• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  Copyright (c) 2011, Intel Corporation. All rights reserved.
3 
4  Redistribution and use in source and binary forms, with or without modification,
5  are permitted provided that the following conditions are met:
6 
7  * Redistributions of source code must retain the above copyright notice, this
8    list of conditions and the following disclaimer.
9  * Redistributions in binary form must reproduce the above copyright notice,
10    this list of conditions and the following disclaimer in the documentation
11    and/or other materials provided with the distribution.
12  * Neither the name of Intel Corporation nor the names of its contributors may
13    be used to endorse or promote products derived from this software without
14    specific prior written permission.
15 
16  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20  ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27  ********************************************************************************
28  *   Content : Eigen bindings to Intel(R) MKL PARDISO
29  ********************************************************************************
30 */
31 
32 #ifndef EIGEN_PARDISOSUPPORT_H
33 #define EIGEN_PARDISOSUPPORT_H
34 
35 namespace Eigen {
36 
37 template<typename _MatrixType> class PardisoLU;
38 template<typename _MatrixType, int Options=Upper> class PardisoLLT;
39 template<typename _MatrixType, int Options=Upper> class PardisoLDLT;
40 
41 namespace internal
42 {
43   template<typename Index>
44   struct pardiso_run_selector
45   {
runpardiso_run_selector46     static Index run( _MKL_DSS_HANDLE_t pt, Index maxfct, Index mnum, Index type, Index phase, Index n, void *a,
47                       Index *ia, Index *ja, Index *perm, Index nrhs, Index *iparm, Index msglvl, void *b, void *x)
48     {
49       Index error = 0;
50       ::pardiso(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error);
51       return error;
52     }
53   };
54   template<>
55   struct pardiso_run_selector<long long int>
56   {
57     typedef long long int Index;
58     static Index run( _MKL_DSS_HANDLE_t pt, Index maxfct, Index mnum, Index type, Index phase, Index n, void *a,
59                       Index *ia, Index *ja, Index *perm, Index nrhs, Index *iparm, Index msglvl, void *b, void *x)
60     {
61       Index error = 0;
62       ::pardiso_64(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error);
63       return error;
64     }
65   };
66 
67   template<class Pardiso> struct pardiso_traits;
68 
69   template<typename _MatrixType>
70   struct pardiso_traits< PardisoLU<_MatrixType> >
71   {
72     typedef _MatrixType MatrixType;
73     typedef typename _MatrixType::Scalar Scalar;
74     typedef typename _MatrixType::RealScalar RealScalar;
75     typedef typename _MatrixType::Index Index;
76   };
77 
78   template<typename _MatrixType, int Options>
79   struct pardiso_traits< PardisoLLT<_MatrixType, Options> >
80   {
81     typedef _MatrixType MatrixType;
82     typedef typename _MatrixType::Scalar Scalar;
83     typedef typename _MatrixType::RealScalar RealScalar;
84     typedef typename _MatrixType::Index Index;
85   };
86 
87   template<typename _MatrixType, int Options>
88   struct pardiso_traits< PardisoLDLT<_MatrixType, Options> >
89   {
90     typedef _MatrixType MatrixType;
91     typedef typename _MatrixType::Scalar Scalar;
92     typedef typename _MatrixType::RealScalar RealScalar;
93     typedef typename _MatrixType::Index Index;
94   };
95 
96 }
97 
98 template<class Derived>
99 class PardisoImpl
100 {
101     typedef internal::pardiso_traits<Derived> Traits;
102   public:
103     typedef typename Traits::MatrixType MatrixType;
104     typedef typename Traits::Scalar Scalar;
105     typedef typename Traits::RealScalar RealScalar;
106     typedef typename Traits::Index Index;
107     typedef SparseMatrix<Scalar,RowMajor,Index> SparseMatrixType;
108     typedef Matrix<Scalar,Dynamic,1> VectorType;
109     typedef Matrix<Index, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
110     typedef Matrix<Index, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
111     typedef Array<Index,64,1,DontAlign> ParameterType;
112     enum {
113       ScalarIsComplex = NumTraits<Scalar>::IsComplex
114     };
115 
116     PardisoImpl()
117     {
118       eigen_assert((sizeof(Index) >= sizeof(_INTEGER_t) && sizeof(Index) <= 8) && "Non-supported index type");
119       m_iparm.setZero();
120       m_msglvl = 0; // No output
121       m_initialized = false;
122     }
123 
124     ~PardisoImpl()
125     {
126       pardisoRelease();
127     }
128 
129     inline Index cols() const { return m_size; }
130     inline Index rows() const { return m_size; }
131 
132     /** \brief Reports whether previous computation was successful.
133       *
134       * \returns \c Success if computation was succesful,
135       *          \c NumericalIssue if the matrix appears to be negative.
136       */
137     ComputationInfo info() const
138     {
139       eigen_assert(m_initialized && "Decomposition is not initialized.");
140       return m_info;
141     }
142 
143     /** \warning for advanced usage only.
144       * \returns a reference to the parameter array controlling PARDISO.
145       * See the PARDISO manual to know how to use it. */
146     ParameterType& pardisoParameterArray()
147     {
148       return m_iparm;
149     }
150 
151     /** Performs a symbolic decomposition on the sparcity of \a matrix.
152       *
153       * This function is particularly useful when solving for several problems having the same structure.
154       *
155       * \sa factorize()
156       */
157     Derived& analyzePattern(const MatrixType& matrix);
158 
159     /** Performs a numeric decomposition of \a matrix
160       *
161       * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
162       *
163       * \sa analyzePattern()
164       */
165     Derived& factorize(const MatrixType& matrix);
166 
167     Derived& compute(const MatrixType& matrix);
168 
169     /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
170       *
171       * \sa compute()
172       */
173     template<typename Rhs>
174     inline const internal::solve_retval<PardisoImpl, Rhs>
175     solve(const MatrixBase<Rhs>& b) const
176     {
177       eigen_assert(m_initialized && "Pardiso solver is not initialized.");
178       eigen_assert(rows()==b.rows()
179                 && "PardisoImpl::solve(): invalid number of rows of the right hand side matrix b");
180       return internal::solve_retval<PardisoImpl, Rhs>(*this, b.derived());
181     }
182 
183     /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
184       *
185       * \sa compute()
186       */
187     template<typename Rhs>
188     inline const internal::sparse_solve_retval<PardisoImpl, Rhs>
189     solve(const SparseMatrixBase<Rhs>& b) const
190     {
191       eigen_assert(m_initialized && "Pardiso solver is not initialized.");
192       eigen_assert(rows()==b.rows()
193                 && "PardisoImpl::solve(): invalid number of rows of the right hand side matrix b");
194       return internal::sparse_solve_retval<PardisoImpl, Rhs>(*this, b.derived());
195     }
196 
197     Derived& derived()
198     {
199       return *static_cast<Derived*>(this);
200     }
201     const Derived& derived() const
202     {
203       return *static_cast<const Derived*>(this);
204     }
205 
206     template<typename BDerived, typename XDerived>
207     bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const;
208 
209   protected:
210     void pardisoRelease()
211     {
212       if(m_initialized) // Factorization ran at least once
213       {
214         internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, -1, m_size, 0, 0, 0, m_perm.data(), 0,
215                                                    m_iparm.data(), m_msglvl, 0, 0);
216       }
217     }
218 
219     void pardisoInit(int type)
220     {
221       m_type = type;
222       bool symmetric = abs(m_type) < 10;
223       m_iparm[0] = 1;   // No solver default
224       m_iparm[1] = 3;   // use Metis for the ordering
225       m_iparm[2] = 1;   // Numbers of processors, value of OMP_NUM_THREADS
226       m_iparm[3] = 0;   // No iterative-direct algorithm
227       m_iparm[4] = 0;   // No user fill-in reducing permutation
228       m_iparm[5] = 0;   // Write solution into x
229       m_iparm[6] = 0;   // Not in use
230       m_iparm[7] = 2;   // Max numbers of iterative refinement steps
231       m_iparm[8] = 0;   // Not in use
232       m_iparm[9] = 13;  // Perturb the pivot elements with 1E-13
233       m_iparm[10] = symmetric ? 0 : 1; // Use nonsymmetric permutation and scaling MPS
234       m_iparm[11] = 0;  // Not in use
235       m_iparm[12] = symmetric ? 0 : 1;  // Maximum weighted matching algorithm is switched-off (default for symmetric).
236                                         // Try m_iparm[12] = 1 in case of inappropriate accuracy
237       m_iparm[13] = 0;  // Output: Number of perturbed pivots
238       m_iparm[14] = 0;  // Not in use
239       m_iparm[15] = 0;  // Not in use
240       m_iparm[16] = 0;  // Not in use
241       m_iparm[17] = -1; // Output: Number of nonzeros in the factor LU
242       m_iparm[18] = -1; // Output: Mflops for LU factorization
243       m_iparm[19] = 0;  // Output: Numbers of CG Iterations
244 
245       m_iparm[20] = 0;  // 1x1 pivoting
246       m_iparm[26] = 0;  // No matrix checker
247       m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0;
248       m_iparm[34] = 1;  // C indexing
249       m_iparm[59] = 1;  // Automatic switch between In-Core and Out-of-Core modes
250     }
251 
252   protected:
253     // cached data to reduce reallocation, etc.
254 
255     void manageErrorCode(Index error)
256     {
257       switch(error)
258       {
259         case 0:
260           m_info = Success;
261           break;
262         case -4:
263         case -7:
264           m_info = NumericalIssue;
265           break;
266         default:
267           m_info = InvalidInput;
268       }
269     }
270 
271     mutable SparseMatrixType m_matrix;
272     ComputationInfo m_info;
273     bool m_initialized, m_analysisIsOk, m_factorizationIsOk;
274     Index m_type, m_msglvl;
275     mutable void *m_pt[64];
276     mutable ParameterType m_iparm;
277     mutable IntColVectorType m_perm;
278     Index m_size;
279 
280   private:
281     PardisoImpl(PardisoImpl &) {}
282 };
283 
284 template<class Derived>
285 Derived& PardisoImpl<Derived>::compute(const MatrixType& a)
286 {
287   m_size = a.rows();
288   eigen_assert(a.rows() == a.cols());
289 
290   pardisoRelease();
291   memset(m_pt, 0, sizeof(m_pt));
292   m_perm.setZero(m_size);
293   derived().getMatrix(a);
294 
295   Index error;
296   error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 12, m_size,
297                                                      m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
298                                                      m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
299 
300   manageErrorCode(error);
301   m_analysisIsOk = true;
302   m_factorizationIsOk = true;
303   m_initialized = true;
304   return derived();
305 }
306 
307 template<class Derived>
308 Derived& PardisoImpl<Derived>::analyzePattern(const MatrixType& a)
309 {
310   m_size = a.rows();
311   eigen_assert(m_size == a.cols());
312 
313   pardisoRelease();
314   memset(m_pt, 0, sizeof(m_pt));
315   m_perm.setZero(m_size);
316   derived().getMatrix(a);
317 
318   Index error;
319   error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 11, m_size,
320                                                      m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
321                                                      m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
322 
323   manageErrorCode(error);
324   m_analysisIsOk = true;
325   m_factorizationIsOk = false;
326   m_initialized = true;
327   return derived();
328 }
329 
330 template<class Derived>
331 Derived& PardisoImpl<Derived>::factorize(const MatrixType& a)
332 {
333   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
334   eigen_assert(m_size == a.rows() && m_size == a.cols());
335 
336   derived().getMatrix(a);
337 
338   Index error;
339   error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 22, m_size,
340                                                      m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
341                                                      m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
342 
343   manageErrorCode(error);
344   m_factorizationIsOk = true;
345   return derived();
346 }
347 
348 template<class Base>
349 template<typename BDerived,typename XDerived>
350 bool PardisoImpl<Base>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const
351 {
352   if(m_iparm[0] == 0) // Factorization was not computed
353     return false;
354 
355   //Index n = m_matrix.rows();
356   Index nrhs = Index(b.cols());
357   eigen_assert(m_size==b.rows());
358   eigen_assert(((MatrixBase<BDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major right hand sides are not supported");
359   eigen_assert(((MatrixBase<XDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major matrices of unknowns are not supported");
360   eigen_assert(((nrhs == 1) || b.outerStride() == b.rows()));
361 
362 
363 //  switch (transposed) {
364 //    case SvNoTrans    : m_iparm[11] = 0 ; break;
365 //    case SvTranspose  : m_iparm[11] = 2 ; break;
366 //    case SvAdjoint    : m_iparm[11] = 1 ; break;
367 //    default:
368 //      //std::cerr << "Eigen: transposition  option \"" << transposed << "\" not supported by the PARDISO backend\n";
369 //      m_iparm[11] = 0;
370 //  }
371 
372   Scalar* rhs_ptr = const_cast<Scalar*>(b.derived().data());
373   Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp;
374 
375   // Pardiso cannot solve in-place
376   if(rhs_ptr == x.derived().data())
377   {
378     tmp = b;
379     rhs_ptr = tmp.data();
380   }
381 
382   Index error;
383   error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 33, m_size,
384                                                      m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
385                                                      m_perm.data(), nrhs, m_iparm.data(), m_msglvl,
386                                                      rhs_ptr, x.derived().data());
387 
388   return error==0;
389 }
390 
391 
392 /** \ingroup PardisoSupport_Module
393   * \class PardisoLU
394   * \brief A sparse direct LU factorization and solver based on the PARDISO library
395   *
396   * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization
397   * using the Intel MKL PARDISO library. The sparse matrix A must be squared and invertible.
398   * The vectors or matrices X and B can be either dense or sparse.
399   *
400   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
401   *
402   * \sa \ref TutorialSparseDirectSolvers
403   */
404 template<typename MatrixType>
405 class PardisoLU : public PardisoImpl< PardisoLU<MatrixType> >
406 {
407   protected:
408     typedef PardisoImpl< PardisoLU<MatrixType> > Base;
409     typedef typename Base::Scalar Scalar;
410     typedef typename Base::RealScalar RealScalar;
411     using Base::pardisoInit;
412     using Base::m_matrix;
413     friend class PardisoImpl< PardisoLU<MatrixType> >;
414 
415   public:
416 
417     using Base::compute;
418     using Base::solve;
419 
420     PardisoLU()
421       : Base()
422     {
423       pardisoInit(Base::ScalarIsComplex ? 13 : 11);
424     }
425 
426     PardisoLU(const MatrixType& matrix)
427       : Base()
428     {
429       pardisoInit(Base::ScalarIsComplex ? 13 : 11);
430       compute(matrix);
431     }
432   protected:
433     void getMatrix(const MatrixType& matrix)
434     {
435       m_matrix = matrix;
436     }
437 
438   private:
439     PardisoLU(PardisoLU& ) {}
440 };
441 
442 /** \ingroup PardisoSupport_Module
443   * \class PardisoLLT
444   * \brief A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library
445   *
446   * This class allows to solve for A.X = B sparse linear problems via a LL^T Cholesky factorization
447   * using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite.
448   * The vectors or matrices X and B can be either dense or sparse.
449   *
450   * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
451   * \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular part has to be used.
452   *         Upper|Lower can be used to tell both triangular parts can be used as input.
453   *
454   * \sa \ref TutorialSparseDirectSolvers
455   */
456 template<typename MatrixType, int _UpLo>
457 class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType,_UpLo> >
458 {
459   protected:
460     typedef PardisoImpl< PardisoLLT<MatrixType,_UpLo> > Base;
461     typedef typename Base::Scalar Scalar;
462     typedef typename Base::Index Index;
463     typedef typename Base::RealScalar RealScalar;
464     using Base::pardisoInit;
465     using Base::m_matrix;
466     friend class PardisoImpl< PardisoLLT<MatrixType,_UpLo> >;
467 
468   public:
469 
470     enum { UpLo = _UpLo };
471     using Base::compute;
472     using Base::solve;
473 
474     PardisoLLT()
475       : Base()
476     {
477       pardisoInit(Base::ScalarIsComplex ? 4 : 2);
478     }
479 
480     PardisoLLT(const MatrixType& matrix)
481       : Base()
482     {
483       pardisoInit(Base::ScalarIsComplex ? 4 : 2);
484       compute(matrix);
485     }
486 
487   protected:
488 
489     void getMatrix(const MatrixType& matrix)
490     {
491       // PARDISO supports only upper, row-major matrices
492       PermutationMatrix<Dynamic,Dynamic,Index> p_null;
493       m_matrix.resize(matrix.rows(), matrix.cols());
494       m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null);
495     }
496 
497   private:
498     PardisoLLT(PardisoLLT& ) {}
499 };
500 
501 /** \ingroup PardisoSupport_Module
502   * \class PardisoLDLT
503   * \brief A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library
504   *
505   * This class allows to solve for A.X = B sparse linear problems via a LDL^T Cholesky factorization
506   * using the Intel MKL PARDISO library. The sparse matrix A is assumed to be selfajoint and positive definite.
507   * For complex matrices, A can also be symmetric only, see the \a Options template parameter.
508   * The vectors or matrices X and B can be either dense or sparse.
509   *
510   * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
511   * \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the upper triangular part has to be used.
512   *         Symmetric can be used for symmetric, non-selfadjoint complex matrices, the default being to assume a selfadjoint matrix.
513   *         Upper|Lower can be used to tell both triangular parts can be used as input.
514   *
515   * \sa \ref TutorialSparseDirectSolvers
516   */
517 template<typename MatrixType, int Options>
518 class PardisoLDLT : public PardisoImpl< PardisoLDLT<MatrixType,Options> >
519 {
520   protected:
521     typedef PardisoImpl< PardisoLDLT<MatrixType,Options> > Base;
522     typedef typename Base::Scalar Scalar;
523     typedef typename Base::Index Index;
524     typedef typename Base::RealScalar RealScalar;
525     using Base::pardisoInit;
526     using Base::m_matrix;
527     friend class PardisoImpl< PardisoLDLT<MatrixType,Options> >;
528 
529   public:
530 
531     using Base::compute;
532     using Base::solve;
533     enum { UpLo = Options&(Upper|Lower) };
534 
535     PardisoLDLT()
536       : Base()
537     {
538       pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2);
539     }
540 
541     PardisoLDLT(const MatrixType& matrix)
542       : Base()
543     {
544       pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2);
545       compute(matrix);
546     }
547 
548     void getMatrix(const MatrixType& matrix)
549     {
550       // PARDISO supports only upper, row-major matrices
551       PermutationMatrix<Dynamic,Dynamic,Index> p_null;
552       m_matrix.resize(matrix.rows(), matrix.cols());
553       m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null);
554     }
555 
556   private:
557     PardisoLDLT(PardisoLDLT& ) {}
558 };
559 
560 namespace internal {
561 
562 template<typename _Derived, typename Rhs>
563 struct solve_retval<PardisoImpl<_Derived>, Rhs>
564   : solve_retval_base<PardisoImpl<_Derived>, Rhs>
565 {
566   typedef PardisoImpl<_Derived> Dec;
567   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
568 
569   template<typename Dest> void evalTo(Dest& dst) const
570   {
571     dec()._solve(rhs(),dst);
572   }
573 };
574 
575 template<typename Derived, typename Rhs>
576 struct sparse_solve_retval<PardisoImpl<Derived>, Rhs>
577   : sparse_solve_retval_base<PardisoImpl<Derived>, Rhs>
578 {
579   typedef PardisoImpl<Derived> Dec;
580   EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
581 
582   template<typename Dest> void evalTo(Dest& dst) const
583   {
584     this->defaultEvalTo(dst);
585   }
586 };
587 
588 } // end namespace internal
589 
590 } // end namespace Eigen
591 
592 #endif // EIGEN_PARDISOSUPPORT_H
593