1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/message_loop/message_loop.h"
6
7 #include <algorithm>
8
9 #include "base/bind.h"
10 #include "base/compiler_specific.h"
11 #include "base/lazy_instance.h"
12 #include "base/logging.h"
13 #include "base/memory/scoped_ptr.h"
14 #include "base/message_loop/message_pump_default.h"
15 #include "base/metrics/histogram.h"
16 #include "base/metrics/statistics_recorder.h"
17 #include "base/run_loop.h"
18 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
19 #include "base/thread_task_runner_handle.h"
20 #include "base/threading/thread_local.h"
21 #include "base/time/time.h"
22 #include "base/tracked_objects.h"
23
24 #if defined(OS_MACOSX)
25 #include "base/message_loop/message_pump_mac.h"
26 #endif
27 #if defined(OS_POSIX) && !defined(OS_IOS)
28 #include "base/message_loop/message_pump_libevent.h"
29 #endif
30 #if defined(OS_ANDROID)
31 #include "base/message_loop/message_pump_android.h"
32 #endif
33 #if defined(USE_GLIB)
34 #include "base/message_loop/message_pump_glib.h"
35 #endif
36
37 namespace base {
38
39 namespace {
40
41 // A lazily created thread local storage for quick access to a thread's message
42 // loop, if one exists. This should be safe and free of static constructors.
43 LazyInstance<base::ThreadLocalPointer<MessageLoop> >::Leaky lazy_tls_ptr =
44 LAZY_INSTANCE_INITIALIZER;
45
46 // Logical events for Histogram profiling. Run with -message-loop-histogrammer
47 // to get an accounting of messages and actions taken on each thread.
48 const int kTaskRunEvent = 0x1;
49 #if !defined(OS_NACL)
50 const int kTimerEvent = 0x2;
51
52 // Provide range of message IDs for use in histogramming and debug display.
53 const int kLeastNonZeroMessageId = 1;
54 const int kMaxMessageId = 1099;
55 const int kNumberOfDistinctMessagesDisplayed = 1100;
56
57 // Provide a macro that takes an expression (such as a constant, or macro
58 // constant) and creates a pair to initalize an array of pairs. In this case,
59 // our pair consists of the expressions value, and the "stringized" version
60 // of the expression (i.e., the exrpression put in quotes). For example, if
61 // we have:
62 // #define FOO 2
63 // #define BAR 5
64 // then the following:
65 // VALUE_TO_NUMBER_AND_NAME(FOO + BAR)
66 // will expand to:
67 // {7, "FOO + BAR"}
68 // We use the resulting array as an argument to our histogram, which reads the
69 // number as a bucket identifier, and proceeds to use the corresponding name
70 // in the pair (i.e., the quoted string) when printing out a histogram.
71 #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name},
72
73 const LinearHistogram::DescriptionPair event_descriptions_[] = {
74 // Provide some pretty print capability in our histogram for our internal
75 // messages.
76
77 // A few events we handle (kindred to messages), and used to profile actions.
78 VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent)
79 VALUE_TO_NUMBER_AND_NAME(kTimerEvent)
80
81 {-1, NULL} // The list must be null terminated, per API to histogram.
82 };
83 #endif // !defined(OS_NACL)
84
85 bool enable_histogrammer_ = false;
86
87 MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = NULL;
88
89 // Returns true if MessagePump::ScheduleWork() must be called one
90 // time for every task that is added to the MessageLoop incoming queue.
AlwaysNotifyPump(MessageLoop::Type type)91 bool AlwaysNotifyPump(MessageLoop::Type type) {
92 #if defined(OS_ANDROID)
93 // The Android UI message loop needs to get notified each time a task is added
94 // to the incoming queue.
95 return type == MessageLoop::TYPE_UI || type == MessageLoop::TYPE_JAVA;
96 #else
97 return false;
98 #endif
99 }
100
101 #if defined(OS_IOS)
102 typedef MessagePumpIOSForIO MessagePumpForIO;
103 #elif defined(OS_NACL)
104 typedef MessagePumpDefault MessagePumpForIO;
105 #elif defined(OS_POSIX)
106 typedef MessagePumpLibevent MessagePumpForIO;
107 #endif
108
ToPumpIO(MessagePump * pump)109 MessagePumpForIO* ToPumpIO(MessagePump* pump) {
110 return static_cast<MessagePumpForIO*>(pump);
111 }
112
113 } // namespace
114
115 //------------------------------------------------------------------------------
116
TaskObserver()117 MessageLoop::TaskObserver::TaskObserver() {
118 }
119
~TaskObserver()120 MessageLoop::TaskObserver::~TaskObserver() {
121 }
122
~DestructionObserver()123 MessageLoop::DestructionObserver::~DestructionObserver() {
124 }
125
126 //------------------------------------------------------------------------------
127
MessageLoop(Type type)128 MessageLoop::MessageLoop(Type type)
129 : type_(type),
130 pending_high_res_tasks_(0),
131 in_high_res_mode_(false),
132 nestable_tasks_allowed_(true),
133 #if defined(OS_WIN)
134 os_modal_loop_(false),
135 #endif // OS_WIN
136 message_histogram_(NULL),
137 run_loop_(NULL) {
138 Init();
139
140 pump_ = CreateMessagePumpForType(type).Pass();
141 }
142
MessageLoop(scoped_ptr<MessagePump> pump)143 MessageLoop::MessageLoop(scoped_ptr<MessagePump> pump)
144 : pump_(pump.Pass()),
145 type_(TYPE_CUSTOM),
146 pending_high_res_tasks_(0),
147 in_high_res_mode_(false),
148 nestable_tasks_allowed_(true),
149 #if defined(OS_WIN)
150 os_modal_loop_(false),
151 #endif // OS_WIN
152 message_histogram_(NULL),
153 run_loop_(NULL) {
154 DCHECK(pump_.get());
155 Init();
156 }
157
~MessageLoop()158 MessageLoop::~MessageLoop() {
159 DCHECK_EQ(this, current());
160
161 DCHECK(!run_loop_);
162 #if defined(OS_WIN)
163 if (in_high_res_mode_)
164 Time::ActivateHighResolutionTimer(false);
165 #endif
166 // Clean up any unprocessed tasks, but take care: deleting a task could
167 // result in the addition of more tasks (e.g., via DeleteSoon). We set a
168 // limit on the number of times we will allow a deleted task to generate more
169 // tasks. Normally, we should only pass through this loop once or twice. If
170 // we end up hitting the loop limit, then it is probably due to one task that
171 // is being stubborn. Inspect the queues to see who is left.
172 bool did_work;
173 for (int i = 0; i < 100; ++i) {
174 DeletePendingTasks();
175 ReloadWorkQueue();
176 // If we end up with empty queues, then break out of the loop.
177 did_work = DeletePendingTasks();
178 if (!did_work)
179 break;
180 }
181 DCHECK(!did_work);
182
183 // Let interested parties have one last shot at accessing this.
184 FOR_EACH_OBSERVER(DestructionObserver, destruction_observers_,
185 WillDestroyCurrentMessageLoop());
186
187 thread_task_runner_handle_.reset();
188
189 // Tell the incoming queue that we are dying.
190 incoming_task_queue_->WillDestroyCurrentMessageLoop();
191 incoming_task_queue_ = NULL;
192 message_loop_proxy_ = NULL;
193
194 // OK, now make it so that no one can find us.
195 lazy_tls_ptr.Pointer()->Set(NULL);
196 }
197
198 // static
current()199 MessageLoop* MessageLoop::current() {
200 // TODO(darin): sadly, we cannot enable this yet since people call us even
201 // when they have no intention of using us.
202 // DCHECK(loop) << "Ouch, did you forget to initialize me?";
203 return lazy_tls_ptr.Pointer()->Get();
204 }
205
206 // static
EnableHistogrammer(bool enable)207 void MessageLoop::EnableHistogrammer(bool enable) {
208 enable_histogrammer_ = enable;
209 }
210
211 // static
InitMessagePumpForUIFactory(MessagePumpFactory * factory)212 bool MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) {
213 if (message_pump_for_ui_factory_)
214 return false;
215
216 message_pump_for_ui_factory_ = factory;
217 return true;
218 }
219
220 // static
CreateMessagePumpForType(Type type)221 scoped_ptr<MessagePump> MessageLoop::CreateMessagePumpForType(Type type) {
222 // TODO(rvargas): Get rid of the OS guards.
223 #if defined(USE_GLIB) && !defined(OS_NACL)
224 typedef MessagePumpGlib MessagePumpForUI;
225 #elif defined(OS_LINUX) && !defined(OS_NACL)
226 typedef MessagePumpLibevent MessagePumpForUI;
227 #endif
228
229 #if defined(OS_IOS) || defined(OS_MACOSX)
230 #define MESSAGE_PUMP_UI scoped_ptr<MessagePump>(MessagePumpMac::Create())
231 #elif defined(OS_NACL)
232 // Currently NaCl doesn't have a UI MessageLoop.
233 // TODO(abarth): Figure out if we need this.
234 #define MESSAGE_PUMP_UI scoped_ptr<MessagePump>()
235 #else
236 #define MESSAGE_PUMP_UI scoped_ptr<MessagePump>(new MessagePumpForUI())
237 #endif
238
239 #if defined(OS_MACOSX)
240 // Use an OS native runloop on Mac to support timer coalescing.
241 #define MESSAGE_PUMP_DEFAULT \
242 scoped_ptr<MessagePump>(new MessagePumpCFRunLoop())
243 #else
244 #define MESSAGE_PUMP_DEFAULT scoped_ptr<MessagePump>(new MessagePumpDefault())
245 #endif
246
247 if (type == MessageLoop::TYPE_UI) {
248 if (message_pump_for_ui_factory_)
249 return message_pump_for_ui_factory_();
250 return MESSAGE_PUMP_UI;
251 }
252 if (type == MessageLoop::TYPE_IO)
253 return scoped_ptr<MessagePump>(new MessagePumpForIO());
254
255 #if defined(OS_ANDROID)
256 if (type == MessageLoop::TYPE_JAVA)
257 return scoped_ptr<MessagePump>(new MessagePumpForUI());
258 #endif
259
260 DCHECK_EQ(MessageLoop::TYPE_DEFAULT, type);
261 return MESSAGE_PUMP_DEFAULT;
262 }
263
AddDestructionObserver(DestructionObserver * destruction_observer)264 void MessageLoop::AddDestructionObserver(
265 DestructionObserver* destruction_observer) {
266 DCHECK_EQ(this, current());
267 destruction_observers_.AddObserver(destruction_observer);
268 }
269
RemoveDestructionObserver(DestructionObserver * destruction_observer)270 void MessageLoop::RemoveDestructionObserver(
271 DestructionObserver* destruction_observer) {
272 DCHECK_EQ(this, current());
273 destruction_observers_.RemoveObserver(destruction_observer);
274 }
275
PostTask(const tracked_objects::Location & from_here,const Closure & task)276 void MessageLoop::PostTask(
277 const tracked_objects::Location& from_here,
278 const Closure& task) {
279 DCHECK(!task.is_null()) << from_here.ToString();
280 incoming_task_queue_->AddToIncomingQueue(from_here, task, TimeDelta(), true);
281 }
282
PostDelayedTask(const tracked_objects::Location & from_here,const Closure & task,TimeDelta delay)283 void MessageLoop::PostDelayedTask(
284 const tracked_objects::Location& from_here,
285 const Closure& task,
286 TimeDelta delay) {
287 DCHECK(!task.is_null()) << from_here.ToString();
288 incoming_task_queue_->AddToIncomingQueue(from_here, task, delay, true);
289 }
290
PostNonNestableTask(const tracked_objects::Location & from_here,const Closure & task)291 void MessageLoop::PostNonNestableTask(
292 const tracked_objects::Location& from_here,
293 const Closure& task) {
294 DCHECK(!task.is_null()) << from_here.ToString();
295 incoming_task_queue_->AddToIncomingQueue(from_here, task, TimeDelta(), false);
296 }
297
PostNonNestableDelayedTask(const tracked_objects::Location & from_here,const Closure & task,TimeDelta delay)298 void MessageLoop::PostNonNestableDelayedTask(
299 const tracked_objects::Location& from_here,
300 const Closure& task,
301 TimeDelta delay) {
302 DCHECK(!task.is_null()) << from_here.ToString();
303 incoming_task_queue_->AddToIncomingQueue(from_here, task, delay, false);
304 }
305
Run()306 void MessageLoop::Run() {
307 RunLoop run_loop;
308 run_loop.Run();
309 }
310
RunUntilIdle()311 void MessageLoop::RunUntilIdle() {
312 RunLoop run_loop;
313 run_loop.RunUntilIdle();
314 }
315
QuitWhenIdle()316 void MessageLoop::QuitWhenIdle() {
317 DCHECK_EQ(this, current());
318 if (run_loop_) {
319 run_loop_->quit_when_idle_received_ = true;
320 } else {
321 NOTREACHED() << "Must be inside Run to call Quit";
322 }
323 }
324
QuitNow()325 void MessageLoop::QuitNow() {
326 DCHECK_EQ(this, current());
327 if (run_loop_) {
328 pump_->Quit();
329 } else {
330 NOTREACHED() << "Must be inside Run to call Quit";
331 }
332 }
333
IsType(Type type) const334 bool MessageLoop::IsType(Type type) const {
335 return type_ == type;
336 }
337
QuitCurrentWhenIdle()338 static void QuitCurrentWhenIdle() {
339 MessageLoop::current()->QuitWhenIdle();
340 }
341
342 // static
QuitWhenIdleClosure()343 Closure MessageLoop::QuitWhenIdleClosure() {
344 return Bind(&QuitCurrentWhenIdle);
345 }
346
SetNestableTasksAllowed(bool allowed)347 void MessageLoop::SetNestableTasksAllowed(bool allowed) {
348 if (allowed) {
349 // Kick the native pump just in case we enter a OS-driven nested message
350 // loop.
351 pump_->ScheduleWork();
352 }
353 nestable_tasks_allowed_ = allowed;
354 }
355
NestableTasksAllowed() const356 bool MessageLoop::NestableTasksAllowed() const {
357 return nestable_tasks_allowed_;
358 }
359
IsNested()360 bool MessageLoop::IsNested() {
361 return run_loop_->run_depth_ > 1;
362 }
363
AddTaskObserver(TaskObserver * task_observer)364 void MessageLoop::AddTaskObserver(TaskObserver* task_observer) {
365 DCHECK_EQ(this, current());
366 task_observers_.AddObserver(task_observer);
367 }
368
RemoveTaskObserver(TaskObserver * task_observer)369 void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) {
370 DCHECK_EQ(this, current());
371 task_observers_.RemoveObserver(task_observer);
372 }
373
is_running() const374 bool MessageLoop::is_running() const {
375 DCHECK_EQ(this, current());
376 return run_loop_ != NULL;
377 }
378
HasHighResolutionTasks()379 bool MessageLoop::HasHighResolutionTasks() {
380 return incoming_task_queue_->HasHighResolutionTasks();
381 }
382
IsIdleForTesting()383 bool MessageLoop::IsIdleForTesting() {
384 // We only check the imcoming queue|, since we don't want to lock the work
385 // queue.
386 return incoming_task_queue_->IsIdleForTesting();
387 }
388
389 //------------------------------------------------------------------------------
390
Init()391 void MessageLoop::Init() {
392 DCHECK(!current()) << "should only have one message loop per thread";
393 lazy_tls_ptr.Pointer()->Set(this);
394
395 incoming_task_queue_ = new internal::IncomingTaskQueue(this);
396 message_loop_proxy_ =
397 new internal::MessageLoopProxyImpl(incoming_task_queue_);
398 thread_task_runner_handle_.reset(
399 new ThreadTaskRunnerHandle(message_loop_proxy_));
400 }
401
RunHandler()402 void MessageLoop::RunHandler() {
403 DCHECK_EQ(this, current());
404
405 StartHistogrammer();
406
407 #if defined(OS_WIN)
408 if (run_loop_->dispatcher_ && type() == TYPE_UI) {
409 static_cast<MessagePumpForUI*>(pump_.get())->
410 RunWithDispatcher(this, run_loop_->dispatcher_);
411 return;
412 }
413 #endif
414
415 pump_->Run(this);
416 }
417
ProcessNextDelayedNonNestableTask()418 bool MessageLoop::ProcessNextDelayedNonNestableTask() {
419 if (run_loop_->run_depth_ != 1)
420 return false;
421
422 if (deferred_non_nestable_work_queue_.empty())
423 return false;
424
425 PendingTask pending_task = deferred_non_nestable_work_queue_.front();
426 deferred_non_nestable_work_queue_.pop();
427
428 RunTask(pending_task);
429 return true;
430 }
431
RunTask(const PendingTask & pending_task)432 void MessageLoop::RunTask(const PendingTask& pending_task) {
433 DCHECK(nestable_tasks_allowed_);
434
435 if (pending_task.is_high_res) {
436 pending_high_res_tasks_--;
437 CHECK(pending_high_res_tasks_ >= 0);
438 }
439 // Execute the task and assume the worst: It is probably not reentrant.
440 nestable_tasks_allowed_ = false;
441
442 HistogramEvent(kTaskRunEvent);
443
444 FOR_EACH_OBSERVER(TaskObserver, task_observers_,
445 WillProcessTask(pending_task));
446 task_annotator_.RunTask(
447 "MessageLoop::PostTask", "MessageLoop::RunTask", pending_task);
448 FOR_EACH_OBSERVER(TaskObserver, task_observers_,
449 DidProcessTask(pending_task));
450
451 nestable_tasks_allowed_ = true;
452 }
453
DeferOrRunPendingTask(const PendingTask & pending_task)454 bool MessageLoop::DeferOrRunPendingTask(const PendingTask& pending_task) {
455 if (pending_task.nestable || run_loop_->run_depth_ == 1) {
456 RunTask(pending_task);
457 // Show that we ran a task (Note: a new one might arrive as a
458 // consequence!).
459 return true;
460 }
461
462 // We couldn't run the task now because we're in a nested message loop
463 // and the task isn't nestable.
464 deferred_non_nestable_work_queue_.push(pending_task);
465 return false;
466 }
467
AddToDelayedWorkQueue(const PendingTask & pending_task)468 void MessageLoop::AddToDelayedWorkQueue(const PendingTask& pending_task) {
469 // Move to the delayed work queue.
470 delayed_work_queue_.push(pending_task);
471 }
472
DeletePendingTasks()473 bool MessageLoop::DeletePendingTasks() {
474 bool did_work = !work_queue_.empty();
475 while (!work_queue_.empty()) {
476 PendingTask pending_task = work_queue_.front();
477 work_queue_.pop();
478 if (!pending_task.delayed_run_time.is_null()) {
479 // We want to delete delayed tasks in the same order in which they would
480 // normally be deleted in case of any funny dependencies between delayed
481 // tasks.
482 AddToDelayedWorkQueue(pending_task);
483 }
484 }
485 did_work |= !deferred_non_nestable_work_queue_.empty();
486 while (!deferred_non_nestable_work_queue_.empty()) {
487 deferred_non_nestable_work_queue_.pop();
488 }
489 did_work |= !delayed_work_queue_.empty();
490
491 // Historically, we always delete the task regardless of valgrind status. It's
492 // not completely clear why we want to leak them in the loops above. This
493 // code is replicating legacy behavior, and should not be considered
494 // absolutely "correct" behavior. See TODO above about deleting all tasks
495 // when it's safe.
496 while (!delayed_work_queue_.empty()) {
497 delayed_work_queue_.pop();
498 }
499 return did_work;
500 }
501
ReloadWorkQueue()502 void MessageLoop::ReloadWorkQueue() {
503 // We can improve performance of our loading tasks from the incoming queue to
504 // |*work_queue| by waiting until the last minute (|*work_queue| is empty) to
505 // load. That reduces the number of locks-per-task significantly when our
506 // queues get large.
507 if (work_queue_.empty()) {
508 pending_high_res_tasks_ +=
509 incoming_task_queue_->ReloadWorkQueue(&work_queue_);
510 }
511 }
512
ScheduleWork(bool was_empty)513 void MessageLoop::ScheduleWork(bool was_empty) {
514 if (was_empty || AlwaysNotifyPump(type_))
515 pump_->ScheduleWork();
516 }
517
518 //------------------------------------------------------------------------------
519 // Method and data for histogramming events and actions taken by each instance
520 // on each thread.
521
StartHistogrammer()522 void MessageLoop::StartHistogrammer() {
523 #if !defined(OS_NACL) // NaCl build has no metrics code.
524 if (enable_histogrammer_ && !message_histogram_
525 && StatisticsRecorder::IsActive()) {
526 DCHECK(!thread_name_.empty());
527 message_histogram_ = LinearHistogram::FactoryGetWithRangeDescription(
528 "MsgLoop:" + thread_name_,
529 kLeastNonZeroMessageId, kMaxMessageId,
530 kNumberOfDistinctMessagesDisplayed,
531 message_histogram_->kHexRangePrintingFlag,
532 event_descriptions_);
533 }
534 #endif
535 }
536
HistogramEvent(int event)537 void MessageLoop::HistogramEvent(int event) {
538 #if !defined(OS_NACL)
539 if (message_histogram_)
540 message_histogram_->Add(event);
541 #endif
542 }
543
DoWork()544 bool MessageLoop::DoWork() {
545 if (!nestable_tasks_allowed_) {
546 // Task can't be executed right now.
547 return false;
548 }
549
550 for (;;) {
551 ReloadWorkQueue();
552 if (work_queue_.empty())
553 break;
554
555 // Execute oldest task.
556 do {
557 PendingTask pending_task = work_queue_.front();
558 work_queue_.pop();
559 if (!pending_task.delayed_run_time.is_null()) {
560 AddToDelayedWorkQueue(pending_task);
561 // If we changed the topmost task, then it is time to reschedule.
562 if (delayed_work_queue_.top().task.Equals(pending_task.task))
563 pump_->ScheduleDelayedWork(pending_task.delayed_run_time);
564 } else {
565 if (DeferOrRunPendingTask(pending_task))
566 return true;
567 }
568 } while (!work_queue_.empty());
569 }
570
571 // Nothing happened.
572 return false;
573 }
574
DoDelayedWork(TimeTicks * next_delayed_work_time)575 bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) {
576 if (!nestable_tasks_allowed_ || delayed_work_queue_.empty()) {
577 recent_time_ = *next_delayed_work_time = TimeTicks();
578 return false;
579 }
580
581 // When we "fall behind," there will be a lot of tasks in the delayed work
582 // queue that are ready to run. To increase efficiency when we fall behind,
583 // we will only call Time::Now() intermittently, and then process all tasks
584 // that are ready to run before calling it again. As a result, the more we
585 // fall behind (and have a lot of ready-to-run delayed tasks), the more
586 // efficient we'll be at handling the tasks.
587
588 TimeTicks next_run_time = delayed_work_queue_.top().delayed_run_time;
589 if (next_run_time > recent_time_) {
590 recent_time_ = TimeTicks::Now(); // Get a better view of Now();
591 if (next_run_time > recent_time_) {
592 *next_delayed_work_time = next_run_time;
593 return false;
594 }
595 }
596
597 PendingTask pending_task = delayed_work_queue_.top();
598 delayed_work_queue_.pop();
599
600 if (!delayed_work_queue_.empty())
601 *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;
602
603 return DeferOrRunPendingTask(pending_task);
604 }
605
DoIdleWork()606 bool MessageLoop::DoIdleWork() {
607 if (ProcessNextDelayedNonNestableTask())
608 return true;
609
610 if (run_loop_->quit_when_idle_received_)
611 pump_->Quit();
612
613 // When we return we will do a kernel wait for more tasks.
614 #if defined(OS_WIN)
615 // On Windows we activate the high resolution timer so that the wait
616 // _if_ triggered by the timer happens with good resolution. If we don't
617 // do this the default resolution is 15ms which might not be acceptable
618 // for some tasks.
619 bool high_res = pending_high_res_tasks_ > 0;
620 if (high_res != in_high_res_mode_) {
621 in_high_res_mode_ = high_res;
622 Time::ActivateHighResolutionTimer(in_high_res_mode_);
623 }
624 #endif
625 return false;
626 }
627
DeleteSoonInternal(const tracked_objects::Location & from_here,void (* deleter)(const void *),const void * object)628 void MessageLoop::DeleteSoonInternal(const tracked_objects::Location& from_here,
629 void(*deleter)(const void*),
630 const void* object) {
631 PostNonNestableTask(from_here, Bind(deleter, object));
632 }
633
ReleaseSoonInternal(const tracked_objects::Location & from_here,void (* releaser)(const void *),const void * object)634 void MessageLoop::ReleaseSoonInternal(
635 const tracked_objects::Location& from_here,
636 void(*releaser)(const void*),
637 const void* object) {
638 PostNonNestableTask(from_here, Bind(releaser, object));
639 }
640
641 #if !defined(OS_NACL)
642 //------------------------------------------------------------------------------
643 // MessageLoopForUI
644
645 #if defined(OS_ANDROID)
Start()646 void MessageLoopForUI::Start() {
647 // No Histogram support for UI message loop as it is managed by Java side
648 static_cast<MessagePumpForUI*>(pump_.get())->Start(this);
649 }
650 #endif
651
652 #if defined(OS_IOS)
Attach()653 void MessageLoopForUI::Attach() {
654 static_cast<MessagePumpUIApplication*>(pump_.get())->Attach(this);
655 }
656 #endif
657
658 #if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
WatchFileDescriptor(int fd,bool persistent,MessagePumpLibevent::Mode mode,MessagePumpLibevent::FileDescriptorWatcher * controller,MessagePumpLibevent::Watcher * delegate)659 bool MessageLoopForUI::WatchFileDescriptor(
660 int fd,
661 bool persistent,
662 MessagePumpLibevent::Mode mode,
663 MessagePumpLibevent::FileDescriptorWatcher *controller,
664 MessagePumpLibevent::Watcher *delegate) {
665 return static_cast<MessagePumpLibevent*>(pump_.get())->WatchFileDescriptor(
666 fd,
667 persistent,
668 mode,
669 controller,
670 delegate);
671 }
672 #endif
673
674 #endif // !defined(OS_NACL)
675
676 //------------------------------------------------------------------------------
677 // MessageLoopForIO
678
679 #if !defined(OS_NACL)
AddIOObserver(MessageLoopForIO::IOObserver * io_observer)680 void MessageLoopForIO::AddIOObserver(
681 MessageLoopForIO::IOObserver* io_observer) {
682 ToPumpIO(pump_.get())->AddIOObserver(io_observer);
683 }
684
RemoveIOObserver(MessageLoopForIO::IOObserver * io_observer)685 void MessageLoopForIO::RemoveIOObserver(
686 MessageLoopForIO::IOObserver* io_observer) {
687 ToPumpIO(pump_.get())->RemoveIOObserver(io_observer);
688 }
689
690 #if defined(OS_WIN)
RegisterIOHandler(HANDLE file,IOHandler * handler)691 void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) {
692 ToPumpIO(pump_.get())->RegisterIOHandler(file, handler);
693 }
694
RegisterJobObject(HANDLE job,IOHandler * handler)695 bool MessageLoopForIO::RegisterJobObject(HANDLE job, IOHandler* handler) {
696 return ToPumpIO(pump_.get())->RegisterJobObject(job, handler);
697 }
698
WaitForIOCompletion(DWORD timeout,IOHandler * filter)699 bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
700 return ToPumpIO(pump_.get())->WaitForIOCompletion(timeout, filter);
701 }
702 #elif defined(OS_POSIX)
WatchFileDescriptor(int fd,bool persistent,Mode mode,FileDescriptorWatcher * controller,Watcher * delegate)703 bool MessageLoopForIO::WatchFileDescriptor(int fd,
704 bool persistent,
705 Mode mode,
706 FileDescriptorWatcher *controller,
707 Watcher *delegate) {
708 return ToPumpIO(pump_.get())->WatchFileDescriptor(
709 fd,
710 persistent,
711 mode,
712 controller,
713 delegate);
714 }
715 #endif
716
717 #endif // !defined(OS_NACL)
718
719 } // namespace base
720