• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=-- lsan_common_linux.cc ------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // Implementation of common leak checking functionality. Linux-specific code.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "sanitizer_common/sanitizer_platform.h"
16 #include "lsan_common.h"
17 
18 #if CAN_SANITIZE_LEAKS && SANITIZER_LINUX
19 #include <link.h>
20 
21 #include "sanitizer_common/sanitizer_common.h"
22 #include "sanitizer_common/sanitizer_flags.h"
23 #include "sanitizer_common/sanitizer_linux.h"
24 #include "sanitizer_common/sanitizer_stackdepot.h"
25 
26 namespace __lsan {
27 
28 static const char kLinkerName[] = "ld";
29 // We request 2 modules matching "ld", so we can print a warning if there's more
30 // than one match. But only the first one is actually used.
31 static char linker_placeholder[2 * sizeof(LoadedModule)] ALIGNED(64);
32 static LoadedModule *linker = 0;
33 
IsLinker(const char * full_name)34 static bool IsLinker(const char* full_name) {
35   return LibraryNameIs(full_name, kLinkerName);
36 }
37 
InitializePlatformSpecificModules()38 void InitializePlatformSpecificModules() {
39   internal_memset(linker_placeholder, 0, sizeof(linker_placeholder));
40   uptr num_matches = GetListOfModules(
41       reinterpret_cast<LoadedModule *>(linker_placeholder), 2, IsLinker);
42   if (num_matches == 1) {
43     linker = reinterpret_cast<LoadedModule *>(linker_placeholder);
44     return;
45   }
46   if (num_matches == 0)
47     VReport(1, "LeakSanitizer: Dynamic linker not found. "
48             "TLS will not be handled correctly.\n");
49   else if (num_matches > 1)
50     VReport(1, "LeakSanitizer: Multiple modules match \"%s\". "
51             "TLS will not be handled correctly.\n", kLinkerName);
52   linker = 0;
53 }
54 
ProcessGlobalRegionsCallback(struct dl_phdr_info * info,size_t size,void * data)55 static int ProcessGlobalRegionsCallback(struct dl_phdr_info *info, size_t size,
56                                         void *data) {
57   Frontier *frontier = reinterpret_cast<Frontier *>(data);
58   for (uptr j = 0; j < info->dlpi_phnum; j++) {
59     const ElfW(Phdr) *phdr = &(info->dlpi_phdr[j]);
60     // We're looking for .data and .bss sections, which reside in writeable,
61     // loadable segments.
62     if (!(phdr->p_flags & PF_W) || (phdr->p_type != PT_LOAD) ||
63         (phdr->p_memsz == 0))
64       continue;
65     uptr begin = info->dlpi_addr + phdr->p_vaddr;
66     uptr end = begin + phdr->p_memsz;
67     uptr allocator_begin = 0, allocator_end = 0;
68     GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
69     if (begin <= allocator_begin && allocator_begin < end) {
70       CHECK_LE(allocator_begin, allocator_end);
71       CHECK_LT(allocator_end, end);
72       if (begin < allocator_begin)
73         ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
74                              kReachable);
75       if (allocator_end < end)
76         ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL",
77                              kReachable);
78     } else {
79       ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
80     }
81   }
82   return 0;
83 }
84 
85 // Scans global variables for heap pointers.
ProcessGlobalRegions(Frontier * frontier)86 void ProcessGlobalRegions(Frontier *frontier) {
87   if (!flags()->use_globals) return;
88   // FIXME: dl_iterate_phdr acquires a linker lock, so we run a risk of
89   // deadlocking by running this under StopTheWorld. However, the lock is
90   // reentrant, so we should be able to fix this by acquiring the lock before
91   // suspending threads.
92   dl_iterate_phdr(ProcessGlobalRegionsCallback, frontier);
93 }
94 
GetCallerPC(u32 stack_id,StackDepotReverseMap * map)95 static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
96   CHECK(stack_id);
97   uptr size = 0;
98   const uptr *trace = map->Get(stack_id, &size);
99   // The top frame is our malloc/calloc/etc. The next frame is the caller.
100   if (size >= 2)
101     return trace[1];
102   return 0;
103 }
104 
105 struct ProcessPlatformAllocParam {
106   Frontier *frontier;
107   StackDepotReverseMap *stack_depot_reverse_map;
108 };
109 
110 // ForEachChunk callback. Identifies unreachable chunks which must be treated as
111 // reachable. Marks them as reachable and adds them to the frontier.
ProcessPlatformSpecificAllocationsCb(uptr chunk,void * arg)112 static void ProcessPlatformSpecificAllocationsCb(uptr chunk, void *arg) {
113   CHECK(arg);
114   ProcessPlatformAllocParam *param =
115       reinterpret_cast<ProcessPlatformAllocParam *>(arg);
116   chunk = GetUserBegin(chunk);
117   LsanMetadata m(chunk);
118   if (m.allocated() && m.tag() != kReachable) {
119     u32 stack_id = m.stack_trace_id();
120     uptr caller_pc = 0;
121     if (stack_id > 0)
122       caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
123     // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
124     // it as reachable, as we can't properly report its allocation stack anyway.
125     if (caller_pc == 0 || linker->containsAddress(caller_pc)) {
126       m.set_tag(kReachable);
127       param->frontier->push_back(chunk);
128     }
129   }
130 }
131 
132 // Handles dynamically allocated TLS blocks by treating all chunks allocated
133 // from ld-linux.so as reachable.
134 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
135 // They are allocated with a __libc_memalign() call in allocate_and_init()
136 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
137 // blocks, but we can make sure they come from our own allocator by intercepting
138 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
139 // addresses are stored in a dynamically allocated array (the DTV) which is
140 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
141 // being reachable from the static TLS, and the dynamic TLS being reachable from
142 // the DTV. This is because the initial DTV is allocated before our interception
143 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
144 // can't special-case it either, since we don't know its size.
145 // Our solution is to include in the root set all allocations made from
146 // ld-linux.so (which is where allocate_and_init() is implemented). This is
147 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
148 // which we don't care about).
ProcessPlatformSpecificAllocations(Frontier * frontier)149 void ProcessPlatformSpecificAllocations(Frontier *frontier) {
150   if (!flags()->use_tls) return;
151   if (!linker) return;
152   StackDepotReverseMap stack_depot_reverse_map;
153   ProcessPlatformAllocParam arg = {frontier, &stack_depot_reverse_map};
154   ForEachChunk(ProcessPlatformSpecificAllocationsCb, &arg);
155 }
156 
157 }  // namespace __lsan
158 #endif  // CAN_SANITIZE_LEAKS && SANITIZER_LINUX
159