1 /*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38
39 #include "fio.h"
40 #ifndef FIO_NO_HAVE_SHM_H
41 #include <sys/shm.h>
42 #endif
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55 #include "err.h"
56
57 static pthread_t disk_util_thread;
58 static struct fio_mutex *disk_thread_mutex;
59 static struct fio_mutex *startup_mutex;
60 static struct flist_head *cgroup_list;
61 static char *cgroup_mnt;
62 static int exit_value;
63 static volatile int fio_abort;
64 static unsigned int nr_process = 0;
65 static unsigned int nr_thread = 0;
66
67 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69 int groupid = 0;
70 unsigned int thread_number = 0;
71 unsigned int stat_number = 0;
72 int shm_id = 0;
73 int temp_stall_ts;
74 unsigned long done_secs = 0;
75 volatile int disk_util_exit = 0;
76
77 #define PAGE_ALIGN(buf) \
78 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80 #define JOB_START_TIMEOUT (5 * 1000)
81
sig_int(int sig)82 static void sig_int(int sig)
83 {
84 if (threads) {
85 if (is_backend)
86 fio_server_got_signal(sig);
87 else {
88 log_info("\nfio: terminating on signal %d\n", sig);
89 fflush(stdout);
90 exit_value = 128;
91 }
92
93 fio_terminate_threads(TERMINATE_ALL);
94 }
95 }
96
sig_show_status(int sig)97 static void sig_show_status(int sig)
98 {
99 show_running_run_stats();
100 }
101
set_sig_handlers(void)102 static void set_sig_handlers(void)
103 {
104 struct sigaction act;
105
106 memset(&act, 0, sizeof(act));
107 act.sa_handler = sig_int;
108 act.sa_flags = SA_RESTART;
109 sigaction(SIGINT, &act, NULL);
110
111 memset(&act, 0, sizeof(act));
112 act.sa_handler = sig_int;
113 act.sa_flags = SA_RESTART;
114 sigaction(SIGTERM, &act, NULL);
115
116 /* Windows uses SIGBREAK as a quit signal from other applications */
117 #ifdef WIN32
118 memset(&act, 0, sizeof(act));
119 act.sa_handler = sig_int;
120 act.sa_flags = SA_RESTART;
121 sigaction(SIGBREAK, &act, NULL);
122 #endif
123
124 memset(&act, 0, sizeof(act));
125 act.sa_handler = sig_show_status;
126 act.sa_flags = SA_RESTART;
127 sigaction(SIGUSR1, &act, NULL);
128
129 if (is_backend) {
130 memset(&act, 0, sizeof(act));
131 act.sa_handler = sig_int;
132 act.sa_flags = SA_RESTART;
133 sigaction(SIGPIPE, &act, NULL);
134 }
135 }
136
137 /*
138 * Check if we are above the minimum rate given.
139 */
__check_min_rate(struct thread_data * td,struct timeval * now,enum fio_ddir ddir)140 static int __check_min_rate(struct thread_data *td, struct timeval *now,
141 enum fio_ddir ddir)
142 {
143 unsigned long long bytes = 0;
144 unsigned long iops = 0;
145 unsigned long spent;
146 unsigned long rate;
147 unsigned int ratemin = 0;
148 unsigned int rate_iops = 0;
149 unsigned int rate_iops_min = 0;
150
151 assert(ddir_rw(ddir));
152
153 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154 return 0;
155
156 /*
157 * allow a 2 second settle period in the beginning
158 */
159 if (mtime_since(&td->start, now) < 2000)
160 return 0;
161
162 iops += td->this_io_blocks[ddir];
163 bytes += td->this_io_bytes[ddir];
164 ratemin += td->o.ratemin[ddir];
165 rate_iops += td->o.rate_iops[ddir];
166 rate_iops_min += td->o.rate_iops_min[ddir];
167
168 /*
169 * if rate blocks is set, sample is running
170 */
171 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172 spent = mtime_since(&td->lastrate[ddir], now);
173 if (spent < td->o.ratecycle)
174 return 0;
175
176 if (td->o.rate[ddir]) {
177 /*
178 * check bandwidth specified rate
179 */
180 if (bytes < td->rate_bytes[ddir]) {
181 log_err("%s: min rate %u not met\n", td->o.name,
182 ratemin);
183 return 1;
184 } else {
185 if (spent)
186 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
187 else
188 rate = 0;
189
190 if (rate < ratemin ||
191 bytes < td->rate_bytes[ddir]) {
192 log_err("%s: min rate %u not met, got"
193 " %luKB/sec\n", td->o.name,
194 ratemin, rate);
195 return 1;
196 }
197 }
198 } else {
199 /*
200 * checks iops specified rate
201 */
202 if (iops < rate_iops) {
203 log_err("%s: min iops rate %u not met\n",
204 td->o.name, rate_iops);
205 return 1;
206 } else {
207 if (spent)
208 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
209 else
210 rate = 0;
211
212 if (rate < rate_iops_min ||
213 iops < td->rate_blocks[ddir]) {
214 log_err("%s: min iops rate %u not met,"
215 " got %lu\n", td->o.name,
216 rate_iops_min, rate);
217 }
218 }
219 }
220 }
221
222 td->rate_bytes[ddir] = bytes;
223 td->rate_blocks[ddir] = iops;
224 memcpy(&td->lastrate[ddir], now, sizeof(*now));
225 return 0;
226 }
227
check_min_rate(struct thread_data * td,struct timeval * now,uint64_t * bytes_done)228 static int check_min_rate(struct thread_data *td, struct timeval *now,
229 uint64_t *bytes_done)
230 {
231 int ret = 0;
232
233 if (bytes_done[DDIR_READ])
234 ret |= __check_min_rate(td, now, DDIR_READ);
235 if (bytes_done[DDIR_WRITE])
236 ret |= __check_min_rate(td, now, DDIR_WRITE);
237 if (bytes_done[DDIR_TRIM])
238 ret |= __check_min_rate(td, now, DDIR_TRIM);
239
240 return ret;
241 }
242
243 /*
244 * When job exits, we can cancel the in-flight IO if we are using async
245 * io. Attempt to do so.
246 */
cleanup_pending_aio(struct thread_data * td)247 static void cleanup_pending_aio(struct thread_data *td)
248 {
249 int r;
250
251 /*
252 * get immediately available events, if any
253 */
254 r = io_u_queued_complete(td, 0, NULL);
255 if (r < 0)
256 return;
257
258 /*
259 * now cancel remaining active events
260 */
261 if (td->io_ops->cancel) {
262 struct io_u *io_u;
263 int i;
264
265 io_u_qiter(&td->io_u_all, io_u, i) {
266 if (io_u->flags & IO_U_F_FLIGHT) {
267 r = td->io_ops->cancel(td, io_u);
268 if (!r)
269 put_io_u(td, io_u);
270 }
271 }
272 }
273
274 if (td->cur_depth)
275 r = io_u_queued_complete(td, td->cur_depth, NULL);
276 }
277
278 /*
279 * Helper to handle the final sync of a file. Works just like the normal
280 * io path, just does everything sync.
281 */
fio_io_sync(struct thread_data * td,struct fio_file * f)282 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
283 {
284 struct io_u *io_u = __get_io_u(td);
285 int ret;
286
287 if (!io_u)
288 return 1;
289
290 io_u->ddir = DDIR_SYNC;
291 io_u->file = f;
292
293 if (td_io_prep(td, io_u)) {
294 put_io_u(td, io_u);
295 return 1;
296 }
297
298 requeue:
299 ret = td_io_queue(td, io_u);
300 if (ret < 0) {
301 td_verror(td, io_u->error, "td_io_queue");
302 put_io_u(td, io_u);
303 return 1;
304 } else if (ret == FIO_Q_QUEUED) {
305 if (io_u_queued_complete(td, 1, NULL) < 0)
306 return 1;
307 } else if (ret == FIO_Q_COMPLETED) {
308 if (io_u->error) {
309 td_verror(td, io_u->error, "td_io_queue");
310 return 1;
311 }
312
313 if (io_u_sync_complete(td, io_u, NULL) < 0)
314 return 1;
315 } else if (ret == FIO_Q_BUSY) {
316 if (td_io_commit(td))
317 return 1;
318 goto requeue;
319 }
320
321 return 0;
322 }
323
fio_file_fsync(struct thread_data * td,struct fio_file * f)324 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
325 {
326 int ret;
327
328 if (fio_file_open(f))
329 return fio_io_sync(td, f);
330
331 if (td_io_open_file(td, f))
332 return 1;
333
334 ret = fio_io_sync(td, f);
335 td_io_close_file(td, f);
336 return ret;
337 }
338
__update_tv_cache(struct thread_data * td)339 static inline void __update_tv_cache(struct thread_data *td)
340 {
341 fio_gettime(&td->tv_cache, NULL);
342 }
343
update_tv_cache(struct thread_data * td)344 static inline void update_tv_cache(struct thread_data *td)
345 {
346 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
347 __update_tv_cache(td);
348 }
349
runtime_exceeded(struct thread_data * td,struct timeval * t)350 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
351 {
352 if (in_ramp_time(td))
353 return 0;
354 if (!td->o.timeout)
355 return 0;
356 if (utime_since(&td->epoch, t) >= td->o.timeout)
357 return 1;
358
359 return 0;
360 }
361
break_on_this_error(struct thread_data * td,enum fio_ddir ddir,int * retptr)362 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
363 int *retptr)
364 {
365 int ret = *retptr;
366
367 if (ret < 0 || td->error) {
368 int err = td->error;
369 enum error_type_bit eb;
370
371 if (ret < 0)
372 err = -ret;
373
374 eb = td_error_type(ddir, err);
375 if (!(td->o.continue_on_error & (1 << eb)))
376 return 1;
377
378 if (td_non_fatal_error(td, eb, err)) {
379 /*
380 * Continue with the I/Os in case of
381 * a non fatal error.
382 */
383 update_error_count(td, err);
384 td_clear_error(td);
385 *retptr = 0;
386 return 0;
387 } else if (td->o.fill_device && err == ENOSPC) {
388 /*
389 * We expect to hit this error if
390 * fill_device option is set.
391 */
392 td_clear_error(td);
393 td->terminate = 1;
394 return 1;
395 } else {
396 /*
397 * Stop the I/O in case of a fatal
398 * error.
399 */
400 update_error_count(td, err);
401 return 1;
402 }
403 }
404
405 return 0;
406 }
407
check_update_rusage(struct thread_data * td)408 static void check_update_rusage(struct thread_data *td)
409 {
410 if (td->update_rusage) {
411 td->update_rusage = 0;
412 update_rusage_stat(td);
413 fio_mutex_up(td->rusage_sem);
414 }
415 }
416
417 /*
418 * The main verify engine. Runs over the writes we previously submitted,
419 * reads the blocks back in, and checks the crc/md5 of the data.
420 */
do_verify(struct thread_data * td,uint64_t verify_bytes)421 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
422 {
423 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
424 struct fio_file *f;
425 struct io_u *io_u;
426 int ret, min_events;
427 unsigned int i;
428
429 dprint(FD_VERIFY, "starting loop\n");
430
431 /*
432 * sync io first and invalidate cache, to make sure we really
433 * read from disk.
434 */
435 for_each_file(td, f, i) {
436 if (!fio_file_open(f))
437 continue;
438 if (fio_io_sync(td, f))
439 break;
440 if (file_invalidate_cache(td, f))
441 break;
442 }
443
444 check_update_rusage(td);
445
446 if (td->error)
447 return;
448
449 td_set_runstate(td, TD_VERIFYING);
450
451 io_u = NULL;
452 while (!td->terminate) {
453 enum fio_ddir ddir;
454 int ret2, full;
455
456 update_tv_cache(td);
457 check_update_rusage(td);
458
459 if (runtime_exceeded(td, &td->tv_cache)) {
460 __update_tv_cache(td);
461 if (runtime_exceeded(td, &td->tv_cache)) {
462 td->terminate = 1;
463 break;
464 }
465 }
466
467 if (flow_threshold_exceeded(td))
468 continue;
469
470 if (!td->o.experimental_verify) {
471 io_u = __get_io_u(td);
472 if (!io_u)
473 break;
474
475 if (get_next_verify(td, io_u)) {
476 put_io_u(td, io_u);
477 break;
478 }
479
480 if (td_io_prep(td, io_u)) {
481 put_io_u(td, io_u);
482 break;
483 }
484 } else {
485 if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
486 break;
487
488 while ((io_u = get_io_u(td)) != NULL) {
489 if (IS_ERR(io_u)) {
490 io_u = NULL;
491 ret = FIO_Q_BUSY;
492 goto reap;
493 }
494
495 /*
496 * We are only interested in the places where
497 * we wrote or trimmed IOs. Turn those into
498 * reads for verification purposes.
499 */
500 if (io_u->ddir == DDIR_READ) {
501 /*
502 * Pretend we issued it for rwmix
503 * accounting
504 */
505 td->io_issues[DDIR_READ]++;
506 put_io_u(td, io_u);
507 continue;
508 } else if (io_u->ddir == DDIR_TRIM) {
509 io_u->ddir = DDIR_READ;
510 io_u->flags |= IO_U_F_TRIMMED;
511 break;
512 } else if (io_u->ddir == DDIR_WRITE) {
513 io_u->ddir = DDIR_READ;
514 break;
515 } else {
516 put_io_u(td, io_u);
517 continue;
518 }
519 }
520
521 if (!io_u)
522 break;
523 }
524
525 if (td->o.verify_async)
526 io_u->end_io = verify_io_u_async;
527 else
528 io_u->end_io = verify_io_u;
529
530 ddir = io_u->ddir;
531
532 ret = td_io_queue(td, io_u);
533 switch (ret) {
534 case FIO_Q_COMPLETED:
535 if (io_u->error) {
536 ret = -io_u->error;
537 clear_io_u(td, io_u);
538 } else if (io_u->resid) {
539 int bytes = io_u->xfer_buflen - io_u->resid;
540
541 /*
542 * zero read, fail
543 */
544 if (!bytes) {
545 td_verror(td, EIO, "full resid");
546 put_io_u(td, io_u);
547 break;
548 }
549
550 io_u->xfer_buflen = io_u->resid;
551 io_u->xfer_buf += bytes;
552 io_u->offset += bytes;
553
554 if (ddir_rw(io_u->ddir))
555 td->ts.short_io_u[io_u->ddir]++;
556
557 f = io_u->file;
558 if (io_u->offset == f->real_file_size)
559 goto sync_done;
560
561 requeue_io_u(td, &io_u);
562 } else {
563 sync_done:
564 ret = io_u_sync_complete(td, io_u, bytes_done);
565 if (ret < 0)
566 break;
567 }
568 continue;
569 case FIO_Q_QUEUED:
570 break;
571 case FIO_Q_BUSY:
572 requeue_io_u(td, &io_u);
573 ret2 = td_io_commit(td);
574 if (ret2 < 0)
575 ret = ret2;
576 break;
577 default:
578 assert(ret < 0);
579 td_verror(td, -ret, "td_io_queue");
580 break;
581 }
582
583 if (break_on_this_error(td, ddir, &ret))
584 break;
585
586 /*
587 * if we can queue more, do so. but check if there are
588 * completed io_u's first. Note that we can get BUSY even
589 * without IO queued, if the system is resource starved.
590 */
591 reap:
592 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
593 if (full || !td->o.iodepth_batch_complete) {
594 min_events = min(td->o.iodepth_batch_complete,
595 td->cur_depth);
596 /*
597 * if the queue is full, we MUST reap at least 1 event
598 */
599 if (full && !min_events)
600 min_events = 1;
601
602 do {
603 /*
604 * Reap required number of io units, if any,
605 * and do the verification on them through
606 * the callback handler
607 */
608 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
609 ret = -1;
610 break;
611 }
612 } while (full && (td->cur_depth > td->o.iodepth_low));
613 }
614 if (ret < 0)
615 break;
616 }
617
618 check_update_rusage(td);
619
620 if (!td->error) {
621 min_events = td->cur_depth;
622
623 if (min_events)
624 ret = io_u_queued_complete(td, min_events, NULL);
625 } else
626 cleanup_pending_aio(td);
627
628 td_set_runstate(td, TD_RUNNING);
629
630 dprint(FD_VERIFY, "exiting loop\n");
631 }
632
exceeds_number_ios(struct thread_data * td)633 static unsigned int exceeds_number_ios(struct thread_data *td)
634 {
635 unsigned long long number_ios;
636
637 if (!td->o.number_ios)
638 return 0;
639
640 number_ios = ddir_rw_sum(td->this_io_blocks);
641 number_ios += td->io_u_queued + td->io_u_in_flight;
642
643 return number_ios >= td->o.number_ios;
644 }
645
io_bytes_exceeded(struct thread_data * td)646 static int io_bytes_exceeded(struct thread_data *td)
647 {
648 unsigned long long bytes, limit;
649
650 if (td_rw(td))
651 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
652 else if (td_write(td))
653 bytes = td->this_io_bytes[DDIR_WRITE];
654 else if (td_read(td))
655 bytes = td->this_io_bytes[DDIR_READ];
656 else
657 bytes = td->this_io_bytes[DDIR_TRIM];
658
659 if (td->o.io_limit)
660 limit = td->o.io_limit;
661 else
662 limit = td->o.size;
663
664 return bytes >= limit || exceeds_number_ios(td);
665 }
666
667 /*
668 * Main IO worker function. It retrieves io_u's to process and queues
669 * and reaps them, checking for rate and errors along the way.
670 *
671 * Returns number of bytes written and trimmed.
672 */
do_io(struct thread_data * td)673 static uint64_t do_io(struct thread_data *td)
674 {
675 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
676 unsigned int i;
677 int ret = 0;
678 uint64_t total_bytes, bytes_issued = 0;
679
680 if (in_ramp_time(td))
681 td_set_runstate(td, TD_RAMP);
682 else
683 td_set_runstate(td, TD_RUNNING);
684
685 lat_target_init(td);
686
687 /*
688 * If verify_backlog is enabled, we'll run the verify in this
689 * handler as well. For that case, we may need up to twice the
690 * amount of bytes.
691 */
692 total_bytes = td->o.size;
693 if (td->o.verify != VERIFY_NONE &&
694 (td_write(td) && td->o.verify_backlog))
695 total_bytes += td->o.size;
696
697 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
698 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
699 td->o.time_based) {
700 struct timeval comp_time;
701 int min_evts = 0;
702 struct io_u *io_u;
703 int ret2, full;
704 enum fio_ddir ddir;
705
706 check_update_rusage(td);
707
708 if (td->terminate || td->done)
709 break;
710
711 update_tv_cache(td);
712
713 if (runtime_exceeded(td, &td->tv_cache)) {
714 __update_tv_cache(td);
715 if (runtime_exceeded(td, &td->tv_cache)) {
716 td->terminate = 1;
717 break;
718 }
719 }
720
721 if (flow_threshold_exceeded(td))
722 continue;
723
724 if (bytes_issued >= total_bytes)
725 break;
726
727 io_u = get_io_u(td);
728 if (IS_ERR_OR_NULL(io_u)) {
729 int err = PTR_ERR(io_u);
730
731 io_u = NULL;
732 if (err == -EBUSY) {
733 ret = FIO_Q_BUSY;
734 goto reap;
735 }
736 if (td->o.latency_target)
737 goto reap;
738 break;
739 }
740
741 ddir = io_u->ddir;
742
743 /*
744 * Add verification end_io handler if:
745 * - Asked to verify (!td_rw(td))
746 * - Or the io_u is from our verify list (mixed write/ver)
747 */
748 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
749 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
750
751 if (!td->o.verify_pattern_bytes) {
752 io_u->rand_seed = __rand(&td->__verify_state);
753 if (sizeof(int) != sizeof(long *))
754 io_u->rand_seed *= __rand(&td->__verify_state);
755 }
756
757 if (td->o.verify_async)
758 io_u->end_io = verify_io_u_async;
759 else
760 io_u->end_io = verify_io_u;
761 td_set_runstate(td, TD_VERIFYING);
762 } else if (in_ramp_time(td))
763 td_set_runstate(td, TD_RAMP);
764 else
765 td_set_runstate(td, TD_RUNNING);
766
767 /*
768 * Always log IO before it's issued, so we know the specific
769 * order of it. The logged unit will track when the IO has
770 * completed.
771 */
772 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
773 td->o.do_verify &&
774 td->o.verify != VERIFY_NONE &&
775 !td->o.experimental_verify)
776 log_io_piece(td, io_u);
777
778 ret = td_io_queue(td, io_u);
779 switch (ret) {
780 case FIO_Q_COMPLETED:
781 if (io_u->error) {
782 ret = -io_u->error;
783 unlog_io_piece(td, io_u);
784 clear_io_u(td, io_u);
785 } else if (io_u->resid) {
786 int bytes = io_u->xfer_buflen - io_u->resid;
787 struct fio_file *f = io_u->file;
788
789 bytes_issued += bytes;
790
791 trim_io_piece(td, io_u);
792
793 /*
794 * zero read, fail
795 */
796 if (!bytes) {
797 unlog_io_piece(td, io_u);
798 td_verror(td, EIO, "full resid");
799 put_io_u(td, io_u);
800 break;
801 }
802
803 io_u->xfer_buflen = io_u->resid;
804 io_u->xfer_buf += bytes;
805 io_u->offset += bytes;
806
807 if (ddir_rw(io_u->ddir))
808 td->ts.short_io_u[io_u->ddir]++;
809
810 if (io_u->offset == f->real_file_size)
811 goto sync_done;
812
813 requeue_io_u(td, &io_u);
814 } else {
815 sync_done:
816 if (__should_check_rate(td, DDIR_READ) ||
817 __should_check_rate(td, DDIR_WRITE) ||
818 __should_check_rate(td, DDIR_TRIM))
819 fio_gettime(&comp_time, NULL);
820
821 ret = io_u_sync_complete(td, io_u, bytes_done);
822 if (ret < 0)
823 break;
824 bytes_issued += io_u->xfer_buflen;
825 }
826 break;
827 case FIO_Q_QUEUED:
828 /*
829 * if the engine doesn't have a commit hook,
830 * the io_u is really queued. if it does have such
831 * a hook, it has to call io_u_queued() itself.
832 */
833 if (td->io_ops->commit == NULL)
834 io_u_queued(td, io_u);
835 bytes_issued += io_u->xfer_buflen;
836 break;
837 case FIO_Q_BUSY:
838 unlog_io_piece(td, io_u);
839 requeue_io_u(td, &io_u);
840 ret2 = td_io_commit(td);
841 if (ret2 < 0)
842 ret = ret2;
843 break;
844 default:
845 assert(ret < 0);
846 put_io_u(td, io_u);
847 break;
848 }
849
850 if (break_on_this_error(td, ddir, &ret))
851 break;
852
853 /*
854 * See if we need to complete some commands. Note that we
855 * can get BUSY even without IO queued, if the system is
856 * resource starved.
857 */
858 reap:
859 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
860 if (full || !td->o.iodepth_batch_complete) {
861 min_evts = min(td->o.iodepth_batch_complete,
862 td->cur_depth);
863 /*
864 * if the queue is full, we MUST reap at least 1 event
865 */
866 if (full && !min_evts)
867 min_evts = 1;
868
869 if (__should_check_rate(td, DDIR_READ) ||
870 __should_check_rate(td, DDIR_WRITE) ||
871 __should_check_rate(td, DDIR_TRIM))
872 fio_gettime(&comp_time, NULL);
873
874 do {
875 ret = io_u_queued_complete(td, min_evts, bytes_done);
876 if (ret < 0)
877 break;
878
879 } while (full && (td->cur_depth > td->o.iodepth_low));
880 }
881
882 if (ret < 0)
883 break;
884 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
885 continue;
886
887 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
888 if (check_min_rate(td, &comp_time, bytes_done)) {
889 if (exitall_on_terminate)
890 fio_terminate_threads(td->groupid);
891 td_verror(td, EIO, "check_min_rate");
892 break;
893 }
894 }
895 if (!in_ramp_time(td) && td->o.latency_target)
896 lat_target_check(td);
897
898 if (td->o.thinktime) {
899 unsigned long long b;
900
901 b = ddir_rw_sum(td->io_blocks);
902 if (!(b % td->o.thinktime_blocks)) {
903 int left;
904
905 io_u_quiesce(td);
906
907 if (td->o.thinktime_spin)
908 usec_spin(td->o.thinktime_spin);
909
910 left = td->o.thinktime - td->o.thinktime_spin;
911 if (left)
912 usec_sleep(td, left);
913 }
914 }
915 }
916
917 check_update_rusage(td);
918
919 if (td->trim_entries)
920 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
921
922 if (td->o.fill_device && td->error == ENOSPC) {
923 td->error = 0;
924 td->terminate = 1;
925 }
926 if (!td->error) {
927 struct fio_file *f;
928
929 i = td->cur_depth;
930 if (i) {
931 ret = io_u_queued_complete(td, i, bytes_done);
932 if (td->o.fill_device && td->error == ENOSPC)
933 td->error = 0;
934 }
935
936 if (should_fsync(td) && td->o.end_fsync) {
937 td_set_runstate(td, TD_FSYNCING);
938
939 for_each_file(td, f, i) {
940 if (!fio_file_fsync(td, f))
941 continue;
942
943 log_err("fio: end_fsync failed for file %s\n",
944 f->file_name);
945 }
946 }
947 } else
948 cleanup_pending_aio(td);
949
950 /*
951 * stop job if we failed doing any IO
952 */
953 if (!ddir_rw_sum(td->this_io_bytes))
954 td->done = 1;
955
956 return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
957 }
958
cleanup_io_u(struct thread_data * td)959 static void cleanup_io_u(struct thread_data *td)
960 {
961 struct io_u *io_u;
962
963 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
964
965 if (td->io_ops->io_u_free)
966 td->io_ops->io_u_free(td, io_u);
967
968 fio_memfree(io_u, sizeof(*io_u));
969 }
970
971 free_io_mem(td);
972
973 io_u_rexit(&td->io_u_requeues);
974 io_u_qexit(&td->io_u_freelist);
975 io_u_qexit(&td->io_u_all);
976 }
977
init_io_u(struct thread_data * td)978 static int init_io_u(struct thread_data *td)
979 {
980 struct io_u *io_u;
981 unsigned int max_bs, min_write;
982 int cl_align, i, max_units;
983 int data_xfer = 1, err;
984 char *p;
985
986 max_units = td->o.iodepth;
987 max_bs = td_max_bs(td);
988 min_write = td->o.min_bs[DDIR_WRITE];
989 td->orig_buffer_size = (unsigned long long) max_bs
990 * (unsigned long long) max_units;
991
992 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
993 data_xfer = 0;
994
995 err = 0;
996 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
997 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
998 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
999
1000 if (err) {
1001 log_err("fio: failed setting up IO queues\n");
1002 return 1;
1003 }
1004
1005 /*
1006 * if we may later need to do address alignment, then add any
1007 * possible adjustment here so that we don't cause a buffer
1008 * overflow later. this adjustment may be too much if we get
1009 * lucky and the allocator gives us an aligned address.
1010 */
1011 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1012 (td->io_ops->flags & FIO_RAWIO))
1013 td->orig_buffer_size += page_mask + td->o.mem_align;
1014
1015 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1016 unsigned long bs;
1017
1018 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1019 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1020 }
1021
1022 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1023 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1024 return 1;
1025 }
1026
1027 if (data_xfer && allocate_io_mem(td))
1028 return 1;
1029
1030 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1031 (td->io_ops->flags & FIO_RAWIO))
1032 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1033 else
1034 p = td->orig_buffer;
1035
1036 cl_align = os_cache_line_size();
1037
1038 for (i = 0; i < max_units; i++) {
1039 void *ptr;
1040
1041 if (td->terminate)
1042 return 1;
1043
1044 ptr = fio_memalign(cl_align, sizeof(*io_u));
1045 if (!ptr) {
1046 log_err("fio: unable to allocate aligned memory\n");
1047 break;
1048 }
1049
1050 io_u = ptr;
1051 memset(io_u, 0, sizeof(*io_u));
1052 INIT_FLIST_HEAD(&io_u->verify_list);
1053 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1054
1055 if (data_xfer) {
1056 io_u->buf = p;
1057 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1058
1059 if (td_write(td))
1060 io_u_fill_buffer(td, io_u, min_write, max_bs);
1061 if (td_write(td) && td->o.verify_pattern_bytes) {
1062 /*
1063 * Fill the buffer with the pattern if we are
1064 * going to be doing writes.
1065 */
1066 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1067 }
1068 }
1069
1070 io_u->index = i;
1071 io_u->flags = IO_U_F_FREE;
1072 io_u_qpush(&td->io_u_freelist, io_u);
1073
1074 /*
1075 * io_u never leaves this stack, used for iteration of all
1076 * io_u buffers.
1077 */
1078 io_u_qpush(&td->io_u_all, io_u);
1079
1080 if (td->io_ops->io_u_init) {
1081 int ret = td->io_ops->io_u_init(td, io_u);
1082
1083 if (ret) {
1084 log_err("fio: failed to init engine data: %d\n", ret);
1085 return 1;
1086 }
1087 }
1088
1089 p += max_bs;
1090 }
1091
1092 return 0;
1093 }
1094
switch_ioscheduler(struct thread_data * td)1095 static int switch_ioscheduler(struct thread_data *td)
1096 {
1097 char tmp[256], tmp2[128];
1098 FILE *f;
1099 int ret;
1100
1101 if (td->io_ops->flags & FIO_DISKLESSIO)
1102 return 0;
1103
1104 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1105
1106 f = fopen(tmp, "r+");
1107 if (!f) {
1108 if (errno == ENOENT) {
1109 log_err("fio: os or kernel doesn't support IO scheduler"
1110 " switching\n");
1111 return 0;
1112 }
1113 td_verror(td, errno, "fopen iosched");
1114 return 1;
1115 }
1116
1117 /*
1118 * Set io scheduler.
1119 */
1120 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1121 if (ferror(f) || ret != 1) {
1122 td_verror(td, errno, "fwrite");
1123 fclose(f);
1124 return 1;
1125 }
1126
1127 rewind(f);
1128
1129 /*
1130 * Read back and check that the selected scheduler is now the default.
1131 */
1132 ret = fread(tmp, sizeof(tmp), 1, f);
1133 if (ferror(f) || ret < 0) {
1134 td_verror(td, errno, "fread");
1135 fclose(f);
1136 return 1;
1137 }
1138 tmp[sizeof(tmp) - 1] = '\0';
1139
1140
1141 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1142 if (!strstr(tmp, tmp2)) {
1143 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1144 td_verror(td, EINVAL, "iosched_switch");
1145 fclose(f);
1146 return 1;
1147 }
1148
1149 fclose(f);
1150 return 0;
1151 }
1152
keep_running(struct thread_data * td)1153 static int keep_running(struct thread_data *td)
1154 {
1155 unsigned long long limit;
1156
1157 if (td->done)
1158 return 0;
1159 if (td->o.time_based)
1160 return 1;
1161 if (td->o.loops) {
1162 td->o.loops--;
1163 return 1;
1164 }
1165 if (exceeds_number_ios(td))
1166 return 0;
1167
1168 if (td->o.io_limit)
1169 limit = td->o.io_limit;
1170 else
1171 limit = td->o.size;
1172
1173 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1174 uint64_t diff;
1175
1176 /*
1177 * If the difference is less than the minimum IO size, we
1178 * are done.
1179 */
1180 diff = limit - ddir_rw_sum(td->io_bytes);
1181 if (diff < td_max_bs(td))
1182 return 0;
1183
1184 if (fio_files_done(td))
1185 return 0;
1186
1187 return 1;
1188 }
1189
1190 return 0;
1191 }
1192
exec_string(struct thread_options * o,const char * string,const char * mode)1193 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1194 {
1195 int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1196 char *str;
1197
1198 str = malloc(newlen);
1199 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1200
1201 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1202 ret = system(str);
1203 if (ret == -1)
1204 log_err("fio: exec of cmd <%s> failed\n", str);
1205
1206 free(str);
1207 return ret;
1208 }
1209
1210 /*
1211 * Dry run to compute correct state of numberio for verification.
1212 */
do_dry_run(struct thread_data * td)1213 static uint64_t do_dry_run(struct thread_data *td)
1214 {
1215 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1216
1217 td_set_runstate(td, TD_RUNNING);
1218
1219 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1220 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1221 struct io_u *io_u;
1222 int ret;
1223
1224 if (td->terminate || td->done)
1225 break;
1226
1227 io_u = get_io_u(td);
1228 if (!io_u)
1229 break;
1230
1231 io_u->flags |= IO_U_F_FLIGHT;
1232 io_u->error = 0;
1233 io_u->resid = 0;
1234 if (ddir_rw(acct_ddir(io_u)))
1235 td->io_issues[acct_ddir(io_u)]++;
1236 if (ddir_rw(io_u->ddir)) {
1237 io_u_mark_depth(td, 1);
1238 td->ts.total_io_u[io_u->ddir]++;
1239 }
1240
1241 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1242 td->o.do_verify &&
1243 td->o.verify != VERIFY_NONE &&
1244 !td->o.experimental_verify)
1245 log_io_piece(td, io_u);
1246
1247 ret = io_u_sync_complete(td, io_u, bytes_done);
1248 (void) ret;
1249 }
1250
1251 return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1252 }
1253
1254 /*
1255 * Entry point for the thread based jobs. The process based jobs end up
1256 * here as well, after a little setup.
1257 */
thread_main(void * data)1258 static void *thread_main(void *data)
1259 {
1260 unsigned long long elapsed;
1261 struct thread_data *td = data;
1262 struct thread_options *o = &td->o;
1263 pthread_condattr_t attr;
1264 int clear_state;
1265 int ret;
1266
1267 if (!o->use_thread) {
1268 setsid();
1269 td->pid = getpid();
1270 } else
1271 td->pid = gettid();
1272
1273 /*
1274 * fio_time_init() may not have been called yet if running as a server
1275 */
1276 fio_time_init();
1277
1278 fio_local_clock_init(o->use_thread);
1279
1280 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1281
1282 if (is_backend)
1283 fio_server_send_start(td);
1284
1285 INIT_FLIST_HEAD(&td->io_log_list);
1286 INIT_FLIST_HEAD(&td->io_hist_list);
1287 INIT_FLIST_HEAD(&td->verify_list);
1288 INIT_FLIST_HEAD(&td->trim_list);
1289 INIT_FLIST_HEAD(&td->next_rand_list);
1290 pthread_mutex_init(&td->io_u_lock, NULL);
1291 td->io_hist_tree = RB_ROOT;
1292
1293 pthread_condattr_init(&attr);
1294 pthread_cond_init(&td->verify_cond, &attr);
1295 pthread_cond_init(&td->free_cond, &attr);
1296
1297 td_set_runstate(td, TD_INITIALIZED);
1298 dprint(FD_MUTEX, "up startup_mutex\n");
1299 fio_mutex_up(startup_mutex);
1300 dprint(FD_MUTEX, "wait on td->mutex\n");
1301 fio_mutex_down(td->mutex);
1302 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1303
1304 /*
1305 * A new gid requires privilege, so we need to do this before setting
1306 * the uid.
1307 */
1308 if (o->gid != -1U && setgid(o->gid)) {
1309 td_verror(td, errno, "setgid");
1310 goto err;
1311 }
1312 if (o->uid != -1U && setuid(o->uid)) {
1313 td_verror(td, errno, "setuid");
1314 goto err;
1315 }
1316
1317 /*
1318 * If we have a gettimeofday() thread, make sure we exclude that
1319 * thread from this job
1320 */
1321 if (o->gtod_cpu)
1322 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1323
1324 /*
1325 * Set affinity first, in case it has an impact on the memory
1326 * allocations.
1327 */
1328 if (o->cpumask_set) {
1329 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1330 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1331 if (!ret) {
1332 log_err("fio: no CPUs set\n");
1333 log_err("fio: Try increasing number of available CPUs\n");
1334 td_verror(td, EINVAL, "cpus_split");
1335 goto err;
1336 }
1337 }
1338 ret = fio_setaffinity(td->pid, o->cpumask);
1339 if (ret == -1) {
1340 td_verror(td, errno, "cpu_set_affinity");
1341 goto err;
1342 }
1343 }
1344
1345 #ifdef CONFIG_LIBNUMA
1346 /* numa node setup */
1347 if (o->numa_cpumask_set || o->numa_memmask_set) {
1348 struct bitmask *mask;
1349 int ret;
1350
1351 if (numa_available() < 0) {
1352 td_verror(td, errno, "Does not support NUMA API\n");
1353 goto err;
1354 }
1355
1356 if (o->numa_cpumask_set) {
1357 mask = numa_parse_nodestring(o->numa_cpunodes);
1358 ret = numa_run_on_node_mask(mask);
1359 numa_free_nodemask(mask);
1360 if (ret == -1) {
1361 td_verror(td, errno, \
1362 "numa_run_on_node_mask failed\n");
1363 goto err;
1364 }
1365 }
1366
1367 if (o->numa_memmask_set) {
1368
1369 mask = NULL;
1370 if (o->numa_memnodes)
1371 mask = numa_parse_nodestring(o->numa_memnodes);
1372
1373 switch (o->numa_mem_mode) {
1374 case MPOL_INTERLEAVE:
1375 numa_set_interleave_mask(mask);
1376 break;
1377 case MPOL_BIND:
1378 numa_set_membind(mask);
1379 break;
1380 case MPOL_LOCAL:
1381 numa_set_localalloc();
1382 break;
1383 case MPOL_PREFERRED:
1384 numa_set_preferred(o->numa_mem_prefer_node);
1385 break;
1386 case MPOL_DEFAULT:
1387 default:
1388 break;
1389 }
1390
1391 if (mask)
1392 numa_free_nodemask(mask);
1393
1394 }
1395 }
1396 #endif
1397
1398 if (fio_pin_memory(td))
1399 goto err;
1400
1401 /*
1402 * May alter parameters that init_io_u() will use, so we need to
1403 * do this first.
1404 */
1405 if (init_iolog(td))
1406 goto err;
1407
1408 if (init_io_u(td))
1409 goto err;
1410
1411 if (o->verify_async && verify_async_init(td))
1412 goto err;
1413
1414 if (o->ioprio) {
1415 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1416 if (ret == -1) {
1417 td_verror(td, errno, "ioprio_set");
1418 goto err;
1419 }
1420 }
1421
1422 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1423 goto err;
1424
1425 errno = 0;
1426 if (nice(o->nice) == -1 && errno != 0) {
1427 td_verror(td, errno, "nice");
1428 goto err;
1429 }
1430
1431 if (o->ioscheduler && switch_ioscheduler(td))
1432 goto err;
1433
1434 if (!o->create_serialize && setup_files(td))
1435 goto err;
1436
1437 if (td_io_init(td))
1438 goto err;
1439
1440 if (init_random_map(td))
1441 goto err;
1442
1443 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1444 goto err;
1445
1446 if (o->pre_read) {
1447 if (pre_read_files(td) < 0)
1448 goto err;
1449 }
1450
1451 fio_verify_init(td);
1452
1453 fio_gettime(&td->epoch, NULL);
1454 fio_getrusage(&td->ru_start);
1455 clear_state = 0;
1456 while (keep_running(td)) {
1457 uint64_t verify_bytes;
1458
1459 fio_gettime(&td->start, NULL);
1460 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1461 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1462 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1463
1464 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1465 o->ratemin[DDIR_TRIM]) {
1466 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1467 sizeof(td->bw_sample_time));
1468 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1469 sizeof(td->bw_sample_time));
1470 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1471 sizeof(td->bw_sample_time));
1472 }
1473
1474 if (clear_state)
1475 clear_io_state(td);
1476
1477 prune_io_piece_log(td);
1478
1479 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1480 verify_bytes = do_dry_run(td);
1481 else
1482 verify_bytes = do_io(td);
1483
1484 clear_state = 1;
1485
1486 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1487 elapsed = utime_since_now(&td->start);
1488 td->ts.runtime[DDIR_READ] += elapsed;
1489 }
1490 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1491 elapsed = utime_since_now(&td->start);
1492 td->ts.runtime[DDIR_WRITE] += elapsed;
1493 }
1494 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1495 elapsed = utime_since_now(&td->start);
1496 td->ts.runtime[DDIR_TRIM] += elapsed;
1497 }
1498
1499 if (td->error || td->terminate)
1500 break;
1501
1502 if (!o->do_verify ||
1503 o->verify == VERIFY_NONE ||
1504 (td->io_ops->flags & FIO_UNIDIR))
1505 continue;
1506
1507 clear_io_state(td);
1508
1509 fio_gettime(&td->start, NULL);
1510
1511 do_verify(td, verify_bytes);
1512
1513 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1514
1515 if (td->error || td->terminate)
1516 break;
1517 }
1518
1519 update_rusage_stat(td);
1520 td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1521 td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1522 td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1523 td->ts.total_run_time = mtime_since_now(&td->epoch);
1524 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1525 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1526 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1527
1528 fio_unpin_memory(td);
1529
1530 fio_writeout_logs(td);
1531
1532 if (o->exec_postrun)
1533 exec_string(o, o->exec_postrun, (const char *)"postrun");
1534
1535 if (exitall_on_terminate)
1536 fio_terminate_threads(td->groupid);
1537
1538 err:
1539 if (td->error)
1540 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1541 td->verror);
1542
1543 if (o->verify_async)
1544 verify_async_exit(td);
1545
1546 close_and_free_files(td);
1547 cleanup_io_u(td);
1548 close_ioengine(td);
1549 cgroup_shutdown(td, &cgroup_mnt);
1550
1551 if (o->cpumask_set) {
1552 int ret = fio_cpuset_exit(&o->cpumask);
1553
1554 td_verror(td, ret, "fio_cpuset_exit");
1555 }
1556
1557 /*
1558 * do this very late, it will log file closing as well
1559 */
1560 if (o->write_iolog_file)
1561 write_iolog_close(td);
1562
1563 fio_mutex_remove(td->rusage_sem);
1564 td->rusage_sem = NULL;
1565
1566 fio_mutex_remove(td->mutex);
1567 td->mutex = NULL;
1568
1569 td_set_runstate(td, TD_EXITED);
1570 return (void *) (uintptr_t) td->error;
1571 }
1572
1573
1574 /*
1575 * We cannot pass the td data into a forked process, so attach the td and
1576 * pass it to the thread worker.
1577 */
fork_main(int shmid,int offset)1578 static int fork_main(int shmid, int offset)
1579 {
1580 struct thread_data *td;
1581 void *data, *ret;
1582
1583 #ifndef __hpux
1584 data = shmat(shmid, NULL, 0);
1585 if (data == (void *) -1) {
1586 int __err = errno;
1587
1588 perror("shmat");
1589 return __err;
1590 }
1591 #else
1592 /*
1593 * HP-UX inherits shm mappings?
1594 */
1595 data = threads;
1596 #endif
1597
1598 td = data + offset * sizeof(struct thread_data);
1599 ret = thread_main(td);
1600 shmdt(data);
1601 return (int) (uintptr_t) ret;
1602 }
1603
1604 /*
1605 * Run over the job map and reap the threads that have exited, if any.
1606 */
reap_threads(unsigned int * nr_running,unsigned int * t_rate,unsigned int * m_rate)1607 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1608 unsigned int *m_rate)
1609 {
1610 struct thread_data *td;
1611 unsigned int cputhreads, realthreads, pending;
1612 int i, status, ret;
1613
1614 /*
1615 * reap exited threads (TD_EXITED -> TD_REAPED)
1616 */
1617 realthreads = pending = cputhreads = 0;
1618 for_each_td(td, i) {
1619 int flags = 0;
1620
1621 /*
1622 * ->io_ops is NULL for a thread that has closed its
1623 * io engine
1624 */
1625 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1626 cputhreads++;
1627 else
1628 realthreads++;
1629
1630 if (!td->pid) {
1631 pending++;
1632 continue;
1633 }
1634 if (td->runstate == TD_REAPED)
1635 continue;
1636 if (td->o.use_thread) {
1637 if (td->runstate == TD_EXITED) {
1638 td_set_runstate(td, TD_REAPED);
1639 goto reaped;
1640 }
1641 continue;
1642 }
1643
1644 flags = WNOHANG;
1645 if (td->runstate == TD_EXITED)
1646 flags = 0;
1647
1648 /*
1649 * check if someone quit or got killed in an unusual way
1650 */
1651 ret = waitpid(td->pid, &status, flags);
1652 if (ret < 0) {
1653 if (errno == ECHILD) {
1654 log_err("fio: pid=%d disappeared %d\n",
1655 (int) td->pid, td->runstate);
1656 td->sig = ECHILD;
1657 td_set_runstate(td, TD_REAPED);
1658 goto reaped;
1659 }
1660 perror("waitpid");
1661 } else if (ret == td->pid) {
1662 if (WIFSIGNALED(status)) {
1663 int sig = WTERMSIG(status);
1664
1665 if (sig != SIGTERM && sig != SIGUSR2)
1666 log_err("fio: pid=%d, got signal=%d\n",
1667 (int) td->pid, sig);
1668 td->sig = sig;
1669 td_set_runstate(td, TD_REAPED);
1670 goto reaped;
1671 }
1672 if (WIFEXITED(status)) {
1673 if (WEXITSTATUS(status) && !td->error)
1674 td->error = WEXITSTATUS(status);
1675
1676 td_set_runstate(td, TD_REAPED);
1677 goto reaped;
1678 }
1679 }
1680
1681 /*
1682 * thread is not dead, continue
1683 */
1684 pending++;
1685 continue;
1686 reaped:
1687 (*nr_running)--;
1688 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1689 (*t_rate) -= ddir_rw_sum(td->o.rate);
1690 if (!td->pid)
1691 pending--;
1692
1693 if (td->error)
1694 exit_value++;
1695
1696 done_secs += mtime_since_now(&td->epoch) / 1000;
1697 profile_td_exit(td);
1698 }
1699
1700 if (*nr_running == cputhreads && !pending && realthreads)
1701 fio_terminate_threads(TERMINATE_ALL);
1702 }
1703
do_usleep(unsigned int usecs)1704 static void do_usleep(unsigned int usecs)
1705 {
1706 check_for_running_stats();
1707 usleep(usecs);
1708 }
1709
1710 /*
1711 * Main function for kicking off and reaping jobs, as needed.
1712 */
run_threads(void)1713 static void run_threads(void)
1714 {
1715 struct thread_data *td;
1716 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1717 uint64_t spent;
1718
1719 if (fio_gtod_offload && fio_start_gtod_thread())
1720 return;
1721
1722 fio_idle_prof_init();
1723
1724 set_sig_handlers();
1725
1726 nr_thread = nr_process = 0;
1727 for_each_td(td, i) {
1728 if (td->o.use_thread)
1729 nr_thread++;
1730 else
1731 nr_process++;
1732 }
1733
1734 if (output_format == FIO_OUTPUT_NORMAL) {
1735 log_info("Starting ");
1736 if (nr_thread)
1737 log_info("%d thread%s", nr_thread,
1738 nr_thread > 1 ? "s" : "");
1739 if (nr_process) {
1740 if (nr_thread)
1741 log_info(" and ");
1742 log_info("%d process%s", nr_process,
1743 nr_process > 1 ? "es" : "");
1744 }
1745 log_info("\n");
1746 fflush(stdout);
1747 }
1748
1749 todo = thread_number;
1750 nr_running = 0;
1751 nr_started = 0;
1752 m_rate = t_rate = 0;
1753
1754 for_each_td(td, i) {
1755 print_status_init(td->thread_number - 1);
1756
1757 if (!td->o.create_serialize)
1758 continue;
1759
1760 /*
1761 * do file setup here so it happens sequentially,
1762 * we don't want X number of threads getting their
1763 * client data interspersed on disk
1764 */
1765 if (setup_files(td)) {
1766 exit_value++;
1767 if (td->error)
1768 log_err("fio: pid=%d, err=%d/%s\n",
1769 (int) td->pid, td->error, td->verror);
1770 td_set_runstate(td, TD_REAPED);
1771 todo--;
1772 } else {
1773 struct fio_file *f;
1774 unsigned int j;
1775
1776 /*
1777 * for sharing to work, each job must always open
1778 * its own files. so close them, if we opened them
1779 * for creation
1780 */
1781 for_each_file(td, f, j) {
1782 if (fio_file_open(f))
1783 td_io_close_file(td, f);
1784 }
1785 }
1786 }
1787
1788 /* start idle threads before io threads start to run */
1789 fio_idle_prof_start();
1790
1791 set_genesis_time();
1792
1793 while (todo) {
1794 struct thread_data *map[REAL_MAX_JOBS];
1795 struct timeval this_start;
1796 int this_jobs = 0, left;
1797
1798 /*
1799 * create threads (TD_NOT_CREATED -> TD_CREATED)
1800 */
1801 for_each_td(td, i) {
1802 if (td->runstate != TD_NOT_CREATED)
1803 continue;
1804
1805 /*
1806 * never got a chance to start, killed by other
1807 * thread for some reason
1808 */
1809 if (td->terminate) {
1810 todo--;
1811 continue;
1812 }
1813
1814 if (td->o.start_delay) {
1815 spent = utime_since_genesis();
1816
1817 if (td->o.start_delay > spent)
1818 continue;
1819 }
1820
1821 if (td->o.stonewall && (nr_started || nr_running)) {
1822 dprint(FD_PROCESS, "%s: stonewall wait\n",
1823 td->o.name);
1824 break;
1825 }
1826
1827 init_disk_util(td);
1828
1829 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1830 td->update_rusage = 0;
1831
1832 /*
1833 * Set state to created. Thread will transition
1834 * to TD_INITIALIZED when it's done setting up.
1835 */
1836 td_set_runstate(td, TD_CREATED);
1837 map[this_jobs++] = td;
1838 nr_started++;
1839
1840 if (td->o.use_thread) {
1841 int ret;
1842
1843 dprint(FD_PROCESS, "will pthread_create\n");
1844 ret = pthread_create(&td->thread, NULL,
1845 thread_main, td);
1846 if (ret) {
1847 log_err("pthread_create: %s\n",
1848 strerror(ret));
1849 nr_started--;
1850 break;
1851 }
1852 ret = pthread_detach(td->thread);
1853 if (ret)
1854 log_err("pthread_detach: %s",
1855 strerror(ret));
1856 } else {
1857 pid_t pid;
1858 dprint(FD_PROCESS, "will fork\n");
1859 pid = fork();
1860 if (!pid) {
1861 int ret = fork_main(shm_id, i);
1862
1863 _exit(ret);
1864 } else if (i == fio_debug_jobno)
1865 *fio_debug_jobp = pid;
1866 }
1867 dprint(FD_MUTEX, "wait on startup_mutex\n");
1868 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1869 log_err("fio: job startup hung? exiting.\n");
1870 fio_terminate_threads(TERMINATE_ALL);
1871 fio_abort = 1;
1872 nr_started--;
1873 break;
1874 }
1875 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1876 }
1877
1878 /*
1879 * Wait for the started threads to transition to
1880 * TD_INITIALIZED.
1881 */
1882 fio_gettime(&this_start, NULL);
1883 left = this_jobs;
1884 while (left && !fio_abort) {
1885 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1886 break;
1887
1888 do_usleep(100000);
1889
1890 for (i = 0; i < this_jobs; i++) {
1891 td = map[i];
1892 if (!td)
1893 continue;
1894 if (td->runstate == TD_INITIALIZED) {
1895 map[i] = NULL;
1896 left--;
1897 } else if (td->runstate >= TD_EXITED) {
1898 map[i] = NULL;
1899 left--;
1900 todo--;
1901 nr_running++; /* work-around... */
1902 }
1903 }
1904 }
1905
1906 if (left) {
1907 log_err("fio: %d job%s failed to start\n", left,
1908 left > 1 ? "s" : "");
1909 for (i = 0; i < this_jobs; i++) {
1910 td = map[i];
1911 if (!td)
1912 continue;
1913 kill(td->pid, SIGTERM);
1914 }
1915 break;
1916 }
1917
1918 /*
1919 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1920 */
1921 for_each_td(td, i) {
1922 if (td->runstate != TD_INITIALIZED)
1923 continue;
1924
1925 if (in_ramp_time(td))
1926 td_set_runstate(td, TD_RAMP);
1927 else
1928 td_set_runstate(td, TD_RUNNING);
1929 nr_running++;
1930 nr_started--;
1931 m_rate += ddir_rw_sum(td->o.ratemin);
1932 t_rate += ddir_rw_sum(td->o.rate);
1933 todo--;
1934 fio_mutex_up(td->mutex);
1935 }
1936
1937 reap_threads(&nr_running, &t_rate, &m_rate);
1938
1939 if (todo)
1940 do_usleep(100000);
1941 }
1942
1943 while (nr_running) {
1944 reap_threads(&nr_running, &t_rate, &m_rate);
1945 do_usleep(10000);
1946 }
1947
1948 fio_idle_prof_stop();
1949
1950 update_io_ticks();
1951 }
1952
wait_for_disk_thread_exit(void)1953 void wait_for_disk_thread_exit(void)
1954 {
1955 fio_mutex_down(disk_thread_mutex);
1956 }
1957
free_disk_util(void)1958 static void free_disk_util(void)
1959 {
1960 disk_util_start_exit();
1961 wait_for_disk_thread_exit();
1962 disk_util_prune_entries();
1963 }
1964
disk_thread_main(void * data)1965 static void *disk_thread_main(void *data)
1966 {
1967 int ret = 0;
1968
1969 fio_mutex_up(startup_mutex);
1970
1971 while (threads && !ret) {
1972 usleep(DISK_UTIL_MSEC * 1000);
1973 if (!threads)
1974 break;
1975 ret = update_io_ticks();
1976
1977 if (!is_backend)
1978 print_thread_status();
1979 }
1980
1981 fio_mutex_up(disk_thread_mutex);
1982 return NULL;
1983 }
1984
create_disk_util_thread(void)1985 static int create_disk_util_thread(void)
1986 {
1987 int ret;
1988
1989 setup_disk_util();
1990
1991 disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1992
1993 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1994 if (ret) {
1995 fio_mutex_remove(disk_thread_mutex);
1996 log_err("Can't create disk util thread: %s\n", strerror(ret));
1997 return 1;
1998 }
1999
2000 ret = pthread_detach(disk_util_thread);
2001 if (ret) {
2002 fio_mutex_remove(disk_thread_mutex);
2003 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
2004 return 1;
2005 }
2006
2007 dprint(FD_MUTEX, "wait on startup_mutex\n");
2008 fio_mutex_down(startup_mutex);
2009 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2010 return 0;
2011 }
2012
fio_backend(void)2013 int fio_backend(void)
2014 {
2015 struct thread_data *td;
2016 int i;
2017
2018 if (exec_profile) {
2019 if (load_profile(exec_profile))
2020 return 1;
2021 free(exec_profile);
2022 exec_profile = NULL;
2023 }
2024 if (!thread_number)
2025 return 0;
2026
2027 if (write_bw_log) {
2028 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
2029 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
2030 setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
2031 }
2032
2033 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2034 if (startup_mutex == NULL)
2035 return 1;
2036
2037 set_genesis_time();
2038 stat_init();
2039 create_disk_util_thread();
2040
2041 cgroup_list = smalloc(sizeof(*cgroup_list));
2042 INIT_FLIST_HEAD(cgroup_list);
2043
2044 run_threads();
2045
2046 if (!fio_abort) {
2047 show_run_stats();
2048 if (write_bw_log) {
2049 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
2050 __finish_log(agg_io_log[DDIR_WRITE],
2051 "agg-write_bw.log");
2052 __finish_log(agg_io_log[DDIR_TRIM],
2053 "agg-write_bw.log");
2054 }
2055 }
2056
2057 for_each_td(td, i)
2058 fio_options_free(td);
2059
2060 free_disk_util();
2061 cgroup_kill(cgroup_list);
2062 sfree(cgroup_list);
2063 sfree(cgroup_mnt);
2064
2065 fio_mutex_remove(startup_mutex);
2066 fio_mutex_remove(disk_thread_mutex);
2067 stat_exit();
2068 return exit_value;
2069 }
2070