;
3313 else if (Args.size() > Function->getNumParams()) {
3314 const FunctionProtoType *Proto
3315 = Function->getType()->getAs<FunctionProtoType>();
3316 if (Proto->isTemplateVariadic())
3317 /* Do nothing */;
3318 else if (Proto->isVariadic())
3319 CheckArgs = Function->getNumParams();
3320 else
3321 return TDK_TooManyArguments;
3322 }
3323
3324 // The types of the parameters from which we will perform template argument
3325 // deduction.
3326 LocalInstantiationScope InstScope(*this);
3327 TemplateParameterList *TemplateParams
3328 = FunctionTemplate->getTemplateParameters();
3329 SmallVector<DeducedTemplateArgument, 4> Deduced;
3330 SmallVector<QualType, 4> ParamTypes;
3331 unsigned NumExplicitlySpecified = 0;
3332 if (ExplicitTemplateArgs) {
3333 TemplateDeductionResult Result =
3334 SubstituteExplicitTemplateArguments(FunctionTemplate,
3335 *ExplicitTemplateArgs,
3336 Deduced,
3337 ParamTypes,
3338 nullptr,
3339 Info);
3340 if (Result)
3341 return Result;
3342
3343 NumExplicitlySpecified = Deduced.size();
3344 } else {
3345 // Just fill in the parameter types from the function declaration.
3346 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3347 ParamTypes.push_back(Function->getParamDecl(I)->getType());
3348 }
3349
3350 // Deduce template arguments from the function parameters.
3351 Deduced.resize(TemplateParams->size());
3352 unsigned ArgIdx = 0;
3353 SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3354 for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
3355 ParamIdx != NumParams; ++ParamIdx) {
3356 QualType OrigParamType = ParamTypes[ParamIdx];
3357 QualType ParamType = OrigParamType;
3358
3359 const PackExpansionType *ParamExpansion
3360 = dyn_cast<PackExpansionType>(ParamType);
3361 if (!ParamExpansion) {
3362 // Simple case: matching a function parameter to a function argument.
3363 if (ArgIdx >= CheckArgs)
3364 break;
3365
3366 Expr *Arg = Args[ArgIdx++];
3367 QualType ArgType = Arg->getType();
3368
3369 unsigned TDF = 0;
3370 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3371 ParamType, ArgType, Arg,
3372 TDF))
3373 continue;
3374
3375 // If we have nothing to deduce, we're done.
3376 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3377 continue;
3378
3379 // If the argument is an initializer list ...
3380 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3381 // ... then the parameter is an undeduced context, unless the parameter
3382 // type is (reference to cv) std::initializer_list<P'>, in which case
3383 // deduction is done for each element of the initializer list, and the
3384 // result is the deduced type if it's the same for all elements.
3385 QualType X;
3386 // Removing references was already done.
3387 if (!isStdInitializerList(ParamType, &X))
3388 continue;
3389
3390 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3391 if (TemplateDeductionResult Result =
3392 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3393 ILE->getInit(i),
3394 Info, Deduced, TDF))
3395 return Result;
3396 }
3397 // Don't track the argument type, since an initializer list has none.
3398 continue;
3399 }
3400
3401 // Keep track of the argument type and corresponding parameter index,
3402 // so we can check for compatibility between the deduced A and A.
3403 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3404 ArgType));
3405
3406 if (TemplateDeductionResult Result
3407 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3408 ParamType, ArgType,
3409 Info, Deduced, TDF))
3410 return Result;
3411
3412 continue;
3413 }
3414
3415 // C++0x [temp.deduct.call]p1:
3416 // For a function parameter pack that occurs at the end of the
3417 // parameter-declaration-list, the type A of each remaining argument of
3418 // the call is compared with the type P of the declarator-id of the
3419 // function parameter pack. Each comparison deduces template arguments
3420 // for subsequent positions in the template parameter packs expanded by
3421 // the function parameter pack. For a function parameter pack that does
3422 // not occur at the end of the parameter-declaration-list, the type of
3423 // the parameter pack is a non-deduced context.
3424 if (ParamIdx + 1 < NumParams)
3425 break;
3426
3427 QualType ParamPattern = ParamExpansion->getPattern();
3428 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
3429 ParamPattern);
3430
3431 bool HasAnyArguments = false;
3432 for (; ArgIdx < Args.size(); ++ArgIdx) {
3433 HasAnyArguments = true;
3434
3435 QualType OrigParamType = ParamPattern;
3436 ParamType = OrigParamType;
3437 Expr *Arg = Args[ArgIdx];
3438 QualType ArgType = Arg->getType();
3439
3440 unsigned TDF = 0;
3441 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3442 ParamType, ArgType, Arg,
3443 TDF)) {
3444 // We can't actually perform any deduction for this argument, so stop
3445 // deduction at this point.
3446 ++ArgIdx;
3447 break;
3448 }
3449
3450 // As above, initializer lists need special handling.
3451 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3452 QualType X;
3453 if (!isStdInitializerList(ParamType, &X)) {
3454 ++ArgIdx;
3455 break;
3456 }
3457
3458 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3459 if (TemplateDeductionResult Result =
3460 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3461 ILE->getInit(i)->getType(),
3462 Info, Deduced, TDF))
3463 return Result;
3464 }
3465 } else {
3466
3467 // Keep track of the argument type and corresponding argument index,
3468 // so we can check for compatibility between the deduced A and A.
3469 if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3470 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3471 ArgType));
3472
3473 if (TemplateDeductionResult Result
3474 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3475 ParamType, ArgType, Info,
3476 Deduced, TDF))
3477 return Result;
3478 }
3479
3480 PackScope.nextPackElement();
3481 }
3482
3483 // Build argument packs for each of the parameter packs expanded by this
3484 // pack expansion.
3485 if (auto Result = PackScope.finish(HasAnyArguments))
3486 return Result;
3487
3488 // After we've matching against a parameter pack, we're done.
3489 break;
3490 }
3491
3492 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3493 NumExplicitlySpecified,
3494 Specialization, Info, &OriginalCallArgs);
3495 }
3496
adjustCCAndNoReturn(QualType ArgFunctionType,QualType FunctionType)3497 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
3498 QualType FunctionType) {
3499 if (ArgFunctionType.isNull())
3500 return ArgFunctionType;
3501
3502 const FunctionProtoType *FunctionTypeP =
3503 FunctionType->castAs<FunctionProtoType>();
3504 CallingConv CC = FunctionTypeP->getCallConv();
3505 bool NoReturn = FunctionTypeP->getNoReturnAttr();
3506 const FunctionProtoType *ArgFunctionTypeP =
3507 ArgFunctionType->getAs<FunctionProtoType>();
3508 if (ArgFunctionTypeP->getCallConv() == CC &&
3509 ArgFunctionTypeP->getNoReturnAttr() == NoReturn)
3510 return ArgFunctionType;
3511
3512 FunctionType::ExtInfo EI = ArgFunctionTypeP->getExtInfo().withCallingConv(CC);
3513 EI = EI.withNoReturn(NoReturn);
3514 ArgFunctionTypeP =
3515 cast<FunctionProtoType>(Context.adjustFunctionType(ArgFunctionTypeP, EI));
3516 return QualType(ArgFunctionTypeP, 0);
3517 }
3518
3519 /// \brief Deduce template arguments when taking the address of a function
3520 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3521 /// a template.
3522 ///
3523 /// \param FunctionTemplate the function template for which we are performing
3524 /// template argument deduction.
3525 ///
3526 /// \param ExplicitTemplateArgs the explicitly-specified template
3527 /// arguments.
3528 ///
3529 /// \param ArgFunctionType the function type that will be used as the
3530 /// "argument" type (A) when performing template argument deduction from the
3531 /// function template's function type. This type may be NULL, if there is no
3532 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3533 ///
3534 /// \param Specialization if template argument deduction was successful,
3535 /// this will be set to the function template specialization produced by
3536 /// template argument deduction.
3537 ///
3538 /// \param Info the argument will be updated to provide additional information
3539 /// about template argument deduction.
3540 ///
3541 /// \returns the result of template argument deduction.
3542 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ArgFunctionType,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool InOverloadResolution)3543 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3544 TemplateArgumentListInfo *ExplicitTemplateArgs,
3545 QualType ArgFunctionType,
3546 FunctionDecl *&Specialization,
3547 TemplateDeductionInfo &Info,
3548 bool InOverloadResolution) {
3549 if (FunctionTemplate->isInvalidDecl())
3550 return TDK_Invalid;
3551
3552 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3553 TemplateParameterList *TemplateParams
3554 = FunctionTemplate->getTemplateParameters();
3555 QualType FunctionType = Function->getType();
3556 if (!InOverloadResolution)
3557 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType);
3558
3559 // Substitute any explicit template arguments.
3560 LocalInstantiationScope InstScope(*this);
3561 SmallVector<DeducedTemplateArgument, 4> Deduced;
3562 unsigned NumExplicitlySpecified = 0;
3563 SmallVector<QualType, 4> ParamTypes;
3564 if (ExplicitTemplateArgs) {
3565 if (TemplateDeductionResult Result
3566 = SubstituteExplicitTemplateArguments(FunctionTemplate,
3567 *ExplicitTemplateArgs,
3568 Deduced, ParamTypes,
3569 &FunctionType, Info))
3570 return Result;
3571
3572 NumExplicitlySpecified = Deduced.size();
3573 }
3574
3575 // Unevaluated SFINAE context.
3576 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3577 SFINAETrap Trap(*this);
3578
3579 Deduced.resize(TemplateParams->size());
3580
3581 // If the function has a deduced return type, substitute it for a dependent
3582 // type so that we treat it as a non-deduced context in what follows.
3583 bool HasDeducedReturnType = false;
3584 if (getLangOpts().CPlusPlus1y && InOverloadResolution &&
3585 Function->getReturnType()->getContainedAutoType()) {
3586 FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
3587 HasDeducedReturnType = true;
3588 }
3589
3590 if (!ArgFunctionType.isNull()) {
3591 unsigned TDF = TDF_TopLevelParameterTypeList;
3592 if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
3593 // Deduce template arguments from the function type.
3594 if (TemplateDeductionResult Result
3595 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3596 FunctionType, ArgFunctionType,
3597 Info, Deduced, TDF))
3598 return Result;
3599 }
3600
3601 if (TemplateDeductionResult Result
3602 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3603 NumExplicitlySpecified,
3604 Specialization, Info))
3605 return Result;
3606
3607 // If the function has a deduced return type, deduce it now, so we can check
3608 // that the deduced function type matches the requested type.
3609 if (HasDeducedReturnType &&
3610 Specialization->getReturnType()->isUndeducedType() &&
3611 DeduceReturnType(Specialization, Info.getLocation(), false))
3612 return TDK_MiscellaneousDeductionFailure;
3613
3614 // If the requested function type does not match the actual type of the
3615 // specialization with respect to arguments of compatible pointer to function
3616 // types, template argument deduction fails.
3617 if (!ArgFunctionType.isNull()) {
3618 if (InOverloadResolution && !isSameOrCompatibleFunctionType(
3619 Context.getCanonicalType(Specialization->getType()),
3620 Context.getCanonicalType(ArgFunctionType)))
3621 return TDK_MiscellaneousDeductionFailure;
3622 else if(!InOverloadResolution &&
3623 !Context.hasSameType(Specialization->getType(), ArgFunctionType))
3624 return TDK_MiscellaneousDeductionFailure;
3625 }
3626
3627 return TDK_Success;
3628 }
3629
3630 /// \brief Given a function declaration (e.g. a generic lambda conversion
3631 /// function) that contains an 'auto' in its result type, substitute it
3632 /// with TypeToReplaceAutoWith. Be careful to pass in the type you want
3633 /// to replace 'auto' with and not the actual result type you want
3634 /// to set the function to.
3635 static inline void
SubstAutoWithinFunctionReturnType(FunctionDecl * F,QualType TypeToReplaceAutoWith,Sema & S)3636 SubstAutoWithinFunctionReturnType(FunctionDecl *F,
3637 QualType TypeToReplaceAutoWith, Sema &S) {
3638 assert(!TypeToReplaceAutoWith->getContainedAutoType());
3639 QualType AutoResultType = F->getReturnType();
3640 assert(AutoResultType->getContainedAutoType());
3641 QualType DeducedResultType = S.SubstAutoType(AutoResultType,
3642 TypeToReplaceAutoWith);
3643 S.Context.adjustDeducedFunctionResultType(F, DeducedResultType);
3644 }
3645
3646 /// \brief Given a specialized conversion operator of a generic lambda
3647 /// create the corresponding specializations of the call operator and
3648 /// the static-invoker. If the return type of the call operator is auto,
3649 /// deduce its return type and check if that matches the
3650 /// return type of the destination function ptr.
3651
3652 static inline Sema::TemplateDeductionResult
SpecializeCorrespondingLambdaCallOperatorAndInvoker(CXXConversionDecl * ConversionSpecialized,SmallVectorImpl<DeducedTemplateArgument> & DeducedArguments,QualType ReturnTypeOfDestFunctionPtr,TemplateDeductionInfo & TDInfo,Sema & S)3653 SpecializeCorrespondingLambdaCallOperatorAndInvoker(
3654 CXXConversionDecl *ConversionSpecialized,
3655 SmallVectorImpl<DeducedTemplateArgument> &DeducedArguments,
3656 QualType ReturnTypeOfDestFunctionPtr,
3657 TemplateDeductionInfo &TDInfo,
3658 Sema &S) {
3659
3660 CXXRecordDecl *LambdaClass = ConversionSpecialized->getParent();
3661 assert(LambdaClass && LambdaClass->isGenericLambda());
3662
3663 CXXMethodDecl *CallOpGeneric = LambdaClass->getLambdaCallOperator();
3664 QualType CallOpResultType = CallOpGeneric->getReturnType();
3665 const bool GenericLambdaCallOperatorHasDeducedReturnType =
3666 CallOpResultType->getContainedAutoType();
3667
3668 FunctionTemplateDecl *CallOpTemplate =
3669 CallOpGeneric->getDescribedFunctionTemplate();
3670
3671 FunctionDecl *CallOpSpecialized = nullptr;
3672 // Use the deduced arguments of the conversion function, to specialize our
3673 // generic lambda's call operator.
3674 if (Sema::TemplateDeductionResult Result
3675 = S.FinishTemplateArgumentDeduction(CallOpTemplate,
3676 DeducedArguments,
3677 0, CallOpSpecialized, TDInfo))
3678 return Result;
3679
3680 // If we need to deduce the return type, do so (instantiates the callop).
3681 if (GenericLambdaCallOperatorHasDeducedReturnType &&
3682 CallOpSpecialized->getReturnType()->isUndeducedType())
3683 S.DeduceReturnType(CallOpSpecialized,
3684 CallOpSpecialized->getPointOfInstantiation(),
3685 /*Diagnose*/ true);
3686
3687 // Check to see if the return type of the destination ptr-to-function
3688 // matches the return type of the call operator.
3689 if (!S.Context.hasSameType(CallOpSpecialized->getReturnType(),
3690 ReturnTypeOfDestFunctionPtr))
3691 return Sema::TDK_NonDeducedMismatch;
3692 // Since we have succeeded in matching the source and destination
3693 // ptr-to-functions (now including return type), and have successfully
3694 // specialized our corresponding call operator, we are ready to
3695 // specialize the static invoker with the deduced arguments of our
3696 // ptr-to-function.
3697 FunctionDecl *InvokerSpecialized = nullptr;
3698 FunctionTemplateDecl *InvokerTemplate = LambdaClass->
3699 getLambdaStaticInvoker()->getDescribedFunctionTemplate();
3700
3701 Sema::TemplateDeductionResult LLVM_ATTRIBUTE_UNUSED Result
3702 = S.FinishTemplateArgumentDeduction(InvokerTemplate, DeducedArguments, 0,
3703 InvokerSpecialized, TDInfo);
3704 assert(Result == Sema::TDK_Success &&
3705 "If the call operator succeeded so should the invoker!");
3706 // Set the result type to match the corresponding call operator
3707 // specialization's result type.
3708 if (GenericLambdaCallOperatorHasDeducedReturnType &&
3709 InvokerSpecialized->getReturnType()->isUndeducedType()) {
3710 // Be sure to get the type to replace 'auto' with and not
3711 // the full result type of the call op specialization
3712 // to substitute into the 'auto' of the invoker and conversion
3713 // function.
3714 // For e.g.
3715 // int* (*fp)(int*) = [](auto* a) -> auto* { return a; };
3716 // We don't want to subst 'int*' into 'auto' to get int**.
3717
3718 QualType TypeToReplaceAutoWith = CallOpSpecialized->getReturnType()
3719 ->getContainedAutoType()
3720 ->getDeducedType();
3721 SubstAutoWithinFunctionReturnType(InvokerSpecialized,
3722 TypeToReplaceAutoWith, S);
3723 SubstAutoWithinFunctionReturnType(ConversionSpecialized,
3724 TypeToReplaceAutoWith, S);
3725 }
3726
3727 // Ensure that static invoker doesn't have a const qualifier.
3728 // FIXME: When creating the InvokerTemplate in SemaLambda.cpp
3729 // do not use the CallOperator's TypeSourceInfo which allows
3730 // the const qualifier to leak through.
3731 const FunctionProtoType *InvokerFPT = InvokerSpecialized->
3732 getType().getTypePtr()->castAs<FunctionProtoType>();
3733 FunctionProtoType::ExtProtoInfo EPI = InvokerFPT->getExtProtoInfo();
3734 EPI.TypeQuals = 0;
3735 InvokerSpecialized->setType(S.Context.getFunctionType(
3736 InvokerFPT->getReturnType(), InvokerFPT->getParamTypes(), EPI));
3737 return Sema::TDK_Success;
3738 }
3739 /// \brief Deduce template arguments for a templated conversion
3740 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
3741 /// conversion function template specialization.
3742 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * ConversionTemplate,QualType ToType,CXXConversionDecl * & Specialization,TemplateDeductionInfo & Info)3743 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
3744 QualType ToType,
3745 CXXConversionDecl *&Specialization,
3746 TemplateDeductionInfo &Info) {
3747 if (ConversionTemplate->isInvalidDecl())
3748 return TDK_Invalid;
3749
3750 CXXConversionDecl *ConversionGeneric
3751 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
3752
3753 QualType FromType = ConversionGeneric->getConversionType();
3754
3755 // Canonicalize the types for deduction.
3756 QualType P = Context.getCanonicalType(FromType);
3757 QualType A = Context.getCanonicalType(ToType);
3758
3759 // C++0x [temp.deduct.conv]p2:
3760 // If P is a reference type, the type referred to by P is used for
3761 // type deduction.
3762 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3763 P = PRef->getPointeeType();
3764
3765 // C++0x [temp.deduct.conv]p4:
3766 // [...] If A is a reference type, the type referred to by A is used
3767 // for type deduction.
3768 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3769 A = ARef->getPointeeType().getUnqualifiedType();
3770 // C++ [temp.deduct.conv]p3:
3771 //
3772 // If A is not a reference type:
3773 else {
3774 assert(!A->isReferenceType() && "Reference types were handled above");
3775
3776 // - If P is an array type, the pointer type produced by the
3777 // array-to-pointer standard conversion (4.2) is used in place
3778 // of P for type deduction; otherwise,
3779 if (P->isArrayType())
3780 P = Context.getArrayDecayedType(P);
3781 // - If P is a function type, the pointer type produced by the
3782 // function-to-pointer standard conversion (4.3) is used in
3783 // place of P for type deduction; otherwise,
3784 else if (P->isFunctionType())
3785 P = Context.getPointerType(P);
3786 // - If P is a cv-qualified type, the top level cv-qualifiers of
3787 // P's type are ignored for type deduction.
3788 else
3789 P = P.getUnqualifiedType();
3790
3791 // C++0x [temp.deduct.conv]p4:
3792 // If A is a cv-qualified type, the top level cv-qualifiers of A's
3793 // type are ignored for type deduction. If A is a reference type, the type
3794 // referred to by A is used for type deduction.
3795 A = A.getUnqualifiedType();
3796 }
3797
3798 // Unevaluated SFINAE context.
3799 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3800 SFINAETrap Trap(*this);
3801
3802 // C++ [temp.deduct.conv]p1:
3803 // Template argument deduction is done by comparing the return
3804 // type of the template conversion function (call it P) with the
3805 // type that is required as the result of the conversion (call it
3806 // A) as described in 14.8.2.4.
3807 TemplateParameterList *TemplateParams
3808 = ConversionTemplate->getTemplateParameters();
3809 SmallVector<DeducedTemplateArgument, 4> Deduced;
3810 Deduced.resize(TemplateParams->size());
3811
3812 // C++0x [temp.deduct.conv]p4:
3813 // In general, the deduction process attempts to find template
3814 // argument values that will make the deduced A identical to
3815 // A. However, there are two cases that allow a difference:
3816 unsigned TDF = 0;
3817 // - If the original A is a reference type, A can be more
3818 // cv-qualified than the deduced A (i.e., the type referred to
3819 // by the reference)
3820 if (ToType->isReferenceType())
3821 TDF |= TDF_ParamWithReferenceType;
3822 // - The deduced A can be another pointer or pointer to member
3823 // type that can be converted to A via a qualification
3824 // conversion.
3825 //
3826 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3827 // both P and A are pointers or member pointers. In this case, we
3828 // just ignore cv-qualifiers completely).
3829 if ((P->isPointerType() && A->isPointerType()) ||
3830 (P->isMemberPointerType() && A->isMemberPointerType()))
3831 TDF |= TDF_IgnoreQualifiers;
3832 if (TemplateDeductionResult Result
3833 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3834 P, A, Info, Deduced, TDF))
3835 return Result;
3836
3837 // Create an Instantiation Scope for finalizing the operator.
3838 LocalInstantiationScope InstScope(*this);
3839 // Finish template argument deduction.
3840 FunctionDecl *ConversionSpecialized = nullptr;
3841 TemplateDeductionResult Result
3842 = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
3843 ConversionSpecialized, Info);
3844 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
3845
3846 // If the conversion operator is being invoked on a lambda closure to convert
3847 // to a ptr-to-function, use the deduced arguments from the conversion function
3848 // to specialize the corresponding call operator.
3849 // e.g., int (*fp)(int) = [](auto a) { return a; };
3850 if (Result == TDK_Success && isLambdaConversionOperator(ConversionGeneric)) {
3851
3852 // Get the return type of the destination ptr-to-function we are converting
3853 // to. This is necessary for matching the lambda call operator's return
3854 // type to that of the destination ptr-to-function's return type.
3855 assert(A->isPointerType() &&
3856 "Can only convert from lambda to ptr-to-function");
3857 const FunctionType *ToFunType =
3858 A->getPointeeType().getTypePtr()->getAs<FunctionType>();
3859 const QualType DestFunctionPtrReturnType = ToFunType->getReturnType();
3860
3861 // Create the corresponding specializations of the call operator and
3862 // the static-invoker; and if the return type is auto,
3863 // deduce the return type and check if it matches the
3864 // DestFunctionPtrReturnType.
3865 // For instance:
3866 // auto L = [](auto a) { return f(a); };
3867 // int (*fp)(int) = L;
3868 // char (*fp2)(int) = L; <-- Not OK.
3869
3870 Result = SpecializeCorrespondingLambdaCallOperatorAndInvoker(
3871 Specialization, Deduced, DestFunctionPtrReturnType,
3872 Info, *this);
3873 }
3874 return Result;
3875 }
3876
3877 /// \brief Deduce template arguments for a function template when there is
3878 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3879 ///
3880 /// \param FunctionTemplate the function template for which we are performing
3881 /// template argument deduction.
3882 ///
3883 /// \param ExplicitTemplateArgs the explicitly-specified template
3884 /// arguments.
3885 ///
3886 /// \param Specialization if template argument deduction was successful,
3887 /// this will be set to the function template specialization produced by
3888 /// template argument deduction.
3889 ///
3890 /// \param Info the argument will be updated to provide additional information
3891 /// about template argument deduction.
3892 ///
3893 /// \returns the result of template argument deduction.
3894 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool InOverloadResolution)3895 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3896 TemplateArgumentListInfo *ExplicitTemplateArgs,
3897 FunctionDecl *&Specialization,
3898 TemplateDeductionInfo &Info,
3899 bool InOverloadResolution) {
3900 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3901 QualType(), Specialization, Info,
3902 InOverloadResolution);
3903 }
3904
3905 namespace {
3906 /// Substitute the 'auto' type specifier within a type for a given replacement
3907 /// type.
3908 class SubstituteAutoTransform :
3909 public TreeTransform<SubstituteAutoTransform> {
3910 QualType Replacement;
3911 public:
SubstituteAutoTransform(Sema & SemaRef,QualType Replacement)3912 SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3913 TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3914 }
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)3915 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3916 // If we're building the type pattern to deduce against, don't wrap the
3917 // substituted type in an AutoType. Certain template deduction rules
3918 // apply only when a template type parameter appears directly (and not if
3919 // the parameter is found through desugaring). For instance:
3920 // auto &&lref = lvalue;
3921 // must transform into "rvalue reference to T" not "rvalue reference to
3922 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3923 if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
3924 QualType Result = Replacement;
3925 TemplateTypeParmTypeLoc NewTL =
3926 TLB.push<TemplateTypeParmTypeLoc>(Result);
3927 NewTL.setNameLoc(TL.getNameLoc());
3928 return Result;
3929 } else {
3930 bool Dependent =
3931 !Replacement.isNull() && Replacement->isDependentType();
3932 QualType Result =
3933 SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
3934 TL.getTypePtr()->isDecltypeAuto(),
3935 Dependent);
3936 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3937 NewTL.setNameLoc(TL.getNameLoc());
3938 return Result;
3939 }
3940 }
3941
TransformLambdaExpr(LambdaExpr * E)3942 ExprResult TransformLambdaExpr(LambdaExpr *E) {
3943 // Lambdas never need to be transformed.
3944 return E;
3945 }
3946
Apply(TypeLoc TL)3947 QualType Apply(TypeLoc TL) {
3948 // Create some scratch storage for the transformed type locations.
3949 // FIXME: We're just going to throw this information away. Don't build it.
3950 TypeLocBuilder TLB;
3951 TLB.reserve(TL.getFullDataSize());
3952 return TransformType(TLB, TL);
3953 }
3954 };
3955 }
3956
3957 Sema::DeduceAutoResult
DeduceAutoType(TypeSourceInfo * Type,Expr * & Init,QualType & Result)3958 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
3959 return DeduceAutoType(Type->getTypeLoc(), Init, Result);
3960 }
3961
3962 /// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
3963 ///
3964 /// \param Type the type pattern using the auto type-specifier.
3965 /// \param Init the initializer for the variable whose type is to be deduced.
3966 /// \param Result if type deduction was successful, this will be set to the
3967 /// deduced type.
3968 Sema::DeduceAutoResult
DeduceAutoType(TypeLoc Type,Expr * & Init,QualType & Result)3969 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
3970 if (Init->getType()->isNonOverloadPlaceholderType()) {
3971 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
3972 if (NonPlaceholder.isInvalid())
3973 return DAR_FailedAlreadyDiagnosed;
3974 Init = NonPlaceholder.get();
3975 }
3976
3977 if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
3978 Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
3979 assert(!Result.isNull() && "substituting DependentTy can't fail");
3980 return DAR_Succeeded;
3981 }
3982
3983 // If this is a 'decltype(auto)' specifier, do the decltype dance.
3984 // Since 'decltype(auto)' can only occur at the top of the type, we
3985 // don't need to go digging for it.
3986 if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
3987 if (AT->isDecltypeAuto()) {
3988 if (isa<InitListExpr>(Init)) {
3989 Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
3990 return DAR_FailedAlreadyDiagnosed;
3991 }
3992
3993 QualType Deduced = BuildDecltypeType(Init, Init->getLocStart());
3994 // FIXME: Support a non-canonical deduced type for 'auto'.
3995 Deduced = Context.getCanonicalType(Deduced);
3996 Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
3997 if (Result.isNull())
3998 return DAR_FailedAlreadyDiagnosed;
3999 return DAR_Succeeded;
4000 }
4001 }
4002
4003 SourceLocation Loc = Init->getExprLoc();
4004
4005 LocalInstantiationScope InstScope(*this);
4006
4007 // Build template<class TemplParam> void Func(FuncParam);
4008 TemplateTypeParmDecl *TemplParam =
4009 TemplateTypeParmDecl::Create(Context, nullptr, SourceLocation(), Loc, 0, 0,
4010 nullptr, false, false);
4011 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
4012 NamedDecl *TemplParamPtr = TemplParam;
4013 FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
4014 Loc);
4015
4016 QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
4017 assert(!FuncParam.isNull() &&
4018 "substituting template parameter for 'auto' failed");
4019
4020 // Deduce type of TemplParam in Func(Init)
4021 SmallVector<DeducedTemplateArgument, 1> Deduced;
4022 Deduced.resize(1);
4023 QualType InitType = Init->getType();
4024 unsigned TDF = 0;
4025
4026 TemplateDeductionInfo Info(Loc);
4027
4028 InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
4029 if (InitList) {
4030 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
4031 if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
4032 TemplArg,
4033 InitList->getInit(i),
4034 Info, Deduced, TDF))
4035 return DAR_Failed;
4036 }
4037 } else {
4038 if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
4039 FuncParam, InitType, Init,
4040 TDF))
4041 return DAR_Failed;
4042
4043 if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
4044 InitType, Info, Deduced, TDF))
4045 return DAR_Failed;
4046 }
4047
4048 if (Deduced[0].getKind() != TemplateArgument::Type)
4049 return DAR_Failed;
4050
4051 QualType DeducedType = Deduced[0].getAsType();
4052
4053 if (InitList) {
4054 DeducedType = BuildStdInitializerList(DeducedType, Loc);
4055 if (DeducedType.isNull())
4056 return DAR_FailedAlreadyDiagnosed;
4057 }
4058
4059 Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
4060 if (Result.isNull())
4061 return DAR_FailedAlreadyDiagnosed;
4062
4063 // Check that the deduced argument type is compatible with the original
4064 // argument type per C++ [temp.deduct.call]p4.
4065 if (!InitList && !Result.isNull() &&
4066 CheckOriginalCallArgDeduction(*this,
4067 Sema::OriginalCallArg(FuncParam,0,InitType),
4068 Result)) {
4069 Result = QualType();
4070 return DAR_Failed;
4071 }
4072
4073 return DAR_Succeeded;
4074 }
4075
SubstAutoType(QualType TypeWithAuto,QualType TypeToReplaceAuto)4076 QualType Sema::SubstAutoType(QualType TypeWithAuto,
4077 QualType TypeToReplaceAuto) {
4078 return SubstituteAutoTransform(*this, TypeToReplaceAuto).
4079 TransformType(TypeWithAuto);
4080 }
4081
SubstAutoTypeSourceInfo(TypeSourceInfo * TypeWithAuto,QualType TypeToReplaceAuto)4082 TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4083 QualType TypeToReplaceAuto) {
4084 return SubstituteAutoTransform(*this, TypeToReplaceAuto).
4085 TransformType(TypeWithAuto);
4086 }
4087
DiagnoseAutoDeductionFailure(VarDecl * VDecl,Expr * Init)4088 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
4089 if (isa<InitListExpr>(Init))
4090 Diag(VDecl->getLocation(),
4091 VDecl->isInitCapture()
4092 ? diag::err_init_capture_deduction_failure_from_init_list
4093 : diag::err_auto_var_deduction_failure_from_init_list)
4094 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
4095 else
4096 Diag(VDecl->getLocation(),
4097 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
4098 : diag::err_auto_var_deduction_failure)
4099 << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4100 << Init->getSourceRange();
4101 }
4102
DeduceReturnType(FunctionDecl * FD,SourceLocation Loc,bool Diagnose)4103 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
4104 bool Diagnose) {
4105 assert(FD->getReturnType()->isUndeducedType());
4106
4107 if (FD->getTemplateInstantiationPattern())
4108 InstantiateFunctionDefinition(Loc, FD);
4109
4110 bool StillUndeduced = FD->getReturnType()->isUndeducedType();
4111 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
4112 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
4113 Diag(FD->getLocation(), diag::note_callee_decl) << FD;
4114 }
4115
4116 return StillUndeduced;
4117 }
4118
4119 static void
4120 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4121 bool OnlyDeduced,
4122 unsigned Level,
4123 llvm::SmallBitVector &Deduced);
4124
4125 /// \brief If this is a non-static member function,
4126 static void
AddImplicitObjectParameterType(ASTContext & Context,CXXMethodDecl * Method,SmallVectorImpl<QualType> & ArgTypes)4127 AddImplicitObjectParameterType(ASTContext &Context,
4128 CXXMethodDecl *Method,
4129 SmallVectorImpl<QualType> &ArgTypes) {
4130 // C++11 [temp.func.order]p3:
4131 // [...] The new parameter is of type "reference to cv A," where cv are
4132 // the cv-qualifiers of the function template (if any) and A is
4133 // the class of which the function template is a member.
4134 //
4135 // The standard doesn't say explicitly, but we pick the appropriate kind of
4136 // reference type based on [over.match.funcs]p4.
4137 QualType ArgTy = Context.getTypeDeclType(Method->getParent());
4138 ArgTy = Context.getQualifiedType(ArgTy,
4139 Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
4140 if (Method->getRefQualifier() == RQ_RValue)
4141 ArgTy = Context.getRValueReferenceType(ArgTy);
4142 else
4143 ArgTy = Context.getLValueReferenceType(ArgTy);
4144 ArgTypes.push_back(ArgTy);
4145 }
4146
4147 /// \brief Determine whether the function template \p FT1 is at least as
4148 /// specialized as \p FT2.
isAtLeastAsSpecializedAs(Sema & S,SourceLocation Loc,FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments1,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)4149 static bool isAtLeastAsSpecializedAs(Sema &S,
4150 SourceLocation Loc,
4151 FunctionTemplateDecl *FT1,
4152 FunctionTemplateDecl *FT2,
4153 TemplatePartialOrderingContext TPOC,
4154 unsigned NumCallArguments1,
4155 SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
4156 FunctionDecl *FD1 = FT1->getTemplatedDecl();
4157 FunctionDecl *FD2 = FT2->getTemplatedDecl();
4158 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
4159 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
4160
4161 assert(Proto1 && Proto2 && "Function templates must have prototypes");
4162 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
4163 SmallVector<DeducedTemplateArgument, 4> Deduced;
4164 Deduced.resize(TemplateParams->size());
4165
4166 // C++0x [temp.deduct.partial]p3:
4167 // The types used to determine the ordering depend on the context in which
4168 // the partial ordering is done:
4169 TemplateDeductionInfo Info(Loc);
4170 SmallVector<QualType, 4> Args2;
4171 switch (TPOC) {
4172 case TPOC_Call: {
4173 // - In the context of a function call, the function parameter types are
4174 // used.
4175 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
4176 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
4177
4178 // C++11 [temp.func.order]p3:
4179 // [...] If only one of the function templates is a non-static
4180 // member, that function template is considered to have a new
4181 // first parameter inserted in its function parameter list. The
4182 // new parameter is of type "reference to cv A," where cv are
4183 // the cv-qualifiers of the function template (if any) and A is
4184 // the class of which the function template is a member.
4185 //
4186 // Note that we interpret this to mean "if one of the function
4187 // templates is a non-static member and the other is a non-member";
4188 // otherwise, the ordering rules for static functions against non-static
4189 // functions don't make any sense.
4190 //
4191 // C++98/03 doesn't have this provision but we've extended DR532 to cover
4192 // it as wording was broken prior to it.
4193 SmallVector<QualType, 4> Args1;
4194
4195 unsigned NumComparedArguments = NumCallArguments1;
4196
4197 if (!Method2 && Method1 && !Method1->isStatic()) {
4198 // Compare 'this' from Method1 against first parameter from Method2.
4199 AddImplicitObjectParameterType(S.Context, Method1, Args1);
4200 ++NumComparedArguments;
4201 } else if (!Method1 && Method2 && !Method2->isStatic()) {
4202 // Compare 'this' from Method2 against first parameter from Method1.
4203 AddImplicitObjectParameterType(S.Context, Method2, Args2);
4204 }
4205
4206 Args1.insert(Args1.end(), Proto1->param_type_begin(),
4207 Proto1->param_type_end());
4208 Args2.insert(Args2.end(), Proto2->param_type_begin(),
4209 Proto2->param_type_end());
4210
4211 // C++ [temp.func.order]p5:
4212 // The presence of unused ellipsis and default arguments has no effect on
4213 // the partial ordering of function templates.
4214 if (Args1.size() > NumComparedArguments)
4215 Args1.resize(NumComparedArguments);
4216 if (Args2.size() > NumComparedArguments)
4217 Args2.resize(NumComparedArguments);
4218 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
4219 Args1.data(), Args1.size(), Info, Deduced,
4220 TDF_None, /*PartialOrdering=*/true,
4221 RefParamComparisons))
4222 return false;
4223
4224 break;
4225 }
4226
4227 case TPOC_Conversion:
4228 // - In the context of a call to a conversion operator, the return types
4229 // of the conversion function templates are used.
4230 if (DeduceTemplateArgumentsByTypeMatch(
4231 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
4232 Info, Deduced, TDF_None,
4233 /*PartialOrdering=*/true, RefParamComparisons))
4234 return false;
4235 break;
4236
4237 case TPOC_Other:
4238 // - In other contexts (14.6.6.2) the function template's function type
4239 // is used.
4240 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4241 FD2->getType(), FD1->getType(),
4242 Info, Deduced, TDF_None,
4243 /*PartialOrdering=*/true,
4244 RefParamComparisons))
4245 return false;
4246 break;
4247 }
4248
4249 // C++0x [temp.deduct.partial]p11:
4250 // In most cases, all template parameters must have values in order for
4251 // deduction to succeed, but for partial ordering purposes a template
4252 // parameter may remain without a value provided it is not used in the
4253 // types being used for partial ordering. [ Note: a template parameter used
4254 // in a non-deduced context is considered used. -end note]
4255 unsigned ArgIdx = 0, NumArgs = Deduced.size();
4256 for (; ArgIdx != NumArgs; ++ArgIdx)
4257 if (Deduced[ArgIdx].isNull())
4258 break;
4259
4260 if (ArgIdx == NumArgs) {
4261 // All template arguments were deduced. FT1 is at least as specialized
4262 // as FT2.
4263 return true;
4264 }
4265
4266 // Figure out which template parameters were used.
4267 llvm::SmallBitVector UsedParameters(TemplateParams->size());
4268 switch (TPOC) {
4269 case TPOC_Call:
4270 for (unsigned I = 0, N = Args2.size(); I != N; ++I)
4271 ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
4272 TemplateParams->getDepth(),
4273 UsedParameters);
4274 break;
4275
4276 case TPOC_Conversion:
4277 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
4278 TemplateParams->getDepth(), UsedParameters);
4279 break;
4280
4281 case TPOC_Other:
4282 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
4283 TemplateParams->getDepth(),
4284 UsedParameters);
4285 break;
4286 }
4287
4288 for (; ArgIdx != NumArgs; ++ArgIdx)
4289 // If this argument had no value deduced but was used in one of the types
4290 // used for partial ordering, then deduction fails.
4291 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
4292 return false;
4293
4294 return true;
4295 }
4296
4297 /// \brief Determine whether this a function template whose parameter-type-list
4298 /// ends with a function parameter pack.
isVariadicFunctionTemplate(FunctionTemplateDecl * FunTmpl)4299 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
4300 FunctionDecl *Function = FunTmpl->getTemplatedDecl();
4301 unsigned NumParams = Function->getNumParams();
4302 if (NumParams == 0)
4303 return false;
4304
4305 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
4306 if (!Last->isParameterPack())
4307 return false;
4308
4309 // Make sure that no previous parameter is a parameter pack.
4310 while (--NumParams > 0) {
4311 if (Function->getParamDecl(NumParams - 1)->isParameterPack())
4312 return false;
4313 }
4314
4315 return true;
4316 }
4317
4318 /// \brief Returns the more specialized function template according
4319 /// to the rules of function template partial ordering (C++ [temp.func.order]).
4320 ///
4321 /// \param FT1 the first function template
4322 ///
4323 /// \param FT2 the second function template
4324 ///
4325 /// \param TPOC the context in which we are performing partial ordering of
4326 /// function templates.
4327 ///
4328 /// \param NumCallArguments1 The number of arguments in the call to FT1, used
4329 /// only when \c TPOC is \c TPOC_Call.
4330 ///
4331 /// \param NumCallArguments2 The number of arguments in the call to FT2, used
4332 /// only when \c TPOC is \c TPOC_Call.
4333 ///
4334 /// \returns the more specialized function template. If neither
4335 /// template is more specialized, returns NULL.
4336 FunctionTemplateDecl *
getMoreSpecializedTemplate(FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,SourceLocation Loc,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments1,unsigned NumCallArguments2)4337 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
4338 FunctionTemplateDecl *FT2,
4339 SourceLocation Loc,
4340 TemplatePartialOrderingContext TPOC,
4341 unsigned NumCallArguments1,
4342 unsigned NumCallArguments2) {
4343 SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
4344 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
4345 NumCallArguments1, nullptr);
4346 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
4347 NumCallArguments2,
4348 &RefParamComparisons);
4349
4350 if (Better1 != Better2) // We have a clear winner
4351 return Better1? FT1 : FT2;
4352
4353 if (!Better1 && !Better2) // Neither is better than the other
4354 return nullptr;
4355
4356 // C++0x [temp.deduct.partial]p10:
4357 // If for each type being considered a given template is at least as
4358 // specialized for all types and more specialized for some set of types and
4359 // the other template is not more specialized for any types or is not at
4360 // least as specialized for any types, then the given template is more
4361 // specialized than the other template. Otherwise, neither template is more
4362 // specialized than the other.
4363 Better1 = false;
4364 Better2 = false;
4365 for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
4366 // C++0x [temp.deduct.partial]p9:
4367 // If, for a given type, deduction succeeds in both directions (i.e., the
4368 // types are identical after the transformations above) and both P and A
4369 // were reference types (before being replaced with the type referred to
4370 // above):
4371
4372 // -- if the type from the argument template was an lvalue reference
4373 // and the type from the parameter template was not, the argument
4374 // type is considered to be more specialized than the other;
4375 // otherwise,
4376 if (!RefParamComparisons[I].ArgIsRvalueRef &&
4377 RefParamComparisons[I].ParamIsRvalueRef) {
4378 Better2 = true;
4379 if (Better1)
4380 return nullptr;
4381 continue;
4382 } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
4383 RefParamComparisons[I].ArgIsRvalueRef) {
4384 Better1 = true;
4385 if (Better2)
4386 return nullptr;
4387 continue;
4388 }
4389
4390 // -- if the type from the argument template is more cv-qualified than
4391 // the type from the parameter template (as described above), the
4392 // argument type is considered to be more specialized than the
4393 // other; otherwise,
4394 switch (RefParamComparisons[I].Qualifiers) {
4395 case NeitherMoreQualified:
4396 break;
4397
4398 case ParamMoreQualified:
4399 Better1 = true;
4400 if (Better2)
4401 return nullptr;
4402 continue;
4403
4404 case ArgMoreQualified:
4405 Better2 = true;
4406 if (Better1)
4407 return nullptr;
4408 continue;
4409 }
4410
4411 // -- neither type is more specialized than the other.
4412 }
4413
4414 assert(!(Better1 && Better2) && "Should have broken out in the loop above");
4415 if (Better1)
4416 return FT1;
4417 else if (Better2)
4418 return FT2;
4419
4420 // FIXME: This mimics what GCC implements, but doesn't match up with the
4421 // proposed resolution for core issue 692. This area needs to be sorted out,
4422 // but for now we attempt to maintain compatibility.
4423 bool Variadic1 = isVariadicFunctionTemplate(FT1);
4424 bool Variadic2 = isVariadicFunctionTemplate(FT2);
4425 if (Variadic1 != Variadic2)
4426 return Variadic1? FT2 : FT1;
4427
4428 return nullptr;
4429 }
4430
4431 /// \brief Determine if the two templates are equivalent.
isSameTemplate(TemplateDecl * T1,TemplateDecl * T2)4432 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
4433 if (T1 == T2)
4434 return true;
4435
4436 if (!T1 || !T2)
4437 return false;
4438
4439 return T1->getCanonicalDecl() == T2->getCanonicalDecl();
4440 }
4441
4442 /// \brief Retrieve the most specialized of the given function template
4443 /// specializations.
4444 ///
4445 /// \param SpecBegin the start iterator of the function template
4446 /// specializations that we will be comparing.
4447 ///
4448 /// \param SpecEnd the end iterator of the function template
4449 /// specializations, paired with \p SpecBegin.
4450 ///
4451 /// \param Loc the location where the ambiguity or no-specializations
4452 /// diagnostic should occur.
4453 ///
4454 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
4455 /// no matching candidates.
4456 ///
4457 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
4458 /// occurs.
4459 ///
4460 /// \param CandidateDiag partial diagnostic used for each function template
4461 /// specialization that is a candidate in the ambiguous ordering. One parameter
4462 /// in this diagnostic should be unbound, which will correspond to the string
4463 /// describing the template arguments for the function template specialization.
4464 ///
4465 /// \returns the most specialized function template specialization, if
4466 /// found. Otherwise, returns SpecEnd.
getMostSpecialized(UnresolvedSetIterator SpecBegin,UnresolvedSetIterator SpecEnd,TemplateSpecCandidateSet & FailedCandidates,SourceLocation Loc,const PartialDiagnostic & NoneDiag,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & CandidateDiag,bool Complain,QualType TargetType)4467 UnresolvedSetIterator Sema::getMostSpecialized(
4468 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
4469 TemplateSpecCandidateSet &FailedCandidates,
4470 SourceLocation Loc, const PartialDiagnostic &NoneDiag,
4471 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
4472 bool Complain, QualType TargetType) {
4473 if (SpecBegin == SpecEnd) {
4474 if (Complain) {
4475 Diag(Loc, NoneDiag);
4476 FailedCandidates.NoteCandidates(*this, Loc);
4477 }
4478 return SpecEnd;
4479 }
4480
4481 if (SpecBegin + 1 == SpecEnd)
4482 return SpecBegin;
4483
4484 // Find the function template that is better than all of the templates it
4485 // has been compared to.
4486 UnresolvedSetIterator Best = SpecBegin;
4487 FunctionTemplateDecl *BestTemplate
4488 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
4489 assert(BestTemplate && "Not a function template specialization?");
4490 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
4491 FunctionTemplateDecl *Challenger
4492 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4493 assert(Challenger && "Not a function template specialization?");
4494 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4495 Loc, TPOC_Other, 0, 0),
4496 Challenger)) {
4497 Best = I;
4498 BestTemplate = Challenger;
4499 }
4500 }
4501
4502 // Make sure that the "best" function template is more specialized than all
4503 // of the others.
4504 bool Ambiguous = false;
4505 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4506 FunctionTemplateDecl *Challenger
4507 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4508 if (I != Best &&
4509 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4510 Loc, TPOC_Other, 0, 0),
4511 BestTemplate)) {
4512 Ambiguous = true;
4513 break;
4514 }
4515 }
4516
4517 if (!Ambiguous) {
4518 // We found an answer. Return it.
4519 return Best;
4520 }
4521
4522 // Diagnose the ambiguity.
4523 if (Complain) {
4524 Diag(Loc, AmbigDiag);
4525
4526 // FIXME: Can we order the candidates in some sane way?
4527 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4528 PartialDiagnostic PD = CandidateDiag;
4529 PD << getTemplateArgumentBindingsText(
4530 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4531 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4532 if (!TargetType.isNull())
4533 HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4534 TargetType);
4535 Diag((*I)->getLocation(), PD);
4536 }
4537 }
4538
4539 return SpecEnd;
4540 }
4541
4542 /// \brief Returns the more specialized class template partial specialization
4543 /// according to the rules of partial ordering of class template partial
4544 /// specializations (C++ [temp.class.order]).
4545 ///
4546 /// \param PS1 the first class template partial specialization
4547 ///
4548 /// \param PS2 the second class template partial specialization
4549 ///
4550 /// \returns the more specialized class template partial specialization. If
4551 /// neither partial specialization is more specialized, returns NULL.
4552 ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl * PS1,ClassTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4553 Sema::getMoreSpecializedPartialSpecialization(
4554 ClassTemplatePartialSpecializationDecl *PS1,
4555 ClassTemplatePartialSpecializationDecl *PS2,
4556 SourceLocation Loc) {
4557 // C++ [temp.class.order]p1:
4558 // For two class template partial specializations, the first is at least as
4559 // specialized as the second if, given the following rewrite to two
4560 // function templates, the first function template is at least as
4561 // specialized as the second according to the ordering rules for function
4562 // templates (14.6.6.2):
4563 // - the first function template has the same template parameters as the
4564 // first partial specialization and has a single function parameter
4565 // whose type is a class template specialization with the template
4566 // arguments of the first partial specialization, and
4567 // - the second function template has the same template parameters as the
4568 // second partial specialization and has a single function parameter
4569 // whose type is a class template specialization with the template
4570 // arguments of the second partial specialization.
4571 //
4572 // Rather than synthesize function templates, we merely perform the
4573 // equivalent partial ordering by performing deduction directly on
4574 // the template arguments of the class template partial
4575 // specializations. This computation is slightly simpler than the
4576 // general problem of function template partial ordering, because
4577 // class template partial specializations are more constrained. We
4578 // know that every template parameter is deducible from the class
4579 // template partial specialization's template arguments, for
4580 // example.
4581 SmallVector<DeducedTemplateArgument, 4> Deduced;
4582 TemplateDeductionInfo Info(Loc);
4583
4584 QualType PT1 = PS1->getInjectedSpecializationType();
4585 QualType PT2 = PS2->getInjectedSpecializationType();
4586
4587 // Determine whether PS1 is at least as specialized as PS2
4588 Deduced.resize(PS2->getTemplateParameters()->size());
4589 bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4590 PS2->getTemplateParameters(),
4591 PT2, PT1, Info, Deduced, TDF_None,
4592 /*PartialOrdering=*/true,
4593 /*RefParamComparisons=*/nullptr);
4594 if (Better1) {
4595 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4596 InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
4597 Better1 = !::FinishTemplateArgumentDeduction(
4598 *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
4599 }
4600
4601 // Determine whether PS2 is at least as specialized as PS1
4602 Deduced.clear();
4603 Deduced.resize(PS1->getTemplateParameters()->size());
4604 bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
4605 *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
4606 /*PartialOrdering=*/true,
4607 /*RefParamComparisons=*/nullptr);
4608 if (Better2) {
4609 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
4610 Deduced.end());
4611 InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
4612 Better2 = !::FinishTemplateArgumentDeduction(
4613 *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
4614 }
4615
4616 if (Better1 == Better2)
4617 return nullptr;
4618
4619 return Better1 ? PS1 : PS2;
4620 }
4621
4622 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
4623 /// May require unifying ClassTemplate(Partial)SpecializationDecl and
4624 /// VarTemplate(Partial)SpecializationDecl with a new data
4625 /// structure Template(Partial)SpecializationDecl, and
4626 /// using Template(Partial)SpecializationDecl as input type.
4627 VarTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(VarTemplatePartialSpecializationDecl * PS1,VarTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4628 Sema::getMoreSpecializedPartialSpecialization(
4629 VarTemplatePartialSpecializationDecl *PS1,
4630 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
4631 SmallVector<DeducedTemplateArgument, 4> Deduced;
4632 TemplateDeductionInfo Info(Loc);
4633
4634 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
4635 "the partial specializations being compared should specialize"
4636 " the same template.");
4637 TemplateName Name(PS1->getSpecializedTemplate());
4638 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4639 QualType PT1 = Context.getTemplateSpecializationType(
4640 CanonTemplate, PS1->getTemplateArgs().data(),
4641 PS1->getTemplateArgs().size());
4642 QualType PT2 = Context.getTemplateSpecializationType(
4643 CanonTemplate, PS2->getTemplateArgs().data(),
4644 PS2->getTemplateArgs().size());
4645
4646 // Determine whether PS1 is at least as specialized as PS2
4647 Deduced.resize(PS2->getTemplateParameters()->size());
4648 bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
4649 *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
4650 /*PartialOrdering=*/true,
4651 /*RefParamComparisons=*/nullptr);
4652 if (Better1) {
4653 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
4654 Deduced.end());
4655 InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
4656 Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4657 PS1->getTemplateArgs(),
4658 Deduced, Info);
4659 }
4660
4661 // Determine whether PS2 is at least as specialized as PS1
4662 Deduced.clear();
4663 Deduced.resize(PS1->getTemplateParameters()->size());
4664 bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4665 PS1->getTemplateParameters(),
4666 PT1, PT2, Info, Deduced, TDF_None,
4667 /*PartialOrdering=*/true,
4668 /*RefParamComparisons=*/nullptr);
4669 if (Better2) {
4670 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4671 InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
4672 Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4673 PS2->getTemplateArgs(),
4674 Deduced, Info);
4675 }
4676
4677 if (Better1 == Better2)
4678 return nullptr;
4679
4680 return Better1? PS1 : PS2;
4681 }
4682
4683 static void
4684 MarkUsedTemplateParameters(ASTContext &Ctx,
4685 const TemplateArgument &TemplateArg,
4686 bool OnlyDeduced,
4687 unsigned Depth,
4688 llvm::SmallBitVector &Used);
4689
4690 /// \brief Mark the template parameters that are used by the given
4691 /// expression.
4692 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4693 MarkUsedTemplateParameters(ASTContext &Ctx,
4694 const Expr *E,
4695 bool OnlyDeduced,
4696 unsigned Depth,
4697 llvm::SmallBitVector &Used) {
4698 // We can deduce from a pack expansion.
4699 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4700 E = Expansion->getPattern();
4701
4702 // Skip through any implicit casts we added while type-checking, and any
4703 // substitutions performed by template alias expansion.
4704 while (1) {
4705 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4706 E = ICE->getSubExpr();
4707 else if (const SubstNonTypeTemplateParmExpr *Subst =
4708 dyn_cast<SubstNonTypeTemplateParmExpr>(E))
4709 E = Subst->getReplacement();
4710 else
4711 break;
4712 }
4713
4714 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4715 // find other occurrences of template parameters.
4716 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4717 if (!DRE)
4718 return;
4719
4720 const NonTypeTemplateParmDecl *NTTP
4721 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4722 if (!NTTP)
4723 return;
4724
4725 if (NTTP->getDepth() == Depth)
4726 Used[NTTP->getIndex()] = true;
4727 }
4728
4729 /// \brief Mark the template parameters that are used by the given
4730 /// nested name specifier.
4731 static void
MarkUsedTemplateParameters(ASTContext & Ctx,NestedNameSpecifier * NNS,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4732 MarkUsedTemplateParameters(ASTContext &Ctx,
4733 NestedNameSpecifier *NNS,
4734 bool OnlyDeduced,
4735 unsigned Depth,
4736 llvm::SmallBitVector &Used) {
4737 if (!NNS)
4738 return;
4739
4740 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4741 Used);
4742 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4743 OnlyDeduced, Depth, Used);
4744 }
4745
4746 /// \brief Mark the template parameters that are used by the given
4747 /// template name.
4748 static void
MarkUsedTemplateParameters(ASTContext & Ctx,TemplateName Name,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4749 MarkUsedTemplateParameters(ASTContext &Ctx,
4750 TemplateName Name,
4751 bool OnlyDeduced,
4752 unsigned Depth,
4753 llvm::SmallBitVector &Used) {
4754 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4755 if (TemplateTemplateParmDecl *TTP
4756 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4757 if (TTP->getDepth() == Depth)
4758 Used[TTP->getIndex()] = true;
4759 }
4760 return;
4761 }
4762
4763 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4764 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4765 Depth, Used);
4766 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4767 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4768 Depth, Used);
4769 }
4770
4771 /// \brief Mark the template parameters that are used by the given
4772 /// type.
4773 static void
MarkUsedTemplateParameters(ASTContext & Ctx,QualType T,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4774 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4775 bool OnlyDeduced,
4776 unsigned Depth,
4777 llvm::SmallBitVector &Used) {
4778 if (T.isNull())
4779 return;
4780
4781 // Non-dependent types have nothing deducible
4782 if (!T->isDependentType())
4783 return;
4784
4785 T = Ctx.getCanonicalType(T);
4786 switch (T->getTypeClass()) {
4787 case Type::Pointer:
4788 MarkUsedTemplateParameters(Ctx,
4789 cast<PointerType>(T)->getPointeeType(),
4790 OnlyDeduced,
4791 Depth,
4792 Used);
4793 break;
4794
4795 case Type::BlockPointer:
4796 MarkUsedTemplateParameters(Ctx,
4797 cast<BlockPointerType>(T)->getPointeeType(),
4798 OnlyDeduced,
4799 Depth,
4800 Used);
4801 break;
4802
4803 case Type::LValueReference:
4804 case Type::RValueReference:
4805 MarkUsedTemplateParameters(Ctx,
4806 cast<ReferenceType>(T)->getPointeeType(),
4807 OnlyDeduced,
4808 Depth,
4809 Used);
4810 break;
4811
4812 case Type::MemberPointer: {
4813 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4814 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4815 Depth, Used);
4816 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4817 OnlyDeduced, Depth, Used);
4818 break;
4819 }
4820
4821 case Type::DependentSizedArray:
4822 MarkUsedTemplateParameters(Ctx,
4823 cast<DependentSizedArrayType>(T)->getSizeExpr(),
4824 OnlyDeduced, Depth, Used);
4825 // Fall through to check the element type
4826
4827 case Type::ConstantArray:
4828 case Type::IncompleteArray:
4829 MarkUsedTemplateParameters(Ctx,
4830 cast<ArrayType>(T)->getElementType(),
4831 OnlyDeduced, Depth, Used);
4832 break;
4833
4834 case Type::Vector:
4835 case Type::ExtVector:
4836 MarkUsedTemplateParameters(Ctx,
4837 cast<VectorType>(T)->getElementType(),
4838 OnlyDeduced, Depth, Used);
4839 break;
4840
4841 case Type::DependentSizedExtVector: {
4842 const DependentSizedExtVectorType *VecType
4843 = cast<DependentSizedExtVectorType>(T);
4844 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4845 Depth, Used);
4846 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4847 Depth, Used);
4848 break;
4849 }
4850
4851 case Type::FunctionProto: {
4852 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4853 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
4854 Used);
4855 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I)
4856 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
4857 Depth, Used);
4858 break;
4859 }
4860
4861 case Type::TemplateTypeParm: {
4862 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4863 if (TTP->getDepth() == Depth)
4864 Used[TTP->getIndex()] = true;
4865 break;
4866 }
4867
4868 case Type::SubstTemplateTypeParmPack: {
4869 const SubstTemplateTypeParmPackType *Subst
4870 = cast<SubstTemplateTypeParmPackType>(T);
4871 MarkUsedTemplateParameters(Ctx,
4872 QualType(Subst->getReplacedParameter(), 0),
4873 OnlyDeduced, Depth, Used);
4874 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4875 OnlyDeduced, Depth, Used);
4876 break;
4877 }
4878
4879 case Type::InjectedClassName:
4880 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4881 // fall through
4882
4883 case Type::TemplateSpecialization: {
4884 const TemplateSpecializationType *Spec
4885 = cast<TemplateSpecializationType>(T);
4886 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4887 Depth, Used);
4888
4889 // C++0x [temp.deduct.type]p9:
4890 // If the template argument list of P contains a pack expansion that is not
4891 // the last template argument, the entire template argument list is a
4892 // non-deduced context.
4893 if (OnlyDeduced &&
4894 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4895 break;
4896
4897 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4898 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4899 Used);
4900 break;
4901 }
4902
4903 case Type::Complex:
4904 if (!OnlyDeduced)
4905 MarkUsedTemplateParameters(Ctx,
4906 cast<ComplexType>(T)->getElementType(),
4907 OnlyDeduced, Depth, Used);
4908 break;
4909
4910 case Type::Atomic:
4911 if (!OnlyDeduced)
4912 MarkUsedTemplateParameters(Ctx,
4913 cast<AtomicType>(T)->getValueType(),
4914 OnlyDeduced, Depth, Used);
4915 break;
4916
4917 case Type::DependentName:
4918 if (!OnlyDeduced)
4919 MarkUsedTemplateParameters(Ctx,
4920 cast<DependentNameType>(T)->getQualifier(),
4921 OnlyDeduced, Depth, Used);
4922 break;
4923
4924 case Type::DependentTemplateSpecialization: {
4925 const DependentTemplateSpecializationType *Spec
4926 = cast<DependentTemplateSpecializationType>(T);
4927 if (!OnlyDeduced)
4928 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4929 OnlyDeduced, Depth, Used);
4930
4931 // C++0x [temp.deduct.type]p9:
4932 // If the template argument list of P contains a pack expansion that is not
4933 // the last template argument, the entire template argument list is a
4934 // non-deduced context.
4935 if (OnlyDeduced &&
4936 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4937 break;
4938
4939 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4940 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4941 Used);
4942 break;
4943 }
4944
4945 case Type::TypeOf:
4946 if (!OnlyDeduced)
4947 MarkUsedTemplateParameters(Ctx,
4948 cast<TypeOfType>(T)->getUnderlyingType(),
4949 OnlyDeduced, Depth, Used);
4950 break;
4951
4952 case Type::TypeOfExpr:
4953 if (!OnlyDeduced)
4954 MarkUsedTemplateParameters(Ctx,
4955 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4956 OnlyDeduced, Depth, Used);
4957 break;
4958
4959 case Type::Decltype:
4960 if (!OnlyDeduced)
4961 MarkUsedTemplateParameters(Ctx,
4962 cast<DecltypeType>(T)->getUnderlyingExpr(),
4963 OnlyDeduced, Depth, Used);
4964 break;
4965
4966 case Type::UnaryTransform:
4967 if (!OnlyDeduced)
4968 MarkUsedTemplateParameters(Ctx,
4969 cast<UnaryTransformType>(T)->getUnderlyingType(),
4970 OnlyDeduced, Depth, Used);
4971 break;
4972
4973 case Type::PackExpansion:
4974 MarkUsedTemplateParameters(Ctx,
4975 cast<PackExpansionType>(T)->getPattern(),
4976 OnlyDeduced, Depth, Used);
4977 break;
4978
4979 case Type::Auto:
4980 MarkUsedTemplateParameters(Ctx,
4981 cast<AutoType>(T)->getDeducedType(),
4982 OnlyDeduced, Depth, Used);
4983
4984 // None of these types have any template parameters in them.
4985 case Type::Builtin:
4986 case Type::VariableArray:
4987 case Type::FunctionNoProto:
4988 case Type::Record:
4989 case Type::Enum:
4990 case Type::ObjCInterface:
4991 case Type::ObjCObject:
4992 case Type::ObjCObjectPointer:
4993 case Type::UnresolvedUsing:
4994 #define TYPE(Class, Base)
4995 #define ABSTRACT_TYPE(Class, Base)
4996 #define DEPENDENT_TYPE(Class, Base)
4997 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4998 #include "clang/AST/TypeNodes.def"
4999 break;
5000 }
5001 }
5002
5003 /// \brief Mark the template parameters that are used by this
5004 /// template argument.
5005 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const TemplateArgument & TemplateArg,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5006 MarkUsedTemplateParameters(ASTContext &Ctx,
5007 const TemplateArgument &TemplateArg,
5008 bool OnlyDeduced,
5009 unsigned Depth,
5010 llvm::SmallBitVector &Used) {
5011 switch (TemplateArg.getKind()) {
5012 case TemplateArgument::Null:
5013 case TemplateArgument::Integral:
5014 case TemplateArgument::Declaration:
5015 break;
5016
5017 case TemplateArgument::NullPtr:
5018 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
5019 Depth, Used);
5020 break;
5021
5022 case TemplateArgument::Type:
5023 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
5024 Depth, Used);
5025 break;
5026
5027 case TemplateArgument::Template:
5028 case TemplateArgument::TemplateExpansion:
5029 MarkUsedTemplateParameters(Ctx,
5030 TemplateArg.getAsTemplateOrTemplatePattern(),
5031 OnlyDeduced, Depth, Used);
5032 break;
5033
5034 case TemplateArgument::Expression:
5035 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
5036 Depth, Used);
5037 break;
5038
5039 case TemplateArgument::Pack:
5040 for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
5041 PEnd = TemplateArg.pack_end();
5042 P != PEnd; ++P)
5043 MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
5044 break;
5045 }
5046 }
5047
5048 /// \brief Mark which template parameters can be deduced from a given
5049 /// template argument list.
5050 ///
5051 /// \param TemplateArgs the template argument list from which template
5052 /// parameters will be deduced.
5053 ///
5054 /// \param Used a bit vector whose elements will be set to \c true
5055 /// to indicate when the corresponding template parameter will be
5056 /// deduced.
5057 void
MarkUsedTemplateParameters(const TemplateArgumentList & TemplateArgs,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5058 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
5059 bool OnlyDeduced, unsigned Depth,
5060 llvm::SmallBitVector &Used) {
5061 // C++0x [temp.deduct.type]p9:
5062 // If the template argument list of P contains a pack expansion that is not
5063 // the last template argument, the entire template argument list is a
5064 // non-deduced context.
5065 if (OnlyDeduced &&
5066 hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
5067 return;
5068
5069 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5070 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
5071 Depth, Used);
5072 }
5073
5074 /// \brief Marks all of the template parameters that will be deduced by a
5075 /// call to the given function template.
5076 void
MarkDeducedTemplateParameters(ASTContext & Ctx,const FunctionTemplateDecl * FunctionTemplate,llvm::SmallBitVector & Deduced)5077 Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
5078 const FunctionTemplateDecl *FunctionTemplate,
5079 llvm::SmallBitVector &Deduced) {
5080 TemplateParameterList *TemplateParams
5081 = FunctionTemplate->getTemplateParameters();
5082 Deduced.clear();
5083 Deduced.resize(TemplateParams->size());
5084
5085 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
5086 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
5087 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
5088 true, TemplateParams->getDepth(), Deduced);
5089 }
5090
hasDeducibleTemplateParameters(Sema & S,FunctionTemplateDecl * FunctionTemplate,QualType T)5091 bool hasDeducibleTemplateParameters(Sema &S,
5092 FunctionTemplateDecl *FunctionTemplate,
5093 QualType T) {
5094 if (!T->isDependentType())
5095 return false;
5096
5097 TemplateParameterList *TemplateParams
5098 = FunctionTemplate->getTemplateParameters();
5099 llvm::SmallBitVector Deduced(TemplateParams->size());
5100 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
5101 Deduced);
5102
5103 return Deduced.any();
5104 }
5105