1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass inserts stack protectors into functions which need them. A variable
11 // with a random value in it is stored onto the stack before the local variables
12 // are allocated. Upon exiting the block, the stored value is checked. If it's
13 // changed, then there was some sort of violation and the program aborts.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/CodeGen/StackProtector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/CommandLine.h"
36 #include <cstdlib>
37 using namespace llvm;
38
39 #define DEBUG_TYPE "stack-protector"
40
41 STATISTIC(NumFunProtected, "Number of functions protected");
42 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
43 " taken.");
44
45 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
46 cl::init(true), cl::Hidden);
47
48 char StackProtector::ID = 0;
49 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
50 false, true)
51
createStackProtectorPass(const TargetMachine * TM)52 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
53 return new StackProtector(TM);
54 }
55
56 StackProtector::SSPLayoutKind
getSSPLayout(const AllocaInst * AI) const57 StackProtector::getSSPLayout(const AllocaInst *AI) const {
58 return AI ? Layout.lookup(AI) : SSPLK_None;
59 }
60
adjustForColoring(const AllocaInst * From,const AllocaInst * To)61 void StackProtector::adjustForColoring(const AllocaInst *From,
62 const AllocaInst *To) {
63 // When coloring replaces one alloca with another, transfer the SSPLayoutKind
64 // tag from the remapped to the target alloca. The remapped alloca should
65 // have a size smaller than or equal to the replacement alloca.
66 SSPLayoutMap::iterator I = Layout.find(From);
67 if (I != Layout.end()) {
68 SSPLayoutKind Kind = I->second;
69 Layout.erase(I);
70
71 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
72 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
73 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
74 I = Layout.find(To);
75 if (I == Layout.end())
76 Layout.insert(std::make_pair(To, Kind));
77 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
78 I->second = Kind;
79 }
80 }
81
runOnFunction(Function & Fn)82 bool StackProtector::runOnFunction(Function &Fn) {
83 F = &Fn;
84 M = F->getParent();
85 DominatorTreeWrapperPass *DTWP =
86 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
87 DT = DTWP ? &DTWP->getDomTree() : nullptr;
88 TLI = TM->getTargetLowering();
89
90 Attribute Attr = Fn.getAttributes().getAttribute(
91 AttributeSet::FunctionIndex, "stack-protector-buffer-size");
92 if (Attr.isStringAttribute() &&
93 Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
94 return false; // Invalid integer string
95
96 if (!RequiresStackProtector())
97 return false;
98
99 ++NumFunProtected;
100 return InsertStackProtectors();
101 }
102
103 /// \param [out] IsLarge is set to true if a protectable array is found and
104 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
105 /// multiple arrays, this gets set if any of them is large.
ContainsProtectableArray(Type * Ty,bool & IsLarge,bool Strong,bool InStruct) const106 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
107 bool Strong,
108 bool InStruct) const {
109 if (!Ty)
110 return false;
111 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
112 if (!AT->getElementType()->isIntegerTy(8)) {
113 // If we're on a non-Darwin platform or we're inside of a structure, don't
114 // add stack protectors unless the array is a character array.
115 // However, in strong mode any array, regardless of type and size,
116 // triggers a protector.
117 if (!Strong && (InStruct || !Trip.isOSDarwin()))
118 return false;
119 }
120
121 // If an array has more than SSPBufferSize bytes of allocated space, then we
122 // emit stack protectors.
123 if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) {
124 IsLarge = true;
125 return true;
126 }
127
128 if (Strong)
129 // Require a protector for all arrays in strong mode
130 return true;
131 }
132
133 const StructType *ST = dyn_cast<StructType>(Ty);
134 if (!ST)
135 return false;
136
137 bool NeedsProtector = false;
138 for (StructType::element_iterator I = ST->element_begin(),
139 E = ST->element_end();
140 I != E; ++I)
141 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
142 // If the element is a protectable array and is large (>= SSPBufferSize)
143 // then we are done. If the protectable array is not large, then
144 // keep looking in case a subsequent element is a large array.
145 if (IsLarge)
146 return true;
147 NeedsProtector = true;
148 }
149
150 return NeedsProtector;
151 }
152
HasAddressTaken(const Instruction * AI)153 bool StackProtector::HasAddressTaken(const Instruction *AI) {
154 for (const User *U : AI->users()) {
155 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
156 if (AI == SI->getValueOperand())
157 return true;
158 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
159 if (AI == SI->getOperand(0))
160 return true;
161 } else if (isa<CallInst>(U)) {
162 return true;
163 } else if (isa<InvokeInst>(U)) {
164 return true;
165 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
166 if (HasAddressTaken(SI))
167 return true;
168 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
169 // Keep track of what PHI nodes we have already visited to ensure
170 // they are only visited once.
171 if (VisitedPHIs.insert(PN))
172 if (HasAddressTaken(PN))
173 return true;
174 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
175 if (HasAddressTaken(GEP))
176 return true;
177 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
178 if (HasAddressTaken(BI))
179 return true;
180 }
181 }
182 return false;
183 }
184
185 /// \brief Check whether or not this function needs a stack protector based
186 /// upon the stack protector level.
187 ///
188 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
189 /// The standard heuristic which will add a guard variable to functions that
190 /// call alloca with a either a variable size or a size >= SSPBufferSize,
191 /// functions with character buffers larger than SSPBufferSize, and functions
192 /// with aggregates containing character buffers larger than SSPBufferSize. The
193 /// strong heuristic will add a guard variables to functions that call alloca
194 /// regardless of size, functions with any buffer regardless of type and size,
195 /// functions with aggregates that contain any buffer regardless of type and
196 /// size, and functions that contain stack-based variables that have had their
197 /// address taken.
RequiresStackProtector()198 bool StackProtector::RequiresStackProtector() {
199 bool Strong = false;
200 bool NeedsProtector = false;
201 if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
202 Attribute::StackProtectReq)) {
203 NeedsProtector = true;
204 Strong = true; // Use the same heuristic as strong to determine SSPLayout
205 } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
206 Attribute::StackProtectStrong))
207 Strong = true;
208 else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
209 Attribute::StackProtect))
210 return false;
211
212 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
213 BasicBlock *BB = I;
214
215 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;
216 ++II) {
217 if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
218 if (AI->isArrayAllocation()) {
219 // SSP-Strong: Enable protectors for any call to alloca, regardless
220 // of size.
221 if (Strong)
222 return true;
223
224 if (const ConstantInt *CI =
225 dyn_cast<ConstantInt>(AI->getArraySize())) {
226 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
227 // A call to alloca with size >= SSPBufferSize requires
228 // stack protectors.
229 Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
230 NeedsProtector = true;
231 } else if (Strong) {
232 // Require protectors for all alloca calls in strong mode.
233 Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
234 NeedsProtector = true;
235 }
236 } else {
237 // A call to alloca with a variable size requires protectors.
238 Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
239 NeedsProtector = true;
240 }
241 continue;
242 }
243
244 bool IsLarge = false;
245 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
246 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
247 : SSPLK_SmallArray));
248 NeedsProtector = true;
249 continue;
250 }
251
252 if (Strong && HasAddressTaken(AI)) {
253 ++NumAddrTaken;
254 Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
255 NeedsProtector = true;
256 }
257 }
258 }
259 }
260
261 return NeedsProtector;
262 }
263
InstructionWillNotHaveChain(const Instruction * I)264 static bool InstructionWillNotHaveChain(const Instruction *I) {
265 return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
266 isSafeToSpeculativelyExecute(I);
267 }
268
269 /// Identify if RI has a previous instruction in the "Tail Position" and return
270 /// it. Otherwise return 0.
271 ///
272 /// This is based off of the code in llvm::isInTailCallPosition. The difference
273 /// is that it inverts the first part of llvm::isInTailCallPosition since
274 /// isInTailCallPosition is checking if a call is in a tail call position, and
275 /// we are searching for an unknown tail call that might be in the tail call
276 /// position. Once we find the call though, the code uses the same refactored
277 /// code, returnTypeIsEligibleForTailCall.
FindPotentialTailCall(BasicBlock * BB,ReturnInst * RI,const TargetLoweringBase * TLI)278 static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
279 const TargetLoweringBase *TLI) {
280 // Establish a reasonable upper bound on the maximum amount of instructions we
281 // will look through to find a tail call.
282 unsigned SearchCounter = 0;
283 const unsigned MaxSearch = 4;
284 bool NoInterposingChain = true;
285
286 for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend();
287 I != E && SearchCounter < MaxSearch; ++I) {
288 Instruction *Inst = &*I;
289
290 // Skip over debug intrinsics and do not allow them to affect our MaxSearch
291 // counter.
292 if (isa<DbgInfoIntrinsic>(Inst))
293 continue;
294
295 // If we find a call and the following conditions are satisifed, then we
296 // have found a tail call that satisfies at least the target independent
297 // requirements of a tail call:
298 //
299 // 1. The call site has the tail marker.
300 //
301 // 2. The call site either will not cause the creation of a chain or if a
302 // chain is necessary there are no instructions in between the callsite and
303 // the call which would create an interposing chain.
304 //
305 // 3. The return type of the function does not impede tail call
306 // optimization.
307 if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
308 if (CI->isTailCall() &&
309 (InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
310 returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
311 return CI;
312 }
313
314 // If we did not find a call see if we have an instruction that may create
315 // an interposing chain.
316 NoInterposingChain =
317 NoInterposingChain && InstructionWillNotHaveChain(Inst);
318
319 // Increment max search.
320 SearchCounter++;
321 }
322
323 return nullptr;
324 }
325
326 /// Insert code into the entry block that stores the __stack_chk_guard
327 /// variable onto the stack:
328 ///
329 /// entry:
330 /// StackGuardSlot = alloca i8*
331 /// StackGuard = load __stack_chk_guard
332 /// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
333 ///
334 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
335 /// node.
CreatePrologue(Function * F,Module * M,ReturnInst * RI,const TargetLoweringBase * TLI,const Triple & Trip,AllocaInst * & AI,Value * & StackGuardVar)336 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
337 const TargetLoweringBase *TLI, const Triple &Trip,
338 AllocaInst *&AI, Value *&StackGuardVar) {
339 bool SupportsSelectionDAGSP = false;
340 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
341 unsigned AddressSpace, Offset;
342 if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
343 Constant *OffsetVal =
344 ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
345
346 StackGuardVar = ConstantExpr::getIntToPtr(
347 OffsetVal, PointerType::get(PtrTy, AddressSpace));
348 } else if (Trip.getOS() == llvm::Triple::OpenBSD) {
349 StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
350 cast<GlobalValue>(StackGuardVar)
351 ->setVisibility(GlobalValue::HiddenVisibility);
352 } else {
353 SupportsSelectionDAGSP = true;
354 StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
355 }
356
357 IRBuilder<> B(&F->getEntryBlock().front());
358 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
359 LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
360 B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI,
361 AI);
362
363 return SupportsSelectionDAGSP;
364 }
365
366 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
367 /// function.
368 ///
369 /// - The prologue code loads and stores the stack guard onto the stack.
370 /// - The epilogue checks the value stored in the prologue against the original
371 /// value. It calls __stack_chk_fail if they differ.
InsertStackProtectors()372 bool StackProtector::InsertStackProtectors() {
373 bool HasPrologue = false;
374 bool SupportsSelectionDAGSP =
375 EnableSelectionDAGSP && !TM->Options.EnableFastISel;
376 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
377 Value *StackGuardVar = nullptr; // The stack guard variable.
378
379 for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
380 BasicBlock *BB = I++;
381 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
382 if (!RI)
383 continue;
384
385 if (!HasPrologue) {
386 HasPrologue = true;
387 SupportsSelectionDAGSP &=
388 CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
389 }
390
391 if (SupportsSelectionDAGSP) {
392 // Since we have a potential tail call, insert the special stack check
393 // intrinsic.
394 Instruction *InsertionPt = nullptr;
395 if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
396 InsertionPt = CI;
397 } else {
398 InsertionPt = RI;
399 // At this point we know that BB has a return statement so it *DOES*
400 // have a terminator.
401 assert(InsertionPt != nullptr && "BB must have a terminator instruction at "
402 "this point.");
403 }
404
405 Function *Intrinsic =
406 Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
407 CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
408
409 } else {
410 // If we do not support SelectionDAG based tail calls, generate IR level
411 // tail calls.
412 //
413 // For each block with a return instruction, convert this:
414 //
415 // return:
416 // ...
417 // ret ...
418 //
419 // into this:
420 //
421 // return:
422 // ...
423 // %1 = load __stack_chk_guard
424 // %2 = load StackGuardSlot
425 // %3 = cmp i1 %1, %2
426 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
427 //
428 // SP_return:
429 // ret ...
430 //
431 // CallStackCheckFailBlk:
432 // call void @__stack_chk_fail()
433 // unreachable
434
435 // Create the FailBB. We duplicate the BB every time since the MI tail
436 // merge pass will merge together all of the various BB into one including
437 // fail BB generated by the stack protector pseudo instruction.
438 BasicBlock *FailBB = CreateFailBB();
439
440 // Split the basic block before the return instruction.
441 BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return");
442
443 // Update the dominator tree if we need to.
444 if (DT && DT->isReachableFromEntry(BB)) {
445 DT->addNewBlock(NewBB, BB);
446 DT->addNewBlock(FailBB, BB);
447 }
448
449 // Remove default branch instruction to the new BB.
450 BB->getTerminator()->eraseFromParent();
451
452 // Move the newly created basic block to the point right after the old
453 // basic block so that it's in the "fall through" position.
454 NewBB->moveAfter(BB);
455
456 // Generate the stack protector instructions in the old basic block.
457 IRBuilder<> B(BB);
458 LoadInst *LI1 = B.CreateLoad(StackGuardVar);
459 LoadInst *LI2 = B.CreateLoad(AI);
460 Value *Cmp = B.CreateICmpEQ(LI1, LI2);
461 B.CreateCondBr(Cmp, NewBB, FailBB);
462 }
463 }
464
465 // Return if we didn't modify any basic blocks. I.e., there are no return
466 // statements in the function.
467 if (!HasPrologue)
468 return false;
469
470 return true;
471 }
472
473 /// CreateFailBB - Create a basic block to jump to when the stack protector
474 /// check fails.
CreateFailBB()475 BasicBlock *StackProtector::CreateFailBB() {
476 LLVMContext &Context = F->getContext();
477 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
478 IRBuilder<> B(FailBB);
479 if (Trip.getOS() == llvm::Triple::OpenBSD) {
480 Constant *StackChkFail = M->getOrInsertFunction(
481 "__stack_smash_handler", Type::getVoidTy(Context),
482 Type::getInt8PtrTy(Context), NULL);
483
484 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
485 } else {
486 Constant *StackChkFail = M->getOrInsertFunction(
487 "__stack_chk_fail", Type::getVoidTy(Context), NULL);
488 B.CreateCall(StackChkFail);
489 }
490 B.CreateUnreachable();
491 return FailBB;
492 }
493