• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Analysis/TargetTransformInfo.h ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass exposes codegen information to IR-level passes. Every
11 // transformation that uses codegen information is broken into three parts:
12 // 1. The IR-level analysis pass.
13 // 2. The IR-level transformation interface which provides the needed
14 //    information.
15 // 3. Codegen-level implementation which uses target-specific hooks.
16 //
17 // This file defines #2, which is the interface that IR-level transformations
18 // use for querying the codegen.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
24 
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/DataTypes.h"
28 
29 namespace llvm {
30 
31 class GlobalValue;
32 class Loop;
33 class Type;
34 class User;
35 class Value;
36 
37 /// TargetTransformInfo - This pass provides access to the codegen
38 /// interfaces that are needed for IR-level transformations.
39 class TargetTransformInfo {
40 protected:
41   /// \brief The TTI instance one level down the stack.
42   ///
43   /// This is used to implement the default behavior all of the methods which
44   /// is to delegate up through the stack of TTIs until one can answer the
45   /// query.
46   TargetTransformInfo *PrevTTI;
47 
48   /// \brief The top of the stack of TTI analyses available.
49   ///
50   /// This is a convenience routine maintained as TTI analyses become available
51   /// that complements the PrevTTI delegation chain. When one part of an
52   /// analysis pass wants to query another part of the analysis pass it can use
53   /// this to start back at the top of the stack.
54   TargetTransformInfo *TopTTI;
55 
56   /// All pass subclasses must in their initializePass routine call
57   /// pushTTIStack with themselves to update the pointers tracking the previous
58   /// TTI instance in the analysis group's stack, and the top of the analysis
59   /// group's stack.
60   void pushTTIStack(Pass *P);
61 
62   /// All pass subclasses must call TargetTransformInfo::getAnalysisUsage.
63   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
64 
65 public:
66   /// This class is intended to be subclassed by real implementations.
67   virtual ~TargetTransformInfo() = 0;
68 
69   /// \name Generic Target Information
70   /// @{
71 
72   /// \brief Underlying constants for 'cost' values in this interface.
73   ///
74   /// Many APIs in this interface return a cost. This enum defines the
75   /// fundamental values that should be used to interpret (and produce) those
76   /// costs. The costs are returned as an unsigned rather than a member of this
77   /// enumeration because it is expected that the cost of one IR instruction
78   /// may have a multiplicative factor to it or otherwise won't fit directly
79   /// into the enum. Moreover, it is common to sum or average costs which works
80   /// better as simple integral values. Thus this enum only provides constants.
81   ///
82   /// Note that these costs should usually reflect the intersection of code-size
83   /// cost and execution cost. A free instruction is typically one that folds
84   /// into another instruction. For example, reg-to-reg moves can often be
85   /// skipped by renaming the registers in the CPU, but they still are encoded
86   /// and thus wouldn't be considered 'free' here.
87   enum TargetCostConstants {
88     TCC_Free = 0,       ///< Expected to fold away in lowering.
89     TCC_Basic = 1,      ///< The cost of a typical 'add' instruction.
90     TCC_Expensive = 4   ///< The cost of a 'div' instruction on x86.
91   };
92 
93   /// \brief Estimate the cost of a specific operation when lowered.
94   ///
95   /// Note that this is designed to work on an arbitrary synthetic opcode, and
96   /// thus work for hypothetical queries before an instruction has even been
97   /// formed. However, this does *not* work for GEPs, and must not be called
98   /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
99   /// analyzing a GEP's cost required more information.
100   ///
101   /// Typically only the result type is required, and the operand type can be
102   /// omitted. However, if the opcode is one of the cast instructions, the
103   /// operand type is required.
104   ///
105   /// The returned cost is defined in terms of \c TargetCostConstants, see its
106   /// comments for a detailed explanation of the cost values.
107   virtual unsigned getOperationCost(unsigned Opcode, Type *Ty,
108                                     Type *OpTy = nullptr) const;
109 
110   /// \brief Estimate the cost of a GEP operation when lowered.
111   ///
112   /// The contract for this function is the same as \c getOperationCost except
113   /// that it supports an interface that provides extra information specific to
114   /// the GEP operation.
115   virtual unsigned getGEPCost(const Value *Ptr,
116                               ArrayRef<const Value *> Operands) const;
117 
118   /// \brief Estimate the cost of a function call when lowered.
119   ///
120   /// The contract for this is the same as \c getOperationCost except that it
121   /// supports an interface that provides extra information specific to call
122   /// instructions.
123   ///
124   /// This is the most basic query for estimating call cost: it only knows the
125   /// function type and (potentially) the number of arguments at the call site.
126   /// The latter is only interesting for varargs function types.
127   virtual unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const;
128 
129   /// \brief Estimate the cost of calling a specific function when lowered.
130   ///
131   /// This overload adds the ability to reason about the particular function
132   /// being called in the event it is a library call with special lowering.
133   virtual unsigned getCallCost(const Function *F, int NumArgs = -1) const;
134 
135   /// \brief Estimate the cost of calling a specific function when lowered.
136   ///
137   /// This overload allows specifying a set of candidate argument values.
138   virtual unsigned getCallCost(const Function *F,
139                                ArrayRef<const Value *> Arguments) const;
140 
141   /// \brief Estimate the cost of an intrinsic when lowered.
142   ///
143   /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
144   virtual unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
145                                     ArrayRef<Type *> ParamTys) const;
146 
147   /// \brief Estimate the cost of an intrinsic when lowered.
148   ///
149   /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
150   virtual unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
151                                     ArrayRef<const Value *> Arguments) const;
152 
153   /// \brief Estimate the cost of a given IR user when lowered.
154   ///
155   /// This can estimate the cost of either a ConstantExpr or Instruction when
156   /// lowered. It has two primary advantages over the \c getOperationCost and
157   /// \c getGEPCost above, and one significant disadvantage: it can only be
158   /// used when the IR construct has already been formed.
159   ///
160   /// The advantages are that it can inspect the SSA use graph to reason more
161   /// accurately about the cost. For example, all-constant-GEPs can often be
162   /// folded into a load or other instruction, but if they are used in some
163   /// other context they may not be folded. This routine can distinguish such
164   /// cases.
165   ///
166   /// The returned cost is defined in terms of \c TargetCostConstants, see its
167   /// comments for a detailed explanation of the cost values.
168   virtual unsigned getUserCost(const User *U) const;
169 
170   /// \brief hasBranchDivergence - Return true if branch divergence exists.
171   /// Branch divergence has a significantly negative impact on GPU performance
172   /// when threads in the same wavefront take different paths due to conditional
173   /// branches.
174   virtual bool hasBranchDivergence() const;
175 
176   /// \brief Test whether calls to a function lower to actual program function
177   /// calls.
178   ///
179   /// The idea is to test whether the program is likely to require a 'call'
180   /// instruction or equivalent in order to call the given function.
181   ///
182   /// FIXME: It's not clear that this is a good or useful query API. Client's
183   /// should probably move to simpler cost metrics using the above.
184   /// Alternatively, we could split the cost interface into distinct code-size
185   /// and execution-speed costs. This would allow modelling the core of this
186   /// query more accurately as the a call is a single small instruction, but
187   /// incurs significant execution cost.
188   virtual bool isLoweredToCall(const Function *F) const;
189 
190   /// Parameters that control the generic loop unrolling transformation.
191   struct UnrollingPreferences {
192     /// The cost threshold for the unrolled loop, compared to
193     /// CodeMetrics.NumInsts aggregated over all basic blocks in the loop body.
194     /// The unrolling factor is set such that the unrolled loop body does not
195     /// exceed this cost. Set this to UINT_MAX to disable the loop body cost
196     /// restriction.
197     unsigned Threshold;
198     /// The cost threshold for the unrolled loop when optimizing for size (set
199     /// to UINT_MAX to disable).
200     unsigned OptSizeThreshold;
201     /// The cost threshold for the unrolled loop, like Threshold, but used
202     /// for partial/runtime unrolling (set to UINT_MAX to disable).
203     unsigned PartialThreshold;
204     /// The cost threshold for the unrolled loop when optimizing for size, like
205     /// OptSizeThreshold, but used for partial/runtime unrolling (set to UINT_MAX
206     /// to disable).
207     unsigned PartialOptSizeThreshold;
208     /// A forced unrolling factor (the number of concatenated bodies of the
209     /// original loop in the unrolled loop body). When set to 0, the unrolling
210     /// transformation will select an unrolling factor based on the current cost
211     /// threshold and other factors.
212     unsigned Count;
213     // Set the maximum unrolling factor. The unrolling factor may be selected
214     // using the appropriate cost threshold, but may not exceed this number
215     // (set to UINT_MAX to disable). This does not apply in cases where the
216     // loop is being fully unrolled.
217     unsigned MaxCount;
218     /// Allow partial unrolling (unrolling of loops to expand the size of the
219     /// loop body, not only to eliminate small constant-trip-count loops).
220     bool     Partial;
221     /// Allow runtime unrolling (unrolling of loops to expand the size of the
222     /// loop body even when the number of loop iterations is not known at compile
223     /// time).
224     bool     Runtime;
225   };
226 
227   /// \brief Get target-customized preferences for the generic loop unrolling
228   /// transformation. The caller will initialize UP with the current
229   /// target-independent defaults.
230   virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const;
231 
232   /// @}
233 
234   /// \name Scalar Target Information
235   /// @{
236 
237   /// \brief Flags indicating the kind of support for population count.
238   ///
239   /// Compared to the SW implementation, HW support is supposed to
240   /// significantly boost the performance when the population is dense, and it
241   /// may or may not degrade performance if the population is sparse. A HW
242   /// support is considered as "Fast" if it can outperform, or is on a par
243   /// with, SW implementation when the population is sparse; otherwise, it is
244   /// considered as "Slow".
245   enum PopcntSupportKind {
246     PSK_Software,
247     PSK_SlowHardware,
248     PSK_FastHardware
249   };
250 
251   /// \brief Return true if the specified immediate is legal add immediate, that
252   /// is the target has add instructions which can add a register with the
253   /// immediate without having to materialize the immediate into a register.
254   virtual bool isLegalAddImmediate(int64_t Imm) const;
255 
256   /// \brief Return true if the specified immediate is legal icmp immediate,
257   /// that is the target has icmp instructions which can compare a register
258   /// against the immediate without having to materialize the immediate into a
259   /// register.
260   virtual bool isLegalICmpImmediate(int64_t Imm) const;
261 
262   /// \brief Return true if the addressing mode represented by AM is legal for
263   /// this target, for a load/store of the specified type.
264   /// The type may be VoidTy, in which case only return true if the addressing
265   /// mode is legal for a load/store of any legal type.
266   /// TODO: Handle pre/postinc as well.
267   virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
268                                      int64_t BaseOffset, bool HasBaseReg,
269                                      int64_t Scale) const;
270 
271   /// \brief Return the cost of the scaling factor used in the addressing
272   /// mode represented by AM for this target, for a load/store
273   /// of the specified type.
274   /// If the AM is supported, the return value must be >= 0.
275   /// If the AM is not supported, it returns a negative value.
276   /// TODO: Handle pre/postinc as well.
277   virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
278                                    int64_t BaseOffset, bool HasBaseReg,
279                                    int64_t Scale) const;
280 
281   /// \brief Return true if it's free to truncate a value of type Ty1 to type
282   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
283   /// by referencing its sub-register AX.
284   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
285 
286   /// \brief Return true if this type is legal.
287   virtual bool isTypeLegal(Type *Ty) const;
288 
289   /// \brief Returns the target's jmp_buf alignment in bytes.
290   virtual unsigned getJumpBufAlignment() const;
291 
292   /// \brief Returns the target's jmp_buf size in bytes.
293   virtual unsigned getJumpBufSize() const;
294 
295   /// \brief Return true if switches should be turned into lookup tables for the
296   /// target.
297   virtual bool shouldBuildLookupTables() const;
298 
299   /// \brief Return hardware support for population count.
300   virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
301 
302   /// \brief Return true if the hardware has a fast square-root instruction.
303   virtual bool haveFastSqrt(Type *Ty) const;
304 
305   /// \brief Return the expected cost of materializing for the given integer
306   /// immediate of the specified type.
307   virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) const;
308 
309   /// \brief Return the expected cost of materialization for the given integer
310   /// immediate of the specified type for a given instruction. The cost can be
311   /// zero if the immediate can be folded into the specified instruction.
312   virtual unsigned getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
313                                  Type *Ty) const;
314   virtual unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx,
315                                  const APInt &Imm, Type *Ty) const;
316   /// @}
317 
318   /// \name Vector Target Information
319   /// @{
320 
321   /// \brief The various kinds of shuffle patterns for vector queries.
322   enum ShuffleKind {
323     SK_Broadcast,       ///< Broadcast element 0 to all other elements.
324     SK_Reverse,         ///< Reverse the order of the vector.
325     SK_Alternate,       ///< Choose alternate elements from vector.
326     SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
327     SK_ExtractSubvector ///< ExtractSubvector Index indicates start offset.
328   };
329 
330   /// \brief Additional information about an operand's possible values.
331   enum OperandValueKind {
332     OK_AnyValue,                 // Operand can have any value.
333     OK_UniformValue,             // Operand is uniform (splat of a value).
334     OK_UniformConstantValue,     // Operand is uniform constant.
335     OK_NonUniformConstantValue   // Operand is a non uniform constant value.
336   };
337 
338   /// \return The number of scalar or vector registers that the target has.
339   /// If 'Vectors' is true, it returns the number of vector registers. If it is
340   /// set to false, it returns the number of scalar registers.
341   virtual unsigned getNumberOfRegisters(bool Vector) const;
342 
343   /// \return The width of the largest scalar or vector register type.
344   virtual unsigned getRegisterBitWidth(bool Vector) const;
345 
346   /// \return The maximum unroll factor that the vectorizer should try to
347   /// perform for this target. This number depends on the level of parallelism
348   /// and the number of execution units in the CPU.
349   virtual unsigned getMaximumUnrollFactor() const;
350 
351   /// \return The expected cost of arithmetic ops, such as mul, xor, fsub, etc.
352   virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
353                                   OperandValueKind Opd1Info = OK_AnyValue,
354                                   OperandValueKind Opd2Info = OK_AnyValue) const;
355 
356   /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
357   /// The index and subtype parameters are used by the subvector insertion and
358   /// extraction shuffle kinds.
359   virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
360                                   Type *SubTp = nullptr) const;
361 
362   /// \return The expected cost of cast instructions, such as bitcast, trunc,
363   /// zext, etc.
364   virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
365                                     Type *Src) const;
366 
367   /// \return The expected cost of control-flow related instructions such as
368   /// Phi, Ret, Br.
369   virtual unsigned getCFInstrCost(unsigned Opcode) const;
370 
371   /// \returns The expected cost of compare and select instructions.
372   virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
373                                       Type *CondTy = nullptr) const;
374 
375   /// \return The expected cost of vector Insert and Extract.
376   /// Use -1 to indicate that there is no information on the index value.
377   virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
378                                       unsigned Index = -1) const;
379 
380   /// \return The cost of Load and Store instructions.
381   virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
382                                    unsigned Alignment,
383                                    unsigned AddressSpace) const;
384 
385   /// \brief Calculate the cost of performing a vector reduction.
386   ///
387   /// This is the cost of reducing the vector value of type \p Ty to a scalar
388   /// value using the operation denoted by \p Opcode. The form of the reduction
389   /// can either be a pairwise reduction or a reduction that splits the vector
390   /// at every reduction level.
391   ///
392   /// Pairwise:
393   ///  (v0, v1, v2, v3)
394   ///  ((v0+v1), (v2, v3), undef, undef)
395   /// Split:
396   ///  (v0, v1, v2, v3)
397   ///  ((v0+v2), (v1+v3), undef, undef)
398   virtual unsigned getReductionCost(unsigned Opcode, Type *Ty,
399                                     bool IsPairwiseForm) const;
400 
401   /// \returns The cost of Intrinsic instructions.
402   virtual unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
403                                          ArrayRef<Type *> Tys) const;
404 
405   /// \returns The number of pieces into which the provided type must be
406   /// split during legalization. Zero is returned when the answer is unknown.
407   virtual unsigned getNumberOfParts(Type *Tp) const;
408 
409   /// \returns The cost of the address computation. For most targets this can be
410   /// merged into the instruction indexing mode. Some targets might want to
411   /// distinguish between address computation for memory operations on vector
412   /// types and scalar types. Such targets should override this function.
413   /// The 'IsComplex' parameter is a hint that the address computation is likely
414   /// to involve multiple instructions and as such unlikely to be merged into
415   /// the address indexing mode.
416   virtual unsigned getAddressComputationCost(Type *Ty,
417                                              bool IsComplex = false) const;
418 
419   /// @}
420 
421   /// Analysis group identification.
422   static char ID;
423 };
424 
425 /// \brief Create the base case instance of a pass in the TTI analysis group.
426 ///
427 /// This class provides the base case for the stack of TTI analyzes. It doesn't
428 /// delegate to anything and uses the STTI and VTTI objects passed in to
429 /// satisfy the queries.
430 ImmutablePass *createNoTargetTransformInfoPass();
431 
432 } // End llvm namespace
433 
434 #endif
435