1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis member access expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Scope.h"
23 #include "clang/Sema/ScopeInfo.h"
24
25 using namespace clang;
26 using namespace sema;
27
28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
BaseIsNotInSet(const CXXRecordDecl * Base,void * BasesPtr)29 static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
30 const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
31 return !Bases.count(Base->getCanonicalDecl());
32 }
33
34 /// Determines if the given class is provably not derived from all of
35 /// the prospective base classes.
isProvablyNotDerivedFrom(Sema & SemaRef,CXXRecordDecl * Record,const BaseSet & Bases)36 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
37 const BaseSet &Bases) {
38 void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
39 return BaseIsNotInSet(Record, BasesPtr) &&
40 Record->forallBases(BaseIsNotInSet, BasesPtr);
41 }
42
43 enum IMAKind {
44 /// The reference is definitely not an instance member access.
45 IMA_Static,
46
47 /// The reference may be an implicit instance member access.
48 IMA_Mixed,
49
50 /// The reference may be to an instance member, but it might be invalid if
51 /// so, because the context is not an instance method.
52 IMA_Mixed_StaticContext,
53
54 /// The reference may be to an instance member, but it is invalid if
55 /// so, because the context is from an unrelated class.
56 IMA_Mixed_Unrelated,
57
58 /// The reference is definitely an implicit instance member access.
59 IMA_Instance,
60
61 /// The reference may be to an unresolved using declaration.
62 IMA_Unresolved,
63
64 /// The reference is a contextually-permitted abstract member reference.
65 IMA_Abstract,
66
67 /// The reference may be to an unresolved using declaration and the
68 /// context is not an instance method.
69 IMA_Unresolved_StaticContext,
70
71 // The reference refers to a field which is not a member of the containing
72 // class, which is allowed because we're in C++11 mode and the context is
73 // unevaluated.
74 IMA_Field_Uneval_Context,
75
76 /// All possible referrents are instance members and the current
77 /// context is not an instance method.
78 IMA_Error_StaticContext,
79
80 /// All possible referrents are instance members of an unrelated
81 /// class.
82 IMA_Error_Unrelated
83 };
84
85 /// The given lookup names class member(s) and is not being used for
86 /// an address-of-member expression. Classify the type of access
87 /// according to whether it's possible that this reference names an
88 /// instance member. This is best-effort in dependent contexts; it is okay to
89 /// conservatively answer "yes", in which case some errors will simply
90 /// not be caught until template-instantiation.
ClassifyImplicitMemberAccess(Sema & SemaRef,Scope * CurScope,const LookupResult & R)91 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
92 Scope *CurScope,
93 const LookupResult &R) {
94 assert(!R.empty() && (*R.begin())->isCXXClassMember());
95
96 DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
97
98 bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
99 (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
100
101 if (R.isUnresolvableResult())
102 return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
103
104 // Collect all the declaring classes of instance members we find.
105 bool hasNonInstance = false;
106 bool isField = false;
107 BaseSet Classes;
108 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
109 NamedDecl *D = *I;
110
111 if (D->isCXXInstanceMember()) {
112 if (dyn_cast<FieldDecl>(D) || dyn_cast<MSPropertyDecl>(D)
113 || dyn_cast<IndirectFieldDecl>(D))
114 isField = true;
115
116 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
117 Classes.insert(R->getCanonicalDecl());
118 }
119 else
120 hasNonInstance = true;
121 }
122
123 // If we didn't find any instance members, it can't be an implicit
124 // member reference.
125 if (Classes.empty())
126 return IMA_Static;
127
128 // C++11 [expr.prim.general]p12:
129 // An id-expression that denotes a non-static data member or non-static
130 // member function of a class can only be used:
131 // (...)
132 // - if that id-expression denotes a non-static data member and it
133 // appears in an unevaluated operand.
134 //
135 // This rule is specific to C++11. However, we also permit this form
136 // in unevaluated inline assembly operands, like the operand to a SIZE.
137 IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
138 assert(!AbstractInstanceResult);
139 switch (SemaRef.ExprEvalContexts.back().Context) {
140 case Sema::Unevaluated:
141 if (isField && SemaRef.getLangOpts().CPlusPlus11)
142 AbstractInstanceResult = IMA_Field_Uneval_Context;
143 break;
144
145 case Sema::UnevaluatedAbstract:
146 AbstractInstanceResult = IMA_Abstract;
147 break;
148
149 case Sema::ConstantEvaluated:
150 case Sema::PotentiallyEvaluated:
151 case Sema::PotentiallyEvaluatedIfUsed:
152 break;
153 }
154
155 // If the current context is not an instance method, it can't be
156 // an implicit member reference.
157 if (isStaticContext) {
158 if (hasNonInstance)
159 return IMA_Mixed_StaticContext;
160
161 return AbstractInstanceResult ? AbstractInstanceResult
162 : IMA_Error_StaticContext;
163 }
164
165 CXXRecordDecl *contextClass;
166 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
167 contextClass = MD->getParent()->getCanonicalDecl();
168 else
169 contextClass = cast<CXXRecordDecl>(DC);
170
171 // [class.mfct.non-static]p3:
172 // ...is used in the body of a non-static member function of class X,
173 // if name lookup (3.4.1) resolves the name in the id-expression to a
174 // non-static non-type member of some class C [...]
175 // ...if C is not X or a base class of X, the class member access expression
176 // is ill-formed.
177 if (R.getNamingClass() &&
178 contextClass->getCanonicalDecl() !=
179 R.getNamingClass()->getCanonicalDecl()) {
180 // If the naming class is not the current context, this was a qualified
181 // member name lookup, and it's sufficient to check that we have the naming
182 // class as a base class.
183 Classes.clear();
184 Classes.insert(R.getNamingClass()->getCanonicalDecl());
185 }
186
187 // If we can prove that the current context is unrelated to all the
188 // declaring classes, it can't be an implicit member reference (in
189 // which case it's an error if any of those members are selected).
190 if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
191 return hasNonInstance ? IMA_Mixed_Unrelated :
192 AbstractInstanceResult ? AbstractInstanceResult :
193 IMA_Error_Unrelated;
194
195 return (hasNonInstance ? IMA_Mixed : IMA_Instance);
196 }
197
198 /// Diagnose a reference to a field with no object available.
diagnoseInstanceReference(Sema & SemaRef,const CXXScopeSpec & SS,NamedDecl * Rep,const DeclarationNameInfo & nameInfo)199 static void diagnoseInstanceReference(Sema &SemaRef,
200 const CXXScopeSpec &SS,
201 NamedDecl *Rep,
202 const DeclarationNameInfo &nameInfo) {
203 SourceLocation Loc = nameInfo.getLoc();
204 SourceRange Range(Loc);
205 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
206
207 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
208 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
209 CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
210 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
211
212 bool InStaticMethod = Method && Method->isStatic();
213 bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
214
215 if (IsField && InStaticMethod)
216 // "invalid use of member 'x' in static member function"
217 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
218 << Range << nameInfo.getName();
219 else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
220 !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
221 // Unqualified lookup in a non-static member function found a member of an
222 // enclosing class.
223 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
224 << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
225 else if (IsField)
226 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
227 << nameInfo.getName() << Range;
228 else
229 SemaRef.Diag(Loc, diag::err_member_call_without_object)
230 << Range;
231 }
232
233 /// Builds an expression which might be an implicit member expression.
234 ExprResult
BuildPossibleImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)235 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
236 SourceLocation TemplateKWLoc,
237 LookupResult &R,
238 const TemplateArgumentListInfo *TemplateArgs) {
239 switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
240 case IMA_Instance:
241 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
242
243 case IMA_Mixed:
244 case IMA_Mixed_Unrelated:
245 case IMA_Unresolved:
246 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
247
248 case IMA_Field_Uneval_Context:
249 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
250 << R.getLookupNameInfo().getName();
251 // Fall through.
252 case IMA_Static:
253 case IMA_Abstract:
254 case IMA_Mixed_StaticContext:
255 case IMA_Unresolved_StaticContext:
256 if (TemplateArgs || TemplateKWLoc.isValid())
257 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
258 return BuildDeclarationNameExpr(SS, R, false);
259
260 case IMA_Error_StaticContext:
261 case IMA_Error_Unrelated:
262 diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
263 R.getLookupNameInfo());
264 return ExprError();
265 }
266
267 llvm_unreachable("unexpected instance member access kind");
268 }
269
270 /// Determine whether input char is from rgba component set.
271 static bool
IsRGBA(char c)272 IsRGBA(char c) {
273 switch (c) {
274 case 'r':
275 case 'g':
276 case 'b':
277 case 'a':
278 return true;
279 default:
280 return false;
281 }
282 }
283
284 /// Check an ext-vector component access expression.
285 ///
286 /// VK should be set in advance to the value kind of the base
287 /// expression.
288 static QualType
CheckExtVectorComponent(Sema & S,QualType baseType,ExprValueKind & VK,SourceLocation OpLoc,const IdentifierInfo * CompName,SourceLocation CompLoc)289 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
290 SourceLocation OpLoc, const IdentifierInfo *CompName,
291 SourceLocation CompLoc) {
292 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
293 // see FIXME there.
294 //
295 // FIXME: This logic can be greatly simplified by splitting it along
296 // halving/not halving and reworking the component checking.
297 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
298
299 // The vector accessor can't exceed the number of elements.
300 const char *compStr = CompName->getNameStart();
301
302 // This flag determines whether or not the component is one of the four
303 // special names that indicate a subset of exactly half the elements are
304 // to be selected.
305 bool HalvingSwizzle = false;
306
307 // This flag determines whether or not CompName has an 's' char prefix,
308 // indicating that it is a string of hex values to be used as vector indices.
309 bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
310
311 bool HasRepeated = false;
312 bool HasIndex[16] = {};
313
314 int Idx;
315
316 // Check that we've found one of the special components, or that the component
317 // names must come from the same set.
318 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
319 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
320 HalvingSwizzle = true;
321 } else if (!HexSwizzle &&
322 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
323 bool HasRGBA = IsRGBA(*compStr);
324 do {
325 if (HasRGBA != IsRGBA(*compStr))
326 break;
327 if (HasIndex[Idx]) HasRepeated = true;
328 HasIndex[Idx] = true;
329 compStr++;
330 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
331 } else {
332 if (HexSwizzle) compStr++;
333 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
334 if (HasIndex[Idx]) HasRepeated = true;
335 HasIndex[Idx] = true;
336 compStr++;
337 }
338 }
339
340 if (!HalvingSwizzle && *compStr) {
341 // We didn't get to the end of the string. This means the component names
342 // didn't come from the same set *or* we encountered an illegal name.
343 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
344 << StringRef(compStr, 1) << SourceRange(CompLoc);
345 return QualType();
346 }
347
348 // Ensure no component accessor exceeds the width of the vector type it
349 // operates on.
350 if (!HalvingSwizzle) {
351 compStr = CompName->getNameStart();
352
353 if (HexSwizzle)
354 compStr++;
355
356 while (*compStr) {
357 if (!vecType->isAccessorWithinNumElements(*compStr++)) {
358 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
359 << baseType << SourceRange(CompLoc);
360 return QualType();
361 }
362 }
363 }
364
365 // The component accessor looks fine - now we need to compute the actual type.
366 // The vector type is implied by the component accessor. For example,
367 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
368 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
369 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
370 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
371 : CompName->getLength();
372 if (HexSwizzle)
373 CompSize--;
374
375 if (CompSize == 1)
376 return vecType->getElementType();
377
378 if (HasRepeated) VK = VK_RValue;
379
380 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
381 // Now look up the TypeDefDecl from the vector type. Without this,
382 // diagostics look bad. We want extended vector types to appear built-in.
383 for (Sema::ExtVectorDeclsType::iterator
384 I = S.ExtVectorDecls.begin(S.getExternalSource()),
385 E = S.ExtVectorDecls.end();
386 I != E; ++I) {
387 if ((*I)->getUnderlyingType() == VT)
388 return S.Context.getTypedefType(*I);
389 }
390
391 return VT; // should never get here (a typedef type should always be found).
392 }
393
FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl * PDecl,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)394 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
395 IdentifierInfo *Member,
396 const Selector &Sel,
397 ASTContext &Context) {
398 if (Member)
399 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
400 return PD;
401 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
402 return OMD;
403
404 for (const auto *I : PDecl->protocols()) {
405 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
406 Context))
407 return D;
408 }
409 return nullptr;
410 }
411
FindGetterSetterNameDecl(const ObjCObjectPointerType * QIdTy,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)412 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
413 IdentifierInfo *Member,
414 const Selector &Sel,
415 ASTContext &Context) {
416 // Check protocols on qualified interfaces.
417 Decl *GDecl = nullptr;
418 for (const auto *I : QIdTy->quals()) {
419 if (Member)
420 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) {
421 GDecl = PD;
422 break;
423 }
424 // Also must look for a getter or setter name which uses property syntax.
425 if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
426 GDecl = OMD;
427 break;
428 }
429 }
430 if (!GDecl) {
431 for (const auto *I : QIdTy->quals()) {
432 // Search in the protocol-qualifier list of current protocol.
433 GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
434 if (GDecl)
435 return GDecl;
436 }
437 }
438 return GDecl;
439 }
440
441 ExprResult
ActOnDependentMemberExpr(Expr * BaseExpr,QualType BaseType,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)442 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
443 bool IsArrow, SourceLocation OpLoc,
444 const CXXScopeSpec &SS,
445 SourceLocation TemplateKWLoc,
446 NamedDecl *FirstQualifierInScope,
447 const DeclarationNameInfo &NameInfo,
448 const TemplateArgumentListInfo *TemplateArgs) {
449 // Even in dependent contexts, try to diagnose base expressions with
450 // obviously wrong types, e.g.:
451 //
452 // T* t;
453 // t.f;
454 //
455 // In Obj-C++, however, the above expression is valid, since it could be
456 // accessing the 'f' property if T is an Obj-C interface. The extra check
457 // allows this, while still reporting an error if T is a struct pointer.
458 if (!IsArrow) {
459 const PointerType *PT = BaseType->getAs<PointerType>();
460 if (PT && (!getLangOpts().ObjC1 ||
461 PT->getPointeeType()->isRecordType())) {
462 assert(BaseExpr && "cannot happen with implicit member accesses");
463 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
464 << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
465 return ExprError();
466 }
467 }
468
469 assert(BaseType->isDependentType() ||
470 NameInfo.getName().isDependentName() ||
471 isDependentScopeSpecifier(SS));
472
473 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
474 // must have pointer type, and the accessed type is the pointee.
475 return CXXDependentScopeMemberExpr::Create(
476 Context, BaseExpr, BaseType, IsArrow, OpLoc,
477 SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
478 NameInfo, TemplateArgs);
479 }
480
481 /// We know that the given qualified member reference points only to
482 /// declarations which do not belong to the static type of the base
483 /// expression. Diagnose the problem.
DiagnoseQualifiedMemberReference(Sema & SemaRef,Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,NamedDecl * rep,const DeclarationNameInfo & nameInfo)484 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
485 Expr *BaseExpr,
486 QualType BaseType,
487 const CXXScopeSpec &SS,
488 NamedDecl *rep,
489 const DeclarationNameInfo &nameInfo) {
490 // If this is an implicit member access, use a different set of
491 // diagnostics.
492 if (!BaseExpr)
493 return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
494
495 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
496 << SS.getRange() << rep << BaseType;
497 }
498
499 // Check whether the declarations we found through a nested-name
500 // specifier in a member expression are actually members of the base
501 // type. The restriction here is:
502 //
503 // C++ [expr.ref]p2:
504 // ... In these cases, the id-expression shall name a
505 // member of the class or of one of its base classes.
506 //
507 // So it's perfectly legitimate for the nested-name specifier to name
508 // an unrelated class, and for us to find an overload set including
509 // decls from classes which are not superclasses, as long as the decl
510 // we actually pick through overload resolution is from a superclass.
CheckQualifiedMemberReference(Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,const LookupResult & R)511 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
512 QualType BaseType,
513 const CXXScopeSpec &SS,
514 const LookupResult &R) {
515 CXXRecordDecl *BaseRecord =
516 cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
517 if (!BaseRecord) {
518 // We can't check this yet because the base type is still
519 // dependent.
520 assert(BaseType->isDependentType());
521 return false;
522 }
523
524 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
525 // If this is an implicit member reference and we find a
526 // non-instance member, it's not an error.
527 if (!BaseExpr && !(*I)->isCXXInstanceMember())
528 return false;
529
530 // Note that we use the DC of the decl, not the underlying decl.
531 DeclContext *DC = (*I)->getDeclContext();
532 while (DC->isTransparentContext())
533 DC = DC->getParent();
534
535 if (!DC->isRecord())
536 continue;
537
538 CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
539 if (BaseRecord->getCanonicalDecl() == MemberRecord ||
540 !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
541 return false;
542 }
543
544 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
545 R.getRepresentativeDecl(),
546 R.getLookupNameInfo());
547 return true;
548 }
549
550 namespace {
551
552 // Callback to only accept typo corrections that are either a ValueDecl or a
553 // FunctionTemplateDecl and are declared in the current record or, for a C++
554 // classes, one of its base classes.
555 class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
556 public:
RecordMemberExprValidatorCCC(const RecordType * RTy)557 explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
558 : Record(RTy->getDecl()) {}
559
ValidateCandidate(const TypoCorrection & candidate)560 bool ValidateCandidate(const TypoCorrection &candidate) override {
561 NamedDecl *ND = candidate.getCorrectionDecl();
562 // Don't accept candidates that cannot be member functions, constants,
563 // variables, or templates.
564 if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
565 return false;
566
567 // Accept candidates that occur in the current record.
568 if (Record->containsDecl(ND))
569 return true;
570
571 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
572 // Accept candidates that occur in any of the current class' base classes.
573 for (const auto &BS : RD->bases()) {
574 if (const RecordType *BSTy = dyn_cast_or_null<RecordType>(
575 BS.getType().getTypePtrOrNull())) {
576 if (BSTy->getDecl()->containsDecl(ND))
577 return true;
578 }
579 }
580 }
581
582 return false;
583 }
584
585 private:
586 const RecordDecl *const Record;
587 };
588
589 }
590
591 static bool
LookupMemberExprInRecord(Sema & SemaRef,LookupResult & R,SourceRange BaseRange,const RecordType * RTy,SourceLocation OpLoc,CXXScopeSpec & SS,bool HasTemplateArgs)592 LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
593 SourceRange BaseRange, const RecordType *RTy,
594 SourceLocation OpLoc, CXXScopeSpec &SS,
595 bool HasTemplateArgs) {
596 RecordDecl *RDecl = RTy->getDecl();
597 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
598 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
599 diag::err_typecheck_incomplete_tag,
600 BaseRange))
601 return true;
602
603 if (HasTemplateArgs) {
604 // LookupTemplateName doesn't expect these both to exist simultaneously.
605 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
606
607 bool MOUS;
608 SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
609 return false;
610 }
611
612 DeclContext *DC = RDecl;
613 if (SS.isSet()) {
614 // If the member name was a qualified-id, look into the
615 // nested-name-specifier.
616 DC = SemaRef.computeDeclContext(SS, false);
617
618 if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
619 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
620 << SS.getRange() << DC;
621 return true;
622 }
623
624 assert(DC && "Cannot handle non-computable dependent contexts in lookup");
625
626 if (!isa<TypeDecl>(DC)) {
627 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
628 << DC << SS.getRange();
629 return true;
630 }
631 }
632
633 // The record definition is complete, now look up the member.
634 SemaRef.LookupQualifiedName(R, DC);
635
636 if (!R.empty())
637 return false;
638
639 // We didn't find anything with the given name, so try to correct
640 // for typos.
641 DeclarationName Name = R.getLookupName();
642 RecordMemberExprValidatorCCC Validator(RTy);
643 TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
644 R.getLookupKind(), nullptr,
645 &SS, Validator,
646 Sema::CTK_ErrorRecovery, DC);
647 R.clear();
648 if (Corrected.isResolved() && !Corrected.isKeyword()) {
649 R.setLookupName(Corrected.getCorrection());
650 for (TypoCorrection::decl_iterator DI = Corrected.begin(),
651 DIEnd = Corrected.end();
652 DI != DIEnd; ++DI) {
653 R.addDecl(*DI);
654 }
655 R.resolveKind();
656
657 // If we're typo-correcting to an overloaded name, we don't yet have enough
658 // information to do overload resolution, so we don't know which previous
659 // declaration to point to.
660 if (Corrected.isOverloaded())
661 Corrected.setCorrectionDecl(nullptr);
662 bool DroppedSpecifier =
663 Corrected.WillReplaceSpecifier() &&
664 Name.getAsString() == Corrected.getAsString(SemaRef.getLangOpts());
665 SemaRef.diagnoseTypo(Corrected,
666 SemaRef.PDiag(diag::err_no_member_suggest)
667 << Name << DC << DroppedSpecifier << SS.getRange());
668 }
669
670 return false;
671 }
672
673 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
674 ExprResult &BaseExpr, bool &IsArrow,
675 SourceLocation OpLoc, CXXScopeSpec &SS,
676 Decl *ObjCImpDecl, bool HasTemplateArgs);
677
678 ExprResult
BuildMemberReferenceExpr(Expr * Base,QualType BaseType,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,ActOnMemberAccessExtraArgs * ExtraArgs)679 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
680 SourceLocation OpLoc, bool IsArrow,
681 CXXScopeSpec &SS,
682 SourceLocation TemplateKWLoc,
683 NamedDecl *FirstQualifierInScope,
684 const DeclarationNameInfo &NameInfo,
685 const TemplateArgumentListInfo *TemplateArgs,
686 ActOnMemberAccessExtraArgs *ExtraArgs) {
687 if (BaseType->isDependentType() ||
688 (SS.isSet() && isDependentScopeSpecifier(SS)))
689 return ActOnDependentMemberExpr(Base, BaseType,
690 IsArrow, OpLoc,
691 SS, TemplateKWLoc, FirstQualifierInScope,
692 NameInfo, TemplateArgs);
693
694 LookupResult R(*this, NameInfo, LookupMemberName);
695
696 // Implicit member accesses.
697 if (!Base) {
698 QualType RecordTy = BaseType;
699 if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
700 if (LookupMemberExprInRecord(*this, R, SourceRange(),
701 RecordTy->getAs<RecordType>(),
702 OpLoc, SS, TemplateArgs != nullptr))
703 return ExprError();
704
705 // Explicit member accesses.
706 } else {
707 ExprResult BaseResult = Base;
708 ExprResult Result = LookupMemberExpr(
709 *this, R, BaseResult, IsArrow, OpLoc, SS,
710 ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
711 TemplateArgs != nullptr);
712
713 if (BaseResult.isInvalid())
714 return ExprError();
715 Base = BaseResult.get();
716
717 if (Result.isInvalid())
718 return ExprError();
719
720 if (Result.get())
721 return Result;
722
723 // LookupMemberExpr can modify Base, and thus change BaseType
724 BaseType = Base->getType();
725 }
726
727 return BuildMemberReferenceExpr(Base, BaseType,
728 OpLoc, IsArrow, SS, TemplateKWLoc,
729 FirstQualifierInScope, R, TemplateArgs,
730 false, ExtraArgs);
731 }
732
733 static ExprResult
734 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
735 const CXXScopeSpec &SS, FieldDecl *Field,
736 DeclAccessPair FoundDecl,
737 const DeclarationNameInfo &MemberNameInfo);
738
739 ExprResult
BuildAnonymousStructUnionMemberReference(const CXXScopeSpec & SS,SourceLocation loc,IndirectFieldDecl * indirectField,DeclAccessPair foundDecl,Expr * baseObjectExpr,SourceLocation opLoc)740 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
741 SourceLocation loc,
742 IndirectFieldDecl *indirectField,
743 DeclAccessPair foundDecl,
744 Expr *baseObjectExpr,
745 SourceLocation opLoc) {
746 // First, build the expression that refers to the base object.
747
748 bool baseObjectIsPointer = false;
749 Qualifiers baseQuals;
750
751 // Case 1: the base of the indirect field is not a field.
752 VarDecl *baseVariable = indirectField->getVarDecl();
753 CXXScopeSpec EmptySS;
754 if (baseVariable) {
755 assert(baseVariable->getType()->isRecordType());
756
757 // In principle we could have a member access expression that
758 // accesses an anonymous struct/union that's a static member of
759 // the base object's class. However, under the current standard,
760 // static data members cannot be anonymous structs or unions.
761 // Supporting this is as easy as building a MemberExpr here.
762 assert(!baseObjectExpr && "anonymous struct/union is static data member?");
763
764 DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
765
766 ExprResult result
767 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
768 if (result.isInvalid()) return ExprError();
769
770 baseObjectExpr = result.get();
771 baseObjectIsPointer = false;
772 baseQuals = baseObjectExpr->getType().getQualifiers();
773
774 // Case 2: the base of the indirect field is a field and the user
775 // wrote a member expression.
776 } else if (baseObjectExpr) {
777 // The caller provided the base object expression. Determine
778 // whether its a pointer and whether it adds any qualifiers to the
779 // anonymous struct/union fields we're looking into.
780 QualType objectType = baseObjectExpr->getType();
781
782 if (const PointerType *ptr = objectType->getAs<PointerType>()) {
783 baseObjectIsPointer = true;
784 objectType = ptr->getPointeeType();
785 } else {
786 baseObjectIsPointer = false;
787 }
788 baseQuals = objectType.getQualifiers();
789
790 // Case 3: the base of the indirect field is a field and we should
791 // build an implicit member access.
792 } else {
793 // We've found a member of an anonymous struct/union that is
794 // inside a non-anonymous struct/union, so in a well-formed
795 // program our base object expression is "this".
796 QualType ThisTy = getCurrentThisType();
797 if (ThisTy.isNull()) {
798 Diag(loc, diag::err_invalid_member_use_in_static_method)
799 << indirectField->getDeclName();
800 return ExprError();
801 }
802
803 // Our base object expression is "this".
804 CheckCXXThisCapture(loc);
805 baseObjectExpr
806 = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
807 baseObjectIsPointer = true;
808 baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
809 }
810
811 // Build the implicit member references to the field of the
812 // anonymous struct/union.
813 Expr *result = baseObjectExpr;
814 IndirectFieldDecl::chain_iterator
815 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
816
817 // Build the first member access in the chain with full information.
818 if (!baseVariable) {
819 FieldDecl *field = cast<FieldDecl>(*FI);
820
821 // Make a nameInfo that properly uses the anonymous name.
822 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
823
824 result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
825 EmptySS, field, foundDecl,
826 memberNameInfo).get();
827 if (!result)
828 return ExprError();
829
830 // FIXME: check qualified member access
831 }
832
833 // In all cases, we should now skip the first declaration in the chain.
834 ++FI;
835
836 while (FI != FEnd) {
837 FieldDecl *field = cast<FieldDecl>(*FI++);
838
839 // FIXME: these are somewhat meaningless
840 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
841 DeclAccessPair fakeFoundDecl =
842 DeclAccessPair::make(field, field->getAccess());
843
844 result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
845 (FI == FEnd? SS : EmptySS), field,
846 fakeFoundDecl, memberNameInfo).get();
847 }
848
849 return result;
850 }
851
852 static ExprResult
BuildMSPropertyRefExpr(Sema & S,Expr * BaseExpr,bool IsArrow,const CXXScopeSpec & SS,MSPropertyDecl * PD,const DeclarationNameInfo & NameInfo)853 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
854 const CXXScopeSpec &SS,
855 MSPropertyDecl *PD,
856 const DeclarationNameInfo &NameInfo) {
857 // Property names are always simple identifiers and therefore never
858 // require any interesting additional storage.
859 return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
860 S.Context.PseudoObjectTy, VK_LValue,
861 SS.getWithLocInContext(S.Context),
862 NameInfo.getLoc());
863 }
864
865 /// \brief Build a MemberExpr AST node.
866 static MemberExpr *
BuildMemberExpr(Sema & SemaRef,ASTContext & C,Expr * Base,bool isArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,ValueDecl * Member,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo,QualType Ty,ExprValueKind VK,ExprObjectKind OK,const TemplateArgumentListInfo * TemplateArgs=nullptr)867 BuildMemberExpr(Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
868 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
869 ValueDecl *Member, DeclAccessPair FoundDecl,
870 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
871 ExprValueKind VK, ExprObjectKind OK,
872 const TemplateArgumentListInfo *TemplateArgs = nullptr) {
873 assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
874 MemberExpr *E =
875 MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
876 TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
877 TemplateArgs, Ty, VK, OK);
878 SemaRef.MarkMemberReferenced(E);
879 return E;
880 }
881
882 ExprResult
BuildMemberReferenceExpr(Expr * BaseExpr,QualType BaseExprType,SourceLocation OpLoc,bool IsArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool SuppressQualifierCheck,ActOnMemberAccessExtraArgs * ExtraArgs)883 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
884 SourceLocation OpLoc, bool IsArrow,
885 const CXXScopeSpec &SS,
886 SourceLocation TemplateKWLoc,
887 NamedDecl *FirstQualifierInScope,
888 LookupResult &R,
889 const TemplateArgumentListInfo *TemplateArgs,
890 bool SuppressQualifierCheck,
891 ActOnMemberAccessExtraArgs *ExtraArgs) {
892 QualType BaseType = BaseExprType;
893 if (IsArrow) {
894 assert(BaseType->isPointerType());
895 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
896 }
897 R.setBaseObjectType(BaseType);
898
899 LambdaScopeInfo *const CurLSI = getCurLambda();
900 // If this is an implicit member reference and the overloaded
901 // name refers to both static and non-static member functions
902 // (i.e. BaseExpr is null) and if we are currently processing a lambda,
903 // check if we should/can capture 'this'...
904 // Keep this example in mind:
905 // struct X {
906 // void f(int) { }
907 // static void f(double) { }
908 //
909 // int g() {
910 // auto L = [=](auto a) {
911 // return [](int i) {
912 // return [=](auto b) {
913 // f(b);
914 // //f(decltype(a){});
915 // };
916 // };
917 // };
918 // auto M = L(0.0);
919 // auto N = M(3);
920 // N(5.32); // OK, must not error.
921 // return 0;
922 // }
923 // };
924 //
925 if (!BaseExpr && CurLSI) {
926 SourceLocation Loc = R.getNameLoc();
927 if (SS.getRange().isValid())
928 Loc = SS.getRange().getBegin();
929 DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
930 // If the enclosing function is not dependent, then this lambda is
931 // capture ready, so if we can capture this, do so.
932 if (!EnclosingFunctionCtx->isDependentContext()) {
933 // If the current lambda and all enclosing lambdas can capture 'this' -
934 // then go ahead and capture 'this' (since our unresolved overload set
935 // contains both static and non-static member functions).
936 if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
937 CheckCXXThisCapture(Loc);
938 } else if (CurContext->isDependentContext()) {
939 // ... since this is an implicit member reference, that might potentially
940 // involve a 'this' capture, mark 'this' for potential capture in
941 // enclosing lambdas.
942 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
943 CurLSI->addPotentialThisCapture(Loc);
944 }
945 }
946 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
947 DeclarationName MemberName = MemberNameInfo.getName();
948 SourceLocation MemberLoc = MemberNameInfo.getLoc();
949
950 if (R.isAmbiguous())
951 return ExprError();
952
953 if (R.empty()) {
954 // Rederive where we looked up.
955 DeclContext *DC = (SS.isSet()
956 ? computeDeclContext(SS, false)
957 : BaseType->getAs<RecordType>()->getDecl());
958
959 if (ExtraArgs) {
960 ExprResult RetryExpr;
961 if (!IsArrow && BaseExpr) {
962 SFINAETrap Trap(*this, true);
963 ParsedType ObjectType;
964 bool MayBePseudoDestructor = false;
965 RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
966 OpLoc, tok::arrow, ObjectType,
967 MayBePseudoDestructor);
968 if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
969 CXXScopeSpec TempSS(SS);
970 RetryExpr = ActOnMemberAccessExpr(
971 ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
972 TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
973 ExtraArgs->HasTrailingLParen);
974 }
975 if (Trap.hasErrorOccurred())
976 RetryExpr = ExprError();
977 }
978 if (RetryExpr.isUsable()) {
979 Diag(OpLoc, diag::err_no_member_overloaded_arrow)
980 << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
981 return RetryExpr;
982 }
983 }
984
985 Diag(R.getNameLoc(), diag::err_no_member)
986 << MemberName << DC
987 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
988 return ExprError();
989 }
990
991 // Diagnose lookups that find only declarations from a non-base
992 // type. This is possible for either qualified lookups (which may
993 // have been qualified with an unrelated type) or implicit member
994 // expressions (which were found with unqualified lookup and thus
995 // may have come from an enclosing scope). Note that it's okay for
996 // lookup to find declarations from a non-base type as long as those
997 // aren't the ones picked by overload resolution.
998 if ((SS.isSet() || !BaseExpr ||
999 (isa<CXXThisExpr>(BaseExpr) &&
1000 cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1001 !SuppressQualifierCheck &&
1002 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1003 return ExprError();
1004
1005 // Construct an unresolved result if we in fact got an unresolved
1006 // result.
1007 if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1008 // Suppress any lookup-related diagnostics; we'll do these when we
1009 // pick a member.
1010 R.suppressDiagnostics();
1011
1012 UnresolvedMemberExpr *MemExpr
1013 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1014 BaseExpr, BaseExprType,
1015 IsArrow, OpLoc,
1016 SS.getWithLocInContext(Context),
1017 TemplateKWLoc, MemberNameInfo,
1018 TemplateArgs, R.begin(), R.end());
1019
1020 return MemExpr;
1021 }
1022
1023 assert(R.isSingleResult());
1024 DeclAccessPair FoundDecl = R.begin().getPair();
1025 NamedDecl *MemberDecl = R.getFoundDecl();
1026
1027 // FIXME: diagnose the presence of template arguments now.
1028
1029 // If the decl being referenced had an error, return an error for this
1030 // sub-expr without emitting another error, in order to avoid cascading
1031 // error cases.
1032 if (MemberDecl->isInvalidDecl())
1033 return ExprError();
1034
1035 // Handle the implicit-member-access case.
1036 if (!BaseExpr) {
1037 // If this is not an instance member, convert to a non-member access.
1038 if (!MemberDecl->isCXXInstanceMember())
1039 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
1040
1041 SourceLocation Loc = R.getNameLoc();
1042 if (SS.getRange().isValid())
1043 Loc = SS.getRange().getBegin();
1044 CheckCXXThisCapture(Loc);
1045 BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
1046 }
1047
1048 bool ShouldCheckUse = true;
1049 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1050 // Don't diagnose the use of a virtual member function unless it's
1051 // explicitly qualified.
1052 if (MD->isVirtual() && !SS.isSet())
1053 ShouldCheckUse = false;
1054 }
1055
1056 // Check the use of this member.
1057 if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1058 return ExprError();
1059
1060 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1061 return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
1062 SS, FD, FoundDecl, MemberNameInfo);
1063
1064 if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1065 return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1066 MemberNameInfo);
1067
1068 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1069 // We may have found a field within an anonymous union or struct
1070 // (C++ [class.union]).
1071 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1072 FoundDecl, BaseExpr,
1073 OpLoc);
1074
1075 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1076 return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1077 Var, FoundDecl, MemberNameInfo,
1078 Var->getType().getNonReferenceType(), VK_LValue,
1079 OK_Ordinary);
1080 }
1081
1082 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1083 ExprValueKind valueKind;
1084 QualType type;
1085 if (MemberFn->isInstance()) {
1086 valueKind = VK_RValue;
1087 type = Context.BoundMemberTy;
1088 } else {
1089 valueKind = VK_LValue;
1090 type = MemberFn->getType();
1091 }
1092
1093 return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1094 MemberFn, FoundDecl, MemberNameInfo, type, valueKind,
1095 OK_Ordinary);
1096 }
1097 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1098
1099 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1100 return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1101 Enum, FoundDecl, MemberNameInfo, Enum->getType(),
1102 VK_RValue, OK_Ordinary);
1103 }
1104
1105 // We found something that we didn't expect. Complain.
1106 if (isa<TypeDecl>(MemberDecl))
1107 Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1108 << MemberName << BaseType << int(IsArrow);
1109 else
1110 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1111 << MemberName << BaseType << int(IsArrow);
1112
1113 Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1114 << MemberName;
1115 R.suppressDiagnostics();
1116 return ExprError();
1117 }
1118
1119 /// Given that normal member access failed on the given expression,
1120 /// and given that the expression's type involves builtin-id or
1121 /// builtin-Class, decide whether substituting in the redefinition
1122 /// types would be profitable. The redefinition type is whatever
1123 /// this translation unit tried to typedef to id/Class; we store
1124 /// it to the side and then re-use it in places like this.
ShouldTryAgainWithRedefinitionType(Sema & S,ExprResult & base)1125 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1126 const ObjCObjectPointerType *opty
1127 = base.get()->getType()->getAs<ObjCObjectPointerType>();
1128 if (!opty) return false;
1129
1130 const ObjCObjectType *ty = opty->getObjectType();
1131
1132 QualType redef;
1133 if (ty->isObjCId()) {
1134 redef = S.Context.getObjCIdRedefinitionType();
1135 } else if (ty->isObjCClass()) {
1136 redef = S.Context.getObjCClassRedefinitionType();
1137 } else {
1138 return false;
1139 }
1140
1141 // Do the substitution as long as the redefinition type isn't just a
1142 // possibly-qualified pointer to builtin-id or builtin-Class again.
1143 opty = redef->getAs<ObjCObjectPointerType>();
1144 if (opty && !opty->getObjectType()->getInterface())
1145 return false;
1146
1147 base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1148 return true;
1149 }
1150
isRecordType(QualType T)1151 static bool isRecordType(QualType T) {
1152 return T->isRecordType();
1153 }
isPointerToRecordType(QualType T)1154 static bool isPointerToRecordType(QualType T) {
1155 if (const PointerType *PT = T->getAs<PointerType>())
1156 return PT->getPointeeType()->isRecordType();
1157 return false;
1158 }
1159
1160 /// Perform conversions on the LHS of a member access expression.
1161 ExprResult
PerformMemberExprBaseConversion(Expr * Base,bool IsArrow)1162 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1163 if (IsArrow && !Base->getType()->isFunctionType())
1164 return DefaultFunctionArrayLvalueConversion(Base);
1165
1166 return CheckPlaceholderExpr(Base);
1167 }
1168
1169 /// Look up the given member of the given non-type-dependent
1170 /// expression. This can return in one of two ways:
1171 /// * If it returns a sentinel null-but-valid result, the caller will
1172 /// assume that lookup was performed and the results written into
1173 /// the provided structure. It will take over from there.
1174 /// * Otherwise, the returned expression will be produced in place of
1175 /// an ordinary member expression.
1176 ///
1177 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1178 /// fixed for ObjC++.
LookupMemberExpr(Sema & S,LookupResult & R,ExprResult & BaseExpr,bool & IsArrow,SourceLocation OpLoc,CXXScopeSpec & SS,Decl * ObjCImpDecl,bool HasTemplateArgs)1179 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1180 ExprResult &BaseExpr, bool &IsArrow,
1181 SourceLocation OpLoc, CXXScopeSpec &SS,
1182 Decl *ObjCImpDecl, bool HasTemplateArgs) {
1183 assert(BaseExpr.get() && "no base expression");
1184
1185 // Perform default conversions.
1186 BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1187 if (BaseExpr.isInvalid())
1188 return ExprError();
1189
1190 QualType BaseType = BaseExpr.get()->getType();
1191 assert(!BaseType->isDependentType());
1192
1193 DeclarationName MemberName = R.getLookupName();
1194 SourceLocation MemberLoc = R.getNameLoc();
1195
1196 // For later type-checking purposes, turn arrow accesses into dot
1197 // accesses. The only access type we support that doesn't follow
1198 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1199 // and those never use arrows, so this is unaffected.
1200 if (IsArrow) {
1201 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1202 BaseType = Ptr->getPointeeType();
1203 else if (const ObjCObjectPointerType *Ptr
1204 = BaseType->getAs<ObjCObjectPointerType>())
1205 BaseType = Ptr->getPointeeType();
1206 else if (BaseType->isRecordType()) {
1207 // Recover from arrow accesses to records, e.g.:
1208 // struct MyRecord foo;
1209 // foo->bar
1210 // This is actually well-formed in C++ if MyRecord has an
1211 // overloaded operator->, but that should have been dealt with
1212 // by now--or a diagnostic message already issued if a problem
1213 // was encountered while looking for the overloaded operator->.
1214 if (!S.getLangOpts().CPlusPlus) {
1215 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1216 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1217 << FixItHint::CreateReplacement(OpLoc, ".");
1218 }
1219 IsArrow = false;
1220 } else if (BaseType->isFunctionType()) {
1221 goto fail;
1222 } else {
1223 S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1224 << BaseType << BaseExpr.get()->getSourceRange();
1225 return ExprError();
1226 }
1227 }
1228
1229 // Handle field access to simple records.
1230 if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1231 if (LookupMemberExprInRecord(S, R, BaseExpr.get()->getSourceRange(),
1232 RTy, OpLoc, SS, HasTemplateArgs))
1233 return ExprError();
1234
1235 // Returning valid-but-null is how we indicate to the caller that
1236 // the lookup result was filled in.
1237 return ExprResult((Expr *)nullptr);
1238 }
1239
1240 // Handle ivar access to Objective-C objects.
1241 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1242 if (!SS.isEmpty() && !SS.isInvalid()) {
1243 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1244 << 1 << SS.getScopeRep()
1245 << FixItHint::CreateRemoval(SS.getRange());
1246 SS.clear();
1247 }
1248
1249 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1250
1251 // There are three cases for the base type:
1252 // - builtin id (qualified or unqualified)
1253 // - builtin Class (qualified or unqualified)
1254 // - an interface
1255 ObjCInterfaceDecl *IDecl = OTy->getInterface();
1256 if (!IDecl) {
1257 if (S.getLangOpts().ObjCAutoRefCount &&
1258 (OTy->isObjCId() || OTy->isObjCClass()))
1259 goto fail;
1260 // There's an implicit 'isa' ivar on all objects.
1261 // But we only actually find it this way on objects of type 'id',
1262 // apparently.
1263 if (OTy->isObjCId() && Member->isStr("isa"))
1264 return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1265 OpLoc, S.Context.getObjCClassType());
1266 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1267 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1268 ObjCImpDecl, HasTemplateArgs);
1269 goto fail;
1270 }
1271
1272 if (S.RequireCompleteType(OpLoc, BaseType,
1273 diag::err_typecheck_incomplete_tag,
1274 BaseExpr.get()))
1275 return ExprError();
1276
1277 ObjCInterfaceDecl *ClassDeclared = nullptr;
1278 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1279
1280 if (!IV) {
1281 // Attempt to correct for typos in ivar names.
1282 DeclFilterCCC<ObjCIvarDecl> Validator;
1283 Validator.IsObjCIvarLookup = IsArrow;
1284 if (TypoCorrection Corrected = S.CorrectTypo(
1285 R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1286 Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1287 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1288 S.diagnoseTypo(
1289 Corrected,
1290 S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1291 << IDecl->getDeclName() << MemberName);
1292
1293 // Figure out the class that declares the ivar.
1294 assert(!ClassDeclared);
1295 Decl *D = cast<Decl>(IV->getDeclContext());
1296 if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1297 D = CAT->getClassInterface();
1298 ClassDeclared = cast<ObjCInterfaceDecl>(D);
1299 } else {
1300 if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1301 S.Diag(MemberLoc, diag::err_property_found_suggest)
1302 << Member << BaseExpr.get()->getType()
1303 << FixItHint::CreateReplacement(OpLoc, ".");
1304 return ExprError();
1305 }
1306
1307 S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1308 << IDecl->getDeclName() << MemberName
1309 << BaseExpr.get()->getSourceRange();
1310 return ExprError();
1311 }
1312 }
1313
1314 assert(ClassDeclared);
1315
1316 // If the decl being referenced had an error, return an error for this
1317 // sub-expr without emitting another error, in order to avoid cascading
1318 // error cases.
1319 if (IV->isInvalidDecl())
1320 return ExprError();
1321
1322 // Check whether we can reference this field.
1323 if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1324 return ExprError();
1325 if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1326 IV->getAccessControl() != ObjCIvarDecl::Package) {
1327 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1328 if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1329 ClassOfMethodDecl = MD->getClassInterface();
1330 else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1331 // Case of a c-function declared inside an objc implementation.
1332 // FIXME: For a c-style function nested inside an objc implementation
1333 // class, there is no implementation context available, so we pass
1334 // down the context as argument to this routine. Ideally, this context
1335 // need be passed down in the AST node and somehow calculated from the
1336 // AST for a function decl.
1337 if (ObjCImplementationDecl *IMPD =
1338 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1339 ClassOfMethodDecl = IMPD->getClassInterface();
1340 else if (ObjCCategoryImplDecl* CatImplClass =
1341 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1342 ClassOfMethodDecl = CatImplClass->getClassInterface();
1343 }
1344 if (!S.getLangOpts().DebuggerSupport) {
1345 if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1346 if (!declaresSameEntity(ClassDeclared, IDecl) ||
1347 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1348 S.Diag(MemberLoc, diag::error_private_ivar_access)
1349 << IV->getDeclName();
1350 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1351 // @protected
1352 S.Diag(MemberLoc, diag::error_protected_ivar_access)
1353 << IV->getDeclName();
1354 }
1355 }
1356 bool warn = true;
1357 if (S.getLangOpts().ObjCAutoRefCount) {
1358 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1359 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1360 if (UO->getOpcode() == UO_Deref)
1361 BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1362
1363 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1364 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1365 S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1366 warn = false;
1367 }
1368 }
1369 if (warn) {
1370 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1371 ObjCMethodFamily MF = MD->getMethodFamily();
1372 warn = (MF != OMF_init && MF != OMF_dealloc &&
1373 MF != OMF_finalize &&
1374 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1375 }
1376 if (warn)
1377 S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1378 }
1379
1380 ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1381 IV, IV->getType(), MemberLoc, OpLoc, BaseExpr.get(), IsArrow);
1382
1383 if (S.getLangOpts().ObjCAutoRefCount) {
1384 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1385 if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1386 S.recordUseOfEvaluatedWeak(Result);
1387 }
1388 }
1389
1390 return Result;
1391 }
1392
1393 // Objective-C property access.
1394 const ObjCObjectPointerType *OPT;
1395 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1396 if (!SS.isEmpty() && !SS.isInvalid()) {
1397 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1398 << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1399 SS.clear();
1400 }
1401
1402 // This actually uses the base as an r-value.
1403 BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1404 if (BaseExpr.isInvalid())
1405 return ExprError();
1406
1407 assert(S.Context.hasSameUnqualifiedType(BaseType,
1408 BaseExpr.get()->getType()));
1409
1410 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1411
1412 const ObjCObjectType *OT = OPT->getObjectType();
1413
1414 // id, with and without qualifiers.
1415 if (OT->isObjCId()) {
1416 // Check protocols on qualified interfaces.
1417 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1418 if (Decl *PMDecl =
1419 FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1420 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1421 // Check the use of this declaration
1422 if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1423 return ExprError();
1424
1425 return new (S.Context)
1426 ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1427 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1428 }
1429
1430 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1431 // Check the use of this method.
1432 if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
1433 return ExprError();
1434 Selector SetterSel =
1435 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1436 S.PP.getSelectorTable(),
1437 Member);
1438 ObjCMethodDecl *SMD = nullptr;
1439 if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1440 /*Property id*/ nullptr,
1441 SetterSel, S.Context))
1442 SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1443
1444 return new (S.Context)
1445 ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1446 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1447 }
1448 }
1449 // Use of id.member can only be for a property reference. Do not
1450 // use the 'id' redefinition in this case.
1451 if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1452 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1453 ObjCImpDecl, HasTemplateArgs);
1454
1455 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1456 << MemberName << BaseType);
1457 }
1458
1459 // 'Class', unqualified only.
1460 if (OT->isObjCClass()) {
1461 // Only works in a method declaration (??!).
1462 ObjCMethodDecl *MD = S.getCurMethodDecl();
1463 if (!MD) {
1464 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1465 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1466 ObjCImpDecl, HasTemplateArgs);
1467
1468 goto fail;
1469 }
1470
1471 // Also must look for a getter name which uses property syntax.
1472 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1473 ObjCInterfaceDecl *IFace = MD->getClassInterface();
1474 ObjCMethodDecl *Getter;
1475 if ((Getter = IFace->lookupClassMethod(Sel))) {
1476 // Check the use of this method.
1477 if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1478 return ExprError();
1479 } else
1480 Getter = IFace->lookupPrivateMethod(Sel, false);
1481 // If we found a getter then this may be a valid dot-reference, we
1482 // will look for the matching setter, in case it is needed.
1483 Selector SetterSel =
1484 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1485 S.PP.getSelectorTable(),
1486 Member);
1487 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1488 if (!Setter) {
1489 // If this reference is in an @implementation, also check for 'private'
1490 // methods.
1491 Setter = IFace->lookupPrivateMethod(SetterSel, false);
1492 }
1493
1494 if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1495 return ExprError();
1496
1497 if (Getter || Setter) {
1498 return new (S.Context) ObjCPropertyRefExpr(
1499 Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1500 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1501 }
1502
1503 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1504 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1505 ObjCImpDecl, HasTemplateArgs);
1506
1507 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1508 << MemberName << BaseType);
1509 }
1510
1511 // Normal property access.
1512 return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1513 MemberLoc, SourceLocation(), QualType(),
1514 false);
1515 }
1516
1517 // Handle 'field access' to vectors, such as 'V.xx'.
1518 if (BaseType->isExtVectorType()) {
1519 // FIXME: this expr should store IsArrow.
1520 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1521 ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1522 QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1523 Member, MemberLoc);
1524 if (ret.isNull())
1525 return ExprError();
1526
1527 return new (S.Context)
1528 ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1529 }
1530
1531 // Adjust builtin-sel to the appropriate redefinition type if that's
1532 // not just a pointer to builtin-sel again.
1533 if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1534 !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1535 BaseExpr = S.ImpCastExprToType(
1536 BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1537 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1538 ObjCImpDecl, HasTemplateArgs);
1539 }
1540
1541 // Failure cases.
1542 fail:
1543
1544 // Recover from dot accesses to pointers, e.g.:
1545 // type *foo;
1546 // foo.bar
1547 // This is actually well-formed in two cases:
1548 // - 'type' is an Objective C type
1549 // - 'bar' is a pseudo-destructor name which happens to refer to
1550 // the appropriate pointer type
1551 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1552 if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1553 MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1554 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1555 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1556 << FixItHint::CreateReplacement(OpLoc, "->");
1557
1558 // Recurse as an -> access.
1559 IsArrow = true;
1560 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1561 ObjCImpDecl, HasTemplateArgs);
1562 }
1563 }
1564
1565 // If the user is trying to apply -> or . to a function name, it's probably
1566 // because they forgot parentheses to call that function.
1567 if (S.tryToRecoverWithCall(
1568 BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1569 /*complain*/ false,
1570 IsArrow ? &isPointerToRecordType : &isRecordType)) {
1571 if (BaseExpr.isInvalid())
1572 return ExprError();
1573 BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1574 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1575 ObjCImpDecl, HasTemplateArgs);
1576 }
1577
1578 S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1579 << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1580
1581 return ExprError();
1582 }
1583
1584 /// The main callback when the parser finds something like
1585 /// expression . [nested-name-specifier] identifier
1586 /// expression -> [nested-name-specifier] identifier
1587 /// where 'identifier' encompasses a fairly broad spectrum of
1588 /// possibilities, including destructor and operator references.
1589 ///
1590 /// \param OpKind either tok::arrow or tok::period
1591 /// \param HasTrailingLParen whether the next token is '(', which
1592 /// is used to diagnose mis-uses of special members that can
1593 /// only be called
1594 /// \param ObjCImpDecl the current Objective-C \@implementation
1595 /// decl; this is an ugly hack around the fact that Objective-C
1596 /// \@implementations aren't properly put in the context chain
ActOnMemberAccessExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,Decl * ObjCImpDecl,bool HasTrailingLParen)1597 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1598 SourceLocation OpLoc,
1599 tok::TokenKind OpKind,
1600 CXXScopeSpec &SS,
1601 SourceLocation TemplateKWLoc,
1602 UnqualifiedId &Id,
1603 Decl *ObjCImpDecl,
1604 bool HasTrailingLParen) {
1605 if (SS.isSet() && SS.isInvalid())
1606 return ExprError();
1607
1608 // The only way a reference to a destructor can be used is to
1609 // immediately call it. If the next token is not a '(', produce
1610 // a diagnostic and build the call now.
1611 if (!HasTrailingLParen &&
1612 Id.getKind() == UnqualifiedId::IK_DestructorName) {
1613 ExprResult DtorAccess =
1614 ActOnMemberAccessExpr(S, Base, OpLoc, OpKind, SS, TemplateKWLoc, Id,
1615 ObjCImpDecl, /*HasTrailingLParen*/true);
1616 if (DtorAccess.isInvalid())
1617 return DtorAccess;
1618 return DiagnoseDtorReference(Id.getLocStart(), DtorAccess.get());
1619 }
1620
1621 // Warn about the explicit constructor calls Microsoft extension.
1622 if (getLangOpts().MicrosoftExt &&
1623 Id.getKind() == UnqualifiedId::IK_ConstructorName)
1624 Diag(Id.getSourceRange().getBegin(),
1625 diag::ext_ms_explicit_constructor_call);
1626
1627 TemplateArgumentListInfo TemplateArgsBuffer;
1628
1629 // Decompose the name into its component parts.
1630 DeclarationNameInfo NameInfo;
1631 const TemplateArgumentListInfo *TemplateArgs;
1632 DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1633 NameInfo, TemplateArgs);
1634
1635 DeclarationName Name = NameInfo.getName();
1636 bool IsArrow = (OpKind == tok::arrow);
1637
1638 NamedDecl *FirstQualifierInScope
1639 = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1640
1641 // This is a postfix expression, so get rid of ParenListExprs.
1642 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1643 if (Result.isInvalid()) return ExprError();
1644 Base = Result.get();
1645
1646 if (Base->getType()->isDependentType() || Name.isDependentName() ||
1647 isDependentScopeSpecifier(SS)) {
1648 return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1649 TemplateKWLoc, FirstQualifierInScope,
1650 NameInfo, TemplateArgs);
1651 }
1652
1653 ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl,
1654 HasTrailingLParen};
1655 return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
1656 TemplateKWLoc, FirstQualifierInScope,
1657 NameInfo, TemplateArgs, &ExtraArgs);
1658 }
1659
1660 static ExprResult
BuildFieldReferenceExpr(Sema & S,Expr * BaseExpr,bool IsArrow,const CXXScopeSpec & SS,FieldDecl * Field,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo)1661 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1662 const CXXScopeSpec &SS, FieldDecl *Field,
1663 DeclAccessPair FoundDecl,
1664 const DeclarationNameInfo &MemberNameInfo) {
1665 // x.a is an l-value if 'a' has a reference type. Otherwise:
1666 // x.a is an l-value/x-value/pr-value if the base is (and note
1667 // that *x is always an l-value), except that if the base isn't
1668 // an ordinary object then we must have an rvalue.
1669 ExprValueKind VK = VK_LValue;
1670 ExprObjectKind OK = OK_Ordinary;
1671 if (!IsArrow) {
1672 if (BaseExpr->getObjectKind() == OK_Ordinary)
1673 VK = BaseExpr->getValueKind();
1674 else
1675 VK = VK_RValue;
1676 }
1677 if (VK != VK_RValue && Field->isBitField())
1678 OK = OK_BitField;
1679
1680 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1681 QualType MemberType = Field->getType();
1682 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1683 MemberType = Ref->getPointeeType();
1684 VK = VK_LValue;
1685 } else {
1686 QualType BaseType = BaseExpr->getType();
1687 if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1688
1689 Qualifiers BaseQuals = BaseType.getQualifiers();
1690
1691 // GC attributes are never picked up by members.
1692 BaseQuals.removeObjCGCAttr();
1693
1694 // CVR attributes from the base are picked up by members,
1695 // except that 'mutable' members don't pick up 'const'.
1696 if (Field->isMutable()) BaseQuals.removeConst();
1697
1698 Qualifiers MemberQuals
1699 = S.Context.getCanonicalType(MemberType).getQualifiers();
1700
1701 assert(!MemberQuals.hasAddressSpace());
1702
1703
1704 Qualifiers Combined = BaseQuals + MemberQuals;
1705 if (Combined != MemberQuals)
1706 MemberType = S.Context.getQualifiedType(MemberType, Combined);
1707 }
1708
1709 S.UnusedPrivateFields.remove(Field);
1710
1711 ExprResult Base =
1712 S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1713 FoundDecl, Field);
1714 if (Base.isInvalid())
1715 return ExprError();
1716 return BuildMemberExpr(S, S.Context, Base.get(), IsArrow, SS,
1717 /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1718 MemberNameInfo, MemberType, VK, OK);
1719 }
1720
1721 /// Builds an implicit member access expression. The current context
1722 /// is known to be an instance method, and the given unqualified lookup
1723 /// set is known to contain only instance members, at least one of which
1724 /// is from an appropriate type.
1725 ExprResult
BuildImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool IsKnownInstance)1726 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1727 SourceLocation TemplateKWLoc,
1728 LookupResult &R,
1729 const TemplateArgumentListInfo *TemplateArgs,
1730 bool IsKnownInstance) {
1731 assert(!R.empty() && !R.isAmbiguous());
1732
1733 SourceLocation loc = R.getNameLoc();
1734
1735 // If this is known to be an instance access, go ahead and build an
1736 // implicit 'this' expression now.
1737 // 'this' expression now.
1738 QualType ThisTy = getCurrentThisType();
1739 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1740
1741 Expr *baseExpr = nullptr; // null signifies implicit access
1742 if (IsKnownInstance) {
1743 SourceLocation Loc = R.getNameLoc();
1744 if (SS.getRange().isValid())
1745 Loc = SS.getRange().getBegin();
1746 CheckCXXThisCapture(Loc);
1747 baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1748 }
1749
1750 return BuildMemberReferenceExpr(baseExpr, ThisTy,
1751 /*OpLoc*/ SourceLocation(),
1752 /*IsArrow*/ true,
1753 SS, TemplateKWLoc,
1754 /*FirstQualifierInScope*/ nullptr,
1755 R, TemplateArgs);
1756 }
1757