• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crypto/rand/md_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #define OPENSSL_FIPSEVP
113 
114 #ifdef MD_RAND_DEBUG
115 # ifndef NDEBUG
116 #   define NDEBUG
117 # endif
118 #endif
119 
120 #include <assert.h>
121 #include <stdio.h>
122 #include <string.h>
123 
124 #include "e_os.h"
125 
126 #include <openssl/crypto.h>
127 #include <openssl/rand.h>
128 #include "rand_lcl.h"
129 
130 #include <openssl/err.h>
131 
132 #ifdef BN_DEBUG
133 # define PREDICT
134 #endif
135 
136 /* #define PREDICT	1 */
137 
138 #define STATE_SIZE	1023
139 static int state_num=0,state_index=0;
140 static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
141 static unsigned char md[MD_DIGEST_LENGTH];
142 static long md_count[2]={0,0};
143 static double entropy=0;
144 static int initialized=0;
145 
146 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
147                                            * holds CRYPTO_LOCK_RAND
148                                            * (to prevent double locking) */
149 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
150 static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
151 
152 
153 #ifdef PREDICT
154 int rand_predictable=0;
155 #endif
156 
157 const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
158 
159 static void ssleay_rand_cleanup(void);
160 static void ssleay_rand_seed(const void *buf, int num);
161 static void ssleay_rand_add(const void *buf, int num, double add_entropy);
162 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
163 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
164 static int ssleay_rand_status(void);
165 
166 RAND_METHOD rand_ssleay_meth={
167 	ssleay_rand_seed,
168 	ssleay_rand_nopseudo_bytes,
169 	ssleay_rand_cleanup,
170 	ssleay_rand_add,
171 	ssleay_rand_pseudo_bytes,
172 	ssleay_rand_status
173 	};
174 
RAND_SSLeay(void)175 RAND_METHOD *RAND_SSLeay(void)
176 	{
177 	return(&rand_ssleay_meth);
178 	}
179 
ssleay_rand_cleanup(void)180 static void ssleay_rand_cleanup(void)
181 	{
182 	OPENSSL_cleanse(state,sizeof(state));
183 	state_num=0;
184 	state_index=0;
185 	OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
186 	md_count[0]=0;
187 	md_count[1]=0;
188 	entropy=0;
189 	initialized=0;
190 	}
191 
ssleay_rand_add(const void * buf,int num,double add)192 static void ssleay_rand_add(const void *buf, int num, double add)
193 	{
194 	int i,j,k,st_idx;
195 	long md_c[2];
196 	unsigned char local_md[MD_DIGEST_LENGTH];
197 	EVP_MD_CTX m;
198 	int do_not_lock;
199 
200 	if (!num)
201 		return;
202 
203 	/*
204 	 * (Based on the rand(3) manpage)
205 	 *
206 	 * The input is chopped up into units of 20 bytes (or less for
207 	 * the last block).  Each of these blocks is run through the hash
208 	 * function as follows:  The data passed to the hash function
209 	 * is the current 'md', the same number of bytes from the 'state'
210 	 * (the location determined by in incremented looping index) as
211 	 * the current 'block', the new key data 'block', and 'count'
212 	 * (which is incremented after each use).
213 	 * The result of this is kept in 'md' and also xored into the
214 	 * 'state' at the same locations that were used as input into the
215          * hash function.
216 	 */
217 
218 	/* check if we already have the lock */
219 	if (crypto_lock_rand)
220 		{
221 		CRYPTO_THREADID cur;
222 		CRYPTO_THREADID_current(&cur);
223 		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
224 		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
225 		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
226 		}
227 	else
228 		do_not_lock = 0;
229 
230 	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
231 	st_idx=state_index;
232 
233 	/* use our own copies of the counters so that even
234 	 * if a concurrent thread seeds with exactly the
235 	 * same data and uses the same subarray there's _some_
236 	 * difference */
237 	md_c[0] = md_count[0];
238 	md_c[1] = md_count[1];
239 
240 	memcpy(local_md, md, sizeof md);
241 
242 	/* state_index <= state_num <= STATE_SIZE */
243 	state_index += num;
244 	if (state_index >= STATE_SIZE)
245 		{
246 		state_index%=STATE_SIZE;
247 		state_num=STATE_SIZE;
248 		}
249 	else if (state_num < STATE_SIZE)
250 		{
251 		if (state_index > state_num)
252 			state_num=state_index;
253 		}
254 	/* state_index <= state_num <= STATE_SIZE */
255 
256 	/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
257 	 * are what we will use now, but other threads may use them
258 	 * as well */
259 
260 	md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
261 
262 	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
263 
264 	EVP_MD_CTX_init(&m);
265 	for (i=0; i<num; i+=MD_DIGEST_LENGTH)
266 		{
267 		j=(num-i);
268 		j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
269 
270 		MD_Init(&m);
271 		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
272 		k=(st_idx+j)-STATE_SIZE;
273 		if (k > 0)
274 			{
275 			MD_Update(&m,&(state[st_idx]),j-k);
276 			MD_Update(&m,&(state[0]),k);
277 			}
278 		else
279 			MD_Update(&m,&(state[st_idx]),j);
280 
281 		/* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
282 		MD_Update(&m,buf,j);
283 		/* We know that line may cause programs such as
284 		   purify and valgrind to complain about use of
285 		   uninitialized data.  The problem is not, it's
286 		   with the caller.  Removing that line will make
287 		   sure you get really bad randomness and thereby
288 		   other problems such as very insecure keys. */
289 
290 		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
291 		MD_Final(&m,local_md);
292 		md_c[1]++;
293 
294 		buf=(const char *)buf + j;
295 
296 		for (k=0; k<j; k++)
297 			{
298 			/* Parallel threads may interfere with this,
299 			 * but always each byte of the new state is
300 			 * the XOR of some previous value of its
301 			 * and local_md (itermediate values may be lost).
302 			 * Alway using locking could hurt performance more
303 			 * than necessary given that conflicts occur only
304 			 * when the total seeding is longer than the random
305 			 * state. */
306 			state[st_idx++]^=local_md[k];
307 			if (st_idx >= STATE_SIZE)
308 				st_idx=0;
309 			}
310 		}
311 	EVP_MD_CTX_cleanup(&m);
312 
313 	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
314 	/* Don't just copy back local_md into md -- this could mean that
315 	 * other thread's seeding remains without effect (except for
316 	 * the incremented counter).  By XORing it we keep at least as
317 	 * much entropy as fits into md. */
318 	for (k = 0; k < (int)sizeof(md); k++)
319 		{
320 		md[k] ^= local_md[k];
321 		}
322 	if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
323 	    entropy += add;
324 	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
325 
326 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
327 	assert(md_c[1] == md_count[1]);
328 #endif
329 	}
330 
ssleay_rand_seed(const void * buf,int num)331 static void ssleay_rand_seed(const void *buf, int num)
332 	{
333 	ssleay_rand_add(buf, num, (double)num);
334 	}
335 
ssleay_rand_bytes(unsigned char * buf,int num,int pseudo,int lock)336 int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo, int lock)
337 	{
338 	static volatile int stirred_pool = 0;
339 	int i,j,k,st_num,st_idx;
340 	int num_ceil;
341 	int ok;
342 	long md_c[2];
343 	unsigned char local_md[MD_DIGEST_LENGTH];
344 	EVP_MD_CTX m;
345 #ifndef GETPID_IS_MEANINGLESS
346 	pid_t curr_pid = getpid();
347 #endif
348 	int do_stir_pool = 0;
349 
350 #ifdef PREDICT
351 	if (rand_predictable)
352 		{
353 		static unsigned char val=0;
354 
355 		for (i=0; i<num; i++)
356 			buf[i]=val++;
357 		return(1);
358 		}
359 #endif
360 
361 	if (num <= 0)
362 		return 1;
363 
364 	EVP_MD_CTX_init(&m);
365 	/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
366 	num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
367 
368 	/*
369 	 * (Based on the rand(3) manpage:)
370 	 *
371 	 * For each group of 10 bytes (or less), we do the following:
372 	 *
373 	 * Input into the hash function the local 'md' (which is initialized from
374 	 * the global 'md' before any bytes are generated), the bytes that are to
375 	 * be overwritten by the random bytes, and bytes from the 'state'
376 	 * (incrementing looping index). From this digest output (which is kept
377 	 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
378 	 * bottom 10 bytes are xored into the 'state'.
379 	 *
380 	 * Finally, after we have finished 'num' random bytes for the
381 	 * caller, 'count' (which is incremented) and the local and global 'md'
382 	 * are fed into the hash function and the results are kept in the
383 	 * global 'md'.
384 	 */
385 	if (lock)
386 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
387 
388 	/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
389 	CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
390 	CRYPTO_THREADID_current(&locking_threadid);
391 	CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
392 	crypto_lock_rand = 1;
393 
394 	if (!initialized)
395 		{
396 		RAND_poll();
397 		initialized = 1;
398 		}
399 
400 	if (!stirred_pool)
401 		do_stir_pool = 1;
402 
403 	ok = (entropy >= ENTROPY_NEEDED);
404 	if (!ok)
405 		{
406 		/* If the PRNG state is not yet unpredictable, then seeing
407 		 * the PRNG output may help attackers to determine the new
408 		 * state; thus we have to decrease the entropy estimate.
409 		 * Once we've had enough initial seeding we don't bother to
410 		 * adjust the entropy count, though, because we're not ambitious
411 		 * to provide *information-theoretic* randomness.
412 		 *
413 		 * NOTE: This approach fails if the program forks before
414 		 * we have enough entropy. Entropy should be collected
415 		 * in a separate input pool and be transferred to the
416 		 * output pool only when the entropy limit has been reached.
417 		 */
418 		entropy -= num;
419 		if (entropy < 0)
420 			entropy = 0;
421 		}
422 
423 	if (do_stir_pool)
424 		{
425 		/* In the output function only half of 'md' remains secret,
426 		 * so we better make sure that the required entropy gets
427 		 * 'evenly distributed' through 'state', our randomness pool.
428 		 * The input function (ssleay_rand_add) chains all of 'md',
429 		 * which makes it more suitable for this purpose.
430 		 */
431 
432 		int n = STATE_SIZE; /* so that the complete pool gets accessed */
433 		while (n > 0)
434 			{
435 #if MD_DIGEST_LENGTH > 20
436 # error "Please adjust DUMMY_SEED."
437 #endif
438 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
439 			/* Note that the seed does not matter, it's just that
440 			 * ssleay_rand_add expects to have something to hash. */
441 			ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
442 			n -= MD_DIGEST_LENGTH;
443 			}
444 		if (ok)
445 			stirred_pool = 1;
446 		}
447 
448 	st_idx=state_index;
449 	st_num=state_num;
450 	md_c[0] = md_count[0];
451 	md_c[1] = md_count[1];
452 	memcpy(local_md, md, sizeof md);
453 
454 	state_index+=num_ceil;
455 	if (state_index > state_num)
456 		state_index %= state_num;
457 
458 	/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
459 	 * are now ours (but other threads may use them too) */
460 
461 	md_count[0] += 1;
462 
463 	/* before unlocking, we must clear 'crypto_lock_rand' */
464 	crypto_lock_rand = 0;
465 	if (lock)
466 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
467 
468 	while (num > 0)
469 		{
470 		/* num_ceil -= MD_DIGEST_LENGTH/2 */
471 		j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
472 		num-=j;
473 		MD_Init(&m);
474 #ifndef GETPID_IS_MEANINGLESS
475 		if (curr_pid) /* just in the first iteration to save time */
476 			{
477 			MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
478 			curr_pid = 0;
479 			}
480 #endif
481 		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
482 		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
483 
484 #ifndef PURIFY /* purify complains */
485 		/* The following line uses the supplied buffer as a small
486 		 * source of entropy: since this buffer is often uninitialised
487 		 * it may cause programs such as purify or valgrind to
488 		 * complain. So for those builds it is not used: the removal
489 		 * of such a small source of entropy has negligible impact on
490 		 * security.
491 		 */
492 		MD_Update(&m,buf,j);
493 #endif
494 
495 		k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
496 		if (k > 0)
497 			{
498 			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
499 			MD_Update(&m,&(state[0]),k);
500 			}
501 		else
502 			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
503 		MD_Final(&m,local_md);
504 
505 		for (i=0; i<MD_DIGEST_LENGTH/2; i++)
506 			{
507 			state[st_idx++]^=local_md[i]; /* may compete with other threads */
508 			if (st_idx >= st_num)
509 				st_idx=0;
510 			if (i < j)
511 				*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
512 			}
513 		}
514 
515 	MD_Init(&m);
516 	MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
517 	MD_Update(&m,local_md,MD_DIGEST_LENGTH);
518 	if (lock)
519 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
520 	MD_Update(&m,md,MD_DIGEST_LENGTH);
521 	MD_Final(&m,md);
522 	if (lock)
523 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
524 
525 	EVP_MD_CTX_cleanup(&m);
526 	if (ok)
527 		return(1);
528 	else if (pseudo)
529 		return 0;
530 	else
531 		{
532 		RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
533 		ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
534 			"http://www.openssl.org/support/faq.html");
535 		return(0);
536 		}
537 	}
538 
ssleay_rand_nopseudo_bytes(unsigned char * buf,int num)539 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
540 	{
541 	return ssleay_rand_bytes(buf, num, 0, 1);
542 	}
543 
544 /* pseudo-random bytes that are guaranteed to be unique but not
545    unpredictable */
ssleay_rand_pseudo_bytes(unsigned char * buf,int num)546 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
547 	{
548 	return ssleay_rand_bytes(buf, num, 1, 1);
549 	}
550 
ssleay_rand_status(void)551 static int ssleay_rand_status(void)
552 	{
553 	CRYPTO_THREADID cur;
554 	int ret;
555 	int do_not_lock;
556 
557 	CRYPTO_THREADID_current(&cur);
558 	/* check if we already have the lock
559 	 * (could happen if a RAND_poll() implementation calls RAND_status()) */
560 	if (crypto_lock_rand)
561 		{
562 		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
563 		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
564 		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
565 		}
566 	else
567 		do_not_lock = 0;
568 
569 	if (!do_not_lock)
570 		{
571 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
572 
573 		/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
574 		CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
575 		CRYPTO_THREADID_cpy(&locking_threadid, &cur);
576 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
577 		crypto_lock_rand = 1;
578 		}
579 
580 	if (!initialized)
581 		{
582 		RAND_poll();
583 		initialized = 1;
584 		}
585 
586 	ret = entropy >= ENTROPY_NEEDED;
587 
588 	if (!do_not_lock)
589 		{
590 		/* before unlocking, we must clear 'crypto_lock_rand' */
591 		crypto_lock_rand = 0;
592 
593 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
594 		}
595 
596 	return ret;
597 	}
598