1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/tracked_objects.h"
6
7 #include <limits.h>
8 #include <stdlib.h>
9
10 #include "base/atomicops.h"
11 #include "base/base_switches.h"
12 #include "base/command_line.h"
13 #include "base/compiler_specific.h"
14 #include "base/debug/leak_annotations.h"
15 #include "base/logging.h"
16 #include "base/process/process_handle.h"
17 #include "base/profiler/alternate_timer.h"
18 #include "base/strings/stringprintf.h"
19 #include "base/third_party/valgrind/memcheck.h"
20 #include "base/tracking_info.h"
21
22 using base::TimeDelta;
23
24 namespace base {
25 class TimeDelta;
26 }
27
28 namespace tracked_objects {
29
30 namespace {
31 // Flag to compile out almost all of the task tracking code.
32 const bool kTrackAllTaskObjects = true;
33
34 // TODO(jar): Evaluate the perf impact of enabling this. If the perf impact is
35 // negligible, enable by default.
36 // Flag to compile out parent-child link recording.
37 const bool kTrackParentChildLinks = false;
38
39 // When ThreadData is first initialized, should we start in an ACTIVE state to
40 // record all of the startup-time tasks, or should we start up DEACTIVATED, so
41 // that we only record after parsing the command line flag --enable-tracking.
42 // Note that the flag may force either state, so this really controls only the
43 // period of time up until that flag is parsed. If there is no flag seen, then
44 // this state may prevail for much or all of the process lifetime.
45 const ThreadData::Status kInitialStartupState =
46 ThreadData::PROFILING_CHILDREN_ACTIVE;
47
48 // Control whether an alternate time source (Now() function) is supported by
49 // the ThreadData class. This compile time flag should be set to true if we
50 // want other modules (such as a memory allocator, or a thread-specific CPU time
51 // clock) to be able to provide a thread-specific Now() function. Without this
52 // compile-time flag, the code will only support the wall-clock time. This flag
53 // can be flipped to efficiently disable this path (if there is a performance
54 // problem with its presence).
55 static const bool kAllowAlternateTimeSourceHandling = true;
56
IsProfilerTimingEnabled()57 inline bool IsProfilerTimingEnabled() {
58 enum {
59 UNDEFINED_TIMING,
60 ENABLED_TIMING,
61 DISABLED_TIMING,
62 };
63 static base::subtle::Atomic32 timing_enabled = UNDEFINED_TIMING;
64 // Reading |timing_enabled| is done without barrier because multiple
65 // initialization is not an issue while the barrier can be relatively costly
66 // given that this method is sometimes called in a tight loop.
67 base::subtle::Atomic32 current_timing_enabled =
68 base::subtle::NoBarrier_Load(&timing_enabled);
69 if (current_timing_enabled == UNDEFINED_TIMING) {
70 if (!CommandLine::InitializedForCurrentProcess())
71 return true;
72 current_timing_enabled =
73 (CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
74 switches::kProfilerTiming) ==
75 switches::kProfilerTimingDisabledValue)
76 ? DISABLED_TIMING
77 : ENABLED_TIMING;
78 base::subtle::NoBarrier_Store(&timing_enabled, current_timing_enabled);
79 }
80 return current_timing_enabled == ENABLED_TIMING;
81 }
82
83 } // namespace
84
85 //------------------------------------------------------------------------------
86 // DeathData tallies durations when a death takes place.
87
DeathData()88 DeathData::DeathData() {
89 Clear();
90 }
91
DeathData(int count)92 DeathData::DeathData(int count) {
93 Clear();
94 count_ = count;
95 }
96
97 // TODO(jar): I need to see if this macro to optimize branching is worth using.
98 //
99 // This macro has no branching, so it is surely fast, and is equivalent to:
100 // if (assign_it)
101 // target = source;
102 // We use a macro rather than a template to force this to inline.
103 // Related code for calculating max is discussed on the web.
104 #define CONDITIONAL_ASSIGN(assign_it, target, source) \
105 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
106
RecordDeath(const int32 queue_duration,const int32 run_duration,int32 random_number)107 void DeathData::RecordDeath(const int32 queue_duration,
108 const int32 run_duration,
109 int32 random_number) {
110 // We'll just clamp at INT_MAX, but we should note this in the UI as such.
111 if (count_ < INT_MAX)
112 ++count_;
113 queue_duration_sum_ += queue_duration;
114 run_duration_sum_ += run_duration;
115
116 if (queue_duration_max_ < queue_duration)
117 queue_duration_max_ = queue_duration;
118 if (run_duration_max_ < run_duration)
119 run_duration_max_ = run_duration;
120
121 // Take a uniformly distributed sample over all durations ever supplied.
122 // The probability that we (instead) use this new sample is 1/count_. This
123 // results in a completely uniform selection of the sample (at least when we
124 // don't clamp count_... but that should be inconsequentially likely).
125 // We ignore the fact that we correlated our selection of a sample to the run
126 // and queue times (i.e., we used them to generate random_number).
127 CHECK_GT(count_, 0);
128 if (0 == (random_number % count_)) {
129 queue_duration_sample_ = queue_duration;
130 run_duration_sample_ = run_duration;
131 }
132 }
133
count() const134 int DeathData::count() const { return count_; }
135
run_duration_sum() const136 int32 DeathData::run_duration_sum() const { return run_duration_sum_; }
137
run_duration_max() const138 int32 DeathData::run_duration_max() const { return run_duration_max_; }
139
run_duration_sample() const140 int32 DeathData::run_duration_sample() const {
141 return run_duration_sample_;
142 }
143
queue_duration_sum() const144 int32 DeathData::queue_duration_sum() const {
145 return queue_duration_sum_;
146 }
147
queue_duration_max() const148 int32 DeathData::queue_duration_max() const {
149 return queue_duration_max_;
150 }
151
queue_duration_sample() const152 int32 DeathData::queue_duration_sample() const {
153 return queue_duration_sample_;
154 }
155
ResetMax()156 void DeathData::ResetMax() {
157 run_duration_max_ = 0;
158 queue_duration_max_ = 0;
159 }
160
Clear()161 void DeathData::Clear() {
162 count_ = 0;
163 run_duration_sum_ = 0;
164 run_duration_max_ = 0;
165 run_duration_sample_ = 0;
166 queue_duration_sum_ = 0;
167 queue_duration_max_ = 0;
168 queue_duration_sample_ = 0;
169 }
170
171 //------------------------------------------------------------------------------
DeathDataSnapshot()172 DeathDataSnapshot::DeathDataSnapshot()
173 : count(-1),
174 run_duration_sum(-1),
175 run_duration_max(-1),
176 run_duration_sample(-1),
177 queue_duration_sum(-1),
178 queue_duration_max(-1),
179 queue_duration_sample(-1) {
180 }
181
DeathDataSnapshot(const tracked_objects::DeathData & death_data)182 DeathDataSnapshot::DeathDataSnapshot(
183 const tracked_objects::DeathData& death_data)
184 : count(death_data.count()),
185 run_duration_sum(death_data.run_duration_sum()),
186 run_duration_max(death_data.run_duration_max()),
187 run_duration_sample(death_data.run_duration_sample()),
188 queue_duration_sum(death_data.queue_duration_sum()),
189 queue_duration_max(death_data.queue_duration_max()),
190 queue_duration_sample(death_data.queue_duration_sample()) {
191 }
192
~DeathDataSnapshot()193 DeathDataSnapshot::~DeathDataSnapshot() {
194 }
195
196 //------------------------------------------------------------------------------
BirthOnThread(const Location & location,const ThreadData & current)197 BirthOnThread::BirthOnThread(const Location& location,
198 const ThreadData& current)
199 : location_(location),
200 birth_thread_(¤t) {
201 }
202
203 //------------------------------------------------------------------------------
BirthOnThreadSnapshot()204 BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
205 }
206
BirthOnThreadSnapshot(const tracked_objects::BirthOnThread & birth)207 BirthOnThreadSnapshot::BirthOnThreadSnapshot(
208 const tracked_objects::BirthOnThread& birth)
209 : location(birth.location()),
210 thread_name(birth.birth_thread()->thread_name()) {
211 }
212
~BirthOnThreadSnapshot()213 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
214 }
215
216 //------------------------------------------------------------------------------
Births(const Location & location,const ThreadData & current)217 Births::Births(const Location& location, const ThreadData& current)
218 : BirthOnThread(location, current),
219 birth_count_(1) { }
220
birth_count() const221 int Births::birth_count() const { return birth_count_; }
222
RecordBirth()223 void Births::RecordBirth() { ++birth_count_; }
224
ForgetBirth()225 void Births::ForgetBirth() { --birth_count_; }
226
Clear()227 void Births::Clear() { birth_count_ = 0; }
228
229 //------------------------------------------------------------------------------
230 // ThreadData maintains the central data for all births and deaths on a single
231 // thread.
232
233 // TODO(jar): We should pull all these static vars together, into a struct, and
234 // optimize layout so that we benefit from locality of reference during accesses
235 // to them.
236
237 // static
238 NowFunction* ThreadData::now_function_ = NULL;
239
240 // static
241 bool ThreadData::now_function_is_time_ = false;
242
243 // A TLS slot which points to the ThreadData instance for the current thread. We
244 // do a fake initialization here (zeroing out data), and then the real in-place
245 // construction happens when we call tls_index_.Initialize().
246 // static
247 base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER;
248
249 // static
250 int ThreadData::worker_thread_data_creation_count_ = 0;
251
252 // static
253 int ThreadData::cleanup_count_ = 0;
254
255 // static
256 int ThreadData::incarnation_counter_ = 0;
257
258 // static
259 ThreadData* ThreadData::all_thread_data_list_head_ = NULL;
260
261 // static
262 ThreadData* ThreadData::first_retired_worker_ = NULL;
263
264 // static
265 base::LazyInstance<base::Lock>::Leaky
266 ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER;
267
268 // static
269 ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED;
270
ThreadData(const std::string & suggested_name)271 ThreadData::ThreadData(const std::string& suggested_name)
272 : next_(NULL),
273 next_retired_worker_(NULL),
274 worker_thread_number_(0),
275 incarnation_count_for_pool_(-1),
276 current_stopwatch_(NULL) {
277 DCHECK_GE(suggested_name.size(), 0u);
278 thread_name_ = suggested_name;
279 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
280 }
281
ThreadData(int thread_number)282 ThreadData::ThreadData(int thread_number)
283 : next_(NULL),
284 next_retired_worker_(NULL),
285 worker_thread_number_(thread_number),
286 incarnation_count_for_pool_(-1),
287 current_stopwatch_(NULL) {
288 CHECK_GT(thread_number, 0);
289 base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number);
290 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
291 }
292
~ThreadData()293 ThreadData::~ThreadData() {}
294
PushToHeadOfList()295 void ThreadData::PushToHeadOfList() {
296 // Toss in a hint of randomness (atop the uniniitalized value).
297 (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_,
298 sizeof(random_number_));
299 MSAN_UNPOISON(&random_number_, sizeof(random_number_));
300 random_number_ += static_cast<int32>(this - static_cast<ThreadData*>(0));
301 random_number_ ^= (Now() - TrackedTime()).InMilliseconds();
302
303 DCHECK(!next_);
304 base::AutoLock lock(*list_lock_.Pointer());
305 incarnation_count_for_pool_ = incarnation_counter_;
306 next_ = all_thread_data_list_head_;
307 all_thread_data_list_head_ = this;
308 }
309
310 // static
first()311 ThreadData* ThreadData::first() {
312 base::AutoLock lock(*list_lock_.Pointer());
313 return all_thread_data_list_head_;
314 }
315
next() const316 ThreadData* ThreadData::next() const { return next_; }
317
318 // static
InitializeThreadContext(const std::string & suggested_name)319 void ThreadData::InitializeThreadContext(const std::string& suggested_name) {
320 if (!Initialize()) // Always initialize if needed.
321 return;
322 ThreadData* current_thread_data =
323 reinterpret_cast<ThreadData*>(tls_index_.Get());
324 if (current_thread_data)
325 return; // Browser tests instigate this.
326 current_thread_data = new ThreadData(suggested_name);
327 tls_index_.Set(current_thread_data);
328 }
329
330 // static
Get()331 ThreadData* ThreadData::Get() {
332 if (!tls_index_.initialized())
333 return NULL; // For unittests only.
334 ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get());
335 if (registered)
336 return registered;
337
338 // We must be a worker thread, since we didn't pre-register.
339 ThreadData* worker_thread_data = NULL;
340 int worker_thread_number = 0;
341 {
342 base::AutoLock lock(*list_lock_.Pointer());
343 if (first_retired_worker_) {
344 worker_thread_data = first_retired_worker_;
345 first_retired_worker_ = first_retired_worker_->next_retired_worker_;
346 worker_thread_data->next_retired_worker_ = NULL;
347 } else {
348 worker_thread_number = ++worker_thread_data_creation_count_;
349 }
350 }
351
352 // If we can't find a previously used instance, then we have to create one.
353 if (!worker_thread_data) {
354 DCHECK_GT(worker_thread_number, 0);
355 worker_thread_data = new ThreadData(worker_thread_number);
356 }
357 DCHECK_GT(worker_thread_data->worker_thread_number_, 0);
358
359 tls_index_.Set(worker_thread_data);
360 return worker_thread_data;
361 }
362
363 // static
OnThreadTermination(void * thread_data)364 void ThreadData::OnThreadTermination(void* thread_data) {
365 DCHECK(thread_data); // TLS should *never* call us with a NULL.
366 // We must NOT do any allocations during this callback. There is a chance
367 // that the allocator is no longer active on this thread.
368 if (!kTrackAllTaskObjects)
369 return; // Not compiled in.
370 reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
371 }
372
OnThreadTerminationCleanup()373 void ThreadData::OnThreadTerminationCleanup() {
374 // The list_lock_ was created when we registered the callback, so it won't be
375 // allocated here despite the lazy reference.
376 base::AutoLock lock(*list_lock_.Pointer());
377 if (incarnation_counter_ != incarnation_count_for_pool_)
378 return; // ThreadData was constructed in an earlier unit test.
379 ++cleanup_count_;
380 // Only worker threads need to be retired and reused.
381 if (!worker_thread_number_) {
382 return;
383 }
384 // We must NOT do any allocations during this callback.
385 // Using the simple linked lists avoids all allocations.
386 DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL));
387 this->next_retired_worker_ = first_retired_worker_;
388 first_retired_worker_ = this;
389 }
390
391 // static
Snapshot(bool reset_max,ProcessDataSnapshot * process_data)392 void ThreadData::Snapshot(bool reset_max, ProcessDataSnapshot* process_data) {
393 // Add births that have run to completion to |collected_data|.
394 // |birth_counts| tracks the total number of births recorded at each location
395 // for which we have not seen a death count.
396 BirthCountMap birth_counts;
397 ThreadData::SnapshotAllExecutedTasks(reset_max, process_data, &birth_counts);
398
399 // Add births that are still active -- i.e. objects that have tallied a birth,
400 // but have not yet tallied a matching death, and hence must be either
401 // running, queued up, or being held in limbo for future posting.
402 for (BirthCountMap::const_iterator it = birth_counts.begin();
403 it != birth_counts.end(); ++it) {
404 if (it->second > 0) {
405 process_data->tasks.push_back(
406 TaskSnapshot(*it->first, DeathData(it->second), "Still_Alive"));
407 }
408 }
409 }
410
TallyABirth(const Location & location)411 Births* ThreadData::TallyABirth(const Location& location) {
412 BirthMap::iterator it = birth_map_.find(location);
413 Births* child;
414 if (it != birth_map_.end()) {
415 child = it->second;
416 child->RecordBirth();
417 } else {
418 child = new Births(location, *this); // Leak this.
419 // Lock since the map may get relocated now, and other threads sometimes
420 // snapshot it (but they lock before copying it).
421 base::AutoLock lock(map_lock_);
422 birth_map_[location] = child;
423 }
424
425 if (kTrackParentChildLinks && status_ > PROFILING_ACTIVE &&
426 !parent_stack_.empty()) {
427 const Births* parent = parent_stack_.top();
428 ParentChildPair pair(parent, child);
429 if (parent_child_set_.find(pair) == parent_child_set_.end()) {
430 // Lock since the map may get relocated now, and other threads sometimes
431 // snapshot it (but they lock before copying it).
432 base::AutoLock lock(map_lock_);
433 parent_child_set_.insert(pair);
434 }
435 }
436
437 return child;
438 }
439
TallyADeath(const Births & birth,int32 queue_duration,const TaskStopwatch & stopwatch)440 void ThreadData::TallyADeath(const Births& birth,
441 int32 queue_duration,
442 const TaskStopwatch& stopwatch) {
443 int32 run_duration = stopwatch.RunDurationMs();
444
445 // Stir in some randomness, plus add constant in case durations are zero.
446 const int32 kSomePrimeNumber = 2147483647;
447 random_number_ += queue_duration + run_duration + kSomePrimeNumber;
448 // An address is going to have some randomness to it as well ;-).
449 random_number_ ^= static_cast<int32>(&birth - reinterpret_cast<Births*>(0));
450
451 // We don't have queue durations without OS timer. OS timer is automatically
452 // used for task-post-timing, so the use of an alternate timer implies all
453 // queue times are invalid, unless it was explicitly said that we can trust
454 // the alternate timer.
455 if (kAllowAlternateTimeSourceHandling &&
456 now_function_ &&
457 !now_function_is_time_) {
458 queue_duration = 0;
459 }
460
461 DeathMap::iterator it = death_map_.find(&birth);
462 DeathData* death_data;
463 if (it != death_map_.end()) {
464 death_data = &it->second;
465 } else {
466 base::AutoLock lock(map_lock_); // Lock as the map may get relocated now.
467 death_data = &death_map_[&birth];
468 } // Release lock ASAP.
469 death_data->RecordDeath(queue_duration, run_duration, random_number_);
470
471 if (!kTrackParentChildLinks)
472 return;
473 if (!parent_stack_.empty()) { // We might get turned off.
474 DCHECK_EQ(parent_stack_.top(), &birth);
475 parent_stack_.pop();
476 }
477 }
478
479 // static
TallyABirthIfActive(const Location & location)480 Births* ThreadData::TallyABirthIfActive(const Location& location) {
481 if (!kTrackAllTaskObjects)
482 return NULL; // Not compiled in.
483
484 if (!TrackingStatus())
485 return NULL;
486 ThreadData* current_thread_data = Get();
487 if (!current_thread_data)
488 return NULL;
489 return current_thread_data->TallyABirth(location);
490 }
491
492 // static
TallyRunOnNamedThreadIfTracking(const base::TrackingInfo & completed_task,const TaskStopwatch & stopwatch)493 void ThreadData::TallyRunOnNamedThreadIfTracking(
494 const base::TrackingInfo& completed_task,
495 const TaskStopwatch& stopwatch) {
496 if (!kTrackAllTaskObjects)
497 return; // Not compiled in.
498
499 // Even if we have been DEACTIVATED, we will process any pending births so
500 // that our data structures (which counted the outstanding births) remain
501 // consistent.
502 const Births* birth = completed_task.birth_tally;
503 if (!birth)
504 return;
505 ThreadData* current_thread_data = stopwatch.GetThreadData();
506 if (!current_thread_data)
507 return;
508
509 // Watch out for a race where status_ is changing, and hence one or both
510 // of start_of_run or end_of_run is zero. In that case, we didn't bother to
511 // get a time value since we "weren't tracking" and we were trying to be
512 // efficient by not calling for a genuine time value. For simplicity, we'll
513 // use a default zero duration when we can't calculate a true value.
514 TrackedTime start_of_run = stopwatch.StartTime();
515 int32 queue_duration = 0;
516 if (!start_of_run.is_null()) {
517 queue_duration = (start_of_run - completed_task.EffectiveTimePosted())
518 .InMilliseconds();
519 }
520 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch);
521 }
522
523 // static
TallyRunOnWorkerThreadIfTracking(const Births * birth,const TrackedTime & time_posted,const TaskStopwatch & stopwatch)524 void ThreadData::TallyRunOnWorkerThreadIfTracking(
525 const Births* birth,
526 const TrackedTime& time_posted,
527 const TaskStopwatch& stopwatch) {
528 if (!kTrackAllTaskObjects)
529 return; // Not compiled in.
530
531 // Even if we have been DEACTIVATED, we will process any pending births so
532 // that our data structures (which counted the outstanding births) remain
533 // consistent.
534 if (!birth)
535 return;
536
537 // TODO(jar): Support the option to coalesce all worker-thread activity under
538 // one ThreadData instance that uses locks to protect *all* access. This will
539 // reduce memory (making it provably bounded), but run incrementally slower
540 // (since we'll use locks on TallyABirth and TallyADeath). The good news is
541 // that the locks on TallyADeath will be *after* the worker thread has run,
542 // and hence nothing will be waiting for the completion (... besides some
543 // other thread that might like to run). Also, the worker threads tasks are
544 // generally longer, and hence the cost of the lock may perchance be amortized
545 // over the long task's lifetime.
546 ThreadData* current_thread_data = stopwatch.GetThreadData();
547 if (!current_thread_data)
548 return;
549
550 TrackedTime start_of_run = stopwatch.StartTime();
551 int32 queue_duration = 0;
552 if (!start_of_run.is_null()) {
553 queue_duration = (start_of_run - time_posted).InMilliseconds();
554 }
555 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch);
556 }
557
558 // static
TallyRunInAScopedRegionIfTracking(const Births * birth,const TaskStopwatch & stopwatch)559 void ThreadData::TallyRunInAScopedRegionIfTracking(
560 const Births* birth,
561 const TaskStopwatch& stopwatch) {
562 if (!kTrackAllTaskObjects)
563 return; // Not compiled in.
564
565 // Even if we have been DEACTIVATED, we will process any pending births so
566 // that our data structures (which counted the outstanding births) remain
567 // consistent.
568 if (!birth)
569 return;
570
571 ThreadData* current_thread_data = stopwatch.GetThreadData();
572 if (!current_thread_data)
573 return;
574
575 int32 queue_duration = 0;
576 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch);
577 }
578
579 // static
SnapshotAllExecutedTasks(bool reset_max,ProcessDataSnapshot * process_data,BirthCountMap * birth_counts)580 void ThreadData::SnapshotAllExecutedTasks(bool reset_max,
581 ProcessDataSnapshot* process_data,
582 BirthCountMap* birth_counts) {
583 if (!kTrackAllTaskObjects)
584 return; // Not compiled in.
585
586 // Get an unchanging copy of a ThreadData list.
587 ThreadData* my_list = ThreadData::first();
588
589 // Gather data serially.
590 // This hackish approach *can* get some slighly corrupt tallies, as we are
591 // grabbing values without the protection of a lock, but it has the advantage
592 // of working even with threads that don't have message loops. If a user
593 // sees any strangeness, they can always just run their stats gathering a
594 // second time.
595 for (ThreadData* thread_data = my_list;
596 thread_data;
597 thread_data = thread_data->next()) {
598 thread_data->SnapshotExecutedTasks(reset_max, process_data, birth_counts);
599 }
600 }
601
SnapshotExecutedTasks(bool reset_max,ProcessDataSnapshot * process_data,BirthCountMap * birth_counts)602 void ThreadData::SnapshotExecutedTasks(bool reset_max,
603 ProcessDataSnapshot* process_data,
604 BirthCountMap* birth_counts) {
605 // Get copy of data, so that the data will not change during the iterations
606 // and processing.
607 ThreadData::BirthMap birth_map;
608 ThreadData::DeathMap death_map;
609 ThreadData::ParentChildSet parent_child_set;
610 SnapshotMaps(reset_max, &birth_map, &death_map, &parent_child_set);
611
612 for (ThreadData::DeathMap::const_iterator it = death_map.begin();
613 it != death_map.end(); ++it) {
614 process_data->tasks.push_back(
615 TaskSnapshot(*it->first, it->second, thread_name()));
616 (*birth_counts)[it->first] -= it->first->birth_count();
617 }
618
619 for (ThreadData::BirthMap::const_iterator it = birth_map.begin();
620 it != birth_map.end(); ++it) {
621 (*birth_counts)[it->second] += it->second->birth_count();
622 }
623
624 if (!kTrackParentChildLinks)
625 return;
626
627 for (ThreadData::ParentChildSet::const_iterator it = parent_child_set.begin();
628 it != parent_child_set.end(); ++it) {
629 process_data->descendants.push_back(ParentChildPairSnapshot(*it));
630 }
631 }
632
633 // This may be called from another thread.
SnapshotMaps(bool reset_max,BirthMap * birth_map,DeathMap * death_map,ParentChildSet * parent_child_set)634 void ThreadData::SnapshotMaps(bool reset_max,
635 BirthMap* birth_map,
636 DeathMap* death_map,
637 ParentChildSet* parent_child_set) {
638 base::AutoLock lock(map_lock_);
639 for (BirthMap::const_iterator it = birth_map_.begin();
640 it != birth_map_.end(); ++it)
641 (*birth_map)[it->first] = it->second;
642 for (DeathMap::iterator it = death_map_.begin();
643 it != death_map_.end(); ++it) {
644 (*death_map)[it->first] = it->second;
645 if (reset_max)
646 it->second.ResetMax();
647 }
648
649 if (!kTrackParentChildLinks)
650 return;
651
652 for (ParentChildSet::iterator it = parent_child_set_.begin();
653 it != parent_child_set_.end(); ++it)
654 parent_child_set->insert(*it);
655 }
656
657 // static
ResetAllThreadData()658 void ThreadData::ResetAllThreadData() {
659 ThreadData* my_list = first();
660
661 for (ThreadData* thread_data = my_list;
662 thread_data;
663 thread_data = thread_data->next())
664 thread_data->Reset();
665 }
666
Reset()667 void ThreadData::Reset() {
668 base::AutoLock lock(map_lock_);
669 for (DeathMap::iterator it = death_map_.begin();
670 it != death_map_.end(); ++it)
671 it->second.Clear();
672 for (BirthMap::iterator it = birth_map_.begin();
673 it != birth_map_.end(); ++it)
674 it->second->Clear();
675 }
676
OptionallyInitializeAlternateTimer()677 static void OptionallyInitializeAlternateTimer() {
678 NowFunction* alternate_time_source = GetAlternateTimeSource();
679 if (alternate_time_source)
680 ThreadData::SetAlternateTimeSource(alternate_time_source);
681 }
682
Initialize()683 bool ThreadData::Initialize() {
684 if (!kTrackAllTaskObjects)
685 return false; // Not compiled in.
686 if (status_ >= DEACTIVATED)
687 return true; // Someone else did the initialization.
688 // Due to racy lazy initialization in tests, we'll need to recheck status_
689 // after we acquire the lock.
690
691 // Ensure that we don't double initialize tls. We are called when single
692 // threaded in the product, but some tests may be racy and lazy about our
693 // initialization.
694 base::AutoLock lock(*list_lock_.Pointer());
695 if (status_ >= DEACTIVATED)
696 return true; // Someone raced in here and beat us.
697
698 // Put an alternate timer in place if the environment calls for it, such as
699 // for tracking TCMalloc allocations. This insertion is idempotent, so we
700 // don't mind if there is a race, and we'd prefer not to be in a lock while
701 // doing this work.
702 if (kAllowAlternateTimeSourceHandling)
703 OptionallyInitializeAlternateTimer();
704
705 // Perform the "real" TLS initialization now, and leave it intact through
706 // process termination.
707 if (!tls_index_.initialized()) { // Testing may have initialized this.
708 DCHECK_EQ(status_, UNINITIALIZED);
709 tls_index_.Initialize(&ThreadData::OnThreadTermination);
710 if (!tls_index_.initialized())
711 return false;
712 } else {
713 // TLS was initialzed for us earlier.
714 DCHECK_EQ(status_, DORMANT_DURING_TESTS);
715 }
716
717 // Incarnation counter is only significant to testing, as it otherwise will
718 // never again change in this process.
719 ++incarnation_counter_;
720
721 // The lock is not critical for setting status_, but it doesn't hurt. It also
722 // ensures that if we have a racy initialization, that we'll bail as soon as
723 // we get the lock earlier in this method.
724 status_ = kInitialStartupState;
725 if (!kTrackParentChildLinks &&
726 kInitialStartupState == PROFILING_CHILDREN_ACTIVE)
727 status_ = PROFILING_ACTIVE;
728 DCHECK(status_ != UNINITIALIZED);
729 return true;
730 }
731
732 // static
InitializeAndSetTrackingStatus(Status status)733 bool ThreadData::InitializeAndSetTrackingStatus(Status status) {
734 DCHECK_GE(status, DEACTIVATED);
735 DCHECK_LE(status, PROFILING_CHILDREN_ACTIVE);
736
737 if (!Initialize()) // No-op if already initialized.
738 return false; // Not compiled in.
739
740 if (!kTrackParentChildLinks && status > DEACTIVATED)
741 status = PROFILING_ACTIVE;
742 status_ = status;
743 return true;
744 }
745
746 // static
status()747 ThreadData::Status ThreadData::status() {
748 return status_;
749 }
750
751 // static
TrackingStatus()752 bool ThreadData::TrackingStatus() {
753 return status_ > DEACTIVATED;
754 }
755
756 // static
TrackingParentChildStatus()757 bool ThreadData::TrackingParentChildStatus() {
758 return status_ >= PROFILING_CHILDREN_ACTIVE;
759 }
760
761 // static
PrepareForStartOfRun(const Births * parent)762 void ThreadData::PrepareForStartOfRun(const Births* parent) {
763 if (kTrackParentChildLinks && parent && status_ > PROFILING_ACTIVE) {
764 ThreadData* current_thread_data = Get();
765 if (current_thread_data)
766 current_thread_data->parent_stack_.push(parent);
767 }
768 }
769
770 // static
SetAlternateTimeSource(NowFunction * now_function)771 void ThreadData::SetAlternateTimeSource(NowFunction* now_function) {
772 DCHECK(now_function);
773 if (kAllowAlternateTimeSourceHandling)
774 now_function_ = now_function;
775 }
776
777 // static
Now()778 TrackedTime ThreadData::Now() {
779 if (kAllowAlternateTimeSourceHandling && now_function_)
780 return TrackedTime::FromMilliseconds((*now_function_)());
781 if (kTrackAllTaskObjects && IsProfilerTimingEnabled() && TrackingStatus())
782 return TrackedTime::Now();
783 return TrackedTime(); // Super fast when disabled, or not compiled.
784 }
785
786 // static
EnsureCleanupWasCalled(int major_threads_shutdown_count)787 void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) {
788 base::AutoLock lock(*list_lock_.Pointer());
789 if (worker_thread_data_creation_count_ == 0)
790 return; // We haven't really run much, and couldn't have leaked.
791
792 // TODO(jar): until this is working on XP, don't run the real test.
793 #if 0
794 // Verify that we've at least shutdown/cleanup the major namesd threads. The
795 // caller should tell us how many thread shutdowns should have taken place by
796 // now.
797 CHECK_GT(cleanup_count_, major_threads_shutdown_count);
798 #endif
799 }
800
801 // static
ShutdownSingleThreadedCleanup(bool leak)802 void ThreadData::ShutdownSingleThreadedCleanup(bool leak) {
803 // This is only called from test code, where we need to cleanup so that
804 // additional tests can be run.
805 // We must be single threaded... but be careful anyway.
806 if (!InitializeAndSetTrackingStatus(DEACTIVATED))
807 return;
808 ThreadData* thread_data_list;
809 {
810 base::AutoLock lock(*list_lock_.Pointer());
811 thread_data_list = all_thread_data_list_head_;
812 all_thread_data_list_head_ = NULL;
813 ++incarnation_counter_;
814 // To be clean, break apart the retired worker list (though we leak them).
815 while (first_retired_worker_) {
816 ThreadData* worker = first_retired_worker_;
817 CHECK_GT(worker->worker_thread_number_, 0);
818 first_retired_worker_ = worker->next_retired_worker_;
819 worker->next_retired_worker_ = NULL;
820 }
821 }
822
823 // Put most global static back in pristine shape.
824 worker_thread_data_creation_count_ = 0;
825 cleanup_count_ = 0;
826 tls_index_.Set(NULL);
827 status_ = DORMANT_DURING_TESTS; // Almost UNINITIALIZED.
828
829 // To avoid any chance of racing in unit tests, which is the only place we
830 // call this function, we may sometimes leak all the data structures we
831 // recovered, as they may still be in use on threads from prior tests!
832 if (leak) {
833 ThreadData* thread_data = thread_data_list;
834 while (thread_data) {
835 ANNOTATE_LEAKING_OBJECT_PTR(thread_data);
836 thread_data = thread_data->next();
837 }
838 return;
839 }
840
841 // When we want to cleanup (on a single thread), here is what we do.
842
843 // Do actual recursive delete in all ThreadData instances.
844 while (thread_data_list) {
845 ThreadData* next_thread_data = thread_data_list;
846 thread_data_list = thread_data_list->next();
847
848 for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
849 next_thread_data->birth_map_.end() != it; ++it)
850 delete it->second; // Delete the Birth Records.
851 delete next_thread_data; // Includes all Death Records.
852 }
853 }
854
855 //------------------------------------------------------------------------------
TaskStopwatch()856 TaskStopwatch::TaskStopwatch()
857 : start_time_(ThreadData::Now()),
858 current_thread_data_(ThreadData::Get()),
859 excluded_duration_ms_(0),
860 parent_(NULL) {
861 #if DCHECK_IS_ON
862 state_ = RUNNING;
863 child_ = NULL;
864 #endif
865
866 wallclock_duration_ms_ = 0;
867 if (!current_thread_data_)
868 return;
869
870 parent_ = current_thread_data_->current_stopwatch_;
871 #if DCHECK_IS_ON
872 if (parent_) {
873 DCHECK(parent_->state_ == RUNNING);
874 DCHECK(parent_->child_ == NULL);
875 parent_->child_ = this;
876 }
877 #endif
878 current_thread_data_->current_stopwatch_ = this;
879 }
880
~TaskStopwatch()881 TaskStopwatch::~TaskStopwatch() {
882 #if DCHECK_IS_ON
883 DCHECK(state_ != RUNNING);
884 DCHECK(child_ == NULL);
885 #endif
886 }
887
Stop()888 void TaskStopwatch::Stop() {
889 const TrackedTime end_time = ThreadData::Now();
890 #if DCHECK_IS_ON
891 DCHECK(state_ == RUNNING);
892 state_ = STOPPED;
893 DCHECK(child_ == NULL);
894 #endif
895
896 if (!start_time_.is_null() && !end_time.is_null()) {
897 wallclock_duration_ms_ = (end_time - start_time_).InMilliseconds();
898 }
899
900 if (!current_thread_data_)
901 return;
902
903 DCHECK(current_thread_data_->current_stopwatch_ == this);
904 current_thread_data_->current_stopwatch_ = parent_;
905 if (!parent_)
906 return;
907
908 #if DCHECK_IS_ON
909 DCHECK(parent_->state_ == RUNNING);
910 DCHECK(parent_->child_ == this);
911 parent_->child_ = NULL;
912 #endif
913 parent_->excluded_duration_ms_ +=
914 wallclock_duration_ms_;
915 parent_ = NULL;
916 }
917
StartTime() const918 TrackedTime TaskStopwatch::StartTime() const {
919 return start_time_;
920 }
921
RunDurationMs() const922 int32 TaskStopwatch::RunDurationMs() const {
923 #if DCHECK_IS_ON
924 DCHECK(state_ == STOPPED);
925 #endif
926
927 return wallclock_duration_ms_ - excluded_duration_ms_;
928 }
929
GetThreadData() const930 ThreadData* TaskStopwatch::GetThreadData() const {
931 return current_thread_data_;
932 }
933
934 //------------------------------------------------------------------------------
TaskSnapshot()935 TaskSnapshot::TaskSnapshot() {
936 }
937
TaskSnapshot(const BirthOnThread & birth,const DeathData & death_data,const std::string & death_thread_name)938 TaskSnapshot::TaskSnapshot(const BirthOnThread& birth,
939 const DeathData& death_data,
940 const std::string& death_thread_name)
941 : birth(birth),
942 death_data(death_data),
943 death_thread_name(death_thread_name) {
944 }
945
~TaskSnapshot()946 TaskSnapshot::~TaskSnapshot() {
947 }
948
949 //------------------------------------------------------------------------------
950 // ParentChildPairSnapshot
951
ParentChildPairSnapshot()952 ParentChildPairSnapshot::ParentChildPairSnapshot() {
953 }
954
ParentChildPairSnapshot(const ThreadData::ParentChildPair & parent_child)955 ParentChildPairSnapshot::ParentChildPairSnapshot(
956 const ThreadData::ParentChildPair& parent_child)
957 : parent(*parent_child.first),
958 child(*parent_child.second) {
959 }
960
~ParentChildPairSnapshot()961 ParentChildPairSnapshot::~ParentChildPairSnapshot() {
962 }
963
964 //------------------------------------------------------------------------------
965 // ProcessDataSnapshot
966
ProcessDataSnapshot()967 ProcessDataSnapshot::ProcessDataSnapshot()
968 #if !defined(OS_NACL)
969 : process_id(base::GetCurrentProcId()) {
970 #else
971 : process_id(0) {
972 #endif
973 }
974
975 ProcessDataSnapshot::~ProcessDataSnapshot() {
976 }
977
978 } // namespace tracked_objects
979