1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements extra semantic analysis beyond what is enforced
11 // by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Analysis/Analyses/FormatString.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallBitVector.h"
37 #include "llvm/ADT/SmallString.h"
38 #include "llvm/Support/ConvertUTF.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <limits>
41 using namespace clang;
42 using namespace sema;
43
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const44 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45 unsigned ByteNo) const {
46 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
47 Context.getTargetInfo());
48 }
49
50 /// Checks that a call expression's argument count is the desired number.
51 /// This is useful when doing custom type-checking. Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)52 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53 unsigned argCount = call->getNumArgs();
54 if (argCount == desiredArgCount) return false;
55
56 if (argCount < desiredArgCount)
57 return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58 << 0 /*function call*/ << desiredArgCount << argCount
59 << call->getSourceRange();
60
61 // Highlight all the excess arguments.
62 SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63 call->getArg(argCount - 1)->getLocEnd());
64
65 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66 << 0 /*function call*/ << desiredArgCount << argCount
67 << call->getArg(1)->getSourceRange();
68 }
69
70 /// Check that the first argument to __builtin_annotation is an integer
71 /// and the second argument is a non-wide string literal.
SemaBuiltinAnnotation(Sema & S,CallExpr * TheCall)72 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73 if (checkArgCount(S, TheCall, 2))
74 return true;
75
76 // First argument should be an integer.
77 Expr *ValArg = TheCall->getArg(0);
78 QualType Ty = ValArg->getType();
79 if (!Ty->isIntegerType()) {
80 S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81 << ValArg->getSourceRange();
82 return true;
83 }
84
85 // Second argument should be a constant string.
86 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88 if (!Literal || !Literal->isAscii()) {
89 S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90 << StrArg->getSourceRange();
91 return true;
92 }
93
94 TheCall->setType(Ty);
95 return false;
96 }
97
98 /// Check that the argument to __builtin_addressof is a glvalue, and set the
99 /// result type to the corresponding pointer type.
SemaBuiltinAddressof(Sema & S,CallExpr * TheCall)100 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101 if (checkArgCount(S, TheCall, 1))
102 return true;
103
104 ExprResult Arg(TheCall->getArg(0));
105 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106 if (ResultType.isNull())
107 return true;
108
109 TheCall->setArg(0, Arg.get());
110 TheCall->setType(ResultType);
111 return false;
112 }
113
114 ExprResult
CheckBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)115 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
116 ExprResult TheCallResult(TheCall);
117
118 // Find out if any arguments are required to be integer constant expressions.
119 unsigned ICEArguments = 0;
120 ASTContext::GetBuiltinTypeError Error;
121 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
122 if (Error != ASTContext::GE_None)
123 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
124
125 // If any arguments are required to be ICE's, check and diagnose.
126 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
127 // Skip arguments not required to be ICE's.
128 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
129
130 llvm::APSInt Result;
131 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
132 return true;
133 ICEArguments &= ~(1 << ArgNo);
134 }
135
136 switch (BuiltinID) {
137 case Builtin::BI__builtin___CFStringMakeConstantString:
138 assert(TheCall->getNumArgs() == 1 &&
139 "Wrong # arguments to builtin CFStringMakeConstantString");
140 if (CheckObjCString(TheCall->getArg(0)))
141 return ExprError();
142 break;
143 case Builtin::BI__builtin_stdarg_start:
144 case Builtin::BI__builtin_va_start:
145 case Builtin::BI__va_start:
146 if (SemaBuiltinVAStart(TheCall))
147 return ExprError();
148 break;
149 case Builtin::BI__builtin_isgreater:
150 case Builtin::BI__builtin_isgreaterequal:
151 case Builtin::BI__builtin_isless:
152 case Builtin::BI__builtin_islessequal:
153 case Builtin::BI__builtin_islessgreater:
154 case Builtin::BI__builtin_isunordered:
155 if (SemaBuiltinUnorderedCompare(TheCall))
156 return ExprError();
157 break;
158 case Builtin::BI__builtin_fpclassify:
159 if (SemaBuiltinFPClassification(TheCall, 6))
160 return ExprError();
161 break;
162 case Builtin::BI__builtin_isfinite:
163 case Builtin::BI__builtin_isinf:
164 case Builtin::BI__builtin_isinf_sign:
165 case Builtin::BI__builtin_isnan:
166 case Builtin::BI__builtin_isnormal:
167 if (SemaBuiltinFPClassification(TheCall, 1))
168 return ExprError();
169 break;
170 case Builtin::BI__builtin_shufflevector:
171 return SemaBuiltinShuffleVector(TheCall);
172 // TheCall will be freed by the smart pointer here, but that's fine, since
173 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
174 case Builtin::BI__builtin_prefetch:
175 if (SemaBuiltinPrefetch(TheCall))
176 return ExprError();
177 break;
178 case Builtin::BI__builtin_object_size:
179 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
180 return ExprError();
181 break;
182 case Builtin::BI__builtin_longjmp:
183 if (SemaBuiltinLongjmp(TheCall))
184 return ExprError();
185 break;
186
187 case Builtin::BI__builtin_classify_type:
188 if (checkArgCount(*this, TheCall, 1)) return true;
189 TheCall->setType(Context.IntTy);
190 break;
191 case Builtin::BI__builtin_constant_p:
192 if (checkArgCount(*this, TheCall, 1)) return true;
193 TheCall->setType(Context.IntTy);
194 break;
195 case Builtin::BI__sync_fetch_and_add:
196 case Builtin::BI__sync_fetch_and_add_1:
197 case Builtin::BI__sync_fetch_and_add_2:
198 case Builtin::BI__sync_fetch_and_add_4:
199 case Builtin::BI__sync_fetch_and_add_8:
200 case Builtin::BI__sync_fetch_and_add_16:
201 case Builtin::BI__sync_fetch_and_sub:
202 case Builtin::BI__sync_fetch_and_sub_1:
203 case Builtin::BI__sync_fetch_and_sub_2:
204 case Builtin::BI__sync_fetch_and_sub_4:
205 case Builtin::BI__sync_fetch_and_sub_8:
206 case Builtin::BI__sync_fetch_and_sub_16:
207 case Builtin::BI__sync_fetch_and_or:
208 case Builtin::BI__sync_fetch_and_or_1:
209 case Builtin::BI__sync_fetch_and_or_2:
210 case Builtin::BI__sync_fetch_and_or_4:
211 case Builtin::BI__sync_fetch_and_or_8:
212 case Builtin::BI__sync_fetch_and_or_16:
213 case Builtin::BI__sync_fetch_and_and:
214 case Builtin::BI__sync_fetch_and_and_1:
215 case Builtin::BI__sync_fetch_and_and_2:
216 case Builtin::BI__sync_fetch_and_and_4:
217 case Builtin::BI__sync_fetch_and_and_8:
218 case Builtin::BI__sync_fetch_and_and_16:
219 case Builtin::BI__sync_fetch_and_xor:
220 case Builtin::BI__sync_fetch_and_xor_1:
221 case Builtin::BI__sync_fetch_and_xor_2:
222 case Builtin::BI__sync_fetch_and_xor_4:
223 case Builtin::BI__sync_fetch_and_xor_8:
224 case Builtin::BI__sync_fetch_and_xor_16:
225 case Builtin::BI__sync_add_and_fetch:
226 case Builtin::BI__sync_add_and_fetch_1:
227 case Builtin::BI__sync_add_and_fetch_2:
228 case Builtin::BI__sync_add_and_fetch_4:
229 case Builtin::BI__sync_add_and_fetch_8:
230 case Builtin::BI__sync_add_and_fetch_16:
231 case Builtin::BI__sync_sub_and_fetch:
232 case Builtin::BI__sync_sub_and_fetch_1:
233 case Builtin::BI__sync_sub_and_fetch_2:
234 case Builtin::BI__sync_sub_and_fetch_4:
235 case Builtin::BI__sync_sub_and_fetch_8:
236 case Builtin::BI__sync_sub_and_fetch_16:
237 case Builtin::BI__sync_and_and_fetch:
238 case Builtin::BI__sync_and_and_fetch_1:
239 case Builtin::BI__sync_and_and_fetch_2:
240 case Builtin::BI__sync_and_and_fetch_4:
241 case Builtin::BI__sync_and_and_fetch_8:
242 case Builtin::BI__sync_and_and_fetch_16:
243 case Builtin::BI__sync_or_and_fetch:
244 case Builtin::BI__sync_or_and_fetch_1:
245 case Builtin::BI__sync_or_and_fetch_2:
246 case Builtin::BI__sync_or_and_fetch_4:
247 case Builtin::BI__sync_or_and_fetch_8:
248 case Builtin::BI__sync_or_and_fetch_16:
249 case Builtin::BI__sync_xor_and_fetch:
250 case Builtin::BI__sync_xor_and_fetch_1:
251 case Builtin::BI__sync_xor_and_fetch_2:
252 case Builtin::BI__sync_xor_and_fetch_4:
253 case Builtin::BI__sync_xor_and_fetch_8:
254 case Builtin::BI__sync_xor_and_fetch_16:
255 case Builtin::BI__sync_val_compare_and_swap:
256 case Builtin::BI__sync_val_compare_and_swap_1:
257 case Builtin::BI__sync_val_compare_and_swap_2:
258 case Builtin::BI__sync_val_compare_and_swap_4:
259 case Builtin::BI__sync_val_compare_and_swap_8:
260 case Builtin::BI__sync_val_compare_and_swap_16:
261 case Builtin::BI__sync_bool_compare_and_swap:
262 case Builtin::BI__sync_bool_compare_and_swap_1:
263 case Builtin::BI__sync_bool_compare_and_swap_2:
264 case Builtin::BI__sync_bool_compare_and_swap_4:
265 case Builtin::BI__sync_bool_compare_and_swap_8:
266 case Builtin::BI__sync_bool_compare_and_swap_16:
267 case Builtin::BI__sync_lock_test_and_set:
268 case Builtin::BI__sync_lock_test_and_set_1:
269 case Builtin::BI__sync_lock_test_and_set_2:
270 case Builtin::BI__sync_lock_test_and_set_4:
271 case Builtin::BI__sync_lock_test_and_set_8:
272 case Builtin::BI__sync_lock_test_and_set_16:
273 case Builtin::BI__sync_lock_release:
274 case Builtin::BI__sync_lock_release_1:
275 case Builtin::BI__sync_lock_release_2:
276 case Builtin::BI__sync_lock_release_4:
277 case Builtin::BI__sync_lock_release_8:
278 case Builtin::BI__sync_lock_release_16:
279 case Builtin::BI__sync_swap:
280 case Builtin::BI__sync_swap_1:
281 case Builtin::BI__sync_swap_2:
282 case Builtin::BI__sync_swap_4:
283 case Builtin::BI__sync_swap_8:
284 case Builtin::BI__sync_swap_16:
285 return SemaBuiltinAtomicOverloaded(TheCallResult);
286 #define BUILTIN(ID, TYPE, ATTRS)
287 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
288 case Builtin::BI##ID: \
289 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
290 #include "clang/Basic/Builtins.def"
291 case Builtin::BI__builtin_annotation:
292 if (SemaBuiltinAnnotation(*this, TheCall))
293 return ExprError();
294 break;
295 case Builtin::BI__builtin_addressof:
296 if (SemaBuiltinAddressof(*this, TheCall))
297 return ExprError();
298 break;
299 case Builtin::BI__builtin_operator_new:
300 case Builtin::BI__builtin_operator_delete:
301 if (!getLangOpts().CPlusPlus) {
302 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
303 << (BuiltinID == Builtin::BI__builtin_operator_new
304 ? "__builtin_operator_new"
305 : "__builtin_operator_delete")
306 << "C++";
307 return ExprError();
308 }
309 // CodeGen assumes it can find the global new and delete to call,
310 // so ensure that they are declared.
311 DeclareGlobalNewDelete();
312 break;
313 }
314
315 // Since the target specific builtins for each arch overlap, only check those
316 // of the arch we are compiling for.
317 if (BuiltinID >= Builtin::FirstTSBuiltin) {
318 switch (Context.getTargetInfo().getTriple().getArch()) {
319 case llvm::Triple::arm:
320 case llvm::Triple::armeb:
321 case llvm::Triple::thumb:
322 case llvm::Triple::thumbeb:
323 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
324 return ExprError();
325 break;
326 case llvm::Triple::aarch64:
327 case llvm::Triple::aarch64_be:
328 case llvm::Triple::arm64:
329 case llvm::Triple::arm64_be:
330 if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
331 return ExprError();
332 break;
333 case llvm::Triple::mips:
334 case llvm::Triple::mipsel:
335 case llvm::Triple::mips64:
336 case llvm::Triple::mips64el:
337 if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
338 return ExprError();
339 break;
340 case llvm::Triple::x86:
341 case llvm::Triple::x86_64:
342 if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
343 return ExprError();
344 break;
345 default:
346 break;
347 }
348 }
349
350 return TheCallResult;
351 }
352
353 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false,bool ForceQuad=false)354 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
355 NeonTypeFlags Type(t);
356 int IsQuad = ForceQuad ? true : Type.isQuad();
357 switch (Type.getEltType()) {
358 case NeonTypeFlags::Int8:
359 case NeonTypeFlags::Poly8:
360 return shift ? 7 : (8 << IsQuad) - 1;
361 case NeonTypeFlags::Int16:
362 case NeonTypeFlags::Poly16:
363 return shift ? 15 : (4 << IsQuad) - 1;
364 case NeonTypeFlags::Int32:
365 return shift ? 31 : (2 << IsQuad) - 1;
366 case NeonTypeFlags::Int64:
367 case NeonTypeFlags::Poly64:
368 return shift ? 63 : (1 << IsQuad) - 1;
369 case NeonTypeFlags::Poly128:
370 return shift ? 127 : (1 << IsQuad) - 1;
371 case NeonTypeFlags::Float16:
372 assert(!shift && "cannot shift float types!");
373 return (4 << IsQuad) - 1;
374 case NeonTypeFlags::Float32:
375 assert(!shift && "cannot shift float types!");
376 return (2 << IsQuad) - 1;
377 case NeonTypeFlags::Float64:
378 assert(!shift && "cannot shift float types!");
379 return (1 << IsQuad) - 1;
380 }
381 llvm_unreachable("Invalid NeonTypeFlag!");
382 }
383
384 /// getNeonEltType - Return the QualType corresponding to the elements of
385 /// the vector type specified by the NeonTypeFlags. This is used to check
386 /// the pointer arguments for Neon load/store intrinsics.
getNeonEltType(NeonTypeFlags Flags,ASTContext & Context,bool IsPolyUnsigned,bool IsInt64Long)387 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
388 bool IsPolyUnsigned, bool IsInt64Long) {
389 switch (Flags.getEltType()) {
390 case NeonTypeFlags::Int8:
391 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
392 case NeonTypeFlags::Int16:
393 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
394 case NeonTypeFlags::Int32:
395 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
396 case NeonTypeFlags::Int64:
397 if (IsInt64Long)
398 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
399 else
400 return Flags.isUnsigned() ? Context.UnsignedLongLongTy
401 : Context.LongLongTy;
402 case NeonTypeFlags::Poly8:
403 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
404 case NeonTypeFlags::Poly16:
405 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
406 case NeonTypeFlags::Poly64:
407 return Context.UnsignedLongTy;
408 case NeonTypeFlags::Poly128:
409 break;
410 case NeonTypeFlags::Float16:
411 return Context.HalfTy;
412 case NeonTypeFlags::Float32:
413 return Context.FloatTy;
414 case NeonTypeFlags::Float64:
415 return Context.DoubleTy;
416 }
417 llvm_unreachable("Invalid NeonTypeFlag!");
418 }
419
CheckNeonBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)420 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
421 llvm::APSInt Result;
422 uint64_t mask = 0;
423 unsigned TV = 0;
424 int PtrArgNum = -1;
425 bool HasConstPtr = false;
426 switch (BuiltinID) {
427 #define GET_NEON_OVERLOAD_CHECK
428 #include "clang/Basic/arm_neon.inc"
429 #undef GET_NEON_OVERLOAD_CHECK
430 }
431
432 // For NEON intrinsics which are overloaded on vector element type, validate
433 // the immediate which specifies which variant to emit.
434 unsigned ImmArg = TheCall->getNumArgs()-1;
435 if (mask) {
436 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
437 return true;
438
439 TV = Result.getLimitedValue(64);
440 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
441 return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
442 << TheCall->getArg(ImmArg)->getSourceRange();
443 }
444
445 if (PtrArgNum >= 0) {
446 // Check that pointer arguments have the specified type.
447 Expr *Arg = TheCall->getArg(PtrArgNum);
448 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
449 Arg = ICE->getSubExpr();
450 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
451 QualType RHSTy = RHS.get()->getType();
452
453 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
454 bool IsPolyUnsigned =
455 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::arm64;
456 bool IsInt64Long =
457 Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
458 QualType EltTy =
459 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
460 if (HasConstPtr)
461 EltTy = EltTy.withConst();
462 QualType LHSTy = Context.getPointerType(EltTy);
463 AssignConvertType ConvTy;
464 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
465 if (RHS.isInvalid())
466 return true;
467 if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
468 RHS.get(), AA_Assigning))
469 return true;
470 }
471
472 // For NEON intrinsics which take an immediate value as part of the
473 // instruction, range check them here.
474 unsigned i = 0, l = 0, u = 0;
475 switch (BuiltinID) {
476 default:
477 return false;
478 #define GET_NEON_IMMEDIATE_CHECK
479 #include "clang/Basic/arm_neon.inc"
480 #undef GET_NEON_IMMEDIATE_CHECK
481 }
482
483 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
484 }
485
CheckARMBuiltinExclusiveCall(unsigned BuiltinID,CallExpr * TheCall,unsigned MaxWidth)486 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
487 unsigned MaxWidth) {
488 assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
489 BuiltinID == ARM::BI__builtin_arm_ldaex ||
490 BuiltinID == ARM::BI__builtin_arm_strex ||
491 BuiltinID == ARM::BI__builtin_arm_stlex ||
492 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
493 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
494 BuiltinID == AArch64::BI__builtin_arm_strex ||
495 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
496 "unexpected ARM builtin");
497 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
498 BuiltinID == ARM::BI__builtin_arm_ldaex ||
499 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
500 BuiltinID == AArch64::BI__builtin_arm_ldaex;
501
502 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
503
504 // Ensure that we have the proper number of arguments.
505 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
506 return true;
507
508 // Inspect the pointer argument of the atomic builtin. This should always be
509 // a pointer type, whose element is an integral scalar or pointer type.
510 // Because it is a pointer type, we don't have to worry about any implicit
511 // casts here.
512 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
513 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
514 if (PointerArgRes.isInvalid())
515 return true;
516 PointerArg = PointerArgRes.get();
517
518 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
519 if (!pointerType) {
520 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
521 << PointerArg->getType() << PointerArg->getSourceRange();
522 return true;
523 }
524
525 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
526 // task is to insert the appropriate casts into the AST. First work out just
527 // what the appropriate type is.
528 QualType ValType = pointerType->getPointeeType();
529 QualType AddrType = ValType.getUnqualifiedType().withVolatile();
530 if (IsLdrex)
531 AddrType.addConst();
532
533 // Issue a warning if the cast is dodgy.
534 CastKind CastNeeded = CK_NoOp;
535 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
536 CastNeeded = CK_BitCast;
537 Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
538 << PointerArg->getType()
539 << Context.getPointerType(AddrType)
540 << AA_Passing << PointerArg->getSourceRange();
541 }
542
543 // Finally, do the cast and replace the argument with the corrected version.
544 AddrType = Context.getPointerType(AddrType);
545 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
546 if (PointerArgRes.isInvalid())
547 return true;
548 PointerArg = PointerArgRes.get();
549
550 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
551
552 // In general, we allow ints, floats and pointers to be loaded and stored.
553 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
554 !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
555 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
556 << PointerArg->getType() << PointerArg->getSourceRange();
557 return true;
558 }
559
560 // But ARM doesn't have instructions to deal with 128-bit versions.
561 if (Context.getTypeSize(ValType) > MaxWidth) {
562 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
563 Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
564 << PointerArg->getType() << PointerArg->getSourceRange();
565 return true;
566 }
567
568 switch (ValType.getObjCLifetime()) {
569 case Qualifiers::OCL_None:
570 case Qualifiers::OCL_ExplicitNone:
571 // okay
572 break;
573
574 case Qualifiers::OCL_Weak:
575 case Qualifiers::OCL_Strong:
576 case Qualifiers::OCL_Autoreleasing:
577 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
578 << ValType << PointerArg->getSourceRange();
579 return true;
580 }
581
582
583 if (IsLdrex) {
584 TheCall->setType(ValType);
585 return false;
586 }
587
588 // Initialize the argument to be stored.
589 ExprResult ValArg = TheCall->getArg(0);
590 InitializedEntity Entity = InitializedEntity::InitializeParameter(
591 Context, ValType, /*consume*/ false);
592 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
593 if (ValArg.isInvalid())
594 return true;
595 TheCall->setArg(0, ValArg.get());
596
597 // __builtin_arm_strex always returns an int. It's marked as such in the .def,
598 // but the custom checker bypasses all default analysis.
599 TheCall->setType(Context.IntTy);
600 return false;
601 }
602
CheckARMBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)603 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
604 llvm::APSInt Result;
605
606 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
607 BuiltinID == ARM::BI__builtin_arm_ldaex ||
608 BuiltinID == ARM::BI__builtin_arm_strex ||
609 BuiltinID == ARM::BI__builtin_arm_stlex) {
610 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
611 }
612
613 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
614 return true;
615
616 // For intrinsics which take an immediate value as part of the instruction,
617 // range check them here.
618 unsigned i = 0, l = 0, u = 0;
619 switch (BuiltinID) {
620 default: return false;
621 case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
622 case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
623 case ARM::BI__builtin_arm_vcvtr_f:
624 case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
625 case ARM::BI__builtin_arm_dmb:
626 case ARM::BI__builtin_arm_dsb:
627 case ARM::BI__builtin_arm_isb: l = 0; u = 15; break;
628 }
629
630 // FIXME: VFP Intrinsics should error if VFP not present.
631 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
632 }
633
CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)634 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
635 CallExpr *TheCall) {
636 llvm::APSInt Result;
637
638 if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
639 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
640 BuiltinID == AArch64::BI__builtin_arm_strex ||
641 BuiltinID == AArch64::BI__builtin_arm_stlex) {
642 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
643 }
644
645 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
646 return true;
647
648 return false;
649 }
650
CheckMipsBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)651 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
652 unsigned i = 0, l = 0, u = 0;
653 switch (BuiltinID) {
654 default: return false;
655 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
656 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
657 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
658 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
659 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
660 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
661 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
662 }
663
664 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
665 }
666
CheckX86BuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)667 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
668 switch (BuiltinID) {
669 case X86::BI_mm_prefetch:
670 // This is declared to take (const char*, int)
671 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
672 }
673 return false;
674 }
675
676 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
677 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
678 /// Returns true when the format fits the function and the FormatStringInfo has
679 /// been populated.
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,FormatStringInfo * FSI)680 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
681 FormatStringInfo *FSI) {
682 FSI->HasVAListArg = Format->getFirstArg() == 0;
683 FSI->FormatIdx = Format->getFormatIdx() - 1;
684 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
685
686 // The way the format attribute works in GCC, the implicit this argument
687 // of member functions is counted. However, it doesn't appear in our own
688 // lists, so decrement format_idx in that case.
689 if (IsCXXMember) {
690 if(FSI->FormatIdx == 0)
691 return false;
692 --FSI->FormatIdx;
693 if (FSI->FirstDataArg != 0)
694 --FSI->FirstDataArg;
695 }
696 return true;
697 }
698
699 /// Checks if a the given expression evaluates to null.
700 ///
701 /// \brief Returns true if the value evaluates to null.
CheckNonNullExpr(Sema & S,const Expr * Expr)702 static bool CheckNonNullExpr(Sema &S,
703 const Expr *Expr) {
704 // As a special case, transparent unions initialized with zero are
705 // considered null for the purposes of the nonnull attribute.
706 if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
707 if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
708 if (const CompoundLiteralExpr *CLE =
709 dyn_cast<CompoundLiteralExpr>(Expr))
710 if (const InitListExpr *ILE =
711 dyn_cast<InitListExpr>(CLE->getInitializer()))
712 Expr = ILE->getInit(0);
713 }
714
715 bool Result;
716 return (!Expr->isValueDependent() &&
717 Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
718 !Result);
719 }
720
CheckNonNullArgument(Sema & S,const Expr * ArgExpr,SourceLocation CallSiteLoc)721 static void CheckNonNullArgument(Sema &S,
722 const Expr *ArgExpr,
723 SourceLocation CallSiteLoc) {
724 if (CheckNonNullExpr(S, ArgExpr))
725 S.Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
726 }
727
CheckNonNullArguments(Sema & S,const NamedDecl * FDecl,const Expr * const * ExprArgs,SourceLocation CallSiteLoc)728 static void CheckNonNullArguments(Sema &S,
729 const NamedDecl *FDecl,
730 const Expr * const *ExprArgs,
731 SourceLocation CallSiteLoc) {
732 // Check the attributes attached to the method/function itself.
733 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
734 for (const auto &Val : NonNull->args())
735 CheckNonNullArgument(S, ExprArgs[Val], CallSiteLoc);
736 }
737
738 // Check the attributes on the parameters.
739 ArrayRef<ParmVarDecl*> parms;
740 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
741 parms = FD->parameters();
742 else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(FDecl))
743 parms = MD->parameters();
744
745 unsigned argIndex = 0;
746 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
747 I != E; ++I, ++argIndex) {
748 const ParmVarDecl *PVD = *I;
749 if (PVD->hasAttr<NonNullAttr>())
750 CheckNonNullArgument(S, ExprArgs[argIndex], CallSiteLoc);
751 }
752 }
753
754 /// Handles the checks for format strings, non-POD arguments to vararg
755 /// functions, and NULL arguments passed to non-NULL parameters.
checkCall(NamedDecl * FDecl,ArrayRef<const Expr * > Args,unsigned NumParams,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)756 void Sema::checkCall(NamedDecl *FDecl, ArrayRef<const Expr *> Args,
757 unsigned NumParams, bool IsMemberFunction,
758 SourceLocation Loc, SourceRange Range,
759 VariadicCallType CallType) {
760 // FIXME: We should check as much as we can in the template definition.
761 if (CurContext->isDependentContext())
762 return;
763
764 // Printf and scanf checking.
765 llvm::SmallBitVector CheckedVarArgs;
766 if (FDecl) {
767 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
768 // Only create vector if there are format attributes.
769 CheckedVarArgs.resize(Args.size());
770
771 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
772 CheckedVarArgs);
773 }
774 }
775
776 // Refuse POD arguments that weren't caught by the format string
777 // checks above.
778 if (CallType != VariadicDoesNotApply) {
779 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
780 // Args[ArgIdx] can be null in malformed code.
781 if (const Expr *Arg = Args[ArgIdx]) {
782 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
783 checkVariadicArgument(Arg, CallType);
784 }
785 }
786 }
787
788 if (FDecl) {
789 CheckNonNullArguments(*this, FDecl, Args.data(), Loc);
790
791 // Type safety checking.
792 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
793 CheckArgumentWithTypeTag(I, Args.data());
794 }
795 }
796
797 /// CheckConstructorCall - Check a constructor call for correctness and safety
798 /// properties not enforced by the C type system.
CheckConstructorCall(FunctionDecl * FDecl,ArrayRef<const Expr * > Args,const FunctionProtoType * Proto,SourceLocation Loc)799 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
800 ArrayRef<const Expr *> Args,
801 const FunctionProtoType *Proto,
802 SourceLocation Loc) {
803 VariadicCallType CallType =
804 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
805 checkCall(FDecl, Args, Proto->getNumParams(),
806 /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
807 }
808
809 /// CheckFunctionCall - Check a direct function call for various correctness
810 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)811 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
812 const FunctionProtoType *Proto) {
813 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
814 isa<CXXMethodDecl>(FDecl);
815 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
816 IsMemberOperatorCall;
817 VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
818 TheCall->getCallee());
819 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
820 Expr** Args = TheCall->getArgs();
821 unsigned NumArgs = TheCall->getNumArgs();
822 if (IsMemberOperatorCall) {
823 // If this is a call to a member operator, hide the first argument
824 // from checkCall.
825 // FIXME: Our choice of AST representation here is less than ideal.
826 ++Args;
827 --NumArgs;
828 }
829 checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs), NumParams,
830 IsMemberFunction, TheCall->getRParenLoc(),
831 TheCall->getCallee()->getSourceRange(), CallType);
832
833 IdentifierInfo *FnInfo = FDecl->getIdentifier();
834 // None of the checks below are needed for functions that don't have
835 // simple names (e.g., C++ conversion functions).
836 if (!FnInfo)
837 return false;
838
839 CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
840
841 unsigned CMId = FDecl->getMemoryFunctionKind();
842 if (CMId == 0)
843 return false;
844
845 // Handle memory setting and copying functions.
846 if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
847 CheckStrlcpycatArguments(TheCall, FnInfo);
848 else if (CMId == Builtin::BIstrncat)
849 CheckStrncatArguments(TheCall, FnInfo);
850 else
851 CheckMemaccessArguments(TheCall, CMId, FnInfo);
852
853 return false;
854 }
855
CheckObjCMethodCall(ObjCMethodDecl * Method,SourceLocation lbrac,ArrayRef<const Expr * > Args)856 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
857 ArrayRef<const Expr *> Args) {
858 VariadicCallType CallType =
859 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
860
861 checkCall(Method, Args, Method->param_size(),
862 /*IsMemberFunction=*/false,
863 lbrac, Method->getSourceRange(), CallType);
864
865 return false;
866 }
867
CheckPointerCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)868 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
869 const FunctionProtoType *Proto) {
870 const VarDecl *V = dyn_cast<VarDecl>(NDecl);
871 if (!V)
872 return false;
873
874 QualType Ty = V->getType();
875 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
876 return false;
877
878 VariadicCallType CallType;
879 if (!Proto || !Proto->isVariadic()) {
880 CallType = VariadicDoesNotApply;
881 } else if (Ty->isBlockPointerType()) {
882 CallType = VariadicBlock;
883 } else { // Ty->isFunctionPointerType()
884 CallType = VariadicFunction;
885 }
886 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
887
888 checkCall(NDecl, llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
889 TheCall->getNumArgs()),
890 NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
891 TheCall->getCallee()->getSourceRange(), CallType);
892
893 return false;
894 }
895
896 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
897 /// such as function pointers returned from functions.
CheckOtherCall(CallExpr * TheCall,const FunctionProtoType * Proto)898 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
899 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
900 TheCall->getCallee());
901 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
902
903 checkCall(/*FDecl=*/nullptr,
904 llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
905 TheCall->getNumArgs()),
906 NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
907 TheCall->getCallee()->getSourceRange(), CallType);
908
909 return false;
910 }
911
isValidOrderingForOp(int64_t Ordering,AtomicExpr::AtomicOp Op)912 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
913 if (Ordering < AtomicExpr::AO_ABI_memory_order_relaxed ||
914 Ordering > AtomicExpr::AO_ABI_memory_order_seq_cst)
915 return false;
916
917 switch (Op) {
918 case AtomicExpr::AO__c11_atomic_init:
919 llvm_unreachable("There is no ordering argument for an init");
920
921 case AtomicExpr::AO__c11_atomic_load:
922 case AtomicExpr::AO__atomic_load_n:
923 case AtomicExpr::AO__atomic_load:
924 return Ordering != AtomicExpr::AO_ABI_memory_order_release &&
925 Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
926
927 case AtomicExpr::AO__c11_atomic_store:
928 case AtomicExpr::AO__atomic_store:
929 case AtomicExpr::AO__atomic_store_n:
930 return Ordering != AtomicExpr::AO_ABI_memory_order_consume &&
931 Ordering != AtomicExpr::AO_ABI_memory_order_acquire &&
932 Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
933
934 default:
935 return true;
936 }
937 }
938
SemaAtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)939 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
940 AtomicExpr::AtomicOp Op) {
941 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
942 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
943
944 // All these operations take one of the following forms:
945 enum {
946 // C __c11_atomic_init(A *, C)
947 Init,
948 // C __c11_atomic_load(A *, int)
949 Load,
950 // void __atomic_load(A *, CP, int)
951 Copy,
952 // C __c11_atomic_add(A *, M, int)
953 Arithmetic,
954 // C __atomic_exchange_n(A *, CP, int)
955 Xchg,
956 // void __atomic_exchange(A *, C *, CP, int)
957 GNUXchg,
958 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
959 C11CmpXchg,
960 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
961 GNUCmpXchg
962 } Form = Init;
963 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
964 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
965 // where:
966 // C is an appropriate type,
967 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
968 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
969 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
970 // the int parameters are for orderings.
971
972 assert(AtomicExpr::AO__c11_atomic_init == 0 &&
973 AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
974 && "need to update code for modified C11 atomics");
975 bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
976 Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
977 bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
978 Op == AtomicExpr::AO__atomic_store_n ||
979 Op == AtomicExpr::AO__atomic_exchange_n ||
980 Op == AtomicExpr::AO__atomic_compare_exchange_n;
981 bool IsAddSub = false;
982
983 switch (Op) {
984 case AtomicExpr::AO__c11_atomic_init:
985 Form = Init;
986 break;
987
988 case AtomicExpr::AO__c11_atomic_load:
989 case AtomicExpr::AO__atomic_load_n:
990 Form = Load;
991 break;
992
993 case AtomicExpr::AO__c11_atomic_store:
994 case AtomicExpr::AO__atomic_load:
995 case AtomicExpr::AO__atomic_store:
996 case AtomicExpr::AO__atomic_store_n:
997 Form = Copy;
998 break;
999
1000 case AtomicExpr::AO__c11_atomic_fetch_add:
1001 case AtomicExpr::AO__c11_atomic_fetch_sub:
1002 case AtomicExpr::AO__atomic_fetch_add:
1003 case AtomicExpr::AO__atomic_fetch_sub:
1004 case AtomicExpr::AO__atomic_add_fetch:
1005 case AtomicExpr::AO__atomic_sub_fetch:
1006 IsAddSub = true;
1007 // Fall through.
1008 case AtomicExpr::AO__c11_atomic_fetch_and:
1009 case AtomicExpr::AO__c11_atomic_fetch_or:
1010 case AtomicExpr::AO__c11_atomic_fetch_xor:
1011 case AtomicExpr::AO__atomic_fetch_and:
1012 case AtomicExpr::AO__atomic_fetch_or:
1013 case AtomicExpr::AO__atomic_fetch_xor:
1014 case AtomicExpr::AO__atomic_fetch_nand:
1015 case AtomicExpr::AO__atomic_and_fetch:
1016 case AtomicExpr::AO__atomic_or_fetch:
1017 case AtomicExpr::AO__atomic_xor_fetch:
1018 case AtomicExpr::AO__atomic_nand_fetch:
1019 Form = Arithmetic;
1020 break;
1021
1022 case AtomicExpr::AO__c11_atomic_exchange:
1023 case AtomicExpr::AO__atomic_exchange_n:
1024 Form = Xchg;
1025 break;
1026
1027 case AtomicExpr::AO__atomic_exchange:
1028 Form = GNUXchg;
1029 break;
1030
1031 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
1032 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
1033 Form = C11CmpXchg;
1034 break;
1035
1036 case AtomicExpr::AO__atomic_compare_exchange:
1037 case AtomicExpr::AO__atomic_compare_exchange_n:
1038 Form = GNUCmpXchg;
1039 break;
1040 }
1041
1042 // Check we have the right number of arguments.
1043 if (TheCall->getNumArgs() < NumArgs[Form]) {
1044 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1045 << 0 << NumArgs[Form] << TheCall->getNumArgs()
1046 << TheCall->getCallee()->getSourceRange();
1047 return ExprError();
1048 } else if (TheCall->getNumArgs() > NumArgs[Form]) {
1049 Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
1050 diag::err_typecheck_call_too_many_args)
1051 << 0 << NumArgs[Form] << TheCall->getNumArgs()
1052 << TheCall->getCallee()->getSourceRange();
1053 return ExprError();
1054 }
1055
1056 // Inspect the first argument of the atomic operation.
1057 Expr *Ptr = TheCall->getArg(0);
1058 Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
1059 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
1060 if (!pointerType) {
1061 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1062 << Ptr->getType() << Ptr->getSourceRange();
1063 return ExprError();
1064 }
1065
1066 // For a __c11 builtin, this should be a pointer to an _Atomic type.
1067 QualType AtomTy = pointerType->getPointeeType(); // 'A'
1068 QualType ValType = AtomTy; // 'C'
1069 if (IsC11) {
1070 if (!AtomTy->isAtomicType()) {
1071 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1072 << Ptr->getType() << Ptr->getSourceRange();
1073 return ExprError();
1074 }
1075 if (AtomTy.isConstQualified()) {
1076 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1077 << Ptr->getType() << Ptr->getSourceRange();
1078 return ExprError();
1079 }
1080 ValType = AtomTy->getAs<AtomicType>()->getValueType();
1081 }
1082
1083 // For an arithmetic operation, the implied arithmetic must be well-formed.
1084 if (Form == Arithmetic) {
1085 // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1086 if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1087 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1088 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1089 return ExprError();
1090 }
1091 if (!IsAddSub && !ValType->isIntegerType()) {
1092 Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1093 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1094 return ExprError();
1095 }
1096 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1097 // For __atomic_*_n operations, the value type must be a scalar integral or
1098 // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1099 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1100 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1101 return ExprError();
1102 }
1103
1104 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
1105 !AtomTy->isScalarType()) {
1106 // For GNU atomics, require a trivially-copyable type. This is not part of
1107 // the GNU atomics specification, but we enforce it for sanity.
1108 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1109 << Ptr->getType() << Ptr->getSourceRange();
1110 return ExprError();
1111 }
1112
1113 // FIXME: For any builtin other than a load, the ValType must not be
1114 // const-qualified.
1115
1116 switch (ValType.getObjCLifetime()) {
1117 case Qualifiers::OCL_None:
1118 case Qualifiers::OCL_ExplicitNone:
1119 // okay
1120 break;
1121
1122 case Qualifiers::OCL_Weak:
1123 case Qualifiers::OCL_Strong:
1124 case Qualifiers::OCL_Autoreleasing:
1125 // FIXME: Can this happen? By this point, ValType should be known
1126 // to be trivially copyable.
1127 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1128 << ValType << Ptr->getSourceRange();
1129 return ExprError();
1130 }
1131
1132 QualType ResultType = ValType;
1133 if (Form == Copy || Form == GNUXchg || Form == Init)
1134 ResultType = Context.VoidTy;
1135 else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1136 ResultType = Context.BoolTy;
1137
1138 // The type of a parameter passed 'by value'. In the GNU atomics, such
1139 // arguments are actually passed as pointers.
1140 QualType ByValType = ValType; // 'CP'
1141 if (!IsC11 && !IsN)
1142 ByValType = Ptr->getType();
1143
1144 // The first argument --- the pointer --- has a fixed type; we
1145 // deduce the types of the rest of the arguments accordingly. Walk
1146 // the remaining arguments, converting them to the deduced value type.
1147 for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1148 QualType Ty;
1149 if (i < NumVals[Form] + 1) {
1150 switch (i) {
1151 case 1:
1152 // The second argument is the non-atomic operand. For arithmetic, this
1153 // is always passed by value, and for a compare_exchange it is always
1154 // passed by address. For the rest, GNU uses by-address and C11 uses
1155 // by-value.
1156 assert(Form != Load);
1157 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1158 Ty = ValType;
1159 else if (Form == Copy || Form == Xchg)
1160 Ty = ByValType;
1161 else if (Form == Arithmetic)
1162 Ty = Context.getPointerDiffType();
1163 else
1164 Ty = Context.getPointerType(ValType.getUnqualifiedType());
1165 break;
1166 case 2:
1167 // The third argument to compare_exchange / GNU exchange is a
1168 // (pointer to a) desired value.
1169 Ty = ByValType;
1170 break;
1171 case 3:
1172 // The fourth argument to GNU compare_exchange is a 'weak' flag.
1173 Ty = Context.BoolTy;
1174 break;
1175 }
1176 } else {
1177 // The order(s) are always converted to int.
1178 Ty = Context.IntTy;
1179 }
1180
1181 InitializedEntity Entity =
1182 InitializedEntity::InitializeParameter(Context, Ty, false);
1183 ExprResult Arg = TheCall->getArg(i);
1184 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1185 if (Arg.isInvalid())
1186 return true;
1187 TheCall->setArg(i, Arg.get());
1188 }
1189
1190 // Permute the arguments into a 'consistent' order.
1191 SmallVector<Expr*, 5> SubExprs;
1192 SubExprs.push_back(Ptr);
1193 switch (Form) {
1194 case Init:
1195 // Note, AtomicExpr::getVal1() has a special case for this atomic.
1196 SubExprs.push_back(TheCall->getArg(1)); // Val1
1197 break;
1198 case Load:
1199 SubExprs.push_back(TheCall->getArg(1)); // Order
1200 break;
1201 case Copy:
1202 case Arithmetic:
1203 case Xchg:
1204 SubExprs.push_back(TheCall->getArg(2)); // Order
1205 SubExprs.push_back(TheCall->getArg(1)); // Val1
1206 break;
1207 case GNUXchg:
1208 // Note, AtomicExpr::getVal2() has a special case for this atomic.
1209 SubExprs.push_back(TheCall->getArg(3)); // Order
1210 SubExprs.push_back(TheCall->getArg(1)); // Val1
1211 SubExprs.push_back(TheCall->getArg(2)); // Val2
1212 break;
1213 case C11CmpXchg:
1214 SubExprs.push_back(TheCall->getArg(3)); // Order
1215 SubExprs.push_back(TheCall->getArg(1)); // Val1
1216 SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1217 SubExprs.push_back(TheCall->getArg(2)); // Val2
1218 break;
1219 case GNUCmpXchg:
1220 SubExprs.push_back(TheCall->getArg(4)); // Order
1221 SubExprs.push_back(TheCall->getArg(1)); // Val1
1222 SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1223 SubExprs.push_back(TheCall->getArg(2)); // Val2
1224 SubExprs.push_back(TheCall->getArg(3)); // Weak
1225 break;
1226 }
1227
1228 if (SubExprs.size() >= 2 && Form != Init) {
1229 llvm::APSInt Result(32);
1230 if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
1231 !isValidOrderingForOp(Result.getSExtValue(), Op))
1232 Diag(SubExprs[1]->getLocStart(),
1233 diag::warn_atomic_op_has_invalid_memory_order)
1234 << SubExprs[1]->getSourceRange();
1235 }
1236
1237 AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1238 SubExprs, ResultType, Op,
1239 TheCall->getRParenLoc());
1240
1241 if ((Op == AtomicExpr::AO__c11_atomic_load ||
1242 (Op == AtomicExpr::AO__c11_atomic_store)) &&
1243 Context.AtomicUsesUnsupportedLibcall(AE))
1244 Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1245 ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1246
1247 return AE;
1248 }
1249
1250
1251 /// checkBuiltinArgument - Given a call to a builtin function, perform
1252 /// normal type-checking on the given argument, updating the call in
1253 /// place. This is useful when a builtin function requires custom
1254 /// type-checking for some of its arguments but not necessarily all of
1255 /// them.
1256 ///
1257 /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)1258 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1259 FunctionDecl *Fn = E->getDirectCallee();
1260 assert(Fn && "builtin call without direct callee!");
1261
1262 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1263 InitializedEntity Entity =
1264 InitializedEntity::InitializeParameter(S.Context, Param);
1265
1266 ExprResult Arg = E->getArg(0);
1267 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1268 if (Arg.isInvalid())
1269 return true;
1270
1271 E->setArg(ArgIndex, Arg.get());
1272 return false;
1273 }
1274
1275 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
1276 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
1277 /// type of its first argument. The main ActOnCallExpr routines have already
1278 /// promoted the types of arguments because all of these calls are prototyped as
1279 /// void(...).
1280 ///
1281 /// This function goes through and does final semantic checking for these
1282 /// builtins,
1283 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)1284 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1285 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1286 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1287 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1288
1289 // Ensure that we have at least one argument to do type inference from.
1290 if (TheCall->getNumArgs() < 1) {
1291 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1292 << 0 << 1 << TheCall->getNumArgs()
1293 << TheCall->getCallee()->getSourceRange();
1294 return ExprError();
1295 }
1296
1297 // Inspect the first argument of the atomic builtin. This should always be
1298 // a pointer type, whose element is an integral scalar or pointer type.
1299 // Because it is a pointer type, we don't have to worry about any implicit
1300 // casts here.
1301 // FIXME: We don't allow floating point scalars as input.
1302 Expr *FirstArg = TheCall->getArg(0);
1303 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1304 if (FirstArgResult.isInvalid())
1305 return ExprError();
1306 FirstArg = FirstArgResult.get();
1307 TheCall->setArg(0, FirstArg);
1308
1309 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1310 if (!pointerType) {
1311 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1312 << FirstArg->getType() << FirstArg->getSourceRange();
1313 return ExprError();
1314 }
1315
1316 QualType ValType = pointerType->getPointeeType();
1317 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1318 !ValType->isBlockPointerType()) {
1319 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1320 << FirstArg->getType() << FirstArg->getSourceRange();
1321 return ExprError();
1322 }
1323
1324 switch (ValType.getObjCLifetime()) {
1325 case Qualifiers::OCL_None:
1326 case Qualifiers::OCL_ExplicitNone:
1327 // okay
1328 break;
1329
1330 case Qualifiers::OCL_Weak:
1331 case Qualifiers::OCL_Strong:
1332 case Qualifiers::OCL_Autoreleasing:
1333 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1334 << ValType << FirstArg->getSourceRange();
1335 return ExprError();
1336 }
1337
1338 // Strip any qualifiers off ValType.
1339 ValType = ValType.getUnqualifiedType();
1340
1341 // The majority of builtins return a value, but a few have special return
1342 // types, so allow them to override appropriately below.
1343 QualType ResultType = ValType;
1344
1345 // We need to figure out which concrete builtin this maps onto. For example,
1346 // __sync_fetch_and_add with a 2 byte object turns into
1347 // __sync_fetch_and_add_2.
1348 #define BUILTIN_ROW(x) \
1349 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1350 Builtin::BI##x##_8, Builtin::BI##x##_16 }
1351
1352 static const unsigned BuiltinIndices[][5] = {
1353 BUILTIN_ROW(__sync_fetch_and_add),
1354 BUILTIN_ROW(__sync_fetch_and_sub),
1355 BUILTIN_ROW(__sync_fetch_and_or),
1356 BUILTIN_ROW(__sync_fetch_and_and),
1357 BUILTIN_ROW(__sync_fetch_and_xor),
1358
1359 BUILTIN_ROW(__sync_add_and_fetch),
1360 BUILTIN_ROW(__sync_sub_and_fetch),
1361 BUILTIN_ROW(__sync_and_and_fetch),
1362 BUILTIN_ROW(__sync_or_and_fetch),
1363 BUILTIN_ROW(__sync_xor_and_fetch),
1364
1365 BUILTIN_ROW(__sync_val_compare_and_swap),
1366 BUILTIN_ROW(__sync_bool_compare_and_swap),
1367 BUILTIN_ROW(__sync_lock_test_and_set),
1368 BUILTIN_ROW(__sync_lock_release),
1369 BUILTIN_ROW(__sync_swap)
1370 };
1371 #undef BUILTIN_ROW
1372
1373 // Determine the index of the size.
1374 unsigned SizeIndex;
1375 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1376 case 1: SizeIndex = 0; break;
1377 case 2: SizeIndex = 1; break;
1378 case 4: SizeIndex = 2; break;
1379 case 8: SizeIndex = 3; break;
1380 case 16: SizeIndex = 4; break;
1381 default:
1382 Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1383 << FirstArg->getType() << FirstArg->getSourceRange();
1384 return ExprError();
1385 }
1386
1387 // Each of these builtins has one pointer argument, followed by some number of
1388 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1389 // that we ignore. Find out which row of BuiltinIndices to read from as well
1390 // as the number of fixed args.
1391 unsigned BuiltinID = FDecl->getBuiltinID();
1392 unsigned BuiltinIndex, NumFixed = 1;
1393 switch (BuiltinID) {
1394 default: llvm_unreachable("Unknown overloaded atomic builtin!");
1395 case Builtin::BI__sync_fetch_and_add:
1396 case Builtin::BI__sync_fetch_and_add_1:
1397 case Builtin::BI__sync_fetch_and_add_2:
1398 case Builtin::BI__sync_fetch_and_add_4:
1399 case Builtin::BI__sync_fetch_and_add_8:
1400 case Builtin::BI__sync_fetch_and_add_16:
1401 BuiltinIndex = 0;
1402 break;
1403
1404 case Builtin::BI__sync_fetch_and_sub:
1405 case Builtin::BI__sync_fetch_and_sub_1:
1406 case Builtin::BI__sync_fetch_and_sub_2:
1407 case Builtin::BI__sync_fetch_and_sub_4:
1408 case Builtin::BI__sync_fetch_and_sub_8:
1409 case Builtin::BI__sync_fetch_and_sub_16:
1410 BuiltinIndex = 1;
1411 break;
1412
1413 case Builtin::BI__sync_fetch_and_or:
1414 case Builtin::BI__sync_fetch_and_or_1:
1415 case Builtin::BI__sync_fetch_and_or_2:
1416 case Builtin::BI__sync_fetch_and_or_4:
1417 case Builtin::BI__sync_fetch_and_or_8:
1418 case Builtin::BI__sync_fetch_and_or_16:
1419 BuiltinIndex = 2;
1420 break;
1421
1422 case Builtin::BI__sync_fetch_and_and:
1423 case Builtin::BI__sync_fetch_and_and_1:
1424 case Builtin::BI__sync_fetch_and_and_2:
1425 case Builtin::BI__sync_fetch_and_and_4:
1426 case Builtin::BI__sync_fetch_and_and_8:
1427 case Builtin::BI__sync_fetch_and_and_16:
1428 BuiltinIndex = 3;
1429 break;
1430
1431 case Builtin::BI__sync_fetch_and_xor:
1432 case Builtin::BI__sync_fetch_and_xor_1:
1433 case Builtin::BI__sync_fetch_and_xor_2:
1434 case Builtin::BI__sync_fetch_and_xor_4:
1435 case Builtin::BI__sync_fetch_and_xor_8:
1436 case Builtin::BI__sync_fetch_and_xor_16:
1437 BuiltinIndex = 4;
1438 break;
1439
1440 case Builtin::BI__sync_add_and_fetch:
1441 case Builtin::BI__sync_add_and_fetch_1:
1442 case Builtin::BI__sync_add_and_fetch_2:
1443 case Builtin::BI__sync_add_and_fetch_4:
1444 case Builtin::BI__sync_add_and_fetch_8:
1445 case Builtin::BI__sync_add_and_fetch_16:
1446 BuiltinIndex = 5;
1447 break;
1448
1449 case Builtin::BI__sync_sub_and_fetch:
1450 case Builtin::BI__sync_sub_and_fetch_1:
1451 case Builtin::BI__sync_sub_and_fetch_2:
1452 case Builtin::BI__sync_sub_and_fetch_4:
1453 case Builtin::BI__sync_sub_and_fetch_8:
1454 case Builtin::BI__sync_sub_and_fetch_16:
1455 BuiltinIndex = 6;
1456 break;
1457
1458 case Builtin::BI__sync_and_and_fetch:
1459 case Builtin::BI__sync_and_and_fetch_1:
1460 case Builtin::BI__sync_and_and_fetch_2:
1461 case Builtin::BI__sync_and_and_fetch_4:
1462 case Builtin::BI__sync_and_and_fetch_8:
1463 case Builtin::BI__sync_and_and_fetch_16:
1464 BuiltinIndex = 7;
1465 break;
1466
1467 case Builtin::BI__sync_or_and_fetch:
1468 case Builtin::BI__sync_or_and_fetch_1:
1469 case Builtin::BI__sync_or_and_fetch_2:
1470 case Builtin::BI__sync_or_and_fetch_4:
1471 case Builtin::BI__sync_or_and_fetch_8:
1472 case Builtin::BI__sync_or_and_fetch_16:
1473 BuiltinIndex = 8;
1474 break;
1475
1476 case Builtin::BI__sync_xor_and_fetch:
1477 case Builtin::BI__sync_xor_and_fetch_1:
1478 case Builtin::BI__sync_xor_and_fetch_2:
1479 case Builtin::BI__sync_xor_and_fetch_4:
1480 case Builtin::BI__sync_xor_and_fetch_8:
1481 case Builtin::BI__sync_xor_and_fetch_16:
1482 BuiltinIndex = 9;
1483 break;
1484
1485 case Builtin::BI__sync_val_compare_and_swap:
1486 case Builtin::BI__sync_val_compare_and_swap_1:
1487 case Builtin::BI__sync_val_compare_and_swap_2:
1488 case Builtin::BI__sync_val_compare_and_swap_4:
1489 case Builtin::BI__sync_val_compare_and_swap_8:
1490 case Builtin::BI__sync_val_compare_and_swap_16:
1491 BuiltinIndex = 10;
1492 NumFixed = 2;
1493 break;
1494
1495 case Builtin::BI__sync_bool_compare_and_swap:
1496 case Builtin::BI__sync_bool_compare_and_swap_1:
1497 case Builtin::BI__sync_bool_compare_and_swap_2:
1498 case Builtin::BI__sync_bool_compare_and_swap_4:
1499 case Builtin::BI__sync_bool_compare_and_swap_8:
1500 case Builtin::BI__sync_bool_compare_and_swap_16:
1501 BuiltinIndex = 11;
1502 NumFixed = 2;
1503 ResultType = Context.BoolTy;
1504 break;
1505
1506 case Builtin::BI__sync_lock_test_and_set:
1507 case Builtin::BI__sync_lock_test_and_set_1:
1508 case Builtin::BI__sync_lock_test_and_set_2:
1509 case Builtin::BI__sync_lock_test_and_set_4:
1510 case Builtin::BI__sync_lock_test_and_set_8:
1511 case Builtin::BI__sync_lock_test_and_set_16:
1512 BuiltinIndex = 12;
1513 break;
1514
1515 case Builtin::BI__sync_lock_release:
1516 case Builtin::BI__sync_lock_release_1:
1517 case Builtin::BI__sync_lock_release_2:
1518 case Builtin::BI__sync_lock_release_4:
1519 case Builtin::BI__sync_lock_release_8:
1520 case Builtin::BI__sync_lock_release_16:
1521 BuiltinIndex = 13;
1522 NumFixed = 0;
1523 ResultType = Context.VoidTy;
1524 break;
1525
1526 case Builtin::BI__sync_swap:
1527 case Builtin::BI__sync_swap_1:
1528 case Builtin::BI__sync_swap_2:
1529 case Builtin::BI__sync_swap_4:
1530 case Builtin::BI__sync_swap_8:
1531 case Builtin::BI__sync_swap_16:
1532 BuiltinIndex = 14;
1533 break;
1534 }
1535
1536 // Now that we know how many fixed arguments we expect, first check that we
1537 // have at least that many.
1538 if (TheCall->getNumArgs() < 1+NumFixed) {
1539 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1540 << 0 << 1+NumFixed << TheCall->getNumArgs()
1541 << TheCall->getCallee()->getSourceRange();
1542 return ExprError();
1543 }
1544
1545 // Get the decl for the concrete builtin from this, we can tell what the
1546 // concrete integer type we should convert to is.
1547 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1548 const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1549 FunctionDecl *NewBuiltinDecl;
1550 if (NewBuiltinID == BuiltinID)
1551 NewBuiltinDecl = FDecl;
1552 else {
1553 // Perform builtin lookup to avoid redeclaring it.
1554 DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1555 LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1556 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1557 assert(Res.getFoundDecl());
1558 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1559 if (!NewBuiltinDecl)
1560 return ExprError();
1561 }
1562
1563 // The first argument --- the pointer --- has a fixed type; we
1564 // deduce the types of the rest of the arguments accordingly. Walk
1565 // the remaining arguments, converting them to the deduced value type.
1566 for (unsigned i = 0; i != NumFixed; ++i) {
1567 ExprResult Arg = TheCall->getArg(i+1);
1568
1569 // GCC does an implicit conversion to the pointer or integer ValType. This
1570 // can fail in some cases (1i -> int**), check for this error case now.
1571 // Initialize the argument.
1572 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1573 ValType, /*consume*/ false);
1574 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1575 if (Arg.isInvalid())
1576 return ExprError();
1577
1578 // Okay, we have something that *can* be converted to the right type. Check
1579 // to see if there is a potentially weird extension going on here. This can
1580 // happen when you do an atomic operation on something like an char* and
1581 // pass in 42. The 42 gets converted to char. This is even more strange
1582 // for things like 45.123 -> char, etc.
1583 // FIXME: Do this check.
1584 TheCall->setArg(i+1, Arg.get());
1585 }
1586
1587 ASTContext& Context = this->getASTContext();
1588
1589 // Create a new DeclRefExpr to refer to the new decl.
1590 DeclRefExpr* NewDRE = DeclRefExpr::Create(
1591 Context,
1592 DRE->getQualifierLoc(),
1593 SourceLocation(),
1594 NewBuiltinDecl,
1595 /*enclosing*/ false,
1596 DRE->getLocation(),
1597 Context.BuiltinFnTy,
1598 DRE->getValueKind());
1599
1600 // Set the callee in the CallExpr.
1601 // FIXME: This loses syntactic information.
1602 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1603 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1604 CK_BuiltinFnToFnPtr);
1605 TheCall->setCallee(PromotedCall.get());
1606
1607 // Change the result type of the call to match the original value type. This
1608 // is arbitrary, but the codegen for these builtins ins design to handle it
1609 // gracefully.
1610 TheCall->setType(ResultType);
1611
1612 return TheCallResult;
1613 }
1614
1615 /// CheckObjCString - Checks that the argument to the builtin
1616 /// CFString constructor is correct
1617 /// Note: It might also make sense to do the UTF-16 conversion here (would
1618 /// simplify the backend).
CheckObjCString(Expr * Arg)1619 bool Sema::CheckObjCString(Expr *Arg) {
1620 Arg = Arg->IgnoreParenCasts();
1621 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1622
1623 if (!Literal || !Literal->isAscii()) {
1624 Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1625 << Arg->getSourceRange();
1626 return true;
1627 }
1628
1629 if (Literal->containsNonAsciiOrNull()) {
1630 StringRef String = Literal->getString();
1631 unsigned NumBytes = String.size();
1632 SmallVector<UTF16, 128> ToBuf(NumBytes);
1633 const UTF8 *FromPtr = (const UTF8 *)String.data();
1634 UTF16 *ToPtr = &ToBuf[0];
1635
1636 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1637 &ToPtr, ToPtr + NumBytes,
1638 strictConversion);
1639 // Check for conversion failure.
1640 if (Result != conversionOK)
1641 Diag(Arg->getLocStart(),
1642 diag::warn_cfstring_truncated) << Arg->getSourceRange();
1643 }
1644 return false;
1645 }
1646
1647 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1648 /// Emit an error and return true on failure, return false on success.
SemaBuiltinVAStart(CallExpr * TheCall)1649 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1650 Expr *Fn = TheCall->getCallee();
1651 if (TheCall->getNumArgs() > 2) {
1652 Diag(TheCall->getArg(2)->getLocStart(),
1653 diag::err_typecheck_call_too_many_args)
1654 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1655 << Fn->getSourceRange()
1656 << SourceRange(TheCall->getArg(2)->getLocStart(),
1657 (*(TheCall->arg_end()-1))->getLocEnd());
1658 return true;
1659 }
1660
1661 if (TheCall->getNumArgs() < 2) {
1662 return Diag(TheCall->getLocEnd(),
1663 diag::err_typecheck_call_too_few_args_at_least)
1664 << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1665 }
1666
1667 // Type-check the first argument normally.
1668 if (checkBuiltinArgument(*this, TheCall, 0))
1669 return true;
1670
1671 // Determine whether the current function is variadic or not.
1672 BlockScopeInfo *CurBlock = getCurBlock();
1673 bool isVariadic;
1674 if (CurBlock)
1675 isVariadic = CurBlock->TheDecl->isVariadic();
1676 else if (FunctionDecl *FD = getCurFunctionDecl())
1677 isVariadic = FD->isVariadic();
1678 else
1679 isVariadic = getCurMethodDecl()->isVariadic();
1680
1681 if (!isVariadic) {
1682 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1683 return true;
1684 }
1685
1686 // Verify that the second argument to the builtin is the last argument of the
1687 // current function or method.
1688 bool SecondArgIsLastNamedArgument = false;
1689 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1690
1691 // These are valid if SecondArgIsLastNamedArgument is false after the next
1692 // block.
1693 QualType Type;
1694 SourceLocation ParamLoc;
1695
1696 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1697 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1698 // FIXME: This isn't correct for methods (results in bogus warning).
1699 // Get the last formal in the current function.
1700 const ParmVarDecl *LastArg;
1701 if (CurBlock)
1702 LastArg = *(CurBlock->TheDecl->param_end()-1);
1703 else if (FunctionDecl *FD = getCurFunctionDecl())
1704 LastArg = *(FD->param_end()-1);
1705 else
1706 LastArg = *(getCurMethodDecl()->param_end()-1);
1707 SecondArgIsLastNamedArgument = PV == LastArg;
1708
1709 Type = PV->getType();
1710 ParamLoc = PV->getLocation();
1711 }
1712 }
1713
1714 if (!SecondArgIsLastNamedArgument)
1715 Diag(TheCall->getArg(1)->getLocStart(),
1716 diag::warn_second_parameter_of_va_start_not_last_named_argument);
1717 else if (Type->isReferenceType()) {
1718 Diag(Arg->getLocStart(),
1719 diag::warn_va_start_of_reference_type_is_undefined);
1720 Diag(ParamLoc, diag::note_parameter_type) << Type;
1721 }
1722
1723 TheCall->setType(Context.VoidTy);
1724 return false;
1725 }
1726
1727 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1728 /// friends. This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)1729 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1730 if (TheCall->getNumArgs() < 2)
1731 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1732 << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1733 if (TheCall->getNumArgs() > 2)
1734 return Diag(TheCall->getArg(2)->getLocStart(),
1735 diag::err_typecheck_call_too_many_args)
1736 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1737 << SourceRange(TheCall->getArg(2)->getLocStart(),
1738 (*(TheCall->arg_end()-1))->getLocEnd());
1739
1740 ExprResult OrigArg0 = TheCall->getArg(0);
1741 ExprResult OrigArg1 = TheCall->getArg(1);
1742
1743 // Do standard promotions between the two arguments, returning their common
1744 // type.
1745 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1746 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1747 return true;
1748
1749 // Make sure any conversions are pushed back into the call; this is
1750 // type safe since unordered compare builtins are declared as "_Bool
1751 // foo(...)".
1752 TheCall->setArg(0, OrigArg0.get());
1753 TheCall->setArg(1, OrigArg1.get());
1754
1755 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1756 return false;
1757
1758 // If the common type isn't a real floating type, then the arguments were
1759 // invalid for this operation.
1760 if (Res.isNull() || !Res->isRealFloatingType())
1761 return Diag(OrigArg0.get()->getLocStart(),
1762 diag::err_typecheck_call_invalid_ordered_compare)
1763 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1764 << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1765
1766 return false;
1767 }
1768
1769 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1770 /// __builtin_isnan and friends. This is declared to take (...), so we have
1771 /// to check everything. We expect the last argument to be a floating point
1772 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)1773 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1774 if (TheCall->getNumArgs() < NumArgs)
1775 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1776 << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1777 if (TheCall->getNumArgs() > NumArgs)
1778 return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1779 diag::err_typecheck_call_too_many_args)
1780 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1781 << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1782 (*(TheCall->arg_end()-1))->getLocEnd());
1783
1784 Expr *OrigArg = TheCall->getArg(NumArgs-1);
1785
1786 if (OrigArg->isTypeDependent())
1787 return false;
1788
1789 // This operation requires a non-_Complex floating-point number.
1790 if (!OrigArg->getType()->isRealFloatingType())
1791 return Diag(OrigArg->getLocStart(),
1792 diag::err_typecheck_call_invalid_unary_fp)
1793 << OrigArg->getType() << OrigArg->getSourceRange();
1794
1795 // If this is an implicit conversion from float -> double, remove it.
1796 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1797 Expr *CastArg = Cast->getSubExpr();
1798 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1799 assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1800 "promotion from float to double is the only expected cast here");
1801 Cast->setSubExpr(nullptr);
1802 TheCall->setArg(NumArgs-1, CastArg);
1803 }
1804 }
1805
1806 return false;
1807 }
1808
1809 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1810 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)1811 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1812 if (TheCall->getNumArgs() < 2)
1813 return ExprError(Diag(TheCall->getLocEnd(),
1814 diag::err_typecheck_call_too_few_args_at_least)
1815 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1816 << TheCall->getSourceRange());
1817
1818 // Determine which of the following types of shufflevector we're checking:
1819 // 1) unary, vector mask: (lhs, mask)
1820 // 2) binary, vector mask: (lhs, rhs, mask)
1821 // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1822 QualType resType = TheCall->getArg(0)->getType();
1823 unsigned numElements = 0;
1824
1825 if (!TheCall->getArg(0)->isTypeDependent() &&
1826 !TheCall->getArg(1)->isTypeDependent()) {
1827 QualType LHSType = TheCall->getArg(0)->getType();
1828 QualType RHSType = TheCall->getArg(1)->getType();
1829
1830 if (!LHSType->isVectorType() || !RHSType->isVectorType())
1831 return ExprError(Diag(TheCall->getLocStart(),
1832 diag::err_shufflevector_non_vector)
1833 << SourceRange(TheCall->getArg(0)->getLocStart(),
1834 TheCall->getArg(1)->getLocEnd()));
1835
1836 numElements = LHSType->getAs<VectorType>()->getNumElements();
1837 unsigned numResElements = TheCall->getNumArgs() - 2;
1838
1839 // Check to see if we have a call with 2 vector arguments, the unary shuffle
1840 // with mask. If so, verify that RHS is an integer vector type with the
1841 // same number of elts as lhs.
1842 if (TheCall->getNumArgs() == 2) {
1843 if (!RHSType->hasIntegerRepresentation() ||
1844 RHSType->getAs<VectorType>()->getNumElements() != numElements)
1845 return ExprError(Diag(TheCall->getLocStart(),
1846 diag::err_shufflevector_incompatible_vector)
1847 << SourceRange(TheCall->getArg(1)->getLocStart(),
1848 TheCall->getArg(1)->getLocEnd()));
1849 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1850 return ExprError(Diag(TheCall->getLocStart(),
1851 diag::err_shufflevector_incompatible_vector)
1852 << SourceRange(TheCall->getArg(0)->getLocStart(),
1853 TheCall->getArg(1)->getLocEnd()));
1854 } else if (numElements != numResElements) {
1855 QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1856 resType = Context.getVectorType(eltType, numResElements,
1857 VectorType::GenericVector);
1858 }
1859 }
1860
1861 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1862 if (TheCall->getArg(i)->isTypeDependent() ||
1863 TheCall->getArg(i)->isValueDependent())
1864 continue;
1865
1866 llvm::APSInt Result(32);
1867 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1868 return ExprError(Diag(TheCall->getLocStart(),
1869 diag::err_shufflevector_nonconstant_argument)
1870 << TheCall->getArg(i)->getSourceRange());
1871
1872 // Allow -1 which will be translated to undef in the IR.
1873 if (Result.isSigned() && Result.isAllOnesValue())
1874 continue;
1875
1876 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1877 return ExprError(Diag(TheCall->getLocStart(),
1878 diag::err_shufflevector_argument_too_large)
1879 << TheCall->getArg(i)->getSourceRange());
1880 }
1881
1882 SmallVector<Expr*, 32> exprs;
1883
1884 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1885 exprs.push_back(TheCall->getArg(i));
1886 TheCall->setArg(i, nullptr);
1887 }
1888
1889 return new (Context) ShuffleVectorExpr(Context, exprs, resType,
1890 TheCall->getCallee()->getLocStart(),
1891 TheCall->getRParenLoc());
1892 }
1893
1894 /// SemaConvertVectorExpr - Handle __builtin_convertvector
SemaConvertVectorExpr(Expr * E,TypeSourceInfo * TInfo,SourceLocation BuiltinLoc,SourceLocation RParenLoc)1895 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
1896 SourceLocation BuiltinLoc,
1897 SourceLocation RParenLoc) {
1898 ExprValueKind VK = VK_RValue;
1899 ExprObjectKind OK = OK_Ordinary;
1900 QualType DstTy = TInfo->getType();
1901 QualType SrcTy = E->getType();
1902
1903 if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
1904 return ExprError(Diag(BuiltinLoc,
1905 diag::err_convertvector_non_vector)
1906 << E->getSourceRange());
1907 if (!DstTy->isVectorType() && !DstTy->isDependentType())
1908 return ExprError(Diag(BuiltinLoc,
1909 diag::err_convertvector_non_vector_type));
1910
1911 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
1912 unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
1913 unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
1914 if (SrcElts != DstElts)
1915 return ExprError(Diag(BuiltinLoc,
1916 diag::err_convertvector_incompatible_vector)
1917 << E->getSourceRange());
1918 }
1919
1920 return new (Context)
1921 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
1922 }
1923
1924 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1925 // This is declared to take (const void*, ...) and can take two
1926 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)1927 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1928 unsigned NumArgs = TheCall->getNumArgs();
1929
1930 if (NumArgs > 3)
1931 return Diag(TheCall->getLocEnd(),
1932 diag::err_typecheck_call_too_many_args_at_most)
1933 << 0 /*function call*/ << 3 << NumArgs
1934 << TheCall->getSourceRange();
1935
1936 // Argument 0 is checked for us and the remaining arguments must be
1937 // constant integers.
1938 for (unsigned i = 1; i != NumArgs; ++i)
1939 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
1940 return true;
1941
1942 return false;
1943 }
1944
1945 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1946 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)1947 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1948 llvm::APSInt &Result) {
1949 Expr *Arg = TheCall->getArg(ArgNum);
1950 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1951 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1952
1953 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1954
1955 if (!Arg->isIntegerConstantExpr(Result, Context))
1956 return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1957 << FDecl->getDeclName() << Arg->getSourceRange();
1958
1959 return false;
1960 }
1961
1962 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
1963 /// TheCall is a constant expression in the range [Low, High].
SemaBuiltinConstantArgRange(CallExpr * TheCall,int ArgNum,int Low,int High)1964 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
1965 int Low, int High) {
1966 llvm::APSInt Result;
1967
1968 // We can't check the value of a dependent argument.
1969 Expr *Arg = TheCall->getArg(ArgNum);
1970 if (Arg->isTypeDependent() || Arg->isValueDependent())
1971 return false;
1972
1973 // Check constant-ness first.
1974 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
1975 return true;
1976
1977 if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
1978 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1979 << Low << High << Arg->getSourceRange();
1980
1981 return false;
1982 }
1983
1984 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1985 /// This checks that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)1986 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1987 Expr *Arg = TheCall->getArg(1);
1988 llvm::APSInt Result;
1989
1990 // TODO: This is less than ideal. Overload this to take a value.
1991 if (SemaBuiltinConstantArg(TheCall, 1, Result))
1992 return true;
1993
1994 if (Result != 1)
1995 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1996 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1997
1998 return false;
1999 }
2000
2001 namespace {
2002 enum StringLiteralCheckType {
2003 SLCT_NotALiteral,
2004 SLCT_UncheckedLiteral,
2005 SLCT_CheckedLiteral
2006 };
2007 }
2008
2009 // Determine if an expression is a string literal or constant string.
2010 // If this function returns false on the arguments to a function expecting a
2011 // format string, we will usually need to emit a warning.
2012 // True string literals are then checked by CheckFormatString.
2013 static StringLiteralCheckType
checkFormatStringExpr(Sema & S,const Expr * E,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,Sema::VariadicCallType CallType,bool InFunctionCall,llvm::SmallBitVector & CheckedVarArgs)2014 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
2015 bool HasVAListArg, unsigned format_idx,
2016 unsigned firstDataArg, Sema::FormatStringType Type,
2017 Sema::VariadicCallType CallType, bool InFunctionCall,
2018 llvm::SmallBitVector &CheckedVarArgs) {
2019 tryAgain:
2020 if (E->isTypeDependent() || E->isValueDependent())
2021 return SLCT_NotALiteral;
2022
2023 E = E->IgnoreParenCasts();
2024
2025 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
2026 // Technically -Wformat-nonliteral does not warn about this case.
2027 // The behavior of printf and friends in this case is implementation
2028 // dependent. Ideally if the format string cannot be null then
2029 // it should have a 'nonnull' attribute in the function prototype.
2030 return SLCT_UncheckedLiteral;
2031
2032 switch (E->getStmtClass()) {
2033 case Stmt::BinaryConditionalOperatorClass:
2034 case Stmt::ConditionalOperatorClass: {
2035 // The expression is a literal if both sub-expressions were, and it was
2036 // completely checked only if both sub-expressions were checked.
2037 const AbstractConditionalOperator *C =
2038 cast<AbstractConditionalOperator>(E);
2039 StringLiteralCheckType Left =
2040 checkFormatStringExpr(S, C->getTrueExpr(), Args,
2041 HasVAListArg, format_idx, firstDataArg,
2042 Type, CallType, InFunctionCall, CheckedVarArgs);
2043 if (Left == SLCT_NotALiteral)
2044 return SLCT_NotALiteral;
2045 StringLiteralCheckType Right =
2046 checkFormatStringExpr(S, C->getFalseExpr(), Args,
2047 HasVAListArg, format_idx, firstDataArg,
2048 Type, CallType, InFunctionCall, CheckedVarArgs);
2049 return Left < Right ? Left : Right;
2050 }
2051
2052 case Stmt::ImplicitCastExprClass: {
2053 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2054 goto tryAgain;
2055 }
2056
2057 case Stmt::OpaqueValueExprClass:
2058 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
2059 E = src;
2060 goto tryAgain;
2061 }
2062 return SLCT_NotALiteral;
2063
2064 case Stmt::PredefinedExprClass:
2065 // While __func__, etc., are technically not string literals, they
2066 // cannot contain format specifiers and thus are not a security
2067 // liability.
2068 return SLCT_UncheckedLiteral;
2069
2070 case Stmt::DeclRefExprClass: {
2071 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
2072
2073 // As an exception, do not flag errors for variables binding to
2074 // const string literals.
2075 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
2076 bool isConstant = false;
2077 QualType T = DR->getType();
2078
2079 if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
2080 isConstant = AT->getElementType().isConstant(S.Context);
2081 } else if (const PointerType *PT = T->getAs<PointerType>()) {
2082 isConstant = T.isConstant(S.Context) &&
2083 PT->getPointeeType().isConstant(S.Context);
2084 } else if (T->isObjCObjectPointerType()) {
2085 // In ObjC, there is usually no "const ObjectPointer" type,
2086 // so don't check if the pointee type is constant.
2087 isConstant = T.isConstant(S.Context);
2088 }
2089
2090 if (isConstant) {
2091 if (const Expr *Init = VD->getAnyInitializer()) {
2092 // Look through initializers like const char c[] = { "foo" }
2093 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2094 if (InitList->isStringLiteralInit())
2095 Init = InitList->getInit(0)->IgnoreParenImpCasts();
2096 }
2097 return checkFormatStringExpr(S, Init, Args,
2098 HasVAListArg, format_idx,
2099 firstDataArg, Type, CallType,
2100 /*InFunctionCall*/false, CheckedVarArgs);
2101 }
2102 }
2103
2104 // For vprintf* functions (i.e., HasVAListArg==true), we add a
2105 // special check to see if the format string is a function parameter
2106 // of the function calling the printf function. If the function
2107 // has an attribute indicating it is a printf-like function, then we
2108 // should suppress warnings concerning non-literals being used in a call
2109 // to a vprintf function. For example:
2110 //
2111 // void
2112 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2113 // va_list ap;
2114 // va_start(ap, fmt);
2115 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
2116 // ...
2117 // }
2118 if (HasVAListArg) {
2119 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2120 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2121 int PVIndex = PV->getFunctionScopeIndex() + 1;
2122 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
2123 // adjust for implicit parameter
2124 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2125 if (MD->isInstance())
2126 ++PVIndex;
2127 // We also check if the formats are compatible.
2128 // We can't pass a 'scanf' string to a 'printf' function.
2129 if (PVIndex == PVFormat->getFormatIdx() &&
2130 Type == S.GetFormatStringType(PVFormat))
2131 return SLCT_UncheckedLiteral;
2132 }
2133 }
2134 }
2135 }
2136 }
2137
2138 return SLCT_NotALiteral;
2139 }
2140
2141 case Stmt::CallExprClass:
2142 case Stmt::CXXMemberCallExprClass: {
2143 const CallExpr *CE = cast<CallExpr>(E);
2144 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2145 if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2146 unsigned ArgIndex = FA->getFormatIdx();
2147 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2148 if (MD->isInstance())
2149 --ArgIndex;
2150 const Expr *Arg = CE->getArg(ArgIndex - 1);
2151
2152 return checkFormatStringExpr(S, Arg, Args,
2153 HasVAListArg, format_idx, firstDataArg,
2154 Type, CallType, InFunctionCall,
2155 CheckedVarArgs);
2156 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2157 unsigned BuiltinID = FD->getBuiltinID();
2158 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2159 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2160 const Expr *Arg = CE->getArg(0);
2161 return checkFormatStringExpr(S, Arg, Args,
2162 HasVAListArg, format_idx,
2163 firstDataArg, Type, CallType,
2164 InFunctionCall, CheckedVarArgs);
2165 }
2166 }
2167 }
2168
2169 return SLCT_NotALiteral;
2170 }
2171 case Stmt::ObjCStringLiteralClass:
2172 case Stmt::StringLiteralClass: {
2173 const StringLiteral *StrE = nullptr;
2174
2175 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2176 StrE = ObjCFExpr->getString();
2177 else
2178 StrE = cast<StringLiteral>(E);
2179
2180 if (StrE) {
2181 S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
2182 Type, InFunctionCall, CallType, CheckedVarArgs);
2183 return SLCT_CheckedLiteral;
2184 }
2185
2186 return SLCT_NotALiteral;
2187 }
2188
2189 default:
2190 return SLCT_NotALiteral;
2191 }
2192 }
2193
GetFormatStringType(const FormatAttr * Format)2194 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2195 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
2196 .Case("scanf", FST_Scanf)
2197 .Cases("printf", "printf0", FST_Printf)
2198 .Cases("NSString", "CFString", FST_NSString)
2199 .Case("strftime", FST_Strftime)
2200 .Case("strfmon", FST_Strfmon)
2201 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2202 .Default(FST_Unknown);
2203 }
2204
2205 /// CheckFormatArguments - Check calls to printf and scanf (and similar
2206 /// functions) for correct use of format strings.
2207 /// Returns true if a format string has been fully checked.
CheckFormatArguments(const FormatAttr * Format,ArrayRef<const Expr * > Args,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)2208 bool Sema::CheckFormatArguments(const FormatAttr *Format,
2209 ArrayRef<const Expr *> Args,
2210 bool IsCXXMember,
2211 VariadicCallType CallType,
2212 SourceLocation Loc, SourceRange Range,
2213 llvm::SmallBitVector &CheckedVarArgs) {
2214 FormatStringInfo FSI;
2215 if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2216 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2217 FSI.FirstDataArg, GetFormatStringType(Format),
2218 CallType, Loc, Range, CheckedVarArgs);
2219 return false;
2220 }
2221
CheckFormatArguments(ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)2222 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2223 bool HasVAListArg, unsigned format_idx,
2224 unsigned firstDataArg, FormatStringType Type,
2225 VariadicCallType CallType,
2226 SourceLocation Loc, SourceRange Range,
2227 llvm::SmallBitVector &CheckedVarArgs) {
2228 // CHECK: printf/scanf-like function is called with no format string.
2229 if (format_idx >= Args.size()) {
2230 Diag(Loc, diag::warn_missing_format_string) << Range;
2231 return false;
2232 }
2233
2234 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2235
2236 // CHECK: format string is not a string literal.
2237 //
2238 // Dynamically generated format strings are difficult to
2239 // automatically vet at compile time. Requiring that format strings
2240 // are string literals: (1) permits the checking of format strings by
2241 // the compiler and thereby (2) can practically remove the source of
2242 // many format string exploits.
2243
2244 // Format string can be either ObjC string (e.g. @"%d") or
2245 // C string (e.g. "%d")
2246 // ObjC string uses the same format specifiers as C string, so we can use
2247 // the same format string checking logic for both ObjC and C strings.
2248 StringLiteralCheckType CT =
2249 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
2250 format_idx, firstDataArg, Type, CallType,
2251 /*IsFunctionCall*/true, CheckedVarArgs);
2252 if (CT != SLCT_NotALiteral)
2253 // Literal format string found, check done!
2254 return CT == SLCT_CheckedLiteral;
2255
2256 // Strftime is particular as it always uses a single 'time' argument,
2257 // so it is safe to pass a non-literal string.
2258 if (Type == FST_Strftime)
2259 return false;
2260
2261 // Do not emit diag when the string param is a macro expansion and the
2262 // format is either NSString or CFString. This is a hack to prevent
2263 // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2264 // which are usually used in place of NS and CF string literals.
2265 if (Type == FST_NSString &&
2266 SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2267 return false;
2268
2269 // If there are no arguments specified, warn with -Wformat-security, otherwise
2270 // warn only with -Wformat-nonliteral.
2271 if (Args.size() == firstDataArg)
2272 Diag(Args[format_idx]->getLocStart(),
2273 diag::warn_format_nonliteral_noargs)
2274 << OrigFormatExpr->getSourceRange();
2275 else
2276 Diag(Args[format_idx]->getLocStart(),
2277 diag::warn_format_nonliteral)
2278 << OrigFormatExpr->getSourceRange();
2279 return false;
2280 }
2281
2282 namespace {
2283 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2284 protected:
2285 Sema &S;
2286 const StringLiteral *FExpr;
2287 const Expr *OrigFormatExpr;
2288 const unsigned FirstDataArg;
2289 const unsigned NumDataArgs;
2290 const char *Beg; // Start of format string.
2291 const bool HasVAListArg;
2292 ArrayRef<const Expr *> Args;
2293 unsigned FormatIdx;
2294 llvm::SmallBitVector CoveredArgs;
2295 bool usesPositionalArgs;
2296 bool atFirstArg;
2297 bool inFunctionCall;
2298 Sema::VariadicCallType CallType;
2299 llvm::SmallBitVector &CheckedVarArgs;
2300 public:
CheckFormatHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType,llvm::SmallBitVector & CheckedVarArgs)2301 CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2302 const Expr *origFormatExpr, unsigned firstDataArg,
2303 unsigned numDataArgs, const char *beg, bool hasVAListArg,
2304 ArrayRef<const Expr *> Args,
2305 unsigned formatIdx, bool inFunctionCall,
2306 Sema::VariadicCallType callType,
2307 llvm::SmallBitVector &CheckedVarArgs)
2308 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2309 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2310 Beg(beg), HasVAListArg(hasVAListArg),
2311 Args(Args), FormatIdx(formatIdx),
2312 usesPositionalArgs(false), atFirstArg(true),
2313 inFunctionCall(inFunctionCall), CallType(callType),
2314 CheckedVarArgs(CheckedVarArgs) {
2315 CoveredArgs.resize(numDataArgs);
2316 CoveredArgs.reset();
2317 }
2318
2319 void DoneProcessing();
2320
2321 void HandleIncompleteSpecifier(const char *startSpecifier,
2322 unsigned specifierLen) override;
2323
2324 void HandleInvalidLengthModifier(
2325 const analyze_format_string::FormatSpecifier &FS,
2326 const analyze_format_string::ConversionSpecifier &CS,
2327 const char *startSpecifier, unsigned specifierLen,
2328 unsigned DiagID);
2329
2330 void HandleNonStandardLengthModifier(
2331 const analyze_format_string::FormatSpecifier &FS,
2332 const char *startSpecifier, unsigned specifierLen);
2333
2334 void HandleNonStandardConversionSpecifier(
2335 const analyze_format_string::ConversionSpecifier &CS,
2336 const char *startSpecifier, unsigned specifierLen);
2337
2338 void HandlePosition(const char *startPos, unsigned posLen) override;
2339
2340 void HandleInvalidPosition(const char *startSpecifier,
2341 unsigned specifierLen,
2342 analyze_format_string::PositionContext p) override;
2343
2344 void HandleZeroPosition(const char *startPos, unsigned posLen) override;
2345
2346 void HandleNullChar(const char *nullCharacter) override;
2347
2348 template <typename Range>
2349 static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2350 const Expr *ArgumentExpr,
2351 PartialDiagnostic PDiag,
2352 SourceLocation StringLoc,
2353 bool IsStringLocation, Range StringRange,
2354 ArrayRef<FixItHint> Fixit = None);
2355
2356 protected:
2357 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2358 const char *startSpec,
2359 unsigned specifierLen,
2360 const char *csStart, unsigned csLen);
2361
2362 void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2363 const char *startSpec,
2364 unsigned specifierLen);
2365
2366 SourceRange getFormatStringRange();
2367 CharSourceRange getSpecifierRange(const char *startSpecifier,
2368 unsigned specifierLen);
2369 SourceLocation getLocationOfByte(const char *x);
2370
2371 const Expr *getDataArg(unsigned i) const;
2372
2373 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2374 const analyze_format_string::ConversionSpecifier &CS,
2375 const char *startSpecifier, unsigned specifierLen,
2376 unsigned argIndex);
2377
2378 template <typename Range>
2379 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2380 bool IsStringLocation, Range StringRange,
2381 ArrayRef<FixItHint> Fixit = None);
2382 };
2383 }
2384
getFormatStringRange()2385 SourceRange CheckFormatHandler::getFormatStringRange() {
2386 return OrigFormatExpr->getSourceRange();
2387 }
2388
2389 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)2390 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2391 SourceLocation Start = getLocationOfByte(startSpecifier);
2392 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
2393
2394 // Advance the end SourceLocation by one due to half-open ranges.
2395 End = End.getLocWithOffset(1);
2396
2397 return CharSourceRange::getCharRange(Start, End);
2398 }
2399
getLocationOfByte(const char * x)2400 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2401 return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2402 }
2403
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)2404 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2405 unsigned specifierLen){
2406 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2407 getLocationOfByte(startSpecifier),
2408 /*IsStringLocation*/true,
2409 getSpecifierRange(startSpecifier, specifierLen));
2410 }
2411
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)2412 void CheckFormatHandler::HandleInvalidLengthModifier(
2413 const analyze_format_string::FormatSpecifier &FS,
2414 const analyze_format_string::ConversionSpecifier &CS,
2415 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2416 using namespace analyze_format_string;
2417
2418 const LengthModifier &LM = FS.getLengthModifier();
2419 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2420
2421 // See if we know how to fix this length modifier.
2422 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2423 if (FixedLM) {
2424 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2425 getLocationOfByte(LM.getStart()),
2426 /*IsStringLocation*/true,
2427 getSpecifierRange(startSpecifier, specifierLen));
2428
2429 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2430 << FixedLM->toString()
2431 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2432
2433 } else {
2434 FixItHint Hint;
2435 if (DiagID == diag::warn_format_nonsensical_length)
2436 Hint = FixItHint::CreateRemoval(LMRange);
2437
2438 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2439 getLocationOfByte(LM.getStart()),
2440 /*IsStringLocation*/true,
2441 getSpecifierRange(startSpecifier, specifierLen),
2442 Hint);
2443 }
2444 }
2445
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2446 void CheckFormatHandler::HandleNonStandardLengthModifier(
2447 const analyze_format_string::FormatSpecifier &FS,
2448 const char *startSpecifier, unsigned specifierLen) {
2449 using namespace analyze_format_string;
2450
2451 const LengthModifier &LM = FS.getLengthModifier();
2452 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2453
2454 // See if we know how to fix this length modifier.
2455 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2456 if (FixedLM) {
2457 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2458 << LM.toString() << 0,
2459 getLocationOfByte(LM.getStart()),
2460 /*IsStringLocation*/true,
2461 getSpecifierRange(startSpecifier, specifierLen));
2462
2463 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2464 << FixedLM->toString()
2465 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2466
2467 } else {
2468 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2469 << LM.toString() << 0,
2470 getLocationOfByte(LM.getStart()),
2471 /*IsStringLocation*/true,
2472 getSpecifierRange(startSpecifier, specifierLen));
2473 }
2474 }
2475
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)2476 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2477 const analyze_format_string::ConversionSpecifier &CS,
2478 const char *startSpecifier, unsigned specifierLen) {
2479 using namespace analyze_format_string;
2480
2481 // See if we know how to fix this conversion specifier.
2482 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2483 if (FixedCS) {
2484 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2485 << CS.toString() << /*conversion specifier*/1,
2486 getLocationOfByte(CS.getStart()),
2487 /*IsStringLocation*/true,
2488 getSpecifierRange(startSpecifier, specifierLen));
2489
2490 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2491 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2492 << FixedCS->toString()
2493 << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2494 } else {
2495 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2496 << CS.toString() << /*conversion specifier*/1,
2497 getLocationOfByte(CS.getStart()),
2498 /*IsStringLocation*/true,
2499 getSpecifierRange(startSpecifier, specifierLen));
2500 }
2501 }
2502
HandlePosition(const char * startPos,unsigned posLen)2503 void CheckFormatHandler::HandlePosition(const char *startPos,
2504 unsigned posLen) {
2505 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2506 getLocationOfByte(startPos),
2507 /*IsStringLocation*/true,
2508 getSpecifierRange(startPos, posLen));
2509 }
2510
2511 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)2512 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2513 analyze_format_string::PositionContext p) {
2514 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2515 << (unsigned) p,
2516 getLocationOfByte(startPos), /*IsStringLocation*/true,
2517 getSpecifierRange(startPos, posLen));
2518 }
2519
HandleZeroPosition(const char * startPos,unsigned posLen)2520 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2521 unsigned posLen) {
2522 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2523 getLocationOfByte(startPos),
2524 /*IsStringLocation*/true,
2525 getSpecifierRange(startPos, posLen));
2526 }
2527
HandleNullChar(const char * nullCharacter)2528 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2529 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2530 // The presence of a null character is likely an error.
2531 EmitFormatDiagnostic(
2532 S.PDiag(diag::warn_printf_format_string_contains_null_char),
2533 getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2534 getFormatStringRange());
2535 }
2536 }
2537
2538 // Note that this may return NULL if there was an error parsing or building
2539 // one of the argument expressions.
getDataArg(unsigned i) const2540 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2541 return Args[FirstDataArg + i];
2542 }
2543
DoneProcessing()2544 void CheckFormatHandler::DoneProcessing() {
2545 // Does the number of data arguments exceed the number of
2546 // format conversions in the format string?
2547 if (!HasVAListArg) {
2548 // Find any arguments that weren't covered.
2549 CoveredArgs.flip();
2550 signed notCoveredArg = CoveredArgs.find_first();
2551 if (notCoveredArg >= 0) {
2552 assert((unsigned)notCoveredArg < NumDataArgs);
2553 if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2554 SourceLocation Loc = E->getLocStart();
2555 if (!S.getSourceManager().isInSystemMacro(Loc)) {
2556 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2557 Loc, /*IsStringLocation*/false,
2558 getFormatStringRange());
2559 }
2560 }
2561 }
2562 }
2563 }
2564
2565 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)2566 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2567 SourceLocation Loc,
2568 const char *startSpec,
2569 unsigned specifierLen,
2570 const char *csStart,
2571 unsigned csLen) {
2572
2573 bool keepGoing = true;
2574 if (argIndex < NumDataArgs) {
2575 // Consider the argument coverered, even though the specifier doesn't
2576 // make sense.
2577 CoveredArgs.set(argIndex);
2578 }
2579 else {
2580 // If argIndex exceeds the number of data arguments we
2581 // don't issue a warning because that is just a cascade of warnings (and
2582 // they may have intended '%%' anyway). We don't want to continue processing
2583 // the format string after this point, however, as we will like just get
2584 // gibberish when trying to match arguments.
2585 keepGoing = false;
2586 }
2587
2588 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2589 << StringRef(csStart, csLen),
2590 Loc, /*IsStringLocation*/true,
2591 getSpecifierRange(startSpec, specifierLen));
2592
2593 return keepGoing;
2594 }
2595
2596 void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)2597 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2598 const char *startSpec,
2599 unsigned specifierLen) {
2600 EmitFormatDiagnostic(
2601 S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2602 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2603 }
2604
2605 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)2606 CheckFormatHandler::CheckNumArgs(
2607 const analyze_format_string::FormatSpecifier &FS,
2608 const analyze_format_string::ConversionSpecifier &CS,
2609 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2610
2611 if (argIndex >= NumDataArgs) {
2612 PartialDiagnostic PDiag = FS.usesPositionalArg()
2613 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2614 << (argIndex+1) << NumDataArgs)
2615 : S.PDiag(diag::warn_printf_insufficient_data_args);
2616 EmitFormatDiagnostic(
2617 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2618 getSpecifierRange(startSpecifier, specifierLen));
2619 return false;
2620 }
2621 return true;
2622 }
2623
2624 template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)2625 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2626 SourceLocation Loc,
2627 bool IsStringLocation,
2628 Range StringRange,
2629 ArrayRef<FixItHint> FixIt) {
2630 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2631 Loc, IsStringLocation, StringRange, FixIt);
2632 }
2633
2634 /// \brief If the format string is not within the funcion call, emit a note
2635 /// so that the function call and string are in diagnostic messages.
2636 ///
2637 /// \param InFunctionCall if true, the format string is within the function
2638 /// call and only one diagnostic message will be produced. Otherwise, an
2639 /// extra note will be emitted pointing to location of the format string.
2640 ///
2641 /// \param ArgumentExpr the expression that is passed as the format string
2642 /// argument in the function call. Used for getting locations when two
2643 /// diagnostics are emitted.
2644 ///
2645 /// \param PDiag the callee should already have provided any strings for the
2646 /// diagnostic message. This function only adds locations and fixits
2647 /// to diagnostics.
2648 ///
2649 /// \param Loc primary location for diagnostic. If two diagnostics are
2650 /// required, one will be at Loc and a new SourceLocation will be created for
2651 /// the other one.
2652 ///
2653 /// \param IsStringLocation if true, Loc points to the format string should be
2654 /// used for the note. Otherwise, Loc points to the argument list and will
2655 /// be used with PDiag.
2656 ///
2657 /// \param StringRange some or all of the string to highlight. This is
2658 /// templated so it can accept either a CharSourceRange or a SourceRange.
2659 ///
2660 /// \param FixIt optional fix it hint for the format string.
2661 template<typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)2662 void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2663 const Expr *ArgumentExpr,
2664 PartialDiagnostic PDiag,
2665 SourceLocation Loc,
2666 bool IsStringLocation,
2667 Range StringRange,
2668 ArrayRef<FixItHint> FixIt) {
2669 if (InFunctionCall) {
2670 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2671 D << StringRange;
2672 for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2673 I != E; ++I) {
2674 D << *I;
2675 }
2676 } else {
2677 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2678 << ArgumentExpr->getSourceRange();
2679
2680 const Sema::SemaDiagnosticBuilder &Note =
2681 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2682 diag::note_format_string_defined);
2683
2684 Note << StringRange;
2685 for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2686 I != E; ++I) {
2687 Note << *I;
2688 }
2689 }
2690 }
2691
2692 //===--- CHECK: Printf format string checking ------------------------------===//
2693
2694 namespace {
2695 class CheckPrintfHandler : public CheckFormatHandler {
2696 bool ObjCContext;
2697 public:
CheckPrintfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)2698 CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2699 const Expr *origFormatExpr, unsigned firstDataArg,
2700 unsigned numDataArgs, bool isObjC,
2701 const char *beg, bool hasVAListArg,
2702 ArrayRef<const Expr *> Args,
2703 unsigned formatIdx, bool inFunctionCall,
2704 Sema::VariadicCallType CallType,
2705 llvm::SmallBitVector &CheckedVarArgs)
2706 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2707 numDataArgs, beg, hasVAListArg, Args,
2708 formatIdx, inFunctionCall, CallType, CheckedVarArgs),
2709 ObjCContext(isObjC)
2710 {}
2711
2712
2713 bool HandleInvalidPrintfConversionSpecifier(
2714 const analyze_printf::PrintfSpecifier &FS,
2715 const char *startSpecifier,
2716 unsigned specifierLen) override;
2717
2718 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2719 const char *startSpecifier,
2720 unsigned specifierLen) override;
2721 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2722 const char *StartSpecifier,
2723 unsigned SpecifierLen,
2724 const Expr *E);
2725
2726 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2727 const char *startSpecifier, unsigned specifierLen);
2728 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2729 const analyze_printf::OptionalAmount &Amt,
2730 unsigned type,
2731 const char *startSpecifier, unsigned specifierLen);
2732 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2733 const analyze_printf::OptionalFlag &flag,
2734 const char *startSpecifier, unsigned specifierLen);
2735 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2736 const analyze_printf::OptionalFlag &ignoredFlag,
2737 const analyze_printf::OptionalFlag &flag,
2738 const char *startSpecifier, unsigned specifierLen);
2739 bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2740 const Expr *E);
2741
2742 };
2743 }
2744
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2745 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2746 const analyze_printf::PrintfSpecifier &FS,
2747 const char *startSpecifier,
2748 unsigned specifierLen) {
2749 const analyze_printf::PrintfConversionSpecifier &CS =
2750 FS.getConversionSpecifier();
2751
2752 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2753 getLocationOfByte(CS.getStart()),
2754 startSpecifier, specifierLen,
2755 CS.getStart(), CS.getLength());
2756 }
2757
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)2758 bool CheckPrintfHandler::HandleAmount(
2759 const analyze_format_string::OptionalAmount &Amt,
2760 unsigned k, const char *startSpecifier,
2761 unsigned specifierLen) {
2762
2763 if (Amt.hasDataArgument()) {
2764 if (!HasVAListArg) {
2765 unsigned argIndex = Amt.getArgIndex();
2766 if (argIndex >= NumDataArgs) {
2767 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2768 << k,
2769 getLocationOfByte(Amt.getStart()),
2770 /*IsStringLocation*/true,
2771 getSpecifierRange(startSpecifier, specifierLen));
2772 // Don't do any more checking. We will just emit
2773 // spurious errors.
2774 return false;
2775 }
2776
2777 // Type check the data argument. It should be an 'int'.
2778 // Although not in conformance with C99, we also allow the argument to be
2779 // an 'unsigned int' as that is a reasonably safe case. GCC also
2780 // doesn't emit a warning for that case.
2781 CoveredArgs.set(argIndex);
2782 const Expr *Arg = getDataArg(argIndex);
2783 if (!Arg)
2784 return false;
2785
2786 QualType T = Arg->getType();
2787
2788 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2789 assert(AT.isValid());
2790
2791 if (!AT.matchesType(S.Context, T)) {
2792 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2793 << k << AT.getRepresentativeTypeName(S.Context)
2794 << T << Arg->getSourceRange(),
2795 getLocationOfByte(Amt.getStart()),
2796 /*IsStringLocation*/true,
2797 getSpecifierRange(startSpecifier, specifierLen));
2798 // Don't do any more checking. We will just emit
2799 // spurious errors.
2800 return false;
2801 }
2802 }
2803 }
2804 return true;
2805 }
2806
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)2807 void CheckPrintfHandler::HandleInvalidAmount(
2808 const analyze_printf::PrintfSpecifier &FS,
2809 const analyze_printf::OptionalAmount &Amt,
2810 unsigned type,
2811 const char *startSpecifier,
2812 unsigned specifierLen) {
2813 const analyze_printf::PrintfConversionSpecifier &CS =
2814 FS.getConversionSpecifier();
2815
2816 FixItHint fixit =
2817 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2818 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2819 Amt.getConstantLength()))
2820 : FixItHint();
2821
2822 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2823 << type << CS.toString(),
2824 getLocationOfByte(Amt.getStart()),
2825 /*IsStringLocation*/true,
2826 getSpecifierRange(startSpecifier, specifierLen),
2827 fixit);
2828 }
2829
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)2830 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2831 const analyze_printf::OptionalFlag &flag,
2832 const char *startSpecifier,
2833 unsigned specifierLen) {
2834 // Warn about pointless flag with a fixit removal.
2835 const analyze_printf::PrintfConversionSpecifier &CS =
2836 FS.getConversionSpecifier();
2837 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2838 << flag.toString() << CS.toString(),
2839 getLocationOfByte(flag.getPosition()),
2840 /*IsStringLocation*/true,
2841 getSpecifierRange(startSpecifier, specifierLen),
2842 FixItHint::CreateRemoval(
2843 getSpecifierRange(flag.getPosition(), 1)));
2844 }
2845
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)2846 void CheckPrintfHandler::HandleIgnoredFlag(
2847 const analyze_printf::PrintfSpecifier &FS,
2848 const analyze_printf::OptionalFlag &ignoredFlag,
2849 const analyze_printf::OptionalFlag &flag,
2850 const char *startSpecifier,
2851 unsigned specifierLen) {
2852 // Warn about ignored flag with a fixit removal.
2853 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2854 << ignoredFlag.toString() << flag.toString(),
2855 getLocationOfByte(ignoredFlag.getPosition()),
2856 /*IsStringLocation*/true,
2857 getSpecifierRange(startSpecifier, specifierLen),
2858 FixItHint::CreateRemoval(
2859 getSpecifierRange(ignoredFlag.getPosition(), 1)));
2860 }
2861
2862 // Determines if the specified is a C++ class or struct containing
2863 // a member with the specified name and kind (e.g. a CXXMethodDecl named
2864 // "c_str()").
2865 template<typename MemberKind>
2866 static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)2867 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2868 const RecordType *RT = Ty->getAs<RecordType>();
2869 llvm::SmallPtrSet<MemberKind*, 1> Results;
2870
2871 if (!RT)
2872 return Results;
2873 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2874 if (!RD || !RD->getDefinition())
2875 return Results;
2876
2877 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
2878 Sema::LookupMemberName);
2879 R.suppressDiagnostics();
2880
2881 // We just need to include all members of the right kind turned up by the
2882 // filter, at this point.
2883 if (S.LookupQualifiedName(R, RT->getDecl()))
2884 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2885 NamedDecl *decl = (*I)->getUnderlyingDecl();
2886 if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2887 Results.insert(FK);
2888 }
2889 return Results;
2890 }
2891
2892 /// Check if we could call '.c_str()' on an object.
2893 ///
2894 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
2895 /// allow the call, or if it would be ambiguous).
hasCStrMethod(const Expr * E)2896 bool Sema::hasCStrMethod(const Expr *E) {
2897 typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2898 MethodSet Results =
2899 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
2900 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2901 MI != ME; ++MI)
2902 if ((*MI)->getMinRequiredArguments() == 0)
2903 return true;
2904 return false;
2905 }
2906
2907 // Check if a (w)string was passed when a (w)char* was needed, and offer a
2908 // better diagnostic if so. AT is assumed to be valid.
2909 // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E)2910 bool CheckPrintfHandler::checkForCStrMembers(
2911 const analyze_printf::ArgType &AT, const Expr *E) {
2912 typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2913
2914 MethodSet Results =
2915 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2916
2917 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2918 MI != ME; ++MI) {
2919 const CXXMethodDecl *Method = *MI;
2920 if (Method->getMinRequiredArguments() == 0 &&
2921 AT.matchesType(S.Context, Method->getReturnType())) {
2922 // FIXME: Suggest parens if the expression needs them.
2923 SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
2924 S.Diag(E->getLocStart(), diag::note_printf_c_str)
2925 << "c_str()"
2926 << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2927 return true;
2928 }
2929 }
2930
2931 return false;
2932 }
2933
2934 bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2935 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2936 &FS,
2937 const char *startSpecifier,
2938 unsigned specifierLen) {
2939
2940 using namespace analyze_format_string;
2941 using namespace analyze_printf;
2942 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2943
2944 if (FS.consumesDataArgument()) {
2945 if (atFirstArg) {
2946 atFirstArg = false;
2947 usesPositionalArgs = FS.usesPositionalArg();
2948 }
2949 else if (usesPositionalArgs != FS.usesPositionalArg()) {
2950 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2951 startSpecifier, specifierLen);
2952 return false;
2953 }
2954 }
2955
2956 // First check if the field width, precision, and conversion specifier
2957 // have matching data arguments.
2958 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2959 startSpecifier, specifierLen)) {
2960 return false;
2961 }
2962
2963 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2964 startSpecifier, specifierLen)) {
2965 return false;
2966 }
2967
2968 if (!CS.consumesDataArgument()) {
2969 // FIXME: Technically specifying a precision or field width here
2970 // makes no sense. Worth issuing a warning at some point.
2971 return true;
2972 }
2973
2974 // Consume the argument.
2975 unsigned argIndex = FS.getArgIndex();
2976 if (argIndex < NumDataArgs) {
2977 // The check to see if the argIndex is valid will come later.
2978 // We set the bit here because we may exit early from this
2979 // function if we encounter some other error.
2980 CoveredArgs.set(argIndex);
2981 }
2982
2983 // Check for using an Objective-C specific conversion specifier
2984 // in a non-ObjC literal.
2985 if (!ObjCContext && CS.isObjCArg()) {
2986 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2987 specifierLen);
2988 }
2989
2990 // Check for invalid use of field width
2991 if (!FS.hasValidFieldWidth()) {
2992 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2993 startSpecifier, specifierLen);
2994 }
2995
2996 // Check for invalid use of precision
2997 if (!FS.hasValidPrecision()) {
2998 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2999 startSpecifier, specifierLen);
3000 }
3001
3002 // Check each flag does not conflict with any other component.
3003 if (!FS.hasValidThousandsGroupingPrefix())
3004 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
3005 if (!FS.hasValidLeadingZeros())
3006 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
3007 if (!FS.hasValidPlusPrefix())
3008 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
3009 if (!FS.hasValidSpacePrefix())
3010 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
3011 if (!FS.hasValidAlternativeForm())
3012 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
3013 if (!FS.hasValidLeftJustified())
3014 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
3015
3016 // Check that flags are not ignored by another flag
3017 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
3018 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
3019 startSpecifier, specifierLen);
3020 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
3021 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
3022 startSpecifier, specifierLen);
3023
3024 // Check the length modifier is valid with the given conversion specifier.
3025 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3026 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3027 diag::warn_format_nonsensical_length);
3028 else if (!FS.hasStandardLengthModifier())
3029 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3030 else if (!FS.hasStandardLengthConversionCombination())
3031 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3032 diag::warn_format_non_standard_conversion_spec);
3033
3034 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3035 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3036
3037 // The remaining checks depend on the data arguments.
3038 if (HasVAListArg)
3039 return true;
3040
3041 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3042 return false;
3043
3044 const Expr *Arg = getDataArg(argIndex);
3045 if (!Arg)
3046 return true;
3047
3048 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
3049 }
3050
requiresParensToAddCast(const Expr * E)3051 static bool requiresParensToAddCast(const Expr *E) {
3052 // FIXME: We should have a general way to reason about operator
3053 // precedence and whether parens are actually needed here.
3054 // Take care of a few common cases where they aren't.
3055 const Expr *Inside = E->IgnoreImpCasts();
3056 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
3057 Inside = POE->getSyntacticForm()->IgnoreImpCasts();
3058
3059 switch (Inside->getStmtClass()) {
3060 case Stmt::ArraySubscriptExprClass:
3061 case Stmt::CallExprClass:
3062 case Stmt::CharacterLiteralClass:
3063 case Stmt::CXXBoolLiteralExprClass:
3064 case Stmt::DeclRefExprClass:
3065 case Stmt::FloatingLiteralClass:
3066 case Stmt::IntegerLiteralClass:
3067 case Stmt::MemberExprClass:
3068 case Stmt::ObjCArrayLiteralClass:
3069 case Stmt::ObjCBoolLiteralExprClass:
3070 case Stmt::ObjCBoxedExprClass:
3071 case Stmt::ObjCDictionaryLiteralClass:
3072 case Stmt::ObjCEncodeExprClass:
3073 case Stmt::ObjCIvarRefExprClass:
3074 case Stmt::ObjCMessageExprClass:
3075 case Stmt::ObjCPropertyRefExprClass:
3076 case Stmt::ObjCStringLiteralClass:
3077 case Stmt::ObjCSubscriptRefExprClass:
3078 case Stmt::ParenExprClass:
3079 case Stmt::StringLiteralClass:
3080 case Stmt::UnaryOperatorClass:
3081 return false;
3082 default:
3083 return true;
3084 }
3085 }
3086
3087 bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)3088 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3089 const char *StartSpecifier,
3090 unsigned SpecifierLen,
3091 const Expr *E) {
3092 using namespace analyze_format_string;
3093 using namespace analyze_printf;
3094 // Now type check the data expression that matches the
3095 // format specifier.
3096 const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3097 ObjCContext);
3098 if (!AT.isValid())
3099 return true;
3100
3101 QualType ExprTy = E->getType();
3102 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3103 ExprTy = TET->getUnderlyingExpr()->getType();
3104 }
3105
3106 if (AT.matchesType(S.Context, ExprTy))
3107 return true;
3108
3109 // Look through argument promotions for our error message's reported type.
3110 // This includes the integral and floating promotions, but excludes array
3111 // and function pointer decay; seeing that an argument intended to be a
3112 // string has type 'char [6]' is probably more confusing than 'char *'.
3113 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3114 if (ICE->getCastKind() == CK_IntegralCast ||
3115 ICE->getCastKind() == CK_FloatingCast) {
3116 E = ICE->getSubExpr();
3117 ExprTy = E->getType();
3118
3119 // Check if we didn't match because of an implicit cast from a 'char'
3120 // or 'short' to an 'int'. This is done because printf is a varargs
3121 // function.
3122 if (ICE->getType() == S.Context.IntTy ||
3123 ICE->getType() == S.Context.UnsignedIntTy) {
3124 // All further checking is done on the subexpression.
3125 if (AT.matchesType(S.Context, ExprTy))
3126 return true;
3127 }
3128 }
3129 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3130 // Special case for 'a', which has type 'int' in C.
3131 // Note, however, that we do /not/ want to treat multibyte constants like
3132 // 'MooV' as characters! This form is deprecated but still exists.
3133 if (ExprTy == S.Context.IntTy)
3134 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3135 ExprTy = S.Context.CharTy;
3136 }
3137
3138 // Look through enums to their underlying type.
3139 bool IsEnum = false;
3140 if (auto EnumTy = ExprTy->getAs<EnumType>()) {
3141 ExprTy = EnumTy->getDecl()->getIntegerType();
3142 IsEnum = true;
3143 }
3144
3145 // %C in an Objective-C context prints a unichar, not a wchar_t.
3146 // If the argument is an integer of some kind, believe the %C and suggest
3147 // a cast instead of changing the conversion specifier.
3148 QualType IntendedTy = ExprTy;
3149 if (ObjCContext &&
3150 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3151 if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3152 !ExprTy->isCharType()) {
3153 // 'unichar' is defined as a typedef of unsigned short, but we should
3154 // prefer using the typedef if it is visible.
3155 IntendedTy = S.Context.UnsignedShortTy;
3156
3157 // While we are here, check if the value is an IntegerLiteral that happens
3158 // to be within the valid range.
3159 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
3160 const llvm::APInt &V = IL->getValue();
3161 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
3162 return true;
3163 }
3164
3165 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3166 Sema::LookupOrdinaryName);
3167 if (S.LookupName(Result, S.getCurScope())) {
3168 NamedDecl *ND = Result.getFoundDecl();
3169 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3170 if (TD->getUnderlyingType() == IntendedTy)
3171 IntendedTy = S.Context.getTypedefType(TD);
3172 }
3173 }
3174 }
3175
3176 // Special-case some of Darwin's platform-independence types by suggesting
3177 // casts to primitive types that are known to be large enough.
3178 bool ShouldNotPrintDirectly = false;
3179 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3180 // Use a 'while' to peel off layers of typedefs.
3181 QualType TyTy = IntendedTy;
3182 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3183 StringRef Name = UserTy->getDecl()->getName();
3184 QualType CastTy = llvm::StringSwitch<QualType>(Name)
3185 .Case("NSInteger", S.Context.LongTy)
3186 .Case("NSUInteger", S.Context.UnsignedLongTy)
3187 .Case("SInt32", S.Context.IntTy)
3188 .Case("UInt32", S.Context.UnsignedIntTy)
3189 .Default(QualType());
3190
3191 if (!CastTy.isNull()) {
3192 ShouldNotPrintDirectly = true;
3193 IntendedTy = CastTy;
3194 break;
3195 }
3196 TyTy = UserTy->desugar();
3197 }
3198 }
3199
3200 // We may be able to offer a FixItHint if it is a supported type.
3201 PrintfSpecifier fixedFS = FS;
3202 bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3203 S.Context, ObjCContext);
3204
3205 if (success) {
3206 // Get the fix string from the fixed format specifier
3207 SmallString<16> buf;
3208 llvm::raw_svector_ostream os(buf);
3209 fixedFS.toString(os);
3210
3211 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3212
3213 if (IntendedTy == ExprTy) {
3214 // In this case, the specifier is wrong and should be changed to match
3215 // the argument.
3216 EmitFormatDiagnostic(
3217 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3218 << AT.getRepresentativeTypeName(S.Context) << IntendedTy << IsEnum
3219 << E->getSourceRange(),
3220 E->getLocStart(),
3221 /*IsStringLocation*/false,
3222 SpecRange,
3223 FixItHint::CreateReplacement(SpecRange, os.str()));
3224
3225 } else {
3226 // The canonical type for formatting this value is different from the
3227 // actual type of the expression. (This occurs, for example, with Darwin's
3228 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3229 // should be printed as 'long' for 64-bit compatibility.)
3230 // Rather than emitting a normal format/argument mismatch, we want to
3231 // add a cast to the recommended type (and correct the format string
3232 // if necessary).
3233 SmallString<16> CastBuf;
3234 llvm::raw_svector_ostream CastFix(CastBuf);
3235 CastFix << "(";
3236 IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3237 CastFix << ")";
3238
3239 SmallVector<FixItHint,4> Hints;
3240 if (!AT.matchesType(S.Context, IntendedTy))
3241 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3242
3243 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3244 // If there's already a cast present, just replace it.
3245 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3246 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3247
3248 } else if (!requiresParensToAddCast(E)) {
3249 // If the expression has high enough precedence,
3250 // just write the C-style cast.
3251 Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3252 CastFix.str()));
3253 } else {
3254 // Otherwise, add parens around the expression as well as the cast.
3255 CastFix << "(";
3256 Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3257 CastFix.str()));
3258
3259 SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
3260 Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3261 }
3262
3263 if (ShouldNotPrintDirectly) {
3264 // The expression has a type that should not be printed directly.
3265 // We extract the name from the typedef because we don't want to show
3266 // the underlying type in the diagnostic.
3267 StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
3268
3269 EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3270 << Name << IntendedTy << IsEnum
3271 << E->getSourceRange(),
3272 E->getLocStart(), /*IsStringLocation=*/false,
3273 SpecRange, Hints);
3274 } else {
3275 // In this case, the expression could be printed using a different
3276 // specifier, but we've decided that the specifier is probably correct
3277 // and we should cast instead. Just use the normal warning message.
3278 EmitFormatDiagnostic(
3279 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3280 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
3281 << E->getSourceRange(),
3282 E->getLocStart(), /*IsStringLocation*/false,
3283 SpecRange, Hints);
3284 }
3285 }
3286 } else {
3287 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3288 SpecifierLen);
3289 // Since the warning for passing non-POD types to variadic functions
3290 // was deferred until now, we emit a warning for non-POD
3291 // arguments here.
3292 switch (S.isValidVarArgType(ExprTy)) {
3293 case Sema::VAK_Valid:
3294 case Sema::VAK_ValidInCXX11:
3295 EmitFormatDiagnostic(
3296 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3297 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
3298 << CSR
3299 << E->getSourceRange(),
3300 E->getLocStart(), /*IsStringLocation*/false, CSR);
3301 break;
3302
3303 case Sema::VAK_Undefined:
3304 EmitFormatDiagnostic(
3305 S.PDiag(diag::warn_non_pod_vararg_with_format_string)
3306 << S.getLangOpts().CPlusPlus11
3307 << ExprTy
3308 << CallType
3309 << AT.getRepresentativeTypeName(S.Context)
3310 << CSR
3311 << E->getSourceRange(),
3312 E->getLocStart(), /*IsStringLocation*/false, CSR);
3313 checkForCStrMembers(AT, E);
3314 break;
3315
3316 case Sema::VAK_Invalid:
3317 if (ExprTy->isObjCObjectType())
3318 EmitFormatDiagnostic(
3319 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
3320 << S.getLangOpts().CPlusPlus11
3321 << ExprTy
3322 << CallType
3323 << AT.getRepresentativeTypeName(S.Context)
3324 << CSR
3325 << E->getSourceRange(),
3326 E->getLocStart(), /*IsStringLocation*/false, CSR);
3327 else
3328 // FIXME: If this is an initializer list, suggest removing the braces
3329 // or inserting a cast to the target type.
3330 S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
3331 << isa<InitListExpr>(E) << ExprTy << CallType
3332 << AT.getRepresentativeTypeName(S.Context)
3333 << E->getSourceRange();
3334 break;
3335 }
3336
3337 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
3338 "format string specifier index out of range");
3339 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
3340 }
3341
3342 return true;
3343 }
3344
3345 //===--- CHECK: Scanf format string checking ------------------------------===//
3346
3347 namespace {
3348 class CheckScanfHandler : public CheckFormatHandler {
3349 public:
CheckScanfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)3350 CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
3351 const Expr *origFormatExpr, unsigned firstDataArg,
3352 unsigned numDataArgs, const char *beg, bool hasVAListArg,
3353 ArrayRef<const Expr *> Args,
3354 unsigned formatIdx, bool inFunctionCall,
3355 Sema::VariadicCallType CallType,
3356 llvm::SmallBitVector &CheckedVarArgs)
3357 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3358 numDataArgs, beg, hasVAListArg,
3359 Args, formatIdx, inFunctionCall, CallType,
3360 CheckedVarArgs)
3361 {}
3362
3363 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
3364 const char *startSpecifier,
3365 unsigned specifierLen) override;
3366
3367 bool HandleInvalidScanfConversionSpecifier(
3368 const analyze_scanf::ScanfSpecifier &FS,
3369 const char *startSpecifier,
3370 unsigned specifierLen) override;
3371
3372 void HandleIncompleteScanList(const char *start, const char *end) override;
3373 };
3374 }
3375
HandleIncompleteScanList(const char * start,const char * end)3376 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
3377 const char *end) {
3378 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
3379 getLocationOfByte(end), /*IsStringLocation*/true,
3380 getSpecifierRange(start, end - start));
3381 }
3382
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)3383 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3384 const analyze_scanf::ScanfSpecifier &FS,
3385 const char *startSpecifier,
3386 unsigned specifierLen) {
3387
3388 const analyze_scanf::ScanfConversionSpecifier &CS =
3389 FS.getConversionSpecifier();
3390
3391 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3392 getLocationOfByte(CS.getStart()),
3393 startSpecifier, specifierLen,
3394 CS.getStart(), CS.getLength());
3395 }
3396
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)3397 bool CheckScanfHandler::HandleScanfSpecifier(
3398 const analyze_scanf::ScanfSpecifier &FS,
3399 const char *startSpecifier,
3400 unsigned specifierLen) {
3401
3402 using namespace analyze_scanf;
3403 using namespace analyze_format_string;
3404
3405 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3406
3407 // Handle case where '%' and '*' don't consume an argument. These shouldn't
3408 // be used to decide if we are using positional arguments consistently.
3409 if (FS.consumesDataArgument()) {
3410 if (atFirstArg) {
3411 atFirstArg = false;
3412 usesPositionalArgs = FS.usesPositionalArg();
3413 }
3414 else if (usesPositionalArgs != FS.usesPositionalArg()) {
3415 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3416 startSpecifier, specifierLen);
3417 return false;
3418 }
3419 }
3420
3421 // Check if the field with is non-zero.
3422 const OptionalAmount &Amt = FS.getFieldWidth();
3423 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3424 if (Amt.getConstantAmount() == 0) {
3425 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3426 Amt.getConstantLength());
3427 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3428 getLocationOfByte(Amt.getStart()),
3429 /*IsStringLocation*/true, R,
3430 FixItHint::CreateRemoval(R));
3431 }
3432 }
3433
3434 if (!FS.consumesDataArgument()) {
3435 // FIXME: Technically specifying a precision or field width here
3436 // makes no sense. Worth issuing a warning at some point.
3437 return true;
3438 }
3439
3440 // Consume the argument.
3441 unsigned argIndex = FS.getArgIndex();
3442 if (argIndex < NumDataArgs) {
3443 // The check to see if the argIndex is valid will come later.
3444 // We set the bit here because we may exit early from this
3445 // function if we encounter some other error.
3446 CoveredArgs.set(argIndex);
3447 }
3448
3449 // Check the length modifier is valid with the given conversion specifier.
3450 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3451 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3452 diag::warn_format_nonsensical_length);
3453 else if (!FS.hasStandardLengthModifier())
3454 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3455 else if (!FS.hasStandardLengthConversionCombination())
3456 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3457 diag::warn_format_non_standard_conversion_spec);
3458
3459 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3460 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3461
3462 // The remaining checks depend on the data arguments.
3463 if (HasVAListArg)
3464 return true;
3465
3466 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3467 return false;
3468
3469 // Check that the argument type matches the format specifier.
3470 const Expr *Ex = getDataArg(argIndex);
3471 if (!Ex)
3472 return true;
3473
3474 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3475 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3476 ScanfSpecifier fixedFS = FS;
3477 bool success = fixedFS.fixType(Ex->getType(),
3478 Ex->IgnoreImpCasts()->getType(),
3479 S.getLangOpts(), S.Context);
3480
3481 if (success) {
3482 // Get the fix string from the fixed format specifier.
3483 SmallString<128> buf;
3484 llvm::raw_svector_ostream os(buf);
3485 fixedFS.toString(os);
3486
3487 EmitFormatDiagnostic(
3488 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3489 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() << false
3490 << Ex->getSourceRange(),
3491 Ex->getLocStart(),
3492 /*IsStringLocation*/false,
3493 getSpecifierRange(startSpecifier, specifierLen),
3494 FixItHint::CreateReplacement(
3495 getSpecifierRange(startSpecifier, specifierLen),
3496 os.str()));
3497 } else {
3498 EmitFormatDiagnostic(
3499 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3500 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() << false
3501 << Ex->getSourceRange(),
3502 Ex->getLocStart(),
3503 /*IsStringLocation*/false,
3504 getSpecifierRange(startSpecifier, specifierLen));
3505 }
3506 }
3507
3508 return true;
3509 }
3510
CheckFormatString(const StringLiteral * FExpr,const Expr * OrigFormatExpr,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,bool inFunctionCall,VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)3511 void Sema::CheckFormatString(const StringLiteral *FExpr,
3512 const Expr *OrigFormatExpr,
3513 ArrayRef<const Expr *> Args,
3514 bool HasVAListArg, unsigned format_idx,
3515 unsigned firstDataArg, FormatStringType Type,
3516 bool inFunctionCall, VariadicCallType CallType,
3517 llvm::SmallBitVector &CheckedVarArgs) {
3518
3519 // CHECK: is the format string a wide literal?
3520 if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3521 CheckFormatHandler::EmitFormatDiagnostic(
3522 *this, inFunctionCall, Args[format_idx],
3523 PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3524 /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3525 return;
3526 }
3527
3528 // Str - The format string. NOTE: this is NOT null-terminated!
3529 StringRef StrRef = FExpr->getString();
3530 const char *Str = StrRef.data();
3531 // Account for cases where the string literal is truncated in a declaration.
3532 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
3533 assert(T && "String literal not of constant array type!");
3534 size_t TypeSize = T->getSize().getZExtValue();
3535 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
3536 const unsigned numDataArgs = Args.size() - firstDataArg;
3537
3538 // Emit a warning if the string literal is truncated and does not contain an
3539 // embedded null character.
3540 if (TypeSize <= StrRef.size() &&
3541 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
3542 CheckFormatHandler::EmitFormatDiagnostic(
3543 *this, inFunctionCall, Args[format_idx],
3544 PDiag(diag::warn_printf_format_string_not_null_terminated),
3545 FExpr->getLocStart(),
3546 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
3547 return;
3548 }
3549
3550 // CHECK: empty format string?
3551 if (StrLen == 0 && numDataArgs > 0) {
3552 CheckFormatHandler::EmitFormatDiagnostic(
3553 *this, inFunctionCall, Args[format_idx],
3554 PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3555 /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3556 return;
3557 }
3558
3559 if (Type == FST_Printf || Type == FST_NSString) {
3560 CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3561 numDataArgs, (Type == FST_NSString),
3562 Str, HasVAListArg, Args, format_idx,
3563 inFunctionCall, CallType, CheckedVarArgs);
3564
3565 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3566 getLangOpts(),
3567 Context.getTargetInfo()))
3568 H.DoneProcessing();
3569 } else if (Type == FST_Scanf) {
3570 CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3571 Str, HasVAListArg, Args, format_idx,
3572 inFunctionCall, CallType, CheckedVarArgs);
3573
3574 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3575 getLangOpts(),
3576 Context.getTargetInfo()))
3577 H.DoneProcessing();
3578 } // TODO: handle other formats
3579 }
3580
3581 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
3582
3583 // Returns the related absolute value function that is larger, of 0 if one
3584 // does not exist.
getLargerAbsoluteValueFunction(unsigned AbsFunction)3585 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
3586 switch (AbsFunction) {
3587 default:
3588 return 0;
3589
3590 case Builtin::BI__builtin_abs:
3591 return Builtin::BI__builtin_labs;
3592 case Builtin::BI__builtin_labs:
3593 return Builtin::BI__builtin_llabs;
3594 case Builtin::BI__builtin_llabs:
3595 return 0;
3596
3597 case Builtin::BI__builtin_fabsf:
3598 return Builtin::BI__builtin_fabs;
3599 case Builtin::BI__builtin_fabs:
3600 return Builtin::BI__builtin_fabsl;
3601 case Builtin::BI__builtin_fabsl:
3602 return 0;
3603
3604 case Builtin::BI__builtin_cabsf:
3605 return Builtin::BI__builtin_cabs;
3606 case Builtin::BI__builtin_cabs:
3607 return Builtin::BI__builtin_cabsl;
3608 case Builtin::BI__builtin_cabsl:
3609 return 0;
3610
3611 case Builtin::BIabs:
3612 return Builtin::BIlabs;
3613 case Builtin::BIlabs:
3614 return Builtin::BIllabs;
3615 case Builtin::BIllabs:
3616 return 0;
3617
3618 case Builtin::BIfabsf:
3619 return Builtin::BIfabs;
3620 case Builtin::BIfabs:
3621 return Builtin::BIfabsl;
3622 case Builtin::BIfabsl:
3623 return 0;
3624
3625 case Builtin::BIcabsf:
3626 return Builtin::BIcabs;
3627 case Builtin::BIcabs:
3628 return Builtin::BIcabsl;
3629 case Builtin::BIcabsl:
3630 return 0;
3631 }
3632 }
3633
3634 // Returns the argument type of the absolute value function.
getAbsoluteValueArgumentType(ASTContext & Context,unsigned AbsType)3635 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
3636 unsigned AbsType) {
3637 if (AbsType == 0)
3638 return QualType();
3639
3640 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3641 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
3642 if (Error != ASTContext::GE_None)
3643 return QualType();
3644
3645 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
3646 if (!FT)
3647 return QualType();
3648
3649 if (FT->getNumParams() != 1)
3650 return QualType();
3651
3652 return FT->getParamType(0);
3653 }
3654
3655 // Returns the best absolute value function, or zero, based on type and
3656 // current absolute value function.
getBestAbsFunction(ASTContext & Context,QualType ArgType,unsigned AbsFunctionKind)3657 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
3658 unsigned AbsFunctionKind) {
3659 unsigned BestKind = 0;
3660 uint64_t ArgSize = Context.getTypeSize(ArgType);
3661 for (unsigned Kind = AbsFunctionKind; Kind != 0;
3662 Kind = getLargerAbsoluteValueFunction(Kind)) {
3663 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
3664 if (Context.getTypeSize(ParamType) >= ArgSize) {
3665 if (BestKind == 0)
3666 BestKind = Kind;
3667 else if (Context.hasSameType(ParamType, ArgType)) {
3668 BestKind = Kind;
3669 break;
3670 }
3671 }
3672 }
3673 return BestKind;
3674 }
3675
3676 enum AbsoluteValueKind {
3677 AVK_Integer,
3678 AVK_Floating,
3679 AVK_Complex
3680 };
3681
getAbsoluteValueKind(QualType T)3682 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
3683 if (T->isIntegralOrEnumerationType())
3684 return AVK_Integer;
3685 if (T->isRealFloatingType())
3686 return AVK_Floating;
3687 if (T->isAnyComplexType())
3688 return AVK_Complex;
3689
3690 llvm_unreachable("Type not integer, floating, or complex");
3691 }
3692
3693 // Changes the absolute value function to a different type. Preserves whether
3694 // the function is a builtin.
changeAbsFunction(unsigned AbsKind,AbsoluteValueKind ValueKind)3695 static unsigned changeAbsFunction(unsigned AbsKind,
3696 AbsoluteValueKind ValueKind) {
3697 switch (ValueKind) {
3698 case AVK_Integer:
3699 switch (AbsKind) {
3700 default:
3701 return 0;
3702 case Builtin::BI__builtin_fabsf:
3703 case Builtin::BI__builtin_fabs:
3704 case Builtin::BI__builtin_fabsl:
3705 case Builtin::BI__builtin_cabsf:
3706 case Builtin::BI__builtin_cabs:
3707 case Builtin::BI__builtin_cabsl:
3708 return Builtin::BI__builtin_abs;
3709 case Builtin::BIfabsf:
3710 case Builtin::BIfabs:
3711 case Builtin::BIfabsl:
3712 case Builtin::BIcabsf:
3713 case Builtin::BIcabs:
3714 case Builtin::BIcabsl:
3715 return Builtin::BIabs;
3716 }
3717 case AVK_Floating:
3718 switch (AbsKind) {
3719 default:
3720 return 0;
3721 case Builtin::BI__builtin_abs:
3722 case Builtin::BI__builtin_labs:
3723 case Builtin::BI__builtin_llabs:
3724 case Builtin::BI__builtin_cabsf:
3725 case Builtin::BI__builtin_cabs:
3726 case Builtin::BI__builtin_cabsl:
3727 return Builtin::BI__builtin_fabsf;
3728 case Builtin::BIabs:
3729 case Builtin::BIlabs:
3730 case Builtin::BIllabs:
3731 case Builtin::BIcabsf:
3732 case Builtin::BIcabs:
3733 case Builtin::BIcabsl:
3734 return Builtin::BIfabsf;
3735 }
3736 case AVK_Complex:
3737 switch (AbsKind) {
3738 default:
3739 return 0;
3740 case Builtin::BI__builtin_abs:
3741 case Builtin::BI__builtin_labs:
3742 case Builtin::BI__builtin_llabs:
3743 case Builtin::BI__builtin_fabsf:
3744 case Builtin::BI__builtin_fabs:
3745 case Builtin::BI__builtin_fabsl:
3746 return Builtin::BI__builtin_cabsf;
3747 case Builtin::BIabs:
3748 case Builtin::BIlabs:
3749 case Builtin::BIllabs:
3750 case Builtin::BIfabsf:
3751 case Builtin::BIfabs:
3752 case Builtin::BIfabsl:
3753 return Builtin::BIcabsf;
3754 }
3755 }
3756 llvm_unreachable("Unable to convert function");
3757 }
3758
getAbsoluteValueFunctionKind(const FunctionDecl * FDecl)3759 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
3760 const IdentifierInfo *FnInfo = FDecl->getIdentifier();
3761 if (!FnInfo)
3762 return 0;
3763
3764 switch (FDecl->getBuiltinID()) {
3765 default:
3766 return 0;
3767 case Builtin::BI__builtin_abs:
3768 case Builtin::BI__builtin_fabs:
3769 case Builtin::BI__builtin_fabsf:
3770 case Builtin::BI__builtin_fabsl:
3771 case Builtin::BI__builtin_labs:
3772 case Builtin::BI__builtin_llabs:
3773 case Builtin::BI__builtin_cabs:
3774 case Builtin::BI__builtin_cabsf:
3775 case Builtin::BI__builtin_cabsl:
3776 case Builtin::BIabs:
3777 case Builtin::BIlabs:
3778 case Builtin::BIllabs:
3779 case Builtin::BIfabs:
3780 case Builtin::BIfabsf:
3781 case Builtin::BIfabsl:
3782 case Builtin::BIcabs:
3783 case Builtin::BIcabsf:
3784 case Builtin::BIcabsl:
3785 return FDecl->getBuiltinID();
3786 }
3787 llvm_unreachable("Unknown Builtin type");
3788 }
3789
3790 // If the replacement is valid, emit a note with replacement function.
3791 // Additionally, suggest including the proper header if not already included.
emitReplacement(Sema & S,SourceLocation Loc,SourceRange Range,unsigned AbsKind,QualType ArgType)3792 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
3793 unsigned AbsKind, QualType ArgType) {
3794 bool EmitHeaderHint = true;
3795 const char *HeaderName = nullptr;
3796 const char *FunctionName = nullptr;
3797 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
3798 FunctionName = "std::abs";
3799 if (ArgType->isIntegralOrEnumerationType()) {
3800 HeaderName = "cstdlib";
3801 } else if (ArgType->isRealFloatingType()) {
3802 HeaderName = "cmath";
3803 } else {
3804 llvm_unreachable("Invalid Type");
3805 }
3806
3807 // Lookup all std::abs
3808 if (NamespaceDecl *Std = S.getStdNamespace()) {
3809 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
3810 R.suppressDiagnostics();
3811 S.LookupQualifiedName(R, Std);
3812
3813 for (const auto *I : R) {
3814 const FunctionDecl *FDecl = nullptr;
3815 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
3816 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
3817 } else {
3818 FDecl = dyn_cast<FunctionDecl>(I);
3819 }
3820 if (!FDecl)
3821 continue;
3822
3823 // Found std::abs(), check that they are the right ones.
3824 if (FDecl->getNumParams() != 1)
3825 continue;
3826
3827 // Check that the parameter type can handle the argument.
3828 QualType ParamType = FDecl->getParamDecl(0)->getType();
3829 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
3830 S.Context.getTypeSize(ArgType) <=
3831 S.Context.getTypeSize(ParamType)) {
3832 // Found a function, don't need the header hint.
3833 EmitHeaderHint = false;
3834 break;
3835 }
3836 }
3837 }
3838 } else {
3839 FunctionName = S.Context.BuiltinInfo.GetName(AbsKind);
3840 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
3841
3842 if (HeaderName) {
3843 DeclarationName DN(&S.Context.Idents.get(FunctionName));
3844 LookupResult R(S, DN, Loc, Sema::LookupAnyName);
3845 R.suppressDiagnostics();
3846 S.LookupName(R, S.getCurScope());
3847
3848 if (R.isSingleResult()) {
3849 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3850 if (FD && FD->getBuiltinID() == AbsKind) {
3851 EmitHeaderHint = false;
3852 } else {
3853 return;
3854 }
3855 } else if (!R.empty()) {
3856 return;
3857 }
3858 }
3859 }
3860
3861 S.Diag(Loc, diag::note_replace_abs_function)
3862 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
3863
3864 if (!HeaderName)
3865 return;
3866
3867 if (!EmitHeaderHint)
3868 return;
3869
3870 S.Diag(Loc, diag::note_please_include_header) << HeaderName << FunctionName;
3871 }
3872
IsFunctionStdAbs(const FunctionDecl * FDecl)3873 static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
3874 if (!FDecl)
3875 return false;
3876
3877 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
3878 return false;
3879
3880 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
3881
3882 while (ND && ND->isInlineNamespace()) {
3883 ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
3884 }
3885
3886 if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
3887 return false;
3888
3889 if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
3890 return false;
3891
3892 return true;
3893 }
3894
3895 // Warn when using the wrong abs() function.
CheckAbsoluteValueFunction(const CallExpr * Call,const FunctionDecl * FDecl,IdentifierInfo * FnInfo)3896 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
3897 const FunctionDecl *FDecl,
3898 IdentifierInfo *FnInfo) {
3899 if (Call->getNumArgs() != 1)
3900 return;
3901
3902 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
3903 bool IsStdAbs = IsFunctionStdAbs(FDecl);
3904 if (AbsKind == 0 && !IsStdAbs)
3905 return;
3906
3907 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
3908 QualType ParamType = Call->getArg(0)->getType();
3909
3910 // Unsigned types can not be negative. Suggest to drop the absolute value
3911 // function.
3912 if (ArgType->isUnsignedIntegerType()) {
3913 const char *FunctionName =
3914 IsStdAbs ? "std::abs" : Context.BuiltinInfo.GetName(AbsKind);
3915 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
3916 Diag(Call->getExprLoc(), diag::note_remove_abs)
3917 << FunctionName
3918 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
3919 return;
3920 }
3921
3922 // std::abs has overloads which prevent most of the absolute value problems
3923 // from occurring.
3924 if (IsStdAbs)
3925 return;
3926
3927 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
3928 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
3929
3930 // The argument and parameter are the same kind. Check if they are the right
3931 // size.
3932 if (ArgValueKind == ParamValueKind) {
3933 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
3934 return;
3935
3936 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
3937 Diag(Call->getExprLoc(), diag::warn_abs_too_small)
3938 << FDecl << ArgType << ParamType;
3939
3940 if (NewAbsKind == 0)
3941 return;
3942
3943 emitReplacement(*this, Call->getExprLoc(),
3944 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
3945 return;
3946 }
3947
3948 // ArgValueKind != ParamValueKind
3949 // The wrong type of absolute value function was used. Attempt to find the
3950 // proper one.
3951 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
3952 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
3953 if (NewAbsKind == 0)
3954 return;
3955
3956 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
3957 << FDecl << ParamValueKind << ArgValueKind;
3958
3959 emitReplacement(*this, Call->getExprLoc(),
3960 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
3961 return;
3962 }
3963
3964 //===--- CHECK: Standard memory functions ---------------------------------===//
3965
3966 /// \brief Takes the expression passed to the size_t parameter of functions
3967 /// such as memcmp, strncat, etc and warns if it's a comparison.
3968 ///
3969 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
CheckMemorySizeofForComparison(Sema & S,const Expr * E,IdentifierInfo * FnName,SourceLocation FnLoc,SourceLocation RParenLoc)3970 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
3971 IdentifierInfo *FnName,
3972 SourceLocation FnLoc,
3973 SourceLocation RParenLoc) {
3974 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
3975 if (!Size)
3976 return false;
3977
3978 // if E is binop and op is >, <, >=, <=, ==, &&, ||:
3979 if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
3980 return false;
3981
3982 SourceRange SizeRange = Size->getSourceRange();
3983 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
3984 << SizeRange << FnName;
3985 S.Diag(FnLoc, diag::note_memsize_comparison_paren)
3986 << FnName << FixItHint::CreateInsertion(
3987 S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
3988 << FixItHint::CreateRemoval(RParenLoc);
3989 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
3990 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
3991 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
3992 ")");
3993
3994 return true;
3995 }
3996
3997 /// \brief Determine whether the given type is or contains a dynamic class type
3998 /// (e.g., whether it has a vtable).
getContainedDynamicClass(QualType T,bool & IsContained)3999 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
4000 bool &IsContained) {
4001 // Look through array types while ignoring qualifiers.
4002 const Type *Ty = T->getBaseElementTypeUnsafe();
4003 IsContained = false;
4004
4005 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
4006 RD = RD ? RD->getDefinition() : nullptr;
4007 if (!RD)
4008 return nullptr;
4009
4010 if (RD->isDynamicClass())
4011 return RD;
4012
4013 // Check all the fields. If any bases were dynamic, the class is dynamic.
4014 // It's impossible for a class to transitively contain itself by value, so
4015 // infinite recursion is impossible.
4016 for (auto *FD : RD->fields()) {
4017 bool SubContained;
4018 if (const CXXRecordDecl *ContainedRD =
4019 getContainedDynamicClass(FD->getType(), SubContained)) {
4020 IsContained = true;
4021 return ContainedRD;
4022 }
4023 }
4024
4025 return nullptr;
4026 }
4027
4028 /// \brief If E is a sizeof expression, returns its argument expression,
4029 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)4030 static const Expr *getSizeOfExprArg(const Expr* E) {
4031 if (const UnaryExprOrTypeTraitExpr *SizeOf =
4032 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
4033 if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
4034 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
4035
4036 return nullptr;
4037 }
4038
4039 /// \brief If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)4040 static QualType getSizeOfArgType(const Expr* E) {
4041 if (const UnaryExprOrTypeTraitExpr *SizeOf =
4042 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
4043 if (SizeOf->getKind() == clang::UETT_SizeOf)
4044 return SizeOf->getTypeOfArgument();
4045
4046 return QualType();
4047 }
4048
4049 /// \brief Check for dangerous or invalid arguments to memset().
4050 ///
4051 /// This issues warnings on known problematic, dangerous or unspecified
4052 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
4053 /// function calls.
4054 ///
4055 /// \param Call The call expression to diagnose.
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)4056 void Sema::CheckMemaccessArguments(const CallExpr *Call,
4057 unsigned BId,
4058 IdentifierInfo *FnName) {
4059 assert(BId != 0);
4060
4061 // It is possible to have a non-standard definition of memset. Validate
4062 // we have enough arguments, and if not, abort further checking.
4063 unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
4064 if (Call->getNumArgs() < ExpectedNumArgs)
4065 return;
4066
4067 unsigned LastArg = (BId == Builtin::BImemset ||
4068 BId == Builtin::BIstrndup ? 1 : 2);
4069 unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
4070 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
4071
4072 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
4073 Call->getLocStart(), Call->getRParenLoc()))
4074 return;
4075
4076 // We have special checking when the length is a sizeof expression.
4077 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
4078 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
4079 llvm::FoldingSetNodeID SizeOfArgID;
4080
4081 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
4082 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
4083 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
4084
4085 QualType DestTy = Dest->getType();
4086 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
4087 QualType PointeeTy = DestPtrTy->getPointeeType();
4088
4089 // Never warn about void type pointers. This can be used to suppress
4090 // false positives.
4091 if (PointeeTy->isVoidType())
4092 continue;
4093
4094 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
4095 // actually comparing the expressions for equality. Because computing the
4096 // expression IDs can be expensive, we only do this if the diagnostic is
4097 // enabled.
4098 if (SizeOfArg &&
4099 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
4100 SizeOfArg->getExprLoc())) {
4101 // We only compute IDs for expressions if the warning is enabled, and
4102 // cache the sizeof arg's ID.
4103 if (SizeOfArgID == llvm::FoldingSetNodeID())
4104 SizeOfArg->Profile(SizeOfArgID, Context, true);
4105 llvm::FoldingSetNodeID DestID;
4106 Dest->Profile(DestID, Context, true);
4107 if (DestID == SizeOfArgID) {
4108 // TODO: For strncpy() and friends, this could suggest sizeof(dst)
4109 // over sizeof(src) as well.
4110 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
4111 StringRef ReadableName = FnName->getName();
4112
4113 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
4114 if (UnaryOp->getOpcode() == UO_AddrOf)
4115 ActionIdx = 1; // If its an address-of operator, just remove it.
4116 if (!PointeeTy->isIncompleteType() &&
4117 (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
4118 ActionIdx = 2; // If the pointee's size is sizeof(char),
4119 // suggest an explicit length.
4120
4121 // If the function is defined as a builtin macro, do not show macro
4122 // expansion.
4123 SourceLocation SL = SizeOfArg->getExprLoc();
4124 SourceRange DSR = Dest->getSourceRange();
4125 SourceRange SSR = SizeOfArg->getSourceRange();
4126 SourceManager &SM = getSourceManager();
4127
4128 if (SM.isMacroArgExpansion(SL)) {
4129 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
4130 SL = SM.getSpellingLoc(SL);
4131 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
4132 SM.getSpellingLoc(DSR.getEnd()));
4133 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
4134 SM.getSpellingLoc(SSR.getEnd()));
4135 }
4136
4137 DiagRuntimeBehavior(SL, SizeOfArg,
4138 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
4139 << ReadableName
4140 << PointeeTy
4141 << DestTy
4142 << DSR
4143 << SSR);
4144 DiagRuntimeBehavior(SL, SizeOfArg,
4145 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
4146 << ActionIdx
4147 << SSR);
4148
4149 break;
4150 }
4151 }
4152
4153 // Also check for cases where the sizeof argument is the exact same
4154 // type as the memory argument, and where it points to a user-defined
4155 // record type.
4156 if (SizeOfArgTy != QualType()) {
4157 if (PointeeTy->isRecordType() &&
4158 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
4159 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
4160 PDiag(diag::warn_sizeof_pointer_type_memaccess)
4161 << FnName << SizeOfArgTy << ArgIdx
4162 << PointeeTy << Dest->getSourceRange()
4163 << LenExpr->getSourceRange());
4164 break;
4165 }
4166 }
4167
4168 // Always complain about dynamic classes.
4169 bool IsContained;
4170 if (const CXXRecordDecl *ContainedRD =
4171 getContainedDynamicClass(PointeeTy, IsContained)) {
4172
4173 unsigned OperationType = 0;
4174 // "overwritten" if we're warning about the destination for any call
4175 // but memcmp; otherwise a verb appropriate to the call.
4176 if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
4177 if (BId == Builtin::BImemcpy)
4178 OperationType = 1;
4179 else if(BId == Builtin::BImemmove)
4180 OperationType = 2;
4181 else if (BId == Builtin::BImemcmp)
4182 OperationType = 3;
4183 }
4184
4185 DiagRuntimeBehavior(
4186 Dest->getExprLoc(), Dest,
4187 PDiag(diag::warn_dyn_class_memaccess)
4188 << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
4189 << FnName << IsContained << ContainedRD << OperationType
4190 << Call->getCallee()->getSourceRange());
4191 } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
4192 BId != Builtin::BImemset)
4193 DiagRuntimeBehavior(
4194 Dest->getExprLoc(), Dest,
4195 PDiag(diag::warn_arc_object_memaccess)
4196 << ArgIdx << FnName << PointeeTy
4197 << Call->getCallee()->getSourceRange());
4198 else
4199 continue;
4200
4201 DiagRuntimeBehavior(
4202 Dest->getExprLoc(), Dest,
4203 PDiag(diag::note_bad_memaccess_silence)
4204 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
4205 break;
4206 }
4207 }
4208 }
4209
4210 // A little helper routine: ignore addition and subtraction of integer literals.
4211 // This intentionally does not ignore all integer constant expressions because
4212 // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)4213 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
4214 Ex = Ex->IgnoreParenCasts();
4215
4216 for (;;) {
4217 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
4218 if (!BO || !BO->isAdditiveOp())
4219 break;
4220
4221 const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
4222 const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
4223
4224 if (isa<IntegerLiteral>(RHS))
4225 Ex = LHS;
4226 else if (isa<IntegerLiteral>(LHS))
4227 Ex = RHS;
4228 else
4229 break;
4230 }
4231
4232 return Ex;
4233 }
4234
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)4235 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
4236 ASTContext &Context) {
4237 // Only handle constant-sized or VLAs, but not flexible members.
4238 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
4239 // Only issue the FIXIT for arrays of size > 1.
4240 if (CAT->getSize().getSExtValue() <= 1)
4241 return false;
4242 } else if (!Ty->isVariableArrayType()) {
4243 return false;
4244 }
4245 return true;
4246 }
4247
4248 // Warn if the user has made the 'size' argument to strlcpy or strlcat
4249 // be the size of the source, instead of the destination.
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)4250 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
4251 IdentifierInfo *FnName) {
4252
4253 // Don't crash if the user has the wrong number of arguments
4254 if (Call->getNumArgs() != 3)
4255 return;
4256
4257 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
4258 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
4259 const Expr *CompareWithSrc = nullptr;
4260
4261 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
4262 Call->getLocStart(), Call->getRParenLoc()))
4263 return;
4264
4265 // Look for 'strlcpy(dst, x, sizeof(x))'
4266 if (const Expr *Ex = getSizeOfExprArg(SizeArg))
4267 CompareWithSrc = Ex;
4268 else {
4269 // Look for 'strlcpy(dst, x, strlen(x))'
4270 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
4271 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
4272 SizeCall->getNumArgs() == 1)
4273 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
4274 }
4275 }
4276
4277 if (!CompareWithSrc)
4278 return;
4279
4280 // Determine if the argument to sizeof/strlen is equal to the source
4281 // argument. In principle there's all kinds of things you could do
4282 // here, for instance creating an == expression and evaluating it with
4283 // EvaluateAsBooleanCondition, but this uses a more direct technique:
4284 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
4285 if (!SrcArgDRE)
4286 return;
4287
4288 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
4289 if (!CompareWithSrcDRE ||
4290 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
4291 return;
4292
4293 const Expr *OriginalSizeArg = Call->getArg(2);
4294 Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
4295 << OriginalSizeArg->getSourceRange() << FnName;
4296
4297 // Output a FIXIT hint if the destination is an array (rather than a
4298 // pointer to an array). This could be enhanced to handle some
4299 // pointers if we know the actual size, like if DstArg is 'array+2'
4300 // we could say 'sizeof(array)-2'.
4301 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
4302 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
4303 return;
4304
4305 SmallString<128> sizeString;
4306 llvm::raw_svector_ostream OS(sizeString);
4307 OS << "sizeof(";
4308 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
4309 OS << ")";
4310
4311 Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
4312 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
4313 OS.str());
4314 }
4315
4316 /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)4317 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
4318 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
4319 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
4320 return D1->getDecl() == D2->getDecl();
4321 return false;
4322 }
4323
getStrlenExprArg(const Expr * E)4324 static const Expr *getStrlenExprArg(const Expr *E) {
4325 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
4326 const FunctionDecl *FD = CE->getDirectCallee();
4327 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
4328 return nullptr;
4329 return CE->getArg(0)->IgnoreParenCasts();
4330 }
4331 return nullptr;
4332 }
4333
4334 // Warn on anti-patterns as the 'size' argument to strncat.
4335 // The correct size argument should look like following:
4336 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)4337 void Sema::CheckStrncatArguments(const CallExpr *CE,
4338 IdentifierInfo *FnName) {
4339 // Don't crash if the user has the wrong number of arguments.
4340 if (CE->getNumArgs() < 3)
4341 return;
4342 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
4343 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
4344 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
4345
4346 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
4347 CE->getRParenLoc()))
4348 return;
4349
4350 // Identify common expressions, which are wrongly used as the size argument
4351 // to strncat and may lead to buffer overflows.
4352 unsigned PatternType = 0;
4353 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
4354 // - sizeof(dst)
4355 if (referToTheSameDecl(SizeOfArg, DstArg))
4356 PatternType = 1;
4357 // - sizeof(src)
4358 else if (referToTheSameDecl(SizeOfArg, SrcArg))
4359 PatternType = 2;
4360 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
4361 if (BE->getOpcode() == BO_Sub) {
4362 const Expr *L = BE->getLHS()->IgnoreParenCasts();
4363 const Expr *R = BE->getRHS()->IgnoreParenCasts();
4364 // - sizeof(dst) - strlen(dst)
4365 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
4366 referToTheSameDecl(DstArg, getStrlenExprArg(R)))
4367 PatternType = 1;
4368 // - sizeof(src) - (anything)
4369 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
4370 PatternType = 2;
4371 }
4372 }
4373
4374 if (PatternType == 0)
4375 return;
4376
4377 // Generate the diagnostic.
4378 SourceLocation SL = LenArg->getLocStart();
4379 SourceRange SR = LenArg->getSourceRange();
4380 SourceManager &SM = getSourceManager();
4381
4382 // If the function is defined as a builtin macro, do not show macro expansion.
4383 if (SM.isMacroArgExpansion(SL)) {
4384 SL = SM.getSpellingLoc(SL);
4385 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
4386 SM.getSpellingLoc(SR.getEnd()));
4387 }
4388
4389 // Check if the destination is an array (rather than a pointer to an array).
4390 QualType DstTy = DstArg->getType();
4391 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
4392 Context);
4393 if (!isKnownSizeArray) {
4394 if (PatternType == 1)
4395 Diag(SL, diag::warn_strncat_wrong_size) << SR;
4396 else
4397 Diag(SL, diag::warn_strncat_src_size) << SR;
4398 return;
4399 }
4400
4401 if (PatternType == 1)
4402 Diag(SL, diag::warn_strncat_large_size) << SR;
4403 else
4404 Diag(SL, diag::warn_strncat_src_size) << SR;
4405
4406 SmallString<128> sizeString;
4407 llvm::raw_svector_ostream OS(sizeString);
4408 OS << "sizeof(";
4409 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
4410 OS << ") - ";
4411 OS << "strlen(";
4412 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
4413 OS << ") - 1";
4414
4415 Diag(SL, diag::note_strncat_wrong_size)
4416 << FixItHint::CreateReplacement(SR, OS.str());
4417 }
4418
4419 //===--- CHECK: Return Address of Stack Variable --------------------------===//
4420
4421 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4422 Decl *ParentDecl);
4423 static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
4424 Decl *ParentDecl);
4425
4426 /// CheckReturnStackAddr - Check if a return statement returns the address
4427 /// of a stack variable.
4428 static void
CheckReturnStackAddr(Sema & S,Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc)4429 CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
4430 SourceLocation ReturnLoc) {
4431
4432 Expr *stackE = nullptr;
4433 SmallVector<DeclRefExpr *, 8> refVars;
4434
4435 // Perform checking for returned stack addresses, local blocks,
4436 // label addresses or references to temporaries.
4437 if (lhsType->isPointerType() ||
4438 (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
4439 stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
4440 } else if (lhsType->isReferenceType()) {
4441 stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
4442 }
4443
4444 if (!stackE)
4445 return; // Nothing suspicious was found.
4446
4447 SourceLocation diagLoc;
4448 SourceRange diagRange;
4449 if (refVars.empty()) {
4450 diagLoc = stackE->getLocStart();
4451 diagRange = stackE->getSourceRange();
4452 } else {
4453 // We followed through a reference variable. 'stackE' contains the
4454 // problematic expression but we will warn at the return statement pointing
4455 // at the reference variable. We will later display the "trail" of
4456 // reference variables using notes.
4457 diagLoc = refVars[0]->getLocStart();
4458 diagRange = refVars[0]->getSourceRange();
4459 }
4460
4461 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
4462 S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
4463 : diag::warn_ret_stack_addr)
4464 << DR->getDecl()->getDeclName() << diagRange;
4465 } else if (isa<BlockExpr>(stackE)) { // local block.
4466 S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
4467 } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
4468 S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
4469 } else { // local temporary.
4470 S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
4471 : diag::warn_ret_local_temp_addr)
4472 << diagRange;
4473 }
4474
4475 // Display the "trail" of reference variables that we followed until we
4476 // found the problematic expression using notes.
4477 for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
4478 VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
4479 // If this var binds to another reference var, show the range of the next
4480 // var, otherwise the var binds to the problematic expression, in which case
4481 // show the range of the expression.
4482 SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
4483 : stackE->getSourceRange();
4484 S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
4485 << VD->getDeclName() << range;
4486 }
4487 }
4488
4489 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
4490 /// check if the expression in a return statement evaluates to an address
4491 /// to a location on the stack, a local block, an address of a label, or a
4492 /// reference to local temporary. The recursion is used to traverse the
4493 /// AST of the return expression, with recursion backtracking when we
4494 /// encounter a subexpression that (1) clearly does not lead to one of the
4495 /// above problematic expressions (2) is something we cannot determine leads to
4496 /// a problematic expression based on such local checking.
4497 ///
4498 /// Both EvalAddr and EvalVal follow through reference variables to evaluate
4499 /// the expression that they point to. Such variables are added to the
4500 /// 'refVars' vector so that we know what the reference variable "trail" was.
4501 ///
4502 /// EvalAddr processes expressions that are pointers that are used as
4503 /// references (and not L-values). EvalVal handles all other values.
4504 /// At the base case of the recursion is a check for the above problematic
4505 /// expressions.
4506 ///
4507 /// This implementation handles:
4508 ///
4509 /// * pointer-to-pointer casts
4510 /// * implicit conversions from array references to pointers
4511 /// * taking the address of fields
4512 /// * arbitrary interplay between "&" and "*" operators
4513 /// * pointer arithmetic from an address of a stack variable
4514 /// * taking the address of an array element where the array is on the stack
EvalAddr(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)4515 static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4516 Decl *ParentDecl) {
4517 if (E->isTypeDependent())
4518 return nullptr;
4519
4520 // We should only be called for evaluating pointer expressions.
4521 assert((E->getType()->isAnyPointerType() ||
4522 E->getType()->isBlockPointerType() ||
4523 E->getType()->isObjCQualifiedIdType()) &&
4524 "EvalAddr only works on pointers");
4525
4526 E = E->IgnoreParens();
4527
4528 // Our "symbolic interpreter" is just a dispatch off the currently
4529 // viewed AST node. We then recursively traverse the AST by calling
4530 // EvalAddr and EvalVal appropriately.
4531 switch (E->getStmtClass()) {
4532 case Stmt::DeclRefExprClass: {
4533 DeclRefExpr *DR = cast<DeclRefExpr>(E);
4534
4535 // If we leave the immediate function, the lifetime isn't about to end.
4536 if (DR->refersToEnclosingLocal())
4537 return nullptr;
4538
4539 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
4540 // If this is a reference variable, follow through to the expression that
4541 // it points to.
4542 if (V->hasLocalStorage() &&
4543 V->getType()->isReferenceType() && V->hasInit()) {
4544 // Add the reference variable to the "trail".
4545 refVars.push_back(DR);
4546 return EvalAddr(V->getInit(), refVars, ParentDecl);
4547 }
4548
4549 return nullptr;
4550 }
4551
4552 case Stmt::UnaryOperatorClass: {
4553 // The only unary operator that make sense to handle here
4554 // is AddrOf. All others don't make sense as pointers.
4555 UnaryOperator *U = cast<UnaryOperator>(E);
4556
4557 if (U->getOpcode() == UO_AddrOf)
4558 return EvalVal(U->getSubExpr(), refVars, ParentDecl);
4559 else
4560 return nullptr;
4561 }
4562
4563 case Stmt::BinaryOperatorClass: {
4564 // Handle pointer arithmetic. All other binary operators are not valid
4565 // in this context.
4566 BinaryOperator *B = cast<BinaryOperator>(E);
4567 BinaryOperatorKind op = B->getOpcode();
4568
4569 if (op != BO_Add && op != BO_Sub)
4570 return nullptr;
4571
4572 Expr *Base = B->getLHS();
4573
4574 // Determine which argument is the real pointer base. It could be
4575 // the RHS argument instead of the LHS.
4576 if (!Base->getType()->isPointerType()) Base = B->getRHS();
4577
4578 assert (Base->getType()->isPointerType());
4579 return EvalAddr(Base, refVars, ParentDecl);
4580 }
4581
4582 // For conditional operators we need to see if either the LHS or RHS are
4583 // valid DeclRefExpr*s. If one of them is valid, we return it.
4584 case Stmt::ConditionalOperatorClass: {
4585 ConditionalOperator *C = cast<ConditionalOperator>(E);
4586
4587 // Handle the GNU extension for missing LHS.
4588 // FIXME: That isn't a ConditionalOperator, so doesn't get here.
4589 if (Expr *LHSExpr = C->getLHS()) {
4590 // In C++, we can have a throw-expression, which has 'void' type.
4591 if (!LHSExpr->getType()->isVoidType())
4592 if (Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
4593 return LHS;
4594 }
4595
4596 // In C++, we can have a throw-expression, which has 'void' type.
4597 if (C->getRHS()->getType()->isVoidType())
4598 return nullptr;
4599
4600 return EvalAddr(C->getRHS(), refVars, ParentDecl);
4601 }
4602
4603 case Stmt::BlockExprClass:
4604 if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
4605 return E; // local block.
4606 return nullptr;
4607
4608 case Stmt::AddrLabelExprClass:
4609 return E; // address of label.
4610
4611 case Stmt::ExprWithCleanupsClass:
4612 return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
4613 ParentDecl);
4614
4615 // For casts, we need to handle conversions from arrays to
4616 // pointer values, and pointer-to-pointer conversions.
4617 case Stmt::ImplicitCastExprClass:
4618 case Stmt::CStyleCastExprClass:
4619 case Stmt::CXXFunctionalCastExprClass:
4620 case Stmt::ObjCBridgedCastExprClass:
4621 case Stmt::CXXStaticCastExprClass:
4622 case Stmt::CXXDynamicCastExprClass:
4623 case Stmt::CXXConstCastExprClass:
4624 case Stmt::CXXReinterpretCastExprClass: {
4625 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
4626 switch (cast<CastExpr>(E)->getCastKind()) {
4627 case CK_LValueToRValue:
4628 case CK_NoOp:
4629 case CK_BaseToDerived:
4630 case CK_DerivedToBase:
4631 case CK_UncheckedDerivedToBase:
4632 case CK_Dynamic:
4633 case CK_CPointerToObjCPointerCast:
4634 case CK_BlockPointerToObjCPointerCast:
4635 case CK_AnyPointerToBlockPointerCast:
4636 return EvalAddr(SubExpr, refVars, ParentDecl);
4637
4638 case CK_ArrayToPointerDecay:
4639 return EvalVal(SubExpr, refVars, ParentDecl);
4640
4641 case CK_BitCast:
4642 if (SubExpr->getType()->isAnyPointerType() ||
4643 SubExpr->getType()->isBlockPointerType() ||
4644 SubExpr->getType()->isObjCQualifiedIdType())
4645 return EvalAddr(SubExpr, refVars, ParentDecl);
4646 else
4647 return nullptr;
4648
4649 default:
4650 return nullptr;
4651 }
4652 }
4653
4654 case Stmt::MaterializeTemporaryExprClass:
4655 if (Expr *Result = EvalAddr(
4656 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4657 refVars, ParentDecl))
4658 return Result;
4659
4660 return E;
4661
4662 // Everything else: we simply don't reason about them.
4663 default:
4664 return nullptr;
4665 }
4666 }
4667
4668
4669 /// EvalVal - This function is complements EvalAddr in the mutual recursion.
4670 /// See the comments for EvalAddr for more details.
EvalVal(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)4671 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4672 Decl *ParentDecl) {
4673 do {
4674 // We should only be called for evaluating non-pointer expressions, or
4675 // expressions with a pointer type that are not used as references but instead
4676 // are l-values (e.g., DeclRefExpr with a pointer type).
4677
4678 // Our "symbolic interpreter" is just a dispatch off the currently
4679 // viewed AST node. We then recursively traverse the AST by calling
4680 // EvalAddr and EvalVal appropriately.
4681
4682 E = E->IgnoreParens();
4683 switch (E->getStmtClass()) {
4684 case Stmt::ImplicitCastExprClass: {
4685 ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
4686 if (IE->getValueKind() == VK_LValue) {
4687 E = IE->getSubExpr();
4688 continue;
4689 }
4690 return nullptr;
4691 }
4692
4693 case Stmt::ExprWithCleanupsClass:
4694 return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
4695
4696 case Stmt::DeclRefExprClass: {
4697 // When we hit a DeclRefExpr we are looking at code that refers to a
4698 // variable's name. If it's not a reference variable we check if it has
4699 // local storage within the function, and if so, return the expression.
4700 DeclRefExpr *DR = cast<DeclRefExpr>(E);
4701
4702 // If we leave the immediate function, the lifetime isn't about to end.
4703 if (DR->refersToEnclosingLocal())
4704 return nullptr;
4705
4706 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
4707 // Check if it refers to itself, e.g. "int& i = i;".
4708 if (V == ParentDecl)
4709 return DR;
4710
4711 if (V->hasLocalStorage()) {
4712 if (!V->getType()->isReferenceType())
4713 return DR;
4714
4715 // Reference variable, follow through to the expression that
4716 // it points to.
4717 if (V->hasInit()) {
4718 // Add the reference variable to the "trail".
4719 refVars.push_back(DR);
4720 return EvalVal(V->getInit(), refVars, V);
4721 }
4722 }
4723 }
4724
4725 return nullptr;
4726 }
4727
4728 case Stmt::UnaryOperatorClass: {
4729 // The only unary operator that make sense to handle here
4730 // is Deref. All others don't resolve to a "name." This includes
4731 // handling all sorts of rvalues passed to a unary operator.
4732 UnaryOperator *U = cast<UnaryOperator>(E);
4733
4734 if (U->getOpcode() == UO_Deref)
4735 return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
4736
4737 return nullptr;
4738 }
4739
4740 case Stmt::ArraySubscriptExprClass: {
4741 // Array subscripts are potential references to data on the stack. We
4742 // retrieve the DeclRefExpr* for the array variable if it indeed
4743 // has local storage.
4744 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
4745 }
4746
4747 case Stmt::ConditionalOperatorClass: {
4748 // For conditional operators we need to see if either the LHS or RHS are
4749 // non-NULL Expr's. If one is non-NULL, we return it.
4750 ConditionalOperator *C = cast<ConditionalOperator>(E);
4751
4752 // Handle the GNU extension for missing LHS.
4753 if (Expr *LHSExpr = C->getLHS()) {
4754 // In C++, we can have a throw-expression, which has 'void' type.
4755 if (!LHSExpr->getType()->isVoidType())
4756 if (Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
4757 return LHS;
4758 }
4759
4760 // In C++, we can have a throw-expression, which has 'void' type.
4761 if (C->getRHS()->getType()->isVoidType())
4762 return nullptr;
4763
4764 return EvalVal(C->getRHS(), refVars, ParentDecl);
4765 }
4766
4767 // Accesses to members are potential references to data on the stack.
4768 case Stmt::MemberExprClass: {
4769 MemberExpr *M = cast<MemberExpr>(E);
4770
4771 // Check for indirect access. We only want direct field accesses.
4772 if (M->isArrow())
4773 return nullptr;
4774
4775 // Check whether the member type is itself a reference, in which case
4776 // we're not going to refer to the member, but to what the member refers to.
4777 if (M->getMemberDecl()->getType()->isReferenceType())
4778 return nullptr;
4779
4780 return EvalVal(M->getBase(), refVars, ParentDecl);
4781 }
4782
4783 case Stmt::MaterializeTemporaryExprClass:
4784 if (Expr *Result = EvalVal(
4785 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4786 refVars, ParentDecl))
4787 return Result;
4788
4789 return E;
4790
4791 default:
4792 // Check that we don't return or take the address of a reference to a
4793 // temporary. This is only useful in C++.
4794 if (!E->isTypeDependent() && E->isRValue())
4795 return E;
4796
4797 // Everything else: we simply don't reason about them.
4798 return nullptr;
4799 }
4800 } while (true);
4801 }
4802
4803 void
CheckReturnValExpr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc,bool isObjCMethod,const AttrVec * Attrs,const FunctionDecl * FD)4804 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
4805 SourceLocation ReturnLoc,
4806 bool isObjCMethod,
4807 const AttrVec *Attrs,
4808 const FunctionDecl *FD) {
4809 CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
4810
4811 // Check if the return value is null but should not be.
4812 if (Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs) &&
4813 CheckNonNullExpr(*this, RetValExp))
4814 Diag(ReturnLoc, diag::warn_null_ret)
4815 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
4816
4817 // C++11 [basic.stc.dynamic.allocation]p4:
4818 // If an allocation function declared with a non-throwing
4819 // exception-specification fails to allocate storage, it shall return
4820 // a null pointer. Any other allocation function that fails to allocate
4821 // storage shall indicate failure only by throwing an exception [...]
4822 if (FD) {
4823 OverloadedOperatorKind Op = FD->getOverloadedOperator();
4824 if (Op == OO_New || Op == OO_Array_New) {
4825 const FunctionProtoType *Proto
4826 = FD->getType()->castAs<FunctionProtoType>();
4827 if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
4828 CheckNonNullExpr(*this, RetValExp))
4829 Diag(ReturnLoc, diag::warn_operator_new_returns_null)
4830 << FD << getLangOpts().CPlusPlus11;
4831 }
4832 }
4833 }
4834
4835 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
4836
4837 /// Check for comparisons of floating point operands using != and ==.
4838 /// Issue a warning if these are no self-comparisons, as they are not likely
4839 /// to do what the programmer intended.
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS)4840 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
4841 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
4842 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
4843
4844 // Special case: check for x == x (which is OK).
4845 // Do not emit warnings for such cases.
4846 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
4847 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
4848 if (DRL->getDecl() == DRR->getDecl())
4849 return;
4850
4851
4852 // Special case: check for comparisons against literals that can be exactly
4853 // represented by APFloat. In such cases, do not emit a warning. This
4854 // is a heuristic: often comparison against such literals are used to
4855 // detect if a value in a variable has not changed. This clearly can
4856 // lead to false negatives.
4857 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
4858 if (FLL->isExact())
4859 return;
4860 } else
4861 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
4862 if (FLR->isExact())
4863 return;
4864
4865 // Check for comparisons with builtin types.
4866 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
4867 if (CL->getBuiltinCallee())
4868 return;
4869
4870 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
4871 if (CR->getBuiltinCallee())
4872 return;
4873
4874 // Emit the diagnostic.
4875 Diag(Loc, diag::warn_floatingpoint_eq)
4876 << LHS->getSourceRange() << RHS->getSourceRange();
4877 }
4878
4879 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
4880 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
4881
4882 namespace {
4883
4884 /// Structure recording the 'active' range of an integer-valued
4885 /// expression.
4886 struct IntRange {
4887 /// The number of bits active in the int.
4888 unsigned Width;
4889
4890 /// True if the int is known not to have negative values.
4891 bool NonNegative;
4892
IntRange__anon74e15dea0611::IntRange4893 IntRange(unsigned Width, bool NonNegative)
4894 : Width(Width), NonNegative(NonNegative)
4895 {}
4896
4897 /// Returns the range of the bool type.
forBoolType__anon74e15dea0611::IntRange4898 static IntRange forBoolType() {
4899 return IntRange(1, true);
4900 }
4901
4902 /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon74e15dea0611::IntRange4903 static IntRange forValueOfType(ASTContext &C, QualType T) {
4904 return forValueOfCanonicalType(C,
4905 T->getCanonicalTypeInternal().getTypePtr());
4906 }
4907
4908 /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon74e15dea0611::IntRange4909 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
4910 assert(T->isCanonicalUnqualified());
4911
4912 if (const VectorType *VT = dyn_cast<VectorType>(T))
4913 T = VT->getElementType().getTypePtr();
4914 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4915 T = CT->getElementType().getTypePtr();
4916
4917 // For enum types, use the known bit width of the enumerators.
4918 if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4919 EnumDecl *Enum = ET->getDecl();
4920 if (!Enum->isCompleteDefinition())
4921 return IntRange(C.getIntWidth(QualType(T, 0)), false);
4922
4923 unsigned NumPositive = Enum->getNumPositiveBits();
4924 unsigned NumNegative = Enum->getNumNegativeBits();
4925
4926 if (NumNegative == 0)
4927 return IntRange(NumPositive, true/*NonNegative*/);
4928 else
4929 return IntRange(std::max(NumPositive + 1, NumNegative),
4930 false/*NonNegative*/);
4931 }
4932
4933 const BuiltinType *BT = cast<BuiltinType>(T);
4934 assert(BT->isInteger());
4935
4936 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4937 }
4938
4939 /// Returns the "target" range of a canonical integral type, i.e.
4940 /// the range of values expressible in the type.
4941 ///
4942 /// This matches forValueOfCanonicalType except that enums have the
4943 /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon74e15dea0611::IntRange4944 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4945 assert(T->isCanonicalUnqualified());
4946
4947 if (const VectorType *VT = dyn_cast<VectorType>(T))
4948 T = VT->getElementType().getTypePtr();
4949 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4950 T = CT->getElementType().getTypePtr();
4951 if (const EnumType *ET = dyn_cast<EnumType>(T))
4952 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4953
4954 const BuiltinType *BT = cast<BuiltinType>(T);
4955 assert(BT->isInteger());
4956
4957 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4958 }
4959
4960 /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon74e15dea0611::IntRange4961 static IntRange join(IntRange L, IntRange R) {
4962 return IntRange(std::max(L.Width, R.Width),
4963 L.NonNegative && R.NonNegative);
4964 }
4965
4966 /// Returns the infinum of two ranges: i.e. their aggressive merge.
meet__anon74e15dea0611::IntRange4967 static IntRange meet(IntRange L, IntRange R) {
4968 return IntRange(std::min(L.Width, R.Width),
4969 L.NonNegative || R.NonNegative);
4970 }
4971 };
4972
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)4973 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4974 unsigned MaxWidth) {
4975 if (value.isSigned() && value.isNegative())
4976 return IntRange(value.getMinSignedBits(), false);
4977
4978 if (value.getBitWidth() > MaxWidth)
4979 value = value.trunc(MaxWidth);
4980
4981 // isNonNegative() just checks the sign bit without considering
4982 // signedness.
4983 return IntRange(value.getActiveBits(), true);
4984 }
4985
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)4986 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4987 unsigned MaxWidth) {
4988 if (result.isInt())
4989 return GetValueRange(C, result.getInt(), MaxWidth);
4990
4991 if (result.isVector()) {
4992 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4993 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4994 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4995 R = IntRange::join(R, El);
4996 }
4997 return R;
4998 }
4999
5000 if (result.isComplexInt()) {
5001 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
5002 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
5003 return IntRange::join(R, I);
5004 }
5005
5006 // This can happen with lossless casts to intptr_t of "based" lvalues.
5007 // Assume it might use arbitrary bits.
5008 // FIXME: The only reason we need to pass the type in here is to get
5009 // the sign right on this one case. It would be nice if APValue
5010 // preserved this.
5011 assert(result.isLValue() || result.isAddrLabelDiff());
5012 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
5013 }
5014
GetExprType(Expr * E)5015 static QualType GetExprType(Expr *E) {
5016 QualType Ty = E->getType();
5017 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
5018 Ty = AtomicRHS->getValueType();
5019 return Ty;
5020 }
5021
5022 /// Pseudo-evaluate the given integer expression, estimating the
5023 /// range of values it might take.
5024 ///
5025 /// \param MaxWidth - the width to which the value will be truncated
GetExprRange(ASTContext & C,Expr * E,unsigned MaxWidth)5026 static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
5027 E = E->IgnoreParens();
5028
5029 // Try a full evaluation first.
5030 Expr::EvalResult result;
5031 if (E->EvaluateAsRValue(result, C))
5032 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
5033
5034 // I think we only want to look through implicit casts here; if the
5035 // user has an explicit widening cast, we should treat the value as
5036 // being of the new, wider type.
5037 if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
5038 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
5039 return GetExprRange(C, CE->getSubExpr(), MaxWidth);
5040
5041 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
5042
5043 bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
5044
5045 // Assume that non-integer casts can span the full range of the type.
5046 if (!isIntegerCast)
5047 return OutputTypeRange;
5048
5049 IntRange SubRange
5050 = GetExprRange(C, CE->getSubExpr(),
5051 std::min(MaxWidth, OutputTypeRange.Width));
5052
5053 // Bail out if the subexpr's range is as wide as the cast type.
5054 if (SubRange.Width >= OutputTypeRange.Width)
5055 return OutputTypeRange;
5056
5057 // Otherwise, we take the smaller width, and we're non-negative if
5058 // either the output type or the subexpr is.
5059 return IntRange(SubRange.Width,
5060 SubRange.NonNegative || OutputTypeRange.NonNegative);
5061 }
5062
5063 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
5064 // If we can fold the condition, just take that operand.
5065 bool CondResult;
5066 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
5067 return GetExprRange(C, CondResult ? CO->getTrueExpr()
5068 : CO->getFalseExpr(),
5069 MaxWidth);
5070
5071 // Otherwise, conservatively merge.
5072 IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
5073 IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
5074 return IntRange::join(L, R);
5075 }
5076
5077 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5078 switch (BO->getOpcode()) {
5079
5080 // Boolean-valued operations are single-bit and positive.
5081 case BO_LAnd:
5082 case BO_LOr:
5083 case BO_LT:
5084 case BO_GT:
5085 case BO_LE:
5086 case BO_GE:
5087 case BO_EQ:
5088 case BO_NE:
5089 return IntRange::forBoolType();
5090
5091 // The type of the assignments is the type of the LHS, so the RHS
5092 // is not necessarily the same type.
5093 case BO_MulAssign:
5094 case BO_DivAssign:
5095 case BO_RemAssign:
5096 case BO_AddAssign:
5097 case BO_SubAssign:
5098 case BO_XorAssign:
5099 case BO_OrAssign:
5100 // TODO: bitfields?
5101 return IntRange::forValueOfType(C, GetExprType(E));
5102
5103 // Simple assignments just pass through the RHS, which will have
5104 // been coerced to the LHS type.
5105 case BO_Assign:
5106 // TODO: bitfields?
5107 return GetExprRange(C, BO->getRHS(), MaxWidth);
5108
5109 // Operations with opaque sources are black-listed.
5110 case BO_PtrMemD:
5111 case BO_PtrMemI:
5112 return IntRange::forValueOfType(C, GetExprType(E));
5113
5114 // Bitwise-and uses the *infinum* of the two source ranges.
5115 case BO_And:
5116 case BO_AndAssign:
5117 return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
5118 GetExprRange(C, BO->getRHS(), MaxWidth));
5119
5120 // Left shift gets black-listed based on a judgement call.
5121 case BO_Shl:
5122 // ...except that we want to treat '1 << (blah)' as logically
5123 // positive. It's an important idiom.
5124 if (IntegerLiteral *I
5125 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
5126 if (I->getValue() == 1) {
5127 IntRange R = IntRange::forValueOfType(C, GetExprType(E));
5128 return IntRange(R.Width, /*NonNegative*/ true);
5129 }
5130 }
5131 // fallthrough
5132
5133 case BO_ShlAssign:
5134 return IntRange::forValueOfType(C, GetExprType(E));
5135
5136 // Right shift by a constant can narrow its left argument.
5137 case BO_Shr:
5138 case BO_ShrAssign: {
5139 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
5140
5141 // If the shift amount is a positive constant, drop the width by
5142 // that much.
5143 llvm::APSInt shift;
5144 if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
5145 shift.isNonNegative()) {
5146 unsigned zext = shift.getZExtValue();
5147 if (zext >= L.Width)
5148 L.Width = (L.NonNegative ? 0 : 1);
5149 else
5150 L.Width -= zext;
5151 }
5152
5153 return L;
5154 }
5155
5156 // Comma acts as its right operand.
5157 case BO_Comma:
5158 return GetExprRange(C, BO->getRHS(), MaxWidth);
5159
5160 // Black-list pointer subtractions.
5161 case BO_Sub:
5162 if (BO->getLHS()->getType()->isPointerType())
5163 return IntRange::forValueOfType(C, GetExprType(E));
5164 break;
5165
5166 // The width of a division result is mostly determined by the size
5167 // of the LHS.
5168 case BO_Div: {
5169 // Don't 'pre-truncate' the operands.
5170 unsigned opWidth = C.getIntWidth(GetExprType(E));
5171 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
5172
5173 // If the divisor is constant, use that.
5174 llvm::APSInt divisor;
5175 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
5176 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
5177 if (log2 >= L.Width)
5178 L.Width = (L.NonNegative ? 0 : 1);
5179 else
5180 L.Width = std::min(L.Width - log2, MaxWidth);
5181 return L;
5182 }
5183
5184 // Otherwise, just use the LHS's width.
5185 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
5186 return IntRange(L.Width, L.NonNegative && R.NonNegative);
5187 }
5188
5189 // The result of a remainder can't be larger than the result of
5190 // either side.
5191 case BO_Rem: {
5192 // Don't 'pre-truncate' the operands.
5193 unsigned opWidth = C.getIntWidth(GetExprType(E));
5194 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
5195 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
5196
5197 IntRange meet = IntRange::meet(L, R);
5198 meet.Width = std::min(meet.Width, MaxWidth);
5199 return meet;
5200 }
5201
5202 // The default behavior is okay for these.
5203 case BO_Mul:
5204 case BO_Add:
5205 case BO_Xor:
5206 case BO_Or:
5207 break;
5208 }
5209
5210 // The default case is to treat the operation as if it were closed
5211 // on the narrowest type that encompasses both operands.
5212 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
5213 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
5214 return IntRange::join(L, R);
5215 }
5216
5217 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5218 switch (UO->getOpcode()) {
5219 // Boolean-valued operations are white-listed.
5220 case UO_LNot:
5221 return IntRange::forBoolType();
5222
5223 // Operations with opaque sources are black-listed.
5224 case UO_Deref:
5225 case UO_AddrOf: // should be impossible
5226 return IntRange::forValueOfType(C, GetExprType(E));
5227
5228 default:
5229 return GetExprRange(C, UO->getSubExpr(), MaxWidth);
5230 }
5231 }
5232
5233 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5234 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
5235
5236 if (FieldDecl *BitField = E->getSourceBitField())
5237 return IntRange(BitField->getBitWidthValue(C),
5238 BitField->getType()->isUnsignedIntegerOrEnumerationType());
5239
5240 return IntRange::forValueOfType(C, GetExprType(E));
5241 }
5242
GetExprRange(ASTContext & C,Expr * E)5243 static IntRange GetExprRange(ASTContext &C, Expr *E) {
5244 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
5245 }
5246
5247 /// Checks whether the given value, which currently has the given
5248 /// source semantics, has the same value when coerced through the
5249 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)5250 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
5251 const llvm::fltSemantics &Src,
5252 const llvm::fltSemantics &Tgt) {
5253 llvm::APFloat truncated = value;
5254
5255 bool ignored;
5256 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
5257 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
5258
5259 return truncated.bitwiseIsEqual(value);
5260 }
5261
5262 /// Checks whether the given value, which currently has the given
5263 /// source semantics, has the same value when coerced through the
5264 /// target semantics.
5265 ///
5266 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)5267 static bool IsSameFloatAfterCast(const APValue &value,
5268 const llvm::fltSemantics &Src,
5269 const llvm::fltSemantics &Tgt) {
5270 if (value.isFloat())
5271 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
5272
5273 if (value.isVector()) {
5274 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
5275 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
5276 return false;
5277 return true;
5278 }
5279
5280 assert(value.isComplexFloat());
5281 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
5282 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
5283 }
5284
5285 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
5286
IsZero(Sema & S,Expr * E)5287 static bool IsZero(Sema &S, Expr *E) {
5288 // Suppress cases where we are comparing against an enum constant.
5289 if (const DeclRefExpr *DR =
5290 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
5291 if (isa<EnumConstantDecl>(DR->getDecl()))
5292 return false;
5293
5294 // Suppress cases where the '0' value is expanded from a macro.
5295 if (E->getLocStart().isMacroID())
5296 return false;
5297
5298 llvm::APSInt Value;
5299 return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
5300 }
5301
HasEnumType(Expr * E)5302 static bool HasEnumType(Expr *E) {
5303 // Strip off implicit integral promotions.
5304 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5305 if (ICE->getCastKind() != CK_IntegralCast &&
5306 ICE->getCastKind() != CK_NoOp)
5307 break;
5308 E = ICE->getSubExpr();
5309 }
5310
5311 return E->getType()->isEnumeralType();
5312 }
5313
CheckTrivialUnsignedComparison(Sema & S,BinaryOperator * E)5314 static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
5315 // Disable warning in template instantiations.
5316 if (!S.ActiveTemplateInstantiations.empty())
5317 return;
5318
5319 BinaryOperatorKind op = E->getOpcode();
5320 if (E->isValueDependent())
5321 return;
5322
5323 if (op == BO_LT && IsZero(S, E->getRHS())) {
5324 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
5325 << "< 0" << "false" << HasEnumType(E->getLHS())
5326 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5327 } else if (op == BO_GE && IsZero(S, E->getRHS())) {
5328 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
5329 << ">= 0" << "true" << HasEnumType(E->getLHS())
5330 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5331 } else if (op == BO_GT && IsZero(S, E->getLHS())) {
5332 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
5333 << "0 >" << "false" << HasEnumType(E->getRHS())
5334 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5335 } else if (op == BO_LE && IsZero(S, E->getLHS())) {
5336 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
5337 << "0 <=" << "true" << HasEnumType(E->getRHS())
5338 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5339 }
5340 }
5341
DiagnoseOutOfRangeComparison(Sema & S,BinaryOperator * E,Expr * Constant,Expr * Other,llvm::APSInt Value,bool RhsConstant)5342 static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
5343 Expr *Constant, Expr *Other,
5344 llvm::APSInt Value,
5345 bool RhsConstant) {
5346 // Disable warning in template instantiations.
5347 if (!S.ActiveTemplateInstantiations.empty())
5348 return;
5349
5350 // TODO: Investigate using GetExprRange() to get tighter bounds
5351 // on the bit ranges.
5352 QualType OtherT = Other->getType();
5353 IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
5354 unsigned OtherWidth = OtherRange.Width;
5355
5356 bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
5357
5358 // 0 values are handled later by CheckTrivialUnsignedComparison().
5359 if ((Value == 0) && (!OtherIsBooleanType))
5360 return;
5361
5362 BinaryOperatorKind op = E->getOpcode();
5363 bool IsTrue = true;
5364
5365 // Used for diagnostic printout.
5366 enum {
5367 LiteralConstant = 0,
5368 CXXBoolLiteralTrue,
5369 CXXBoolLiteralFalse
5370 } LiteralOrBoolConstant = LiteralConstant;
5371
5372 if (!OtherIsBooleanType) {
5373 QualType ConstantT = Constant->getType();
5374 QualType CommonT = E->getLHS()->getType();
5375
5376 if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
5377 return;
5378 assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
5379 "comparison with non-integer type");
5380
5381 bool ConstantSigned = ConstantT->isSignedIntegerType();
5382 bool CommonSigned = CommonT->isSignedIntegerType();
5383
5384 bool EqualityOnly = false;
5385
5386 if (CommonSigned) {
5387 // The common type is signed, therefore no signed to unsigned conversion.
5388 if (!OtherRange.NonNegative) {
5389 // Check that the constant is representable in type OtherT.
5390 if (ConstantSigned) {
5391 if (OtherWidth >= Value.getMinSignedBits())
5392 return;
5393 } else { // !ConstantSigned
5394 if (OtherWidth >= Value.getActiveBits() + 1)
5395 return;
5396 }
5397 } else { // !OtherSigned
5398 // Check that the constant is representable in type OtherT.
5399 // Negative values are out of range.
5400 if (ConstantSigned) {
5401 if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
5402 return;
5403 } else { // !ConstantSigned
5404 if (OtherWidth >= Value.getActiveBits())
5405 return;
5406 }
5407 }
5408 } else { // !CommonSigned
5409 if (OtherRange.NonNegative) {
5410 if (OtherWidth >= Value.getActiveBits())
5411 return;
5412 } else { // OtherSigned
5413 assert(!ConstantSigned &&
5414 "Two signed types converted to unsigned types.");
5415 // Check to see if the constant is representable in OtherT.
5416 if (OtherWidth > Value.getActiveBits())
5417 return;
5418 // Check to see if the constant is equivalent to a negative value
5419 // cast to CommonT.
5420 if (S.Context.getIntWidth(ConstantT) ==
5421 S.Context.getIntWidth(CommonT) &&
5422 Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
5423 return;
5424 // The constant value rests between values that OtherT can represent
5425 // after conversion. Relational comparison still works, but equality
5426 // comparisons will be tautological.
5427 EqualityOnly = true;
5428 }
5429 }
5430
5431 bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
5432
5433 if (op == BO_EQ || op == BO_NE) {
5434 IsTrue = op == BO_NE;
5435 } else if (EqualityOnly) {
5436 return;
5437 } else if (RhsConstant) {
5438 if (op == BO_GT || op == BO_GE)
5439 IsTrue = !PositiveConstant;
5440 else // op == BO_LT || op == BO_LE
5441 IsTrue = PositiveConstant;
5442 } else {
5443 if (op == BO_LT || op == BO_LE)
5444 IsTrue = !PositiveConstant;
5445 else // op == BO_GT || op == BO_GE
5446 IsTrue = PositiveConstant;
5447 }
5448 } else {
5449 // Other isKnownToHaveBooleanValue
5450 enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
5451 enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
5452 enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
5453
5454 static const struct LinkedConditions {
5455 CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
5456 CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
5457 CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
5458 CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
5459 CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
5460 CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
5461
5462 } TruthTable = {
5463 // Constant on LHS. | Constant on RHS. |
5464 // LT_Zero| Zero | One |GT_One| LT_Zero| Zero | One |GT_One|
5465 { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
5466 { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
5467 { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
5468 { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
5469 { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
5470 { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
5471 };
5472
5473 bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
5474
5475 enum ConstantValue ConstVal = Zero;
5476 if (Value.isUnsigned() || Value.isNonNegative()) {
5477 if (Value == 0) {
5478 LiteralOrBoolConstant =
5479 ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
5480 ConstVal = Zero;
5481 } else if (Value == 1) {
5482 LiteralOrBoolConstant =
5483 ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
5484 ConstVal = One;
5485 } else {
5486 LiteralOrBoolConstant = LiteralConstant;
5487 ConstVal = GT_One;
5488 }
5489 } else {
5490 ConstVal = LT_Zero;
5491 }
5492
5493 CompareBoolWithConstantResult CmpRes;
5494
5495 switch (op) {
5496 case BO_LT:
5497 CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
5498 break;
5499 case BO_GT:
5500 CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
5501 break;
5502 case BO_LE:
5503 CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
5504 break;
5505 case BO_GE:
5506 CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
5507 break;
5508 case BO_EQ:
5509 CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
5510 break;
5511 case BO_NE:
5512 CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
5513 break;
5514 default:
5515 CmpRes = Unkwn;
5516 break;
5517 }
5518
5519 if (CmpRes == AFals) {
5520 IsTrue = false;
5521 } else if (CmpRes == ATrue) {
5522 IsTrue = true;
5523 } else {
5524 return;
5525 }
5526 }
5527
5528 // If this is a comparison to an enum constant, include that
5529 // constant in the diagnostic.
5530 const EnumConstantDecl *ED = nullptr;
5531 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
5532 ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
5533
5534 SmallString<64> PrettySourceValue;
5535 llvm::raw_svector_ostream OS(PrettySourceValue);
5536 if (ED)
5537 OS << '\'' << *ED << "' (" << Value << ")";
5538 else
5539 OS << Value;
5540
5541 S.DiagRuntimeBehavior(
5542 E->getOperatorLoc(), E,
5543 S.PDiag(diag::warn_out_of_range_compare)
5544 << OS.str() << LiteralOrBoolConstant
5545 << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
5546 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
5547 }
5548
5549 /// Analyze the operands of the given comparison. Implements the
5550 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)5551 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
5552 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
5553 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
5554 }
5555
5556 /// \brief Implements -Wsign-compare.
5557 ///
5558 /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)5559 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
5560 // The type the comparison is being performed in.
5561 QualType T = E->getLHS()->getType();
5562 assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
5563 && "comparison with mismatched types");
5564 if (E->isValueDependent())
5565 return AnalyzeImpConvsInComparison(S, E);
5566
5567 Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
5568 Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
5569
5570 bool IsComparisonConstant = false;
5571
5572 // Check whether an integer constant comparison results in a value
5573 // of 'true' or 'false'.
5574 if (T->isIntegralType(S.Context)) {
5575 llvm::APSInt RHSValue;
5576 bool IsRHSIntegralLiteral =
5577 RHS->isIntegerConstantExpr(RHSValue, S.Context);
5578 llvm::APSInt LHSValue;
5579 bool IsLHSIntegralLiteral =
5580 LHS->isIntegerConstantExpr(LHSValue, S.Context);
5581 if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
5582 DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
5583 else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
5584 DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
5585 else
5586 IsComparisonConstant =
5587 (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
5588 } else if (!T->hasUnsignedIntegerRepresentation())
5589 IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
5590
5591 // We don't do anything special if this isn't an unsigned integral
5592 // comparison: we're only interested in integral comparisons, and
5593 // signed comparisons only happen in cases we don't care to warn about.
5594 //
5595 // We also don't care about value-dependent expressions or expressions
5596 // whose result is a constant.
5597 if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
5598 return AnalyzeImpConvsInComparison(S, E);
5599
5600 // Check to see if one of the (unmodified) operands is of different
5601 // signedness.
5602 Expr *signedOperand, *unsignedOperand;
5603 if (LHS->getType()->hasSignedIntegerRepresentation()) {
5604 assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
5605 "unsigned comparison between two signed integer expressions?");
5606 signedOperand = LHS;
5607 unsignedOperand = RHS;
5608 } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
5609 signedOperand = RHS;
5610 unsignedOperand = LHS;
5611 } else {
5612 CheckTrivialUnsignedComparison(S, E);
5613 return AnalyzeImpConvsInComparison(S, E);
5614 }
5615
5616 // Otherwise, calculate the effective range of the signed operand.
5617 IntRange signedRange = GetExprRange(S.Context, signedOperand);
5618
5619 // Go ahead and analyze implicit conversions in the operands. Note
5620 // that we skip the implicit conversions on both sides.
5621 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
5622 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
5623
5624 // If the signed range is non-negative, -Wsign-compare won't fire,
5625 // but we should still check for comparisons which are always true
5626 // or false.
5627 if (signedRange.NonNegative)
5628 return CheckTrivialUnsignedComparison(S, E);
5629
5630 // For (in)equality comparisons, if the unsigned operand is a
5631 // constant which cannot collide with a overflowed signed operand,
5632 // then reinterpreting the signed operand as unsigned will not
5633 // change the result of the comparison.
5634 if (E->isEqualityOp()) {
5635 unsigned comparisonWidth = S.Context.getIntWidth(T);
5636 IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
5637
5638 // We should never be unable to prove that the unsigned operand is
5639 // non-negative.
5640 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
5641
5642 if (unsignedRange.Width < comparisonWidth)
5643 return;
5644 }
5645
5646 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
5647 S.PDiag(diag::warn_mixed_sign_comparison)
5648 << LHS->getType() << RHS->getType()
5649 << LHS->getSourceRange() << RHS->getSourceRange());
5650 }
5651
5652 /// Analyzes an attempt to assign the given value to a bitfield.
5653 ///
5654 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)5655 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
5656 SourceLocation InitLoc) {
5657 assert(Bitfield->isBitField());
5658 if (Bitfield->isInvalidDecl())
5659 return false;
5660
5661 // White-list bool bitfields.
5662 if (Bitfield->getType()->isBooleanType())
5663 return false;
5664
5665 // Ignore value- or type-dependent expressions.
5666 if (Bitfield->getBitWidth()->isValueDependent() ||
5667 Bitfield->getBitWidth()->isTypeDependent() ||
5668 Init->isValueDependent() ||
5669 Init->isTypeDependent())
5670 return false;
5671
5672 Expr *OriginalInit = Init->IgnoreParenImpCasts();
5673
5674 llvm::APSInt Value;
5675 if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
5676 return false;
5677
5678 unsigned OriginalWidth = Value.getBitWidth();
5679 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
5680
5681 if (OriginalWidth <= FieldWidth)
5682 return false;
5683
5684 // Compute the value which the bitfield will contain.
5685 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
5686 TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
5687
5688 // Check whether the stored value is equal to the original value.
5689 TruncatedValue = TruncatedValue.extend(OriginalWidth);
5690 if (llvm::APSInt::isSameValue(Value, TruncatedValue))
5691 return false;
5692
5693 // Special-case bitfields of width 1: booleans are naturally 0/1, and
5694 // therefore don't strictly fit into a signed bitfield of width 1.
5695 if (FieldWidth == 1 && Value == 1)
5696 return false;
5697
5698 std::string PrettyValue = Value.toString(10);
5699 std::string PrettyTrunc = TruncatedValue.toString(10);
5700
5701 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
5702 << PrettyValue << PrettyTrunc << OriginalInit->getType()
5703 << Init->getSourceRange();
5704
5705 return true;
5706 }
5707
5708 /// Analyze the given simple or compound assignment for warning-worthy
5709 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)5710 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
5711 // Just recurse on the LHS.
5712 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
5713
5714 // We want to recurse on the RHS as normal unless we're assigning to
5715 // a bitfield.
5716 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
5717 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
5718 E->getOperatorLoc())) {
5719 // Recurse, ignoring any implicit conversions on the RHS.
5720 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
5721 E->getOperatorLoc());
5722 }
5723 }
5724
5725 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
5726 }
5727
5728 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)5729 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
5730 SourceLocation CContext, unsigned diag,
5731 bool pruneControlFlow = false) {
5732 if (pruneControlFlow) {
5733 S.DiagRuntimeBehavior(E->getExprLoc(), E,
5734 S.PDiag(diag)
5735 << SourceType << T << E->getSourceRange()
5736 << SourceRange(CContext));
5737 return;
5738 }
5739 S.Diag(E->getExprLoc(), diag)
5740 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
5741 }
5742
5743 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)5744 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
5745 SourceLocation CContext, unsigned diag,
5746 bool pruneControlFlow = false) {
5747 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
5748 }
5749
5750 /// Diagnose an implicit cast from a literal expression. Does not warn when the
5751 /// cast wouldn't lose information.
DiagnoseFloatingLiteralImpCast(Sema & S,FloatingLiteral * FL,QualType T,SourceLocation CContext)5752 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
5753 SourceLocation CContext) {
5754 // Try to convert the literal exactly to an integer. If we can, don't warn.
5755 bool isExact = false;
5756 const llvm::APFloat &Value = FL->getValue();
5757 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
5758 T->hasUnsignedIntegerRepresentation());
5759 if (Value.convertToInteger(IntegerValue,
5760 llvm::APFloat::rmTowardZero, &isExact)
5761 == llvm::APFloat::opOK && isExact)
5762 return;
5763
5764 // FIXME: Force the precision of the source value down so we don't print
5765 // digits which are usually useless (we don't really care here if we
5766 // truncate a digit by accident in edge cases). Ideally, APFloat::toString
5767 // would automatically print the shortest representation, but it's a bit
5768 // tricky to implement.
5769 SmallString<16> PrettySourceValue;
5770 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
5771 precision = (precision * 59 + 195) / 196;
5772 Value.toString(PrettySourceValue, precision);
5773
5774 SmallString<16> PrettyTargetValue;
5775 if (T->isSpecificBuiltinType(BuiltinType::Bool))
5776 PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
5777 else
5778 IntegerValue.toString(PrettyTargetValue);
5779
5780 S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
5781 << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
5782 << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
5783 }
5784
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)5785 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
5786 if (!Range.Width) return "0";
5787
5788 llvm::APSInt ValueInRange = Value;
5789 ValueInRange.setIsSigned(!Range.NonNegative);
5790 ValueInRange = ValueInRange.trunc(Range.Width);
5791 return ValueInRange.toString(10);
5792 }
5793
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)5794 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
5795 if (!isa<ImplicitCastExpr>(Ex))
5796 return false;
5797
5798 Expr *InnerE = Ex->IgnoreParenImpCasts();
5799 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
5800 const Type *Source =
5801 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5802 if (Target->isDependentType())
5803 return false;
5804
5805 const BuiltinType *FloatCandidateBT =
5806 dyn_cast<BuiltinType>(ToBool ? Source : Target);
5807 const Type *BoolCandidateType = ToBool ? Target : Source;
5808
5809 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
5810 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
5811 }
5812
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)5813 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
5814 SourceLocation CC) {
5815 unsigned NumArgs = TheCall->getNumArgs();
5816 for (unsigned i = 0; i < NumArgs; ++i) {
5817 Expr *CurrA = TheCall->getArg(i);
5818 if (!IsImplicitBoolFloatConversion(S, CurrA, true))
5819 continue;
5820
5821 bool IsSwapped = ((i > 0) &&
5822 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
5823 IsSwapped |= ((i < (NumArgs - 1)) &&
5824 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
5825 if (IsSwapped) {
5826 // Warn on this floating-point to bool conversion.
5827 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
5828 CurrA->getType(), CC,
5829 diag::warn_impcast_floating_point_to_bool);
5830 }
5831 }
5832 }
5833
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=nullptr)5834 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
5835 SourceLocation CC, bool *ICContext = nullptr) {
5836 if (E->isTypeDependent() || E->isValueDependent()) return;
5837
5838 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
5839 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
5840 if (Source == Target) return;
5841 if (Target->isDependentType()) return;
5842
5843 // If the conversion context location is invalid don't complain. We also
5844 // don't want to emit a warning if the issue occurs from the expansion of
5845 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
5846 // delay this check as long as possible. Once we detect we are in that
5847 // scenario, we just return.
5848 if (CC.isInvalid())
5849 return;
5850
5851 // Diagnose implicit casts to bool.
5852 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
5853 if (isa<StringLiteral>(E))
5854 // Warn on string literal to bool. Checks for string literals in logical
5855 // and expressions, for instance, assert(0 && "error here"), are
5856 // prevented by a check in AnalyzeImplicitConversions().
5857 return DiagnoseImpCast(S, E, T, CC,
5858 diag::warn_impcast_string_literal_to_bool);
5859 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
5860 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
5861 // This covers the literal expressions that evaluate to Objective-C
5862 // objects.
5863 return DiagnoseImpCast(S, E, T, CC,
5864 diag::warn_impcast_objective_c_literal_to_bool);
5865 }
5866 if (Source->isPointerType() || Source->canDecayToPointerType()) {
5867 // Warn on pointer to bool conversion that is always true.
5868 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
5869 SourceRange(CC));
5870 }
5871 }
5872
5873 // Strip vector types.
5874 if (isa<VectorType>(Source)) {
5875 if (!isa<VectorType>(Target)) {
5876 if (S.SourceMgr.isInSystemMacro(CC))
5877 return;
5878 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
5879 }
5880
5881 // If the vector cast is cast between two vectors of the same size, it is
5882 // a bitcast, not a conversion.
5883 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
5884 return;
5885
5886 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
5887 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
5888 }
5889 if (auto VecTy = dyn_cast<VectorType>(Target))
5890 Target = VecTy->getElementType().getTypePtr();
5891
5892 // Strip complex types.
5893 if (isa<ComplexType>(Source)) {
5894 if (!isa<ComplexType>(Target)) {
5895 if (S.SourceMgr.isInSystemMacro(CC))
5896 return;
5897
5898 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
5899 }
5900
5901 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
5902 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
5903 }
5904
5905 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
5906 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
5907
5908 // If the source is floating point...
5909 if (SourceBT && SourceBT->isFloatingPoint()) {
5910 // ...and the target is floating point...
5911 if (TargetBT && TargetBT->isFloatingPoint()) {
5912 // ...then warn if we're dropping FP rank.
5913
5914 // Builtin FP kinds are ordered by increasing FP rank.
5915 if (SourceBT->getKind() > TargetBT->getKind()) {
5916 // Don't warn about float constants that are precisely
5917 // representable in the target type.
5918 Expr::EvalResult result;
5919 if (E->EvaluateAsRValue(result, S.Context)) {
5920 // Value might be a float, a float vector, or a float complex.
5921 if (IsSameFloatAfterCast(result.Val,
5922 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
5923 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
5924 return;
5925 }
5926
5927 if (S.SourceMgr.isInSystemMacro(CC))
5928 return;
5929
5930 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
5931 }
5932 return;
5933 }
5934
5935 // If the target is integral, always warn.
5936 if (TargetBT && TargetBT->isInteger()) {
5937 if (S.SourceMgr.isInSystemMacro(CC))
5938 return;
5939
5940 Expr *InnerE = E->IgnoreParenImpCasts();
5941 // We also want to warn on, e.g., "int i = -1.234"
5942 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
5943 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
5944 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
5945
5946 if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
5947 DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
5948 } else {
5949 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
5950 }
5951 }
5952
5953 // If the target is bool, warn if expr is a function or method call.
5954 if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
5955 isa<CallExpr>(E)) {
5956 // Check last argument of function call to see if it is an
5957 // implicit cast from a type matching the type the result
5958 // is being cast to.
5959 CallExpr *CEx = cast<CallExpr>(E);
5960 unsigned NumArgs = CEx->getNumArgs();
5961 if (NumArgs > 0) {
5962 Expr *LastA = CEx->getArg(NumArgs - 1);
5963 Expr *InnerE = LastA->IgnoreParenImpCasts();
5964 const Type *InnerType =
5965 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5966 if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
5967 // Warn on this floating-point to bool conversion
5968 DiagnoseImpCast(S, E, T, CC,
5969 diag::warn_impcast_floating_point_to_bool);
5970 }
5971 }
5972 }
5973 return;
5974 }
5975
5976 if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
5977 == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
5978 && !Target->isBlockPointerType() && !Target->isMemberPointerType()
5979 && Target->isScalarType() && !Target->isNullPtrType()) {
5980 SourceLocation Loc = E->getSourceRange().getBegin();
5981 if (Loc.isMacroID())
5982 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
5983 if (!Loc.isMacroID() || CC.isMacroID())
5984 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
5985 << T << clang::SourceRange(CC)
5986 << FixItHint::CreateReplacement(Loc,
5987 S.getFixItZeroLiteralForType(T, Loc));
5988 }
5989
5990 if (!Source->isIntegerType() || !Target->isIntegerType())
5991 return;
5992
5993 // TODO: remove this early return once the false positives for constant->bool
5994 // in templates, macros, etc, are reduced or removed.
5995 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
5996 return;
5997
5998 IntRange SourceRange = GetExprRange(S.Context, E);
5999 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
6000
6001 if (SourceRange.Width > TargetRange.Width) {
6002 // If the source is a constant, use a default-on diagnostic.
6003 // TODO: this should happen for bitfield stores, too.
6004 llvm::APSInt Value(32);
6005 if (E->isIntegerConstantExpr(Value, S.Context)) {
6006 if (S.SourceMgr.isInSystemMacro(CC))
6007 return;
6008
6009 std::string PrettySourceValue = Value.toString(10);
6010 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
6011
6012 S.DiagRuntimeBehavior(E->getExprLoc(), E,
6013 S.PDiag(diag::warn_impcast_integer_precision_constant)
6014 << PrettySourceValue << PrettyTargetValue
6015 << E->getType() << T << E->getSourceRange()
6016 << clang::SourceRange(CC));
6017 return;
6018 }
6019
6020 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
6021 if (S.SourceMgr.isInSystemMacro(CC))
6022 return;
6023
6024 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
6025 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
6026 /* pruneControlFlow */ true);
6027 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
6028 }
6029
6030 if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
6031 (!TargetRange.NonNegative && SourceRange.NonNegative &&
6032 SourceRange.Width == TargetRange.Width)) {
6033
6034 if (S.SourceMgr.isInSystemMacro(CC))
6035 return;
6036
6037 unsigned DiagID = diag::warn_impcast_integer_sign;
6038
6039 // Traditionally, gcc has warned about this under -Wsign-compare.
6040 // We also want to warn about it in -Wconversion.
6041 // So if -Wconversion is off, use a completely identical diagnostic
6042 // in the sign-compare group.
6043 // The conditional-checking code will
6044 if (ICContext) {
6045 DiagID = diag::warn_impcast_integer_sign_conditional;
6046 *ICContext = true;
6047 }
6048
6049 return DiagnoseImpCast(S, E, T, CC, DiagID);
6050 }
6051
6052 // Diagnose conversions between different enumeration types.
6053 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
6054 // type, to give us better diagnostics.
6055 QualType SourceType = E->getType();
6056 if (!S.getLangOpts().CPlusPlus) {
6057 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6058 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
6059 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
6060 SourceType = S.Context.getTypeDeclType(Enum);
6061 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
6062 }
6063 }
6064
6065 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
6066 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
6067 if (SourceEnum->getDecl()->hasNameForLinkage() &&
6068 TargetEnum->getDecl()->hasNameForLinkage() &&
6069 SourceEnum != TargetEnum) {
6070 if (S.SourceMgr.isInSystemMacro(CC))
6071 return;
6072
6073 return DiagnoseImpCast(S, E, SourceType, T, CC,
6074 diag::warn_impcast_different_enum_types);
6075 }
6076
6077 return;
6078 }
6079
6080 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
6081 SourceLocation CC, QualType T);
6082
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)6083 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
6084 SourceLocation CC, bool &ICContext) {
6085 E = E->IgnoreParenImpCasts();
6086
6087 if (isa<ConditionalOperator>(E))
6088 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
6089
6090 AnalyzeImplicitConversions(S, E, CC);
6091 if (E->getType() != T)
6092 return CheckImplicitConversion(S, E, T, CC, &ICContext);
6093 return;
6094 }
6095
CheckConditionalOperator(Sema & S,ConditionalOperator * E,SourceLocation CC,QualType T)6096 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
6097 SourceLocation CC, QualType T) {
6098 AnalyzeImplicitConversions(S, E->getCond(), CC);
6099
6100 bool Suspicious = false;
6101 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
6102 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
6103
6104 // If -Wconversion would have warned about either of the candidates
6105 // for a signedness conversion to the context type...
6106 if (!Suspicious) return;
6107
6108 // ...but it's currently ignored...
6109 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
6110 return;
6111
6112 // ...then check whether it would have warned about either of the
6113 // candidates for a signedness conversion to the condition type.
6114 if (E->getType() == T) return;
6115
6116 Suspicious = false;
6117 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
6118 E->getType(), CC, &Suspicious);
6119 if (!Suspicious)
6120 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
6121 E->getType(), CC, &Suspicious);
6122 }
6123
6124 /// AnalyzeImplicitConversions - Find and report any interesting
6125 /// implicit conversions in the given expression. There are a couple
6126 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC)6127 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
6128 QualType T = OrigE->getType();
6129 Expr *E = OrigE->IgnoreParenImpCasts();
6130
6131 if (E->isTypeDependent() || E->isValueDependent())
6132 return;
6133
6134 // For conditional operators, we analyze the arguments as if they
6135 // were being fed directly into the output.
6136 if (isa<ConditionalOperator>(E)) {
6137 ConditionalOperator *CO = cast<ConditionalOperator>(E);
6138 CheckConditionalOperator(S, CO, CC, T);
6139 return;
6140 }
6141
6142 // Check implicit argument conversions for function calls.
6143 if (CallExpr *Call = dyn_cast<CallExpr>(E))
6144 CheckImplicitArgumentConversions(S, Call, CC);
6145
6146 // Go ahead and check any implicit conversions we might have skipped.
6147 // The non-canonical typecheck is just an optimization;
6148 // CheckImplicitConversion will filter out dead implicit conversions.
6149 if (E->getType() != T)
6150 CheckImplicitConversion(S, E, T, CC);
6151
6152 // Now continue drilling into this expression.
6153
6154 if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
6155 if (POE->getResultExpr())
6156 E = POE->getResultExpr();
6157 }
6158
6159 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
6160 return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
6161
6162 // Skip past explicit casts.
6163 if (isa<ExplicitCastExpr>(E)) {
6164 E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
6165 return AnalyzeImplicitConversions(S, E, CC);
6166 }
6167
6168 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6169 // Do a somewhat different check with comparison operators.
6170 if (BO->isComparisonOp())
6171 return AnalyzeComparison(S, BO);
6172
6173 // And with simple assignments.
6174 if (BO->getOpcode() == BO_Assign)
6175 return AnalyzeAssignment(S, BO);
6176 }
6177
6178 // These break the otherwise-useful invariant below. Fortunately,
6179 // we don't really need to recurse into them, because any internal
6180 // expressions should have been analyzed already when they were
6181 // built into statements.
6182 if (isa<StmtExpr>(E)) return;
6183
6184 // Don't descend into unevaluated contexts.
6185 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
6186
6187 // Now just recurse over the expression's children.
6188 CC = E->getExprLoc();
6189 BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
6190 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
6191 for (Stmt::child_range I = E->children(); I; ++I) {
6192 Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
6193 if (!ChildExpr)
6194 continue;
6195
6196 if (IsLogicalAndOperator &&
6197 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
6198 // Ignore checking string literals that are in logical and operators.
6199 // This is a common pattern for asserts.
6200 continue;
6201 AnalyzeImplicitConversions(S, ChildExpr, CC);
6202 }
6203 }
6204
6205 } // end anonymous namespace
6206
6207 enum {
6208 AddressOf,
6209 FunctionPointer,
6210 ArrayPointer
6211 };
6212
6213 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
6214 // Returns true when emitting a warning about taking the address of a reference.
CheckForReference(Sema & SemaRef,const Expr * E,PartialDiagnostic PD)6215 static bool CheckForReference(Sema &SemaRef, const Expr *E,
6216 PartialDiagnostic PD) {
6217 E = E->IgnoreParenImpCasts();
6218
6219 const FunctionDecl *FD = nullptr;
6220
6221 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
6222 if (!DRE->getDecl()->getType()->isReferenceType())
6223 return false;
6224 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
6225 if (!M->getMemberDecl()->getType()->isReferenceType())
6226 return false;
6227 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
6228 if (!Call->getCallReturnType()->isReferenceType())
6229 return false;
6230 FD = Call->getDirectCallee();
6231 } else {
6232 return false;
6233 }
6234
6235 SemaRef.Diag(E->getExprLoc(), PD);
6236
6237 // If possible, point to location of function.
6238 if (FD) {
6239 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
6240 }
6241
6242 return true;
6243 }
6244
6245 /// \brief Diagnose pointers that are always non-null.
6246 /// \param E the expression containing the pointer
6247 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
6248 /// compared to a null pointer
6249 /// \param IsEqual True when the comparison is equal to a null pointer
6250 /// \param Range Extra SourceRange to highlight in the diagnostic
DiagnoseAlwaysNonNullPointer(Expr * E,Expr::NullPointerConstantKind NullKind,bool IsEqual,SourceRange Range)6251 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
6252 Expr::NullPointerConstantKind NullKind,
6253 bool IsEqual, SourceRange Range) {
6254 if (!E)
6255 return;
6256
6257 // Don't warn inside macros.
6258 if (E->getExprLoc().isMacroID())
6259 return;
6260 E = E->IgnoreImpCasts();
6261
6262 const bool IsCompare = NullKind != Expr::NPCK_NotNull;
6263
6264 if (isa<CXXThisExpr>(E)) {
6265 unsigned DiagID = IsCompare ? diag::warn_this_null_compare
6266 : diag::warn_this_bool_conversion;
6267 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
6268 return;
6269 }
6270
6271 bool IsAddressOf = false;
6272
6273 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
6274 if (UO->getOpcode() != UO_AddrOf)
6275 return;
6276 IsAddressOf = true;
6277 E = UO->getSubExpr();
6278 }
6279
6280 if (IsAddressOf) {
6281 unsigned DiagID = IsCompare
6282 ? diag::warn_address_of_reference_null_compare
6283 : diag::warn_address_of_reference_bool_conversion;
6284 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
6285 << IsEqual;
6286 if (CheckForReference(*this, E, PD)) {
6287 return;
6288 }
6289 }
6290
6291 // Expect to find a single Decl. Skip anything more complicated.
6292 ValueDecl *D = nullptr;
6293 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
6294 D = R->getDecl();
6295 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
6296 D = M->getMemberDecl();
6297 }
6298
6299 // Weak Decls can be null.
6300 if (!D || D->isWeak())
6301 return;
6302
6303 QualType T = D->getType();
6304 const bool IsArray = T->isArrayType();
6305 const bool IsFunction = T->isFunctionType();
6306
6307 // Address of function is used to silence the function warning.
6308 if (IsAddressOf && IsFunction) {
6309 return;
6310 }
6311
6312 // Found nothing.
6313 if (!IsAddressOf && !IsFunction && !IsArray)
6314 return;
6315
6316 // Pretty print the expression for the diagnostic.
6317 std::string Str;
6318 llvm::raw_string_ostream S(Str);
6319 E->printPretty(S, nullptr, getPrintingPolicy());
6320
6321 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
6322 : diag::warn_impcast_pointer_to_bool;
6323 unsigned DiagType;
6324 if (IsAddressOf)
6325 DiagType = AddressOf;
6326 else if (IsFunction)
6327 DiagType = FunctionPointer;
6328 else if (IsArray)
6329 DiagType = ArrayPointer;
6330 else
6331 llvm_unreachable("Could not determine diagnostic.");
6332 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
6333 << Range << IsEqual;
6334
6335 if (!IsFunction)
6336 return;
6337
6338 // Suggest '&' to silence the function warning.
6339 Diag(E->getExprLoc(), diag::note_function_warning_silence)
6340 << FixItHint::CreateInsertion(E->getLocStart(), "&");
6341
6342 // Check to see if '()' fixit should be emitted.
6343 QualType ReturnType;
6344 UnresolvedSet<4> NonTemplateOverloads;
6345 tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
6346 if (ReturnType.isNull())
6347 return;
6348
6349 if (IsCompare) {
6350 // There are two cases here. If there is null constant, the only suggest
6351 // for a pointer return type. If the null is 0, then suggest if the return
6352 // type is a pointer or an integer type.
6353 if (!ReturnType->isPointerType()) {
6354 if (NullKind == Expr::NPCK_ZeroExpression ||
6355 NullKind == Expr::NPCK_ZeroLiteral) {
6356 if (!ReturnType->isIntegerType())
6357 return;
6358 } else {
6359 return;
6360 }
6361 }
6362 } else { // !IsCompare
6363 // For function to bool, only suggest if the function pointer has bool
6364 // return type.
6365 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
6366 return;
6367 }
6368 Diag(E->getExprLoc(), diag::note_function_to_function_call)
6369 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
6370 }
6371
6372
6373 /// Diagnoses "dangerous" implicit conversions within the given
6374 /// expression (which is a full expression). Implements -Wconversion
6375 /// and -Wsign-compare.
6376 ///
6377 /// \param CC the "context" location of the implicit conversion, i.e.
6378 /// the most location of the syntactic entity requiring the implicit
6379 /// conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)6380 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
6381 // Don't diagnose in unevaluated contexts.
6382 if (isUnevaluatedContext())
6383 return;
6384
6385 // Don't diagnose for value- or type-dependent expressions.
6386 if (E->isTypeDependent() || E->isValueDependent())
6387 return;
6388
6389 // Check for array bounds violations in cases where the check isn't triggered
6390 // elsewhere for other Expr types (like BinaryOperators), e.g. when an
6391 // ArraySubscriptExpr is on the RHS of a variable initialization.
6392 CheckArrayAccess(E);
6393
6394 // This is not the right CC for (e.g.) a variable initialization.
6395 AnalyzeImplicitConversions(*this, E, CC);
6396 }
6397
6398 /// Diagnose when expression is an integer constant expression and its evaluation
6399 /// results in integer overflow
CheckForIntOverflow(Expr * E)6400 void Sema::CheckForIntOverflow (Expr *E) {
6401 if (isa<BinaryOperator>(E->IgnoreParens()))
6402 E->EvaluateForOverflow(Context);
6403 }
6404
6405 namespace {
6406 /// \brief Visitor for expressions which looks for unsequenced operations on the
6407 /// same object.
6408 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
6409 typedef EvaluatedExprVisitor<SequenceChecker> Base;
6410
6411 /// \brief A tree of sequenced regions within an expression. Two regions are
6412 /// unsequenced if one is an ancestor or a descendent of the other. When we
6413 /// finish processing an expression with sequencing, such as a comma
6414 /// expression, we fold its tree nodes into its parent, since they are
6415 /// unsequenced with respect to nodes we will visit later.
6416 class SequenceTree {
6417 struct Value {
Value__anon74e15dea0911::SequenceChecker::SequenceTree::Value6418 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
6419 unsigned Parent : 31;
6420 bool Merged : 1;
6421 };
6422 SmallVector<Value, 8> Values;
6423
6424 public:
6425 /// \brief A region within an expression which may be sequenced with respect
6426 /// to some other region.
6427 class Seq {
Seq(unsigned N)6428 explicit Seq(unsigned N) : Index(N) {}
6429 unsigned Index;
6430 friend class SequenceTree;
6431 public:
Seq()6432 Seq() : Index(0) {}
6433 };
6434
SequenceTree()6435 SequenceTree() { Values.push_back(Value(0)); }
root() const6436 Seq root() const { return Seq(0); }
6437
6438 /// \brief Create a new sequence of operations, which is an unsequenced
6439 /// subset of \p Parent. This sequence of operations is sequenced with
6440 /// respect to other children of \p Parent.
allocate(Seq Parent)6441 Seq allocate(Seq Parent) {
6442 Values.push_back(Value(Parent.Index));
6443 return Seq(Values.size() - 1);
6444 }
6445
6446 /// \brief Merge a sequence of operations into its parent.
merge(Seq S)6447 void merge(Seq S) {
6448 Values[S.Index].Merged = true;
6449 }
6450
6451 /// \brief Determine whether two operations are unsequenced. This operation
6452 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
6453 /// should have been merged into its parent as appropriate.
isUnsequenced(Seq Cur,Seq Old)6454 bool isUnsequenced(Seq Cur, Seq Old) {
6455 unsigned C = representative(Cur.Index);
6456 unsigned Target = representative(Old.Index);
6457 while (C >= Target) {
6458 if (C == Target)
6459 return true;
6460 C = Values[C].Parent;
6461 }
6462 return false;
6463 }
6464
6465 private:
6466 /// \brief Pick a representative for a sequence.
representative(unsigned K)6467 unsigned representative(unsigned K) {
6468 if (Values[K].Merged)
6469 // Perform path compression as we go.
6470 return Values[K].Parent = representative(Values[K].Parent);
6471 return K;
6472 }
6473 };
6474
6475 /// An object for which we can track unsequenced uses.
6476 typedef NamedDecl *Object;
6477
6478 /// Different flavors of object usage which we track. We only track the
6479 /// least-sequenced usage of each kind.
6480 enum UsageKind {
6481 /// A read of an object. Multiple unsequenced reads are OK.
6482 UK_Use,
6483 /// A modification of an object which is sequenced before the value
6484 /// computation of the expression, such as ++n in C++.
6485 UK_ModAsValue,
6486 /// A modification of an object which is not sequenced before the value
6487 /// computation of the expression, such as n++.
6488 UK_ModAsSideEffect,
6489
6490 UK_Count = UK_ModAsSideEffect + 1
6491 };
6492
6493 struct Usage {
Usage__anon74e15dea0911::SequenceChecker::Usage6494 Usage() : Use(nullptr), Seq() {}
6495 Expr *Use;
6496 SequenceTree::Seq Seq;
6497 };
6498
6499 struct UsageInfo {
UsageInfo__anon74e15dea0911::SequenceChecker::UsageInfo6500 UsageInfo() : Diagnosed(false) {}
6501 Usage Uses[UK_Count];
6502 /// Have we issued a diagnostic for this variable already?
6503 bool Diagnosed;
6504 };
6505 typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
6506
6507 Sema &SemaRef;
6508 /// Sequenced regions within the expression.
6509 SequenceTree Tree;
6510 /// Declaration modifications and references which we have seen.
6511 UsageInfoMap UsageMap;
6512 /// The region we are currently within.
6513 SequenceTree::Seq Region;
6514 /// Filled in with declarations which were modified as a side-effect
6515 /// (that is, post-increment operations).
6516 SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
6517 /// Expressions to check later. We defer checking these to reduce
6518 /// stack usage.
6519 SmallVectorImpl<Expr *> &WorkList;
6520
6521 /// RAII object wrapping the visitation of a sequenced subexpression of an
6522 /// expression. At the end of this process, the side-effects of the evaluation
6523 /// become sequenced with respect to the value computation of the result, so
6524 /// we downgrade any UK_ModAsSideEffect within the evaluation to
6525 /// UK_ModAsValue.
6526 struct SequencedSubexpression {
SequencedSubexpression__anon74e15dea0911::SequenceChecker::SequencedSubexpression6527 SequencedSubexpression(SequenceChecker &Self)
6528 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
6529 Self.ModAsSideEffect = &ModAsSideEffect;
6530 }
~SequencedSubexpression__anon74e15dea0911::SequenceChecker::SequencedSubexpression6531 ~SequencedSubexpression() {
6532 for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
6533 UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
6534 U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
6535 Self.addUsage(U, ModAsSideEffect[I].first,
6536 ModAsSideEffect[I].second.Use, UK_ModAsValue);
6537 }
6538 Self.ModAsSideEffect = OldModAsSideEffect;
6539 }
6540
6541 SequenceChecker &Self;
6542 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
6543 SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
6544 };
6545
6546 /// RAII object wrapping the visitation of a subexpression which we might
6547 /// choose to evaluate as a constant. If any subexpression is evaluated and
6548 /// found to be non-constant, this allows us to suppress the evaluation of
6549 /// the outer expression.
6550 class EvaluationTracker {
6551 public:
EvaluationTracker(SequenceChecker & Self)6552 EvaluationTracker(SequenceChecker &Self)
6553 : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
6554 Self.EvalTracker = this;
6555 }
~EvaluationTracker()6556 ~EvaluationTracker() {
6557 Self.EvalTracker = Prev;
6558 if (Prev)
6559 Prev->EvalOK &= EvalOK;
6560 }
6561
evaluate(const Expr * E,bool & Result)6562 bool evaluate(const Expr *E, bool &Result) {
6563 if (!EvalOK || E->isValueDependent())
6564 return false;
6565 EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
6566 return EvalOK;
6567 }
6568
6569 private:
6570 SequenceChecker &Self;
6571 EvaluationTracker *Prev;
6572 bool EvalOK;
6573 } *EvalTracker;
6574
6575 /// \brief Find the object which is produced by the specified expression,
6576 /// if any.
getObject(Expr * E,bool Mod) const6577 Object getObject(Expr *E, bool Mod) const {
6578 E = E->IgnoreParenCasts();
6579 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
6580 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
6581 return getObject(UO->getSubExpr(), Mod);
6582 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6583 if (BO->getOpcode() == BO_Comma)
6584 return getObject(BO->getRHS(), Mod);
6585 if (Mod && BO->isAssignmentOp())
6586 return getObject(BO->getLHS(), Mod);
6587 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
6588 // FIXME: Check for more interesting cases, like "x.n = ++x.n".
6589 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
6590 return ME->getMemberDecl();
6591 } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6592 // FIXME: If this is a reference, map through to its value.
6593 return DRE->getDecl();
6594 return nullptr;
6595 }
6596
6597 /// \brief Note that an object was modified or used by an expression.
addUsage(UsageInfo & UI,Object O,Expr * Ref,UsageKind UK)6598 void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
6599 Usage &U = UI.Uses[UK];
6600 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
6601 if (UK == UK_ModAsSideEffect && ModAsSideEffect)
6602 ModAsSideEffect->push_back(std::make_pair(O, U));
6603 U.Use = Ref;
6604 U.Seq = Region;
6605 }
6606 }
6607 /// \brief Check whether a modification or use conflicts with a prior usage.
checkUsage(Object O,UsageInfo & UI,Expr * Ref,UsageKind OtherKind,bool IsModMod)6608 void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
6609 bool IsModMod) {
6610 if (UI.Diagnosed)
6611 return;
6612
6613 const Usage &U = UI.Uses[OtherKind];
6614 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
6615 return;
6616
6617 Expr *Mod = U.Use;
6618 Expr *ModOrUse = Ref;
6619 if (OtherKind == UK_Use)
6620 std::swap(Mod, ModOrUse);
6621
6622 SemaRef.Diag(Mod->getExprLoc(),
6623 IsModMod ? diag::warn_unsequenced_mod_mod
6624 : diag::warn_unsequenced_mod_use)
6625 << O << SourceRange(ModOrUse->getExprLoc());
6626 UI.Diagnosed = true;
6627 }
6628
notePreUse(Object O,Expr * Use)6629 void notePreUse(Object O, Expr *Use) {
6630 UsageInfo &U = UsageMap[O];
6631 // Uses conflict with other modifications.
6632 checkUsage(O, U, Use, UK_ModAsValue, false);
6633 }
notePostUse(Object O,Expr * Use)6634 void notePostUse(Object O, Expr *Use) {
6635 UsageInfo &U = UsageMap[O];
6636 checkUsage(O, U, Use, UK_ModAsSideEffect, false);
6637 addUsage(U, O, Use, UK_Use);
6638 }
6639
notePreMod(Object O,Expr * Mod)6640 void notePreMod(Object O, Expr *Mod) {
6641 UsageInfo &U = UsageMap[O];
6642 // Modifications conflict with other modifications and with uses.
6643 checkUsage(O, U, Mod, UK_ModAsValue, true);
6644 checkUsage(O, U, Mod, UK_Use, false);
6645 }
notePostMod(Object O,Expr * Use,UsageKind UK)6646 void notePostMod(Object O, Expr *Use, UsageKind UK) {
6647 UsageInfo &U = UsageMap[O];
6648 checkUsage(O, U, Use, UK_ModAsSideEffect, true);
6649 addUsage(U, O, Use, UK);
6650 }
6651
6652 public:
SequenceChecker(Sema & S,Expr * E,SmallVectorImpl<Expr * > & WorkList)6653 SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
6654 : Base(S.Context), SemaRef(S), Region(Tree.root()),
6655 ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
6656 Visit(E);
6657 }
6658
VisitStmt(Stmt * S)6659 void VisitStmt(Stmt *S) {
6660 // Skip all statements which aren't expressions for now.
6661 }
6662
VisitExpr(Expr * E)6663 void VisitExpr(Expr *E) {
6664 // By default, just recurse to evaluated subexpressions.
6665 Base::VisitStmt(E);
6666 }
6667
VisitCastExpr(CastExpr * E)6668 void VisitCastExpr(CastExpr *E) {
6669 Object O = Object();
6670 if (E->getCastKind() == CK_LValueToRValue)
6671 O = getObject(E->getSubExpr(), false);
6672
6673 if (O)
6674 notePreUse(O, E);
6675 VisitExpr(E);
6676 if (O)
6677 notePostUse(O, E);
6678 }
6679
VisitBinComma(BinaryOperator * BO)6680 void VisitBinComma(BinaryOperator *BO) {
6681 // C++11 [expr.comma]p1:
6682 // Every value computation and side effect associated with the left
6683 // expression is sequenced before every value computation and side
6684 // effect associated with the right expression.
6685 SequenceTree::Seq LHS = Tree.allocate(Region);
6686 SequenceTree::Seq RHS = Tree.allocate(Region);
6687 SequenceTree::Seq OldRegion = Region;
6688
6689 {
6690 SequencedSubexpression SeqLHS(*this);
6691 Region = LHS;
6692 Visit(BO->getLHS());
6693 }
6694
6695 Region = RHS;
6696 Visit(BO->getRHS());
6697
6698 Region = OldRegion;
6699
6700 // Forget that LHS and RHS are sequenced. They are both unsequenced
6701 // with respect to other stuff.
6702 Tree.merge(LHS);
6703 Tree.merge(RHS);
6704 }
6705
VisitBinAssign(BinaryOperator * BO)6706 void VisitBinAssign(BinaryOperator *BO) {
6707 // The modification is sequenced after the value computation of the LHS
6708 // and RHS, so check it before inspecting the operands and update the
6709 // map afterwards.
6710 Object O = getObject(BO->getLHS(), true);
6711 if (!O)
6712 return VisitExpr(BO);
6713
6714 notePreMod(O, BO);
6715
6716 // C++11 [expr.ass]p7:
6717 // E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
6718 // only once.
6719 //
6720 // Therefore, for a compound assignment operator, O is considered used
6721 // everywhere except within the evaluation of E1 itself.
6722 if (isa<CompoundAssignOperator>(BO))
6723 notePreUse(O, BO);
6724
6725 Visit(BO->getLHS());
6726
6727 if (isa<CompoundAssignOperator>(BO))
6728 notePostUse(O, BO);
6729
6730 Visit(BO->getRHS());
6731
6732 // C++11 [expr.ass]p1:
6733 // the assignment is sequenced [...] before the value computation of the
6734 // assignment expression.
6735 // C11 6.5.16/3 has no such rule.
6736 notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
6737 : UK_ModAsSideEffect);
6738 }
VisitCompoundAssignOperator(CompoundAssignOperator * CAO)6739 void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
6740 VisitBinAssign(CAO);
6741 }
6742
VisitUnaryPreInc(UnaryOperator * UO)6743 void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreDec(UnaryOperator * UO)6744 void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreIncDec(UnaryOperator * UO)6745 void VisitUnaryPreIncDec(UnaryOperator *UO) {
6746 Object O = getObject(UO->getSubExpr(), true);
6747 if (!O)
6748 return VisitExpr(UO);
6749
6750 notePreMod(O, UO);
6751 Visit(UO->getSubExpr());
6752 // C++11 [expr.pre.incr]p1:
6753 // the expression ++x is equivalent to x+=1
6754 notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
6755 : UK_ModAsSideEffect);
6756 }
6757
VisitUnaryPostInc(UnaryOperator * UO)6758 void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostDec(UnaryOperator * UO)6759 void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostIncDec(UnaryOperator * UO)6760 void VisitUnaryPostIncDec(UnaryOperator *UO) {
6761 Object O = getObject(UO->getSubExpr(), true);
6762 if (!O)
6763 return VisitExpr(UO);
6764
6765 notePreMod(O, UO);
6766 Visit(UO->getSubExpr());
6767 notePostMod(O, UO, UK_ModAsSideEffect);
6768 }
6769
6770 /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
VisitBinLOr(BinaryOperator * BO)6771 void VisitBinLOr(BinaryOperator *BO) {
6772 // The side-effects of the LHS of an '&&' are sequenced before the
6773 // value computation of the RHS, and hence before the value computation
6774 // of the '&&' itself, unless the LHS evaluates to zero. We treat them
6775 // as if they were unconditionally sequenced.
6776 EvaluationTracker Eval(*this);
6777 {
6778 SequencedSubexpression Sequenced(*this);
6779 Visit(BO->getLHS());
6780 }
6781
6782 bool Result;
6783 if (Eval.evaluate(BO->getLHS(), Result)) {
6784 if (!Result)
6785 Visit(BO->getRHS());
6786 } else {
6787 // Check for unsequenced operations in the RHS, treating it as an
6788 // entirely separate evaluation.
6789 //
6790 // FIXME: If there are operations in the RHS which are unsequenced
6791 // with respect to operations outside the RHS, and those operations
6792 // are unconditionally evaluated, diagnose them.
6793 WorkList.push_back(BO->getRHS());
6794 }
6795 }
VisitBinLAnd(BinaryOperator * BO)6796 void VisitBinLAnd(BinaryOperator *BO) {
6797 EvaluationTracker Eval(*this);
6798 {
6799 SequencedSubexpression Sequenced(*this);
6800 Visit(BO->getLHS());
6801 }
6802
6803 bool Result;
6804 if (Eval.evaluate(BO->getLHS(), Result)) {
6805 if (Result)
6806 Visit(BO->getRHS());
6807 } else {
6808 WorkList.push_back(BO->getRHS());
6809 }
6810 }
6811
6812 // Only visit the condition, unless we can be sure which subexpression will
6813 // be chosen.
VisitAbstractConditionalOperator(AbstractConditionalOperator * CO)6814 void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
6815 EvaluationTracker Eval(*this);
6816 {
6817 SequencedSubexpression Sequenced(*this);
6818 Visit(CO->getCond());
6819 }
6820
6821 bool Result;
6822 if (Eval.evaluate(CO->getCond(), Result))
6823 Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
6824 else {
6825 WorkList.push_back(CO->getTrueExpr());
6826 WorkList.push_back(CO->getFalseExpr());
6827 }
6828 }
6829
VisitCallExpr(CallExpr * CE)6830 void VisitCallExpr(CallExpr *CE) {
6831 // C++11 [intro.execution]p15:
6832 // When calling a function [...], every value computation and side effect
6833 // associated with any argument expression, or with the postfix expression
6834 // designating the called function, is sequenced before execution of every
6835 // expression or statement in the body of the function [and thus before
6836 // the value computation of its result].
6837 SequencedSubexpression Sequenced(*this);
6838 Base::VisitCallExpr(CE);
6839
6840 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
6841 }
6842
VisitCXXConstructExpr(CXXConstructExpr * CCE)6843 void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
6844 // This is a call, so all subexpressions are sequenced before the result.
6845 SequencedSubexpression Sequenced(*this);
6846
6847 if (!CCE->isListInitialization())
6848 return VisitExpr(CCE);
6849
6850 // In C++11, list initializations are sequenced.
6851 SmallVector<SequenceTree::Seq, 32> Elts;
6852 SequenceTree::Seq Parent = Region;
6853 for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
6854 E = CCE->arg_end();
6855 I != E; ++I) {
6856 Region = Tree.allocate(Parent);
6857 Elts.push_back(Region);
6858 Visit(*I);
6859 }
6860
6861 // Forget that the initializers are sequenced.
6862 Region = Parent;
6863 for (unsigned I = 0; I < Elts.size(); ++I)
6864 Tree.merge(Elts[I]);
6865 }
6866
VisitInitListExpr(InitListExpr * ILE)6867 void VisitInitListExpr(InitListExpr *ILE) {
6868 if (!SemaRef.getLangOpts().CPlusPlus11)
6869 return VisitExpr(ILE);
6870
6871 // In C++11, list initializations are sequenced.
6872 SmallVector<SequenceTree::Seq, 32> Elts;
6873 SequenceTree::Seq Parent = Region;
6874 for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
6875 Expr *E = ILE->getInit(I);
6876 if (!E) continue;
6877 Region = Tree.allocate(Parent);
6878 Elts.push_back(Region);
6879 Visit(E);
6880 }
6881
6882 // Forget that the initializers are sequenced.
6883 Region = Parent;
6884 for (unsigned I = 0; I < Elts.size(); ++I)
6885 Tree.merge(Elts[I]);
6886 }
6887 };
6888 }
6889
CheckUnsequencedOperations(Expr * E)6890 void Sema::CheckUnsequencedOperations(Expr *E) {
6891 SmallVector<Expr *, 8> WorkList;
6892 WorkList.push_back(E);
6893 while (!WorkList.empty()) {
6894 Expr *Item = WorkList.pop_back_val();
6895 SequenceChecker(*this, Item, WorkList);
6896 }
6897 }
6898
CheckCompletedExpr(Expr * E,SourceLocation CheckLoc,bool IsConstexpr)6899 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
6900 bool IsConstexpr) {
6901 CheckImplicitConversions(E, CheckLoc);
6902 CheckUnsequencedOperations(E);
6903 if (!IsConstexpr && !E->isValueDependent())
6904 CheckForIntOverflow(E);
6905 }
6906
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)6907 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
6908 FieldDecl *BitField,
6909 Expr *Init) {
6910 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
6911 }
6912
6913 /// CheckParmsForFunctionDef - Check that the parameters of the given
6914 /// function are appropriate for the definition of a function. This
6915 /// takes care of any checks that cannot be performed on the
6916 /// declaration itself, e.g., that the types of each of the function
6917 /// parameters are complete.
CheckParmsForFunctionDef(ParmVarDecl * const * P,ParmVarDecl * const * PEnd,bool CheckParameterNames)6918 bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
6919 ParmVarDecl *const *PEnd,
6920 bool CheckParameterNames) {
6921 bool HasInvalidParm = false;
6922 for (; P != PEnd; ++P) {
6923 ParmVarDecl *Param = *P;
6924
6925 // C99 6.7.5.3p4: the parameters in a parameter type list in a
6926 // function declarator that is part of a function definition of
6927 // that function shall not have incomplete type.
6928 //
6929 // This is also C++ [dcl.fct]p6.
6930 if (!Param->isInvalidDecl() &&
6931 RequireCompleteType(Param->getLocation(), Param->getType(),
6932 diag::err_typecheck_decl_incomplete_type)) {
6933 Param->setInvalidDecl();
6934 HasInvalidParm = true;
6935 }
6936
6937 // C99 6.9.1p5: If the declarator includes a parameter type list, the
6938 // declaration of each parameter shall include an identifier.
6939 if (CheckParameterNames &&
6940 Param->getIdentifier() == nullptr &&
6941 !Param->isImplicit() &&
6942 !getLangOpts().CPlusPlus)
6943 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6944
6945 // C99 6.7.5.3p12:
6946 // If the function declarator is not part of a definition of that
6947 // function, parameters may have incomplete type and may use the [*]
6948 // notation in their sequences of declarator specifiers to specify
6949 // variable length array types.
6950 QualType PType = Param->getOriginalType();
6951 while (const ArrayType *AT = Context.getAsArrayType(PType)) {
6952 if (AT->getSizeModifier() == ArrayType::Star) {
6953 // FIXME: This diagnostic should point the '[*]' if source-location
6954 // information is added for it.
6955 Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
6956 break;
6957 }
6958 PType= AT->getElementType();
6959 }
6960
6961 // MSVC destroys objects passed by value in the callee. Therefore a
6962 // function definition which takes such a parameter must be able to call the
6963 // object's destructor. However, we don't perform any direct access check
6964 // on the dtor.
6965 if (getLangOpts().CPlusPlus && Context.getTargetInfo()
6966 .getCXXABI()
6967 .areArgsDestroyedLeftToRightInCallee()) {
6968 if (!Param->isInvalidDecl()) {
6969 if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
6970 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
6971 if (!ClassDecl->isInvalidDecl() &&
6972 !ClassDecl->hasIrrelevantDestructor() &&
6973 !ClassDecl->isDependentContext()) {
6974 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
6975 MarkFunctionReferenced(Param->getLocation(), Destructor);
6976 DiagnoseUseOfDecl(Destructor, Param->getLocation());
6977 }
6978 }
6979 }
6980 }
6981 }
6982
6983 return HasInvalidParm;
6984 }
6985
6986 /// CheckCastAlign - Implements -Wcast-align, which warns when a
6987 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)6988 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
6989 // This is actually a lot of work to potentially be doing on every
6990 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
6991 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
6992 return;
6993
6994 // Ignore dependent types.
6995 if (T->isDependentType() || Op->getType()->isDependentType())
6996 return;
6997
6998 // Require that the destination be a pointer type.
6999 const PointerType *DestPtr = T->getAs<PointerType>();
7000 if (!DestPtr) return;
7001
7002 // If the destination has alignment 1, we're done.
7003 QualType DestPointee = DestPtr->getPointeeType();
7004 if (DestPointee->isIncompleteType()) return;
7005 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
7006 if (DestAlign.isOne()) return;
7007
7008 // Require that the source be a pointer type.
7009 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
7010 if (!SrcPtr) return;
7011 QualType SrcPointee = SrcPtr->getPointeeType();
7012
7013 // Whitelist casts from cv void*. We already implicitly
7014 // whitelisted casts to cv void*, since they have alignment 1.
7015 // Also whitelist casts involving incomplete types, which implicitly
7016 // includes 'void'.
7017 if (SrcPointee->isIncompleteType()) return;
7018
7019 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
7020 if (SrcAlign >= DestAlign) return;
7021
7022 Diag(TRange.getBegin(), diag::warn_cast_align)
7023 << Op->getType() << T
7024 << static_cast<unsigned>(SrcAlign.getQuantity())
7025 << static_cast<unsigned>(DestAlign.getQuantity())
7026 << TRange << Op->getSourceRange();
7027 }
7028
getElementType(const Expr * BaseExpr)7029 static const Type* getElementType(const Expr *BaseExpr) {
7030 const Type* EltType = BaseExpr->getType().getTypePtr();
7031 if (EltType->isAnyPointerType())
7032 return EltType->getPointeeType().getTypePtr();
7033 else if (EltType->isArrayType())
7034 return EltType->getBaseElementTypeUnsafe();
7035 return EltType;
7036 }
7037
7038 /// \brief Check whether this array fits the idiom of a size-one tail padded
7039 /// array member of a struct.
7040 ///
7041 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
7042 /// commonly used to emulate flexible arrays in C89 code.
IsTailPaddedMemberArray(Sema & S,llvm::APInt Size,const NamedDecl * ND)7043 static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
7044 const NamedDecl *ND) {
7045 if (Size != 1 || !ND) return false;
7046
7047 const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
7048 if (!FD) return false;
7049
7050 // Don't consider sizes resulting from macro expansions or template argument
7051 // substitution to form C89 tail-padded arrays.
7052
7053 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
7054 while (TInfo) {
7055 TypeLoc TL = TInfo->getTypeLoc();
7056 // Look through typedefs.
7057 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
7058 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
7059 TInfo = TDL->getTypeSourceInfo();
7060 continue;
7061 }
7062 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
7063 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
7064 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
7065 return false;
7066 }
7067 break;
7068 }
7069
7070 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
7071 if (!RD) return false;
7072 if (RD->isUnion()) return false;
7073 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
7074 if (!CRD->isStandardLayout()) return false;
7075 }
7076
7077 // See if this is the last field decl in the record.
7078 const Decl *D = FD;
7079 while ((D = D->getNextDeclInContext()))
7080 if (isa<FieldDecl>(D))
7081 return false;
7082 return true;
7083 }
7084
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)7085 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
7086 const ArraySubscriptExpr *ASE,
7087 bool AllowOnePastEnd, bool IndexNegated) {
7088 IndexExpr = IndexExpr->IgnoreParenImpCasts();
7089 if (IndexExpr->isValueDependent())
7090 return;
7091
7092 const Type *EffectiveType = getElementType(BaseExpr);
7093 BaseExpr = BaseExpr->IgnoreParenCasts();
7094 const ConstantArrayType *ArrayTy =
7095 Context.getAsConstantArrayType(BaseExpr->getType());
7096 if (!ArrayTy)
7097 return;
7098
7099 llvm::APSInt index;
7100 if (!IndexExpr->EvaluateAsInt(index, Context))
7101 return;
7102 if (IndexNegated)
7103 index = -index;
7104
7105 const NamedDecl *ND = nullptr;
7106 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
7107 ND = dyn_cast<NamedDecl>(DRE->getDecl());
7108 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
7109 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
7110
7111 if (index.isUnsigned() || !index.isNegative()) {
7112 llvm::APInt size = ArrayTy->getSize();
7113 if (!size.isStrictlyPositive())
7114 return;
7115
7116 const Type* BaseType = getElementType(BaseExpr);
7117 if (BaseType != EffectiveType) {
7118 // Make sure we're comparing apples to apples when comparing index to size
7119 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
7120 uint64_t array_typesize = Context.getTypeSize(BaseType);
7121 // Handle ptrarith_typesize being zero, such as when casting to void*
7122 if (!ptrarith_typesize) ptrarith_typesize = 1;
7123 if (ptrarith_typesize != array_typesize) {
7124 // There's a cast to a different size type involved
7125 uint64_t ratio = array_typesize / ptrarith_typesize;
7126 // TODO: Be smarter about handling cases where array_typesize is not a
7127 // multiple of ptrarith_typesize
7128 if (ptrarith_typesize * ratio == array_typesize)
7129 size *= llvm::APInt(size.getBitWidth(), ratio);
7130 }
7131 }
7132
7133 if (size.getBitWidth() > index.getBitWidth())
7134 index = index.zext(size.getBitWidth());
7135 else if (size.getBitWidth() < index.getBitWidth())
7136 size = size.zext(index.getBitWidth());
7137
7138 // For array subscripting the index must be less than size, but for pointer
7139 // arithmetic also allow the index (offset) to be equal to size since
7140 // computing the next address after the end of the array is legal and
7141 // commonly done e.g. in C++ iterators and range-based for loops.
7142 if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
7143 return;
7144
7145 // Also don't warn for arrays of size 1 which are members of some
7146 // structure. These are often used to approximate flexible arrays in C89
7147 // code.
7148 if (IsTailPaddedMemberArray(*this, size, ND))
7149 return;
7150
7151 // Suppress the warning if the subscript expression (as identified by the
7152 // ']' location) and the index expression are both from macro expansions
7153 // within a system header.
7154 if (ASE) {
7155 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
7156 ASE->getRBracketLoc());
7157 if (SourceMgr.isInSystemHeader(RBracketLoc)) {
7158 SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
7159 IndexExpr->getLocStart());
7160 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
7161 return;
7162 }
7163 }
7164
7165 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
7166 if (ASE)
7167 DiagID = diag::warn_array_index_exceeds_bounds;
7168
7169 DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
7170 PDiag(DiagID) << index.toString(10, true)
7171 << size.toString(10, true)
7172 << (unsigned)size.getLimitedValue(~0U)
7173 << IndexExpr->getSourceRange());
7174 } else {
7175 unsigned DiagID = diag::warn_array_index_precedes_bounds;
7176 if (!ASE) {
7177 DiagID = diag::warn_ptr_arith_precedes_bounds;
7178 if (index.isNegative()) index = -index;
7179 }
7180
7181 DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
7182 PDiag(DiagID) << index.toString(10, true)
7183 << IndexExpr->getSourceRange());
7184 }
7185
7186 if (!ND) {
7187 // Try harder to find a NamedDecl to point at in the note.
7188 while (const ArraySubscriptExpr *ASE =
7189 dyn_cast<ArraySubscriptExpr>(BaseExpr))
7190 BaseExpr = ASE->getBase()->IgnoreParenCasts();
7191 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
7192 ND = dyn_cast<NamedDecl>(DRE->getDecl());
7193 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
7194 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
7195 }
7196
7197 if (ND)
7198 DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
7199 PDiag(diag::note_array_index_out_of_bounds)
7200 << ND->getDeclName());
7201 }
7202
CheckArrayAccess(const Expr * expr)7203 void Sema::CheckArrayAccess(const Expr *expr) {
7204 int AllowOnePastEnd = 0;
7205 while (expr) {
7206 expr = expr->IgnoreParenImpCasts();
7207 switch (expr->getStmtClass()) {
7208 case Stmt::ArraySubscriptExprClass: {
7209 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
7210 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
7211 AllowOnePastEnd > 0);
7212 return;
7213 }
7214 case Stmt::UnaryOperatorClass: {
7215 // Only unwrap the * and & unary operators
7216 const UnaryOperator *UO = cast<UnaryOperator>(expr);
7217 expr = UO->getSubExpr();
7218 switch (UO->getOpcode()) {
7219 case UO_AddrOf:
7220 AllowOnePastEnd++;
7221 break;
7222 case UO_Deref:
7223 AllowOnePastEnd--;
7224 break;
7225 default:
7226 return;
7227 }
7228 break;
7229 }
7230 case Stmt::ConditionalOperatorClass: {
7231 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
7232 if (const Expr *lhs = cond->getLHS())
7233 CheckArrayAccess(lhs);
7234 if (const Expr *rhs = cond->getRHS())
7235 CheckArrayAccess(rhs);
7236 return;
7237 }
7238 default:
7239 return;
7240 }
7241 }
7242 }
7243
7244 //===--- CHECK: Objective-C retain cycles ----------------------------------//
7245
7246 namespace {
7247 struct RetainCycleOwner {
RetainCycleOwner__anon74e15dea0a11::RetainCycleOwner7248 RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
7249 VarDecl *Variable;
7250 SourceRange Range;
7251 SourceLocation Loc;
7252 bool Indirect;
7253
setLocsFrom__anon74e15dea0a11::RetainCycleOwner7254 void setLocsFrom(Expr *e) {
7255 Loc = e->getExprLoc();
7256 Range = e->getSourceRange();
7257 }
7258 };
7259 }
7260
7261 /// Consider whether capturing the given variable can possibly lead to
7262 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)7263 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
7264 // In ARC, it's captured strongly iff the variable has __strong
7265 // lifetime. In MRR, it's captured strongly if the variable is
7266 // __block and has an appropriate type.
7267 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
7268 return false;
7269
7270 owner.Variable = var;
7271 if (ref)
7272 owner.setLocsFrom(ref);
7273 return true;
7274 }
7275
findRetainCycleOwner(Sema & S,Expr * e,RetainCycleOwner & owner)7276 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
7277 while (true) {
7278 e = e->IgnoreParens();
7279 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
7280 switch (cast->getCastKind()) {
7281 case CK_BitCast:
7282 case CK_LValueBitCast:
7283 case CK_LValueToRValue:
7284 case CK_ARCReclaimReturnedObject:
7285 e = cast->getSubExpr();
7286 continue;
7287
7288 default:
7289 return false;
7290 }
7291 }
7292
7293 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
7294 ObjCIvarDecl *ivar = ref->getDecl();
7295 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
7296 return false;
7297
7298 // Try to find a retain cycle in the base.
7299 if (!findRetainCycleOwner(S, ref->getBase(), owner))
7300 return false;
7301
7302 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
7303 owner.Indirect = true;
7304 return true;
7305 }
7306
7307 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
7308 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
7309 if (!var) return false;
7310 return considerVariable(var, ref, owner);
7311 }
7312
7313 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
7314 if (member->isArrow()) return false;
7315
7316 // Don't count this as an indirect ownership.
7317 e = member->getBase();
7318 continue;
7319 }
7320
7321 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
7322 // Only pay attention to pseudo-objects on property references.
7323 ObjCPropertyRefExpr *pre
7324 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
7325 ->IgnoreParens());
7326 if (!pre) return false;
7327 if (pre->isImplicitProperty()) return false;
7328 ObjCPropertyDecl *property = pre->getExplicitProperty();
7329 if (!property->isRetaining() &&
7330 !(property->getPropertyIvarDecl() &&
7331 property->getPropertyIvarDecl()->getType()
7332 .getObjCLifetime() == Qualifiers::OCL_Strong))
7333 return false;
7334
7335 owner.Indirect = true;
7336 if (pre->isSuperReceiver()) {
7337 owner.Variable = S.getCurMethodDecl()->getSelfDecl();
7338 if (!owner.Variable)
7339 return false;
7340 owner.Loc = pre->getLocation();
7341 owner.Range = pre->getSourceRange();
7342 return true;
7343 }
7344 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
7345 ->getSourceExpr());
7346 continue;
7347 }
7348
7349 // Array ivars?
7350
7351 return false;
7352 }
7353 }
7354
7355 namespace {
7356 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
FindCaptureVisitor__anon74e15dea0b11::FindCaptureVisitor7357 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
7358 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
7359 Context(Context), Variable(variable), Capturer(nullptr),
7360 VarWillBeReased(false) {}
7361 ASTContext &Context;
7362 VarDecl *Variable;
7363 Expr *Capturer;
7364 bool VarWillBeReased;
7365
VisitDeclRefExpr__anon74e15dea0b11::FindCaptureVisitor7366 void VisitDeclRefExpr(DeclRefExpr *ref) {
7367 if (ref->getDecl() == Variable && !Capturer)
7368 Capturer = ref;
7369 }
7370
VisitObjCIvarRefExpr__anon74e15dea0b11::FindCaptureVisitor7371 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
7372 if (Capturer) return;
7373 Visit(ref->getBase());
7374 if (Capturer && ref->isFreeIvar())
7375 Capturer = ref;
7376 }
7377
VisitBlockExpr__anon74e15dea0b11::FindCaptureVisitor7378 void VisitBlockExpr(BlockExpr *block) {
7379 // Look inside nested blocks
7380 if (block->getBlockDecl()->capturesVariable(Variable))
7381 Visit(block->getBlockDecl()->getBody());
7382 }
7383
VisitOpaqueValueExpr__anon74e15dea0b11::FindCaptureVisitor7384 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
7385 if (Capturer) return;
7386 if (OVE->getSourceExpr())
7387 Visit(OVE->getSourceExpr());
7388 }
VisitBinaryOperator__anon74e15dea0b11::FindCaptureVisitor7389 void VisitBinaryOperator(BinaryOperator *BinOp) {
7390 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
7391 return;
7392 Expr *LHS = BinOp->getLHS();
7393 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
7394 if (DRE->getDecl() != Variable)
7395 return;
7396 if (Expr *RHS = BinOp->getRHS()) {
7397 RHS = RHS->IgnoreParenCasts();
7398 llvm::APSInt Value;
7399 VarWillBeReased =
7400 (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
7401 }
7402 }
7403 }
7404 };
7405 }
7406
7407 /// Check whether the given argument is a block which captures a
7408 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)7409 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
7410 assert(owner.Variable && owner.Loc.isValid());
7411
7412 e = e->IgnoreParenCasts();
7413
7414 // Look through [^{...} copy] and Block_copy(^{...}).
7415 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
7416 Selector Cmd = ME->getSelector();
7417 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
7418 e = ME->getInstanceReceiver();
7419 if (!e)
7420 return nullptr;
7421 e = e->IgnoreParenCasts();
7422 }
7423 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
7424 if (CE->getNumArgs() == 1) {
7425 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
7426 if (Fn) {
7427 const IdentifierInfo *FnI = Fn->getIdentifier();
7428 if (FnI && FnI->isStr("_Block_copy")) {
7429 e = CE->getArg(0)->IgnoreParenCasts();
7430 }
7431 }
7432 }
7433 }
7434
7435 BlockExpr *block = dyn_cast<BlockExpr>(e);
7436 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
7437 return nullptr;
7438
7439 FindCaptureVisitor visitor(S.Context, owner.Variable);
7440 visitor.Visit(block->getBlockDecl()->getBody());
7441 return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
7442 }
7443
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)7444 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
7445 RetainCycleOwner &owner) {
7446 assert(capturer);
7447 assert(owner.Variable && owner.Loc.isValid());
7448
7449 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
7450 << owner.Variable << capturer->getSourceRange();
7451 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
7452 << owner.Indirect << owner.Range;
7453 }
7454
7455 /// Check for a keyword selector that starts with the word 'add' or
7456 /// 'set'.
isSetterLikeSelector(Selector sel)7457 static bool isSetterLikeSelector(Selector sel) {
7458 if (sel.isUnarySelector()) return false;
7459
7460 StringRef str = sel.getNameForSlot(0);
7461 while (!str.empty() && str.front() == '_') str = str.substr(1);
7462 if (str.startswith("set"))
7463 str = str.substr(3);
7464 else if (str.startswith("add")) {
7465 // Specially whitelist 'addOperationWithBlock:'.
7466 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
7467 return false;
7468 str = str.substr(3);
7469 }
7470 else
7471 return false;
7472
7473 if (str.empty()) return true;
7474 return !isLowercase(str.front());
7475 }
7476
7477 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)7478 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
7479 // Only check instance methods whose selector looks like a setter.
7480 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
7481 return;
7482
7483 // Try to find a variable that the receiver is strongly owned by.
7484 RetainCycleOwner owner;
7485 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
7486 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
7487 return;
7488 } else {
7489 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
7490 owner.Variable = getCurMethodDecl()->getSelfDecl();
7491 owner.Loc = msg->getSuperLoc();
7492 owner.Range = msg->getSuperLoc();
7493 }
7494
7495 // Check whether the receiver is captured by any of the arguments.
7496 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
7497 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
7498 return diagnoseRetainCycle(*this, capturer, owner);
7499 }
7500
7501 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)7502 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
7503 RetainCycleOwner owner;
7504 if (!findRetainCycleOwner(*this, receiver, owner))
7505 return;
7506
7507 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
7508 diagnoseRetainCycle(*this, capturer, owner);
7509 }
7510
checkRetainCycles(VarDecl * Var,Expr * Init)7511 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
7512 RetainCycleOwner Owner;
7513 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
7514 return;
7515
7516 // Because we don't have an expression for the variable, we have to set the
7517 // location explicitly here.
7518 Owner.Loc = Var->getLocation();
7519 Owner.Range = Var->getSourceRange();
7520
7521 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
7522 diagnoseRetainCycle(*this, Capturer, Owner);
7523 }
7524
checkUnsafeAssignLiteral(Sema & S,SourceLocation Loc,Expr * RHS,bool isProperty)7525 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
7526 Expr *RHS, bool isProperty) {
7527 // Check if RHS is an Objective-C object literal, which also can get
7528 // immediately zapped in a weak reference. Note that we explicitly
7529 // allow ObjCStringLiterals, since those are designed to never really die.
7530 RHS = RHS->IgnoreParenImpCasts();
7531
7532 // This enum needs to match with the 'select' in
7533 // warn_objc_arc_literal_assign (off-by-1).
7534 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
7535 if (Kind == Sema::LK_String || Kind == Sema::LK_None)
7536 return false;
7537
7538 S.Diag(Loc, diag::warn_arc_literal_assign)
7539 << (unsigned) Kind
7540 << (isProperty ? 0 : 1)
7541 << RHS->getSourceRange();
7542
7543 return true;
7544 }
7545
checkUnsafeAssignObject(Sema & S,SourceLocation Loc,Qualifiers::ObjCLifetime LT,Expr * RHS,bool isProperty)7546 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
7547 Qualifiers::ObjCLifetime LT,
7548 Expr *RHS, bool isProperty) {
7549 // Strip off any implicit cast added to get to the one ARC-specific.
7550 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
7551 if (cast->getCastKind() == CK_ARCConsumeObject) {
7552 S.Diag(Loc, diag::warn_arc_retained_assign)
7553 << (LT == Qualifiers::OCL_ExplicitNone)
7554 << (isProperty ? 0 : 1)
7555 << RHS->getSourceRange();
7556 return true;
7557 }
7558 RHS = cast->getSubExpr();
7559 }
7560
7561 if (LT == Qualifiers::OCL_Weak &&
7562 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
7563 return true;
7564
7565 return false;
7566 }
7567
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)7568 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
7569 QualType LHS, Expr *RHS) {
7570 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
7571
7572 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
7573 return false;
7574
7575 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
7576 return true;
7577
7578 return false;
7579 }
7580
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)7581 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
7582 Expr *LHS, Expr *RHS) {
7583 QualType LHSType;
7584 // PropertyRef on LHS type need be directly obtained from
7585 // its declaration as it has a PseudoType.
7586 ObjCPropertyRefExpr *PRE
7587 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
7588 if (PRE && !PRE->isImplicitProperty()) {
7589 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
7590 if (PD)
7591 LHSType = PD->getType();
7592 }
7593
7594 if (LHSType.isNull())
7595 LHSType = LHS->getType();
7596
7597 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
7598
7599 if (LT == Qualifiers::OCL_Weak) {
7600 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
7601 getCurFunction()->markSafeWeakUse(LHS);
7602 }
7603
7604 if (checkUnsafeAssigns(Loc, LHSType, RHS))
7605 return;
7606
7607 // FIXME. Check for other life times.
7608 if (LT != Qualifiers::OCL_None)
7609 return;
7610
7611 if (PRE) {
7612 if (PRE->isImplicitProperty())
7613 return;
7614 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
7615 if (!PD)
7616 return;
7617
7618 unsigned Attributes = PD->getPropertyAttributes();
7619 if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
7620 // when 'assign' attribute was not explicitly specified
7621 // by user, ignore it and rely on property type itself
7622 // for lifetime info.
7623 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
7624 if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
7625 LHSType->isObjCRetainableType())
7626 return;
7627
7628 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
7629 if (cast->getCastKind() == CK_ARCConsumeObject) {
7630 Diag(Loc, diag::warn_arc_retained_property_assign)
7631 << RHS->getSourceRange();
7632 return;
7633 }
7634 RHS = cast->getSubExpr();
7635 }
7636 }
7637 else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
7638 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
7639 return;
7640 }
7641 }
7642 }
7643
7644 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
7645
7646 namespace {
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)7647 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
7648 SourceLocation StmtLoc,
7649 const NullStmt *Body) {
7650 // Do not warn if the body is a macro that expands to nothing, e.g:
7651 //
7652 // #define CALL(x)
7653 // if (condition)
7654 // CALL(0);
7655 //
7656 if (Body->hasLeadingEmptyMacro())
7657 return false;
7658
7659 // Get line numbers of statement and body.
7660 bool StmtLineInvalid;
7661 unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
7662 &StmtLineInvalid);
7663 if (StmtLineInvalid)
7664 return false;
7665
7666 bool BodyLineInvalid;
7667 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
7668 &BodyLineInvalid);
7669 if (BodyLineInvalid)
7670 return false;
7671
7672 // Warn if null statement and body are on the same line.
7673 if (StmtLine != BodyLine)
7674 return false;
7675
7676 return true;
7677 }
7678 } // Unnamed namespace
7679
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)7680 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
7681 const Stmt *Body,
7682 unsigned DiagID) {
7683 // Since this is a syntactic check, don't emit diagnostic for template
7684 // instantiations, this just adds noise.
7685 if (CurrentInstantiationScope)
7686 return;
7687
7688 // The body should be a null statement.
7689 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
7690 if (!NBody)
7691 return;
7692
7693 // Do the usual checks.
7694 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
7695 return;
7696
7697 Diag(NBody->getSemiLoc(), DiagID);
7698 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
7699 }
7700
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)7701 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
7702 const Stmt *PossibleBody) {
7703 assert(!CurrentInstantiationScope); // Ensured by caller
7704
7705 SourceLocation StmtLoc;
7706 const Stmt *Body;
7707 unsigned DiagID;
7708 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
7709 StmtLoc = FS->getRParenLoc();
7710 Body = FS->getBody();
7711 DiagID = diag::warn_empty_for_body;
7712 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
7713 StmtLoc = WS->getCond()->getSourceRange().getEnd();
7714 Body = WS->getBody();
7715 DiagID = diag::warn_empty_while_body;
7716 } else
7717 return; // Neither `for' nor `while'.
7718
7719 // The body should be a null statement.
7720 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
7721 if (!NBody)
7722 return;
7723
7724 // Skip expensive checks if diagnostic is disabled.
7725 if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
7726 return;
7727
7728 // Do the usual checks.
7729 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
7730 return;
7731
7732 // `for(...);' and `while(...);' are popular idioms, so in order to keep
7733 // noise level low, emit diagnostics only if for/while is followed by a
7734 // CompoundStmt, e.g.:
7735 // for (int i = 0; i < n; i++);
7736 // {
7737 // a(i);
7738 // }
7739 // or if for/while is followed by a statement with more indentation
7740 // than for/while itself:
7741 // for (int i = 0; i < n; i++);
7742 // a(i);
7743 bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
7744 if (!ProbableTypo) {
7745 bool BodyColInvalid;
7746 unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
7747 PossibleBody->getLocStart(),
7748 &BodyColInvalid);
7749 if (BodyColInvalid)
7750 return;
7751
7752 bool StmtColInvalid;
7753 unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
7754 S->getLocStart(),
7755 &StmtColInvalid);
7756 if (StmtColInvalid)
7757 return;
7758
7759 if (BodyCol > StmtCol)
7760 ProbableTypo = true;
7761 }
7762
7763 if (ProbableTypo) {
7764 Diag(NBody->getSemiLoc(), DiagID);
7765 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
7766 }
7767 }
7768
7769 //===--- Layout compatibility ----------------------------------------------//
7770
7771 namespace {
7772
7773 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
7774
7775 /// \brief Check if two enumeration types are layout-compatible.
isLayoutCompatible(ASTContext & C,EnumDecl * ED1,EnumDecl * ED2)7776 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
7777 // C++11 [dcl.enum] p8:
7778 // Two enumeration types are layout-compatible if they have the same
7779 // underlying type.
7780 return ED1->isComplete() && ED2->isComplete() &&
7781 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
7782 }
7783
7784 /// \brief Check if two fields are layout-compatible.
isLayoutCompatible(ASTContext & C,FieldDecl * Field1,FieldDecl * Field2)7785 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
7786 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
7787 return false;
7788
7789 if (Field1->isBitField() != Field2->isBitField())
7790 return false;
7791
7792 if (Field1->isBitField()) {
7793 // Make sure that the bit-fields are the same length.
7794 unsigned Bits1 = Field1->getBitWidthValue(C);
7795 unsigned Bits2 = Field2->getBitWidthValue(C);
7796
7797 if (Bits1 != Bits2)
7798 return false;
7799 }
7800
7801 return true;
7802 }
7803
7804 /// \brief Check if two standard-layout structs are layout-compatible.
7805 /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)7806 bool isLayoutCompatibleStruct(ASTContext &C,
7807 RecordDecl *RD1,
7808 RecordDecl *RD2) {
7809 // If both records are C++ classes, check that base classes match.
7810 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
7811 // If one of records is a CXXRecordDecl we are in C++ mode,
7812 // thus the other one is a CXXRecordDecl, too.
7813 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
7814 // Check number of base classes.
7815 if (D1CXX->getNumBases() != D2CXX->getNumBases())
7816 return false;
7817
7818 // Check the base classes.
7819 for (CXXRecordDecl::base_class_const_iterator
7820 Base1 = D1CXX->bases_begin(),
7821 BaseEnd1 = D1CXX->bases_end(),
7822 Base2 = D2CXX->bases_begin();
7823 Base1 != BaseEnd1;
7824 ++Base1, ++Base2) {
7825 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
7826 return false;
7827 }
7828 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
7829 // If only RD2 is a C++ class, it should have zero base classes.
7830 if (D2CXX->getNumBases() > 0)
7831 return false;
7832 }
7833
7834 // Check the fields.
7835 RecordDecl::field_iterator Field2 = RD2->field_begin(),
7836 Field2End = RD2->field_end(),
7837 Field1 = RD1->field_begin(),
7838 Field1End = RD1->field_end();
7839 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
7840 if (!isLayoutCompatible(C, *Field1, *Field2))
7841 return false;
7842 }
7843 if (Field1 != Field1End || Field2 != Field2End)
7844 return false;
7845
7846 return true;
7847 }
7848
7849 /// \brief Check if two standard-layout unions are layout-compatible.
7850 /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)7851 bool isLayoutCompatibleUnion(ASTContext &C,
7852 RecordDecl *RD1,
7853 RecordDecl *RD2) {
7854 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
7855 for (auto *Field2 : RD2->fields())
7856 UnmatchedFields.insert(Field2);
7857
7858 for (auto *Field1 : RD1->fields()) {
7859 llvm::SmallPtrSet<FieldDecl *, 8>::iterator
7860 I = UnmatchedFields.begin(),
7861 E = UnmatchedFields.end();
7862
7863 for ( ; I != E; ++I) {
7864 if (isLayoutCompatible(C, Field1, *I)) {
7865 bool Result = UnmatchedFields.erase(*I);
7866 (void) Result;
7867 assert(Result);
7868 break;
7869 }
7870 }
7871 if (I == E)
7872 return false;
7873 }
7874
7875 return UnmatchedFields.empty();
7876 }
7877
isLayoutCompatible(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)7878 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
7879 if (RD1->isUnion() != RD2->isUnion())
7880 return false;
7881
7882 if (RD1->isUnion())
7883 return isLayoutCompatibleUnion(C, RD1, RD2);
7884 else
7885 return isLayoutCompatibleStruct(C, RD1, RD2);
7886 }
7887
7888 /// \brief Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(ASTContext & C,QualType T1,QualType T2)7889 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
7890 if (T1.isNull() || T2.isNull())
7891 return false;
7892
7893 // C++11 [basic.types] p11:
7894 // If two types T1 and T2 are the same type, then T1 and T2 are
7895 // layout-compatible types.
7896 if (C.hasSameType(T1, T2))
7897 return true;
7898
7899 T1 = T1.getCanonicalType().getUnqualifiedType();
7900 T2 = T2.getCanonicalType().getUnqualifiedType();
7901
7902 const Type::TypeClass TC1 = T1->getTypeClass();
7903 const Type::TypeClass TC2 = T2->getTypeClass();
7904
7905 if (TC1 != TC2)
7906 return false;
7907
7908 if (TC1 == Type::Enum) {
7909 return isLayoutCompatible(C,
7910 cast<EnumType>(T1)->getDecl(),
7911 cast<EnumType>(T2)->getDecl());
7912 } else if (TC1 == Type::Record) {
7913 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
7914 return false;
7915
7916 return isLayoutCompatible(C,
7917 cast<RecordType>(T1)->getDecl(),
7918 cast<RecordType>(T2)->getDecl());
7919 }
7920
7921 return false;
7922 }
7923 }
7924
7925 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
7926
7927 namespace {
7928 /// \brief Given a type tag expression find the type tag itself.
7929 ///
7930 /// \param TypeExpr Type tag expression, as it appears in user's code.
7931 ///
7932 /// \param VD Declaration of an identifier that appears in a type tag.
7933 ///
7934 /// \param MagicValue Type tag magic value.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue)7935 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
7936 const ValueDecl **VD, uint64_t *MagicValue) {
7937 while(true) {
7938 if (!TypeExpr)
7939 return false;
7940
7941 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
7942
7943 switch (TypeExpr->getStmtClass()) {
7944 case Stmt::UnaryOperatorClass: {
7945 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
7946 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
7947 TypeExpr = UO->getSubExpr();
7948 continue;
7949 }
7950 return false;
7951 }
7952
7953 case Stmt::DeclRefExprClass: {
7954 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
7955 *VD = DRE->getDecl();
7956 return true;
7957 }
7958
7959 case Stmt::IntegerLiteralClass: {
7960 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
7961 llvm::APInt MagicValueAPInt = IL->getValue();
7962 if (MagicValueAPInt.getActiveBits() <= 64) {
7963 *MagicValue = MagicValueAPInt.getZExtValue();
7964 return true;
7965 } else
7966 return false;
7967 }
7968
7969 case Stmt::BinaryConditionalOperatorClass:
7970 case Stmt::ConditionalOperatorClass: {
7971 const AbstractConditionalOperator *ACO =
7972 cast<AbstractConditionalOperator>(TypeExpr);
7973 bool Result;
7974 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
7975 if (Result)
7976 TypeExpr = ACO->getTrueExpr();
7977 else
7978 TypeExpr = ACO->getFalseExpr();
7979 continue;
7980 }
7981 return false;
7982 }
7983
7984 case Stmt::BinaryOperatorClass: {
7985 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
7986 if (BO->getOpcode() == BO_Comma) {
7987 TypeExpr = BO->getRHS();
7988 continue;
7989 }
7990 return false;
7991 }
7992
7993 default:
7994 return false;
7995 }
7996 }
7997 }
7998
7999 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
8000 ///
8001 /// \param TypeExpr Expression that specifies a type tag.
8002 ///
8003 /// \param MagicValues Registered magic values.
8004 ///
8005 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
8006 /// kind.
8007 ///
8008 /// \param TypeInfo Information about the corresponding C type.
8009 ///
8010 /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo)8011 bool GetMatchingCType(
8012 const IdentifierInfo *ArgumentKind,
8013 const Expr *TypeExpr, const ASTContext &Ctx,
8014 const llvm::DenseMap<Sema::TypeTagMagicValue,
8015 Sema::TypeTagData> *MagicValues,
8016 bool &FoundWrongKind,
8017 Sema::TypeTagData &TypeInfo) {
8018 FoundWrongKind = false;
8019
8020 // Variable declaration that has type_tag_for_datatype attribute.
8021 const ValueDecl *VD = nullptr;
8022
8023 uint64_t MagicValue;
8024
8025 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
8026 return false;
8027
8028 if (VD) {
8029 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
8030 if (I->getArgumentKind() != ArgumentKind) {
8031 FoundWrongKind = true;
8032 return false;
8033 }
8034 TypeInfo.Type = I->getMatchingCType();
8035 TypeInfo.LayoutCompatible = I->getLayoutCompatible();
8036 TypeInfo.MustBeNull = I->getMustBeNull();
8037 return true;
8038 }
8039 return false;
8040 }
8041
8042 if (!MagicValues)
8043 return false;
8044
8045 llvm::DenseMap<Sema::TypeTagMagicValue,
8046 Sema::TypeTagData>::const_iterator I =
8047 MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
8048 if (I == MagicValues->end())
8049 return false;
8050
8051 TypeInfo = I->second;
8052 return true;
8053 }
8054 } // unnamed namespace
8055
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)8056 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
8057 uint64_t MagicValue, QualType Type,
8058 bool LayoutCompatible,
8059 bool MustBeNull) {
8060 if (!TypeTagForDatatypeMagicValues)
8061 TypeTagForDatatypeMagicValues.reset(
8062 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
8063
8064 TypeTagMagicValue Magic(ArgumentKind, MagicValue);
8065 (*TypeTagForDatatypeMagicValues)[Magic] =
8066 TypeTagData(Type, LayoutCompatible, MustBeNull);
8067 }
8068
8069 namespace {
IsSameCharType(QualType T1,QualType T2)8070 bool IsSameCharType(QualType T1, QualType T2) {
8071 const BuiltinType *BT1 = T1->getAs<BuiltinType>();
8072 if (!BT1)
8073 return false;
8074
8075 const BuiltinType *BT2 = T2->getAs<BuiltinType>();
8076 if (!BT2)
8077 return false;
8078
8079 BuiltinType::Kind T1Kind = BT1->getKind();
8080 BuiltinType::Kind T2Kind = BT2->getKind();
8081
8082 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
8083 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
8084 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
8085 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
8086 }
8087 } // unnamed namespace
8088
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const Expr * const * ExprArgs)8089 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
8090 const Expr * const *ExprArgs) {
8091 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
8092 bool IsPointerAttr = Attr->getIsPointer();
8093
8094 const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
8095 bool FoundWrongKind;
8096 TypeTagData TypeInfo;
8097 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
8098 TypeTagForDatatypeMagicValues.get(),
8099 FoundWrongKind, TypeInfo)) {
8100 if (FoundWrongKind)
8101 Diag(TypeTagExpr->getExprLoc(),
8102 diag::warn_type_tag_for_datatype_wrong_kind)
8103 << TypeTagExpr->getSourceRange();
8104 return;
8105 }
8106
8107 const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
8108 if (IsPointerAttr) {
8109 // Skip implicit cast of pointer to `void *' (as a function argument).
8110 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
8111 if (ICE->getType()->isVoidPointerType() &&
8112 ICE->getCastKind() == CK_BitCast)
8113 ArgumentExpr = ICE->getSubExpr();
8114 }
8115 QualType ArgumentType = ArgumentExpr->getType();
8116
8117 // Passing a `void*' pointer shouldn't trigger a warning.
8118 if (IsPointerAttr && ArgumentType->isVoidPointerType())
8119 return;
8120
8121 if (TypeInfo.MustBeNull) {
8122 // Type tag with matching void type requires a null pointer.
8123 if (!ArgumentExpr->isNullPointerConstant(Context,
8124 Expr::NPC_ValueDependentIsNotNull)) {
8125 Diag(ArgumentExpr->getExprLoc(),
8126 diag::warn_type_safety_null_pointer_required)
8127 << ArgumentKind->getName()
8128 << ArgumentExpr->getSourceRange()
8129 << TypeTagExpr->getSourceRange();
8130 }
8131 return;
8132 }
8133
8134 QualType RequiredType = TypeInfo.Type;
8135 if (IsPointerAttr)
8136 RequiredType = Context.getPointerType(RequiredType);
8137
8138 bool mismatch = false;
8139 if (!TypeInfo.LayoutCompatible) {
8140 mismatch = !Context.hasSameType(ArgumentType, RequiredType);
8141
8142 // C++11 [basic.fundamental] p1:
8143 // Plain char, signed char, and unsigned char are three distinct types.
8144 //
8145 // But we treat plain `char' as equivalent to `signed char' or `unsigned
8146 // char' depending on the current char signedness mode.
8147 if (mismatch)
8148 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
8149 RequiredType->getPointeeType())) ||
8150 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
8151 mismatch = false;
8152 } else
8153 if (IsPointerAttr)
8154 mismatch = !isLayoutCompatible(Context,
8155 ArgumentType->getPointeeType(),
8156 RequiredType->getPointeeType());
8157 else
8158 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
8159
8160 if (mismatch)
8161 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
8162 << ArgumentType << ArgumentKind
8163 << TypeInfo.LayoutCompatible << RequiredType
8164 << ArgumentExpr->getSourceRange()
8165 << TypeTagExpr->getSourceRange();
8166 }
8167
8168