• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_HEAP_HEAP_H_
6 #define V8_HEAP_HEAP_H_
7 
8 #include <cmath>
9 
10 #include "src/allocation.h"
11 #include "src/assert-scope.h"
12 #include "src/counters.h"
13 #include "src/globals.h"
14 #include "src/heap/gc-idle-time-handler.h"
15 #include "src/heap/gc-tracer.h"
16 #include "src/heap/incremental-marking.h"
17 #include "src/heap/mark-compact.h"
18 #include "src/heap/objects-visiting.h"
19 #include "src/heap/spaces.h"
20 #include "src/heap/store-buffer.h"
21 #include "src/list.h"
22 #include "src/splay-tree-inl.h"
23 
24 namespace v8 {
25 namespace internal {
26 
27 // Defines all the roots in Heap.
28 #define STRONG_ROOT_LIST(V)                                                    \
29   V(Map, byte_array_map, ByteArrayMap)                                         \
30   V(Map, free_space_map, FreeSpaceMap)                                         \
31   V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
32   V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
33   /* Cluster the most popular ones in a few cache lines here at the top.    */ \
34   V(Smi, store_buffer_top, StoreBufferTop)                                     \
35   V(Oddball, undefined_value, UndefinedValue)                                  \
36   V(Oddball, the_hole_value, TheHoleValue)                                     \
37   V(Oddball, null_value, NullValue)                                            \
38   V(Oddball, true_value, TrueValue)                                            \
39   V(Oddball, false_value, FalseValue)                                          \
40   V(Oddball, uninitialized_value, UninitializedValue)                          \
41   V(Oddball, exception, Exception)                                             \
42   V(Map, cell_map, CellMap)                                                    \
43   V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
44   V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
45   V(Map, meta_map, MetaMap)                                                    \
46   V(Map, heap_number_map, HeapNumberMap)                                       \
47   V(Map, mutable_heap_number_map, MutableHeapNumberMap)                        \
48   V(Map, native_context_map, NativeContextMap)                                 \
49   V(Map, fixed_array_map, FixedArrayMap)                                       \
50   V(Map, code_map, CodeMap)                                                    \
51   V(Map, scope_info_map, ScopeInfoMap)                                         \
52   V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
53   V(Map, fixed_double_array_map, FixedDoubleArrayMap)                          \
54   V(Map, constant_pool_array_map, ConstantPoolArrayMap)                        \
55   V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel)      \
56   V(Map, hash_table_map, HashTableMap)                                         \
57   V(Map, ordered_hash_table_map, OrderedHashTableMap)                          \
58   V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
59   V(ByteArray, empty_byte_array, EmptyByteArray)                               \
60   V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
61   V(ConstantPoolArray, empty_constant_pool_array, EmptyConstantPoolArray)      \
62   V(Oddball, arguments_marker, ArgumentsMarker)                                \
63   /* The roots above this line should be boring from a GC point of view.    */ \
64   /* This means they are never in new space and never on a page that is     */ \
65   /* being compacted.                                                       */ \
66   V(FixedArray, number_string_cache, NumberStringCache)                        \
67   V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
68   V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
69   V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
70   V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
71   V(FixedArray, string_split_cache, StringSplitCache)                          \
72   V(FixedArray, regexp_multiple_cache, RegExpMultipleCache)                    \
73   V(Oddball, termination_exception, TerminationException)                      \
74   V(Smi, hash_seed, HashSeed)                                                  \
75   V(Map, symbol_map, SymbolMap)                                                \
76   V(Map, string_map, StringMap)                                                \
77   V(Map, one_byte_string_map, OneByteStringMap)                                \
78   V(Map, cons_string_map, ConsStringMap)                                       \
79   V(Map, cons_one_byte_string_map, ConsOneByteStringMap)                       \
80   V(Map, sliced_string_map, SlicedStringMap)                                   \
81   V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap)                   \
82   V(Map, external_string_map, ExternalStringMap)                               \
83   V(Map, external_string_with_one_byte_data_map,                               \
84     ExternalStringWithOneByteDataMap)                                          \
85   V(Map, external_one_byte_string_map, ExternalOneByteStringMap)               \
86   V(Map, short_external_string_map, ShortExternalStringMap)                    \
87   V(Map, short_external_string_with_one_byte_data_map,                         \
88     ShortExternalStringWithOneByteDataMap)                                     \
89   V(Map, internalized_string_map, InternalizedStringMap)                       \
90   V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap)       \
91   V(Map, external_internalized_string_map, ExternalInternalizedStringMap)      \
92   V(Map, external_internalized_string_with_one_byte_data_map,                  \
93     ExternalInternalizedStringWithOneByteDataMap)                              \
94   V(Map, external_one_byte_internalized_string_map,                            \
95     ExternalOneByteInternalizedStringMap)                                      \
96   V(Map, short_external_internalized_string_map,                               \
97     ShortExternalInternalizedStringMap)                                        \
98   V(Map, short_external_internalized_string_with_one_byte_data_map,            \
99     ShortExternalInternalizedStringWithOneByteDataMap)                         \
100   V(Map, short_external_one_byte_internalized_string_map,                      \
101     ShortExternalOneByteInternalizedStringMap)                                 \
102   V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap)    \
103   V(Map, undetectable_string_map, UndetectableStringMap)                       \
104   V(Map, undetectable_one_byte_string_map, UndetectableOneByteStringMap)       \
105   V(Map, external_int8_array_map, ExternalInt8ArrayMap)                        \
106   V(Map, external_uint8_array_map, ExternalUint8ArrayMap)                      \
107   V(Map, external_int16_array_map, ExternalInt16ArrayMap)                      \
108   V(Map, external_uint16_array_map, ExternalUint16ArrayMap)                    \
109   V(Map, external_int32_array_map, ExternalInt32ArrayMap)                      \
110   V(Map, external_uint32_array_map, ExternalUint32ArrayMap)                    \
111   V(Map, external_float32_array_map, ExternalFloat32ArrayMap)                  \
112   V(Map, external_float64_array_map, ExternalFloat64ArrayMap)                  \
113   V(Map, external_uint8_clamped_array_map, ExternalUint8ClampedArrayMap)       \
114   V(ExternalArray, empty_external_int8_array, EmptyExternalInt8Array)          \
115   V(ExternalArray, empty_external_uint8_array, EmptyExternalUint8Array)        \
116   V(ExternalArray, empty_external_int16_array, EmptyExternalInt16Array)        \
117   V(ExternalArray, empty_external_uint16_array, EmptyExternalUint16Array)      \
118   V(ExternalArray, empty_external_int32_array, EmptyExternalInt32Array)        \
119   V(ExternalArray, empty_external_uint32_array, EmptyExternalUint32Array)      \
120   V(ExternalArray, empty_external_float32_array, EmptyExternalFloat32Array)    \
121   V(ExternalArray, empty_external_float64_array, EmptyExternalFloat64Array)    \
122   V(ExternalArray, empty_external_uint8_clamped_array,                         \
123     EmptyExternalUint8ClampedArray)                                            \
124   V(Map, fixed_uint8_array_map, FixedUint8ArrayMap)                            \
125   V(Map, fixed_int8_array_map, FixedInt8ArrayMap)                              \
126   V(Map, fixed_uint16_array_map, FixedUint16ArrayMap)                          \
127   V(Map, fixed_int16_array_map, FixedInt16ArrayMap)                            \
128   V(Map, fixed_uint32_array_map, FixedUint32ArrayMap)                          \
129   V(Map, fixed_int32_array_map, FixedInt32ArrayMap)                            \
130   V(Map, fixed_float32_array_map, FixedFloat32ArrayMap)                        \
131   V(Map, fixed_float64_array_map, FixedFloat64ArrayMap)                        \
132   V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap)             \
133   V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array)        \
134   V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array)          \
135   V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array)      \
136   V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array)        \
137   V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array)      \
138   V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array)        \
139   V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array)    \
140   V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array)    \
141   V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array,                      \
142     EmptyFixedUint8ClampedArray)                                               \
143   V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap)            \
144   V(Map, function_context_map, FunctionContextMap)                             \
145   V(Map, catch_context_map, CatchContextMap)                                   \
146   V(Map, with_context_map, WithContextMap)                                     \
147   V(Map, block_context_map, BlockContextMap)                                   \
148   V(Map, module_context_map, ModuleContextMap)                                 \
149   V(Map, global_context_map, GlobalContextMap)                                 \
150   V(Map, undefined_map, UndefinedMap)                                          \
151   V(Map, the_hole_map, TheHoleMap)                                             \
152   V(Map, null_map, NullMap)                                                    \
153   V(Map, boolean_map, BooleanMap)                                              \
154   V(Map, uninitialized_map, UninitializedMap)                                  \
155   V(Map, arguments_marker_map, ArgumentsMarkerMap)                             \
156   V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap)   \
157   V(Map, exception_map, ExceptionMap)                                          \
158   V(Map, termination_exception_map, TerminationExceptionMap)                   \
159   V(Map, message_object_map, JSMessageObjectMap)                               \
160   V(Map, foreign_map, ForeignMap)                                              \
161   V(HeapNumber, nan_value, NanValue)                                           \
162   V(HeapNumber, infinity_value, InfinityValue)                                 \
163   V(HeapNumber, minus_zero_value, MinusZeroValue)                              \
164   V(Map, neander_map, NeanderMap)                                              \
165   V(JSObject, message_listeners, MessageListeners)                             \
166   V(UnseededNumberDictionary, code_stubs, CodeStubs)                           \
167   V(UnseededNumberDictionary, non_monomorphic_cache, NonMonomorphicCache)      \
168   V(PolymorphicCodeCache, polymorphic_code_cache, PolymorphicCodeCache)        \
169   V(Code, js_entry_code, JsEntryCode)                                          \
170   V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
171   V(FixedArray, natives_source_cache, NativesSourceCache)                      \
172   V(Script, empty_script, EmptyScript)                                         \
173   V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames)          \
174   V(Cell, undefined_cell, UndefineCell)                                        \
175   V(JSObject, observation_state, ObservationState)                             \
176   V(Map, external_map, ExternalMap)                                            \
177   V(Object, symbol_registry, SymbolRegistry)                                   \
178   V(Symbol, frozen_symbol, FrozenSymbol)                                       \
179   V(Symbol, nonexistent_symbol, NonExistentSymbol)                             \
180   V(Symbol, elements_transition_symbol, ElementsTransitionSymbol)              \
181   V(SeededNumberDictionary, empty_slow_element_dictionary,                     \
182     EmptySlowElementDictionary)                                                \
183   V(Symbol, observed_symbol, ObservedSymbol)                                   \
184   V(Symbol, uninitialized_symbol, UninitializedSymbol)                         \
185   V(Symbol, megamorphic_symbol, MegamorphicSymbol)                             \
186   V(Symbol, premonomorphic_symbol, PremonomorphicSymbol)                       \
187   V(Symbol, generic_symbol, GenericSymbol)                                     \
188   V(Symbol, stack_trace_symbol, StackTraceSymbol)                              \
189   V(Symbol, detailed_stack_trace_symbol, DetailedStackTraceSymbol)             \
190   V(Symbol, normal_ic_symbol, NormalICSymbol)                                  \
191   V(Symbol, home_object_symbol, HomeObjectSymbol)                              \
192   V(FixedArray, materialized_objects, MaterializedObjects)                     \
193   V(FixedArray, allocation_sites_scratchpad, AllocationSitesScratchpad)        \
194   V(FixedArray, microtask_queue, MicrotaskQueue)
195 
196 // Entries in this list are limited to Smis and are not visited during GC.
197 #define SMI_ROOT_LIST(V)                                                   \
198   V(Smi, stack_limit, StackLimit)                                          \
199   V(Smi, real_stack_limit, RealStackLimit)                                 \
200   V(Smi, last_script_id, LastScriptId)                                     \
201   V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset) \
202   V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset)       \
203   V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset)             \
204   V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)
205 
206 #define ROOT_LIST(V)  \
207   STRONG_ROOT_LIST(V) \
208   SMI_ROOT_LIST(V)    \
209   V(StringTable, string_table, StringTable)
210 
211 // Heap roots that are known to be immortal immovable, for which we can safely
212 // skip write barriers.
213 #define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
214   V(byte_array_map)                     \
215   V(free_space_map)                     \
216   V(one_pointer_filler_map)             \
217   V(two_pointer_filler_map)             \
218   V(undefined_value)                    \
219   V(the_hole_value)                     \
220   V(null_value)                         \
221   V(true_value)                         \
222   V(false_value)                        \
223   V(uninitialized_value)                \
224   V(cell_map)                           \
225   V(global_property_cell_map)           \
226   V(shared_function_info_map)           \
227   V(meta_map)                           \
228   V(heap_number_map)                    \
229   V(mutable_heap_number_map)            \
230   V(native_context_map)                 \
231   V(fixed_array_map)                    \
232   V(code_map)                           \
233   V(scope_info_map)                     \
234   V(fixed_cow_array_map)                \
235   V(fixed_double_array_map)             \
236   V(constant_pool_array_map)            \
237   V(no_interceptor_result_sentinel)     \
238   V(hash_table_map)                     \
239   V(ordered_hash_table_map)             \
240   V(empty_fixed_array)                  \
241   V(empty_byte_array)                   \
242   V(empty_descriptor_array)             \
243   V(empty_constant_pool_array)          \
244   V(arguments_marker)                   \
245   V(symbol_map)                         \
246   V(sloppy_arguments_elements_map)      \
247   V(function_context_map)               \
248   V(catch_context_map)                  \
249   V(with_context_map)                   \
250   V(block_context_map)                  \
251   V(module_context_map)                 \
252   V(global_context_map)                 \
253   V(undefined_map)                      \
254   V(the_hole_map)                       \
255   V(null_map)                           \
256   V(boolean_map)                        \
257   V(uninitialized_map)                  \
258   V(message_object_map)                 \
259   V(foreign_map)                        \
260   V(neander_map)
261 
262 #define INTERNALIZED_STRING_LIST(V)                                \
263   V(Object_string, "Object")                                       \
264   V(proto_string, "__proto__")                                     \
265   V(arguments_string, "arguments")                                 \
266   V(Arguments_string, "Arguments")                                 \
267   V(caller_string, "caller")                                       \
268   V(boolean_string, "boolean")                                     \
269   V(Boolean_string, "Boolean")                                     \
270   V(callee_string, "callee")                                       \
271   V(constructor_string, "constructor")                             \
272   V(dot_result_string, ".result")                                  \
273   V(dot_for_string, ".for.")                                       \
274   V(eval_string, "eval")                                           \
275   V(empty_string, "")                                              \
276   V(function_string, "function")                                   \
277   V(Function_string, "Function")                                   \
278   V(length_string, "length")                                       \
279   V(name_string, "name")                                           \
280   V(null_string, "null")                                           \
281   V(number_string, "number")                                       \
282   V(Number_string, "Number")                                       \
283   V(nan_string, "NaN")                                             \
284   V(source_string, "source")                                       \
285   V(source_url_string, "source_url")                               \
286   V(source_mapping_url_string, "source_mapping_url")               \
287   V(global_string, "global")                                       \
288   V(ignore_case_string, "ignoreCase")                              \
289   V(multiline_string, "multiline")                                 \
290   V(sticky_string, "sticky")                                       \
291   V(harmony_regexps_string, "harmony_regexps")                     \
292   V(input_string, "input")                                         \
293   V(index_string, "index")                                         \
294   V(last_index_string, "lastIndex")                                \
295   V(object_string, "object")                                       \
296   V(prototype_string, "prototype")                                 \
297   V(string_string, "string")                                       \
298   V(String_string, "String")                                       \
299   V(symbol_string, "symbol")                                       \
300   V(Symbol_string, "Symbol")                                       \
301   V(Map_string, "Map")                                             \
302   V(Set_string, "Set")                                             \
303   V(WeakMap_string, "WeakMap")                                     \
304   V(WeakSet_string, "WeakSet")                                     \
305   V(for_string, "for")                                             \
306   V(for_api_string, "for_api")                                     \
307   V(for_intern_string, "for_intern")                               \
308   V(private_api_string, "private_api")                             \
309   V(private_intern_string, "private_intern")                       \
310   V(Date_string, "Date")                                           \
311   V(char_at_string, "CharAt")                                      \
312   V(undefined_string, "undefined")                                 \
313   V(value_of_string, "valueOf")                                    \
314   V(stack_string, "stack")                                         \
315   V(toJSON_string, "toJSON")                                       \
316   V(KeyedLoadMonomorphic_string, "KeyedLoadMonomorphic")           \
317   V(KeyedStoreMonomorphic_string, "KeyedStoreMonomorphic")         \
318   V(stack_overflow_string, "kStackOverflowBoilerplate")            \
319   V(illegal_access_string, "illegal access")                       \
320   V(cell_value_string, "%cell_value")                              \
321   V(illegal_argument_string, "illegal argument")                   \
322   V(identity_hash_string, "v8::IdentityHash")                      \
323   V(closure_string, "(closure)")                                   \
324   V(dot_string, ".")                                               \
325   V(compare_ic_string, "==")                                       \
326   V(strict_compare_ic_string, "===")                               \
327   V(infinity_string, "Infinity")                                   \
328   V(minus_infinity_string, "-Infinity")                            \
329   V(query_colon_string, "(?:)")                                    \
330   V(Generator_string, "Generator")                                 \
331   V(throw_string, "throw")                                         \
332   V(done_string, "done")                                           \
333   V(value_string, "value")                                         \
334   V(next_string, "next")                                           \
335   V(byte_length_string, "byteLength")                              \
336   V(byte_offset_string, "byteOffset")                              \
337   V(intl_initialized_marker_string, "v8::intl_initialized_marker") \
338   V(intl_impl_object_string, "v8::intl_object")
339 
340 // Forward declarations.
341 class HeapStats;
342 class Isolate;
343 class WeakObjectRetainer;
344 
345 
346 typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
347                                                       Object** pointer);
348 
349 class StoreBufferRebuilder {
350  public:
StoreBufferRebuilder(StoreBuffer * store_buffer)351   explicit StoreBufferRebuilder(StoreBuffer* store_buffer)
352       : store_buffer_(store_buffer) {}
353 
354   void Callback(MemoryChunk* page, StoreBufferEvent event);
355 
356  private:
357   StoreBuffer* store_buffer_;
358 
359   // We record in this variable how full the store buffer was when we started
360   // iterating over the current page, finding pointers to new space.  If the
361   // store buffer overflows again we can exempt the page from the store buffer
362   // by rewinding to this point instead of having to search the store buffer.
363   Object*** start_of_current_page_;
364   // The current page we are scanning in the store buffer iterator.
365   MemoryChunk* current_page_;
366 };
367 
368 
369 // A queue of objects promoted during scavenge. Each object is accompanied
370 // by it's size to avoid dereferencing a map pointer for scanning.
371 class PromotionQueue {
372  public:
PromotionQueue(Heap * heap)373   explicit PromotionQueue(Heap* heap)
374       : front_(NULL),
375         rear_(NULL),
376         limit_(NULL),
377         emergency_stack_(0),
378         heap_(heap) {}
379 
380   void Initialize();
381 
Destroy()382   void Destroy() {
383     DCHECK(is_empty());
384     delete emergency_stack_;
385     emergency_stack_ = NULL;
386   }
387 
GetHeadPage()388   Page* GetHeadPage() {
389     return Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
390   }
391 
SetNewLimit(Address limit)392   void SetNewLimit(Address limit) {
393     limit_ = reinterpret_cast<intptr_t*>(limit);
394 
395     if (limit_ <= rear_) {
396       return;
397     }
398 
399     RelocateQueueHead();
400   }
401 
IsBelowPromotionQueue(Address to_space_top)402   bool IsBelowPromotionQueue(Address to_space_top) {
403     // If the given to-space top pointer and the head of the promotion queue
404     // are not on the same page, then the to-space objects are below the
405     // promotion queue.
406     if (GetHeadPage() != Page::FromAddress(to_space_top)) {
407       return true;
408     }
409     // If the to space top pointer is smaller or equal than the promotion
410     // queue head, then the to-space objects are below the promotion queue.
411     return reinterpret_cast<intptr_t*>(to_space_top) <= rear_;
412   }
413 
is_empty()414   bool is_empty() {
415     return (front_ == rear_) &&
416            (emergency_stack_ == NULL || emergency_stack_->length() == 0);
417   }
418 
419   inline void insert(HeapObject* target, int size);
420 
remove(HeapObject ** target,int * size)421   void remove(HeapObject** target, int* size) {
422     DCHECK(!is_empty());
423     if (front_ == rear_) {
424       Entry e = emergency_stack_->RemoveLast();
425       *target = e.obj_;
426       *size = e.size_;
427       return;
428     }
429 
430     if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(front_))) {
431       NewSpacePage* front_page =
432           NewSpacePage::FromAddress(reinterpret_cast<Address>(front_));
433       DCHECK(!front_page->prev_page()->is_anchor());
434       front_ = reinterpret_cast<intptr_t*>(front_page->prev_page()->area_end());
435     }
436     *target = reinterpret_cast<HeapObject*>(*(--front_));
437     *size = static_cast<int>(*(--front_));
438     // Assert no underflow.
439     SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
440                                 reinterpret_cast<Address>(front_));
441   }
442 
443  private:
444   // The front of the queue is higher in the memory page chain than the rear.
445   intptr_t* front_;
446   intptr_t* rear_;
447   intptr_t* limit_;
448 
449   static const int kEntrySizeInWords = 2;
450 
451   struct Entry {
EntryEntry452     Entry(HeapObject* obj, int size) : obj_(obj), size_(size) {}
453 
454     HeapObject* obj_;
455     int size_;
456   };
457   List<Entry>* emergency_stack_;
458 
459   Heap* heap_;
460 
461   void RelocateQueueHead();
462 
463   DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
464 };
465 
466 
467 typedef void (*ScavengingCallback)(Map* map, HeapObject** slot,
468                                    HeapObject* object);
469 
470 
471 // External strings table is a place where all external strings are
472 // registered.  We need to keep track of such strings to properly
473 // finalize them.
474 class ExternalStringTable {
475  public:
476   // Registers an external string.
477   inline void AddString(String* string);
478 
479   inline void Iterate(ObjectVisitor* v);
480 
481   // Restores internal invariant and gets rid of collected strings.
482   // Must be called after each Iterate() that modified the strings.
483   void CleanUp();
484 
485   // Destroys all allocated memory.
486   void TearDown();
487 
488  private:
ExternalStringTable(Heap * heap)489   explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
490 
491   friend class Heap;
492 
493   inline void Verify();
494 
495   inline void AddOldString(String* string);
496 
497   // Notifies the table that only a prefix of the new list is valid.
498   inline void ShrinkNewStrings(int position);
499 
500   // To speed up scavenge collections new space string are kept
501   // separate from old space strings.
502   List<Object*> new_space_strings_;
503   List<Object*> old_space_strings_;
504 
505   Heap* heap_;
506 
507   DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
508 };
509 
510 
511 enum ArrayStorageAllocationMode {
512   DONT_INITIALIZE_ARRAY_ELEMENTS,
513   INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
514 };
515 
516 
517 class Heap {
518  public:
519   // Configure heap size in MB before setup. Return false if the heap has been
520   // set up already.
521   bool ConfigureHeap(int max_semi_space_size, int max_old_space_size,
522                      int max_executable_size, size_t code_range_size);
523   bool ConfigureHeapDefault();
524 
525   // Prepares the heap, setting up memory areas that are needed in the isolate
526   // without actually creating any objects.
527   bool SetUp();
528 
529   // Bootstraps the object heap with the core set of objects required to run.
530   // Returns whether it succeeded.
531   bool CreateHeapObjects();
532 
533   // Destroys all memory allocated by the heap.
534   void TearDown();
535 
536   // Set the stack limit in the roots_ array.  Some architectures generate
537   // code that looks here, because it is faster than loading from the static
538   // jslimit_/real_jslimit_ variable in the StackGuard.
539   void SetStackLimits();
540 
541   // Returns whether SetUp has been called.
542   bool HasBeenSetUp();
543 
544   // Returns the maximum amount of memory reserved for the heap.  For
545   // the young generation, we reserve 4 times the amount needed for a
546   // semi space.  The young generation consists of two semi spaces and
547   // we reserve twice the amount needed for those in order to ensure
548   // that new space can be aligned to its size.
MaxReserved()549   intptr_t MaxReserved() {
550     return 4 * reserved_semispace_size_ + max_old_generation_size_;
551   }
MaxSemiSpaceSize()552   int MaxSemiSpaceSize() { return max_semi_space_size_; }
ReservedSemiSpaceSize()553   int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
InitialSemiSpaceSize()554   int InitialSemiSpaceSize() { return initial_semispace_size_; }
MaxOldGenerationSize()555   intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
MaxExecutableSize()556   intptr_t MaxExecutableSize() { return max_executable_size_; }
557 
558   // Returns the capacity of the heap in bytes w/o growing. Heap grows when
559   // more spaces are needed until it reaches the limit.
560   intptr_t Capacity();
561 
562   // Returns the amount of memory currently committed for the heap.
563   intptr_t CommittedMemory();
564 
565   // Returns the amount of executable memory currently committed for the heap.
566   intptr_t CommittedMemoryExecutable();
567 
568   // Returns the amount of phyical memory currently committed for the heap.
569   size_t CommittedPhysicalMemory();
570 
571   // Returns the maximum amount of memory ever committed for the heap.
MaximumCommittedMemory()572   intptr_t MaximumCommittedMemory() { return maximum_committed_; }
573 
574   // Updates the maximum committed memory for the heap. Should be called
575   // whenever a space grows.
576   void UpdateMaximumCommitted();
577 
578   // Returns the available bytes in space w/o growing.
579   // Heap doesn't guarantee that it can allocate an object that requires
580   // all available bytes. Check MaxHeapObjectSize() instead.
581   intptr_t Available();
582 
583   // Returns of size of all objects residing in the heap.
584   intptr_t SizeOfObjects();
585 
586   // Return the starting address and a mask for the new space.  And-masking an
587   // address with the mask will result in the start address of the new space
588   // for all addresses in either semispace.
NewSpaceStart()589   Address NewSpaceStart() { return new_space_.start(); }
NewSpaceMask()590   uintptr_t NewSpaceMask() { return new_space_.mask(); }
NewSpaceTop()591   Address NewSpaceTop() { return new_space_.top(); }
592 
new_space()593   NewSpace* new_space() { return &new_space_; }
old_pointer_space()594   OldSpace* old_pointer_space() { return old_pointer_space_; }
old_data_space()595   OldSpace* old_data_space() { return old_data_space_; }
code_space()596   OldSpace* code_space() { return code_space_; }
map_space()597   MapSpace* map_space() { return map_space_; }
cell_space()598   CellSpace* cell_space() { return cell_space_; }
property_cell_space()599   PropertyCellSpace* property_cell_space() { return property_cell_space_; }
lo_space()600   LargeObjectSpace* lo_space() { return lo_space_; }
paged_space(int idx)601   PagedSpace* paged_space(int idx) {
602     switch (idx) {
603       case OLD_POINTER_SPACE:
604         return old_pointer_space();
605       case OLD_DATA_SPACE:
606         return old_data_space();
607       case MAP_SPACE:
608         return map_space();
609       case CELL_SPACE:
610         return cell_space();
611       case PROPERTY_CELL_SPACE:
612         return property_cell_space();
613       case CODE_SPACE:
614         return code_space();
615       case NEW_SPACE:
616       case LO_SPACE:
617         UNREACHABLE();
618     }
619     return NULL;
620   }
621 
always_allocate()622   bool always_allocate() { return always_allocate_scope_depth_ != 0; }
always_allocate_scope_depth_address()623   Address always_allocate_scope_depth_address() {
624     return reinterpret_cast<Address>(&always_allocate_scope_depth_);
625   }
626 
NewSpaceAllocationTopAddress()627   Address* NewSpaceAllocationTopAddress() {
628     return new_space_.allocation_top_address();
629   }
NewSpaceAllocationLimitAddress()630   Address* NewSpaceAllocationLimitAddress() {
631     return new_space_.allocation_limit_address();
632   }
633 
OldPointerSpaceAllocationTopAddress()634   Address* OldPointerSpaceAllocationTopAddress() {
635     return old_pointer_space_->allocation_top_address();
636   }
OldPointerSpaceAllocationLimitAddress()637   Address* OldPointerSpaceAllocationLimitAddress() {
638     return old_pointer_space_->allocation_limit_address();
639   }
640 
OldDataSpaceAllocationTopAddress()641   Address* OldDataSpaceAllocationTopAddress() {
642     return old_data_space_->allocation_top_address();
643   }
OldDataSpaceAllocationLimitAddress()644   Address* OldDataSpaceAllocationLimitAddress() {
645     return old_data_space_->allocation_limit_address();
646   }
647 
648   // Returns a deep copy of the JavaScript object.
649   // Properties and elements are copied too.
650   // Optionally takes an AllocationSite to be appended in an AllocationMemento.
651   MUST_USE_RESULT AllocationResult
652       CopyJSObject(JSObject* source, AllocationSite* site = NULL);
653 
654   // Clear the Instanceof cache (used when a prototype changes).
655   inline void ClearInstanceofCache();
656 
657   // Iterates the whole code space to clear all ICs of the given kind.
658   void ClearAllICsByKind(Code::Kind kind);
659 
660   // For use during bootup.
661   void RepairFreeListsAfterBoot();
662 
663   template <typename T>
664   static inline bool IsOneByte(T t, int chars);
665 
666   // Move len elements within a given array from src_index index to dst_index
667   // index.
668   void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
669 
670   // Sloppy mode arguments object size.
671   static const int kSloppyArgumentsObjectSize =
672       JSObject::kHeaderSize + 2 * kPointerSize;
673   // Strict mode arguments has no callee so it is smaller.
674   static const int kStrictArgumentsObjectSize =
675       JSObject::kHeaderSize + 1 * kPointerSize;
676   // Indicies for direct access into argument objects.
677   static const int kArgumentsLengthIndex = 0;
678   // callee is only valid in sloppy mode.
679   static const int kArgumentsCalleeIndex = 1;
680 
681   // Finalizes an external string by deleting the associated external
682   // data and clearing the resource pointer.
683   inline void FinalizeExternalString(String* string);
684 
685   // Initialize a filler object to keep the ability to iterate over the heap
686   // when introducing gaps within pages.
687   void CreateFillerObjectAt(Address addr, int size);
688 
689   bool CanMoveObjectStart(HeapObject* object);
690 
691   // Indicates whether live bytes adjustment is triggered from within the GC
692   // code or from mutator code.
693   enum InvocationMode { FROM_GC, FROM_MUTATOR };
694 
695   // Maintain consistency of live bytes during incremental marking.
696   void AdjustLiveBytes(Address address, int by, InvocationMode mode);
697 
698   // Trim the given array from the left. Note that this relocates the object
699   // start and hence is only valid if there is only a single reference to it.
700   FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
701 
702   // Trim the given array from the right.
703   template<Heap::InvocationMode mode>
704   void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
705 
706   // Converts the given boolean condition to JavaScript boolean value.
707   inline Object* ToBoolean(bool condition);
708 
709   // Performs garbage collection operation.
710   // Returns whether there is a chance that another major GC could
711   // collect more garbage.
712   inline bool CollectGarbage(
713       AllocationSpace space, const char* gc_reason = NULL,
714       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
715 
716   static const int kNoGCFlags = 0;
717   static const int kReduceMemoryFootprintMask = 1;
718   static const int kAbortIncrementalMarkingMask = 2;
719 
720   // Making the heap iterable requires us to abort incremental marking.
721   static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
722 
723   // Performs a full garbage collection.  If (flags & kMakeHeapIterableMask) is
724   // non-zero, then the slower precise sweeper is used, which leaves the heap
725   // in a state where we can iterate over the heap visiting all objects.
726   void CollectAllGarbage(
727       int flags, const char* gc_reason = NULL,
728       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
729 
730   // Last hope GC, should try to squeeze as much as possible.
731   void CollectAllAvailableGarbage(const char* gc_reason = NULL);
732 
733   // Check whether the heap is currently iterable.
734   bool IsHeapIterable();
735 
736   // Notify the heap that a context has been disposed.
737   int NotifyContextDisposed();
738 
increment_scan_on_scavenge_pages()739   inline void increment_scan_on_scavenge_pages() {
740     scan_on_scavenge_pages_++;
741     if (FLAG_gc_verbose) {
742       PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
743     }
744   }
745 
decrement_scan_on_scavenge_pages()746   inline void decrement_scan_on_scavenge_pages() {
747     scan_on_scavenge_pages_--;
748     if (FLAG_gc_verbose) {
749       PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
750     }
751   }
752 
promotion_queue()753   PromotionQueue* promotion_queue() { return &promotion_queue_; }
754 
755   void AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback,
756                              GCType gc_type_filter, bool pass_isolate = true);
757   void RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback);
758 
759   void AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback,
760                              GCType gc_type_filter, bool pass_isolate = true);
761   void RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback);
762 
763 // Heap root getters.  We have versions with and without type::cast() here.
764 // You can't use type::cast during GC because the assert fails.
765 // TODO(1490): Try removing the unchecked accessors, now that GC marking does
766 // not corrupt the map.
767 #define ROOT_ACCESSOR(type, name, camel_name)                           \
768   type* name() { return type::cast(roots_[k##camel_name##RootIndex]); } \
769   type* raw_unchecked_##name() {                                        \
770     return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]);   \
771   }
772   ROOT_LIST(ROOT_ACCESSOR)
773 #undef ROOT_ACCESSOR
774 
775 // Utility type maps
776 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
777   Map* name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
STRUCT_LIST(STRUCT_MAP_ACCESSOR)778   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
779 #undef STRUCT_MAP_ACCESSOR
780 
781 #define STRING_ACCESSOR(name, str) \
782   String* name() { return String::cast(roots_[k##name##RootIndex]); }
783   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
784 #undef STRING_ACCESSOR
785 
786   // The hidden_string is special because it is the empty string, but does
787   // not match the empty string.
788   String* hidden_string() { return hidden_string_; }
789 
set_native_contexts_list(Object * object)790   void set_native_contexts_list(Object* object) {
791     native_contexts_list_ = object;
792   }
native_contexts_list()793   Object* native_contexts_list() const { return native_contexts_list_; }
794 
set_array_buffers_list(Object * object)795   void set_array_buffers_list(Object* object) { array_buffers_list_ = object; }
array_buffers_list()796   Object* array_buffers_list() const { return array_buffers_list_; }
797 
set_allocation_sites_list(Object * object)798   void set_allocation_sites_list(Object* object) {
799     allocation_sites_list_ = object;
800   }
allocation_sites_list()801   Object* allocation_sites_list() { return allocation_sites_list_; }
802 
803   // Used in CreateAllocationSiteStub and the (de)serializer.
allocation_sites_list_address()804   Object** allocation_sites_list_address() { return &allocation_sites_list_; }
805 
weak_object_to_code_table()806   Object* weak_object_to_code_table() { return weak_object_to_code_table_; }
807 
set_encountered_weak_collections(Object * weak_collection)808   void set_encountered_weak_collections(Object* weak_collection) {
809     encountered_weak_collections_ = weak_collection;
810   }
encountered_weak_collections()811   Object* encountered_weak_collections() const {
812     return encountered_weak_collections_;
813   }
814 
815   // Number of mark-sweeps.
ms_count()816   unsigned int ms_count() { return ms_count_; }
817 
818   // Iterates over all roots in the heap.
819   void IterateRoots(ObjectVisitor* v, VisitMode mode);
820   // Iterates over all strong roots in the heap.
821   void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
822   // Iterates over entries in the smi roots list.  Only interesting to the
823   // serializer/deserializer, since GC does not care about smis.
824   void IterateSmiRoots(ObjectVisitor* v);
825   // Iterates over all the other roots in the heap.
826   void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
827 
828   // Iterate pointers to from semispace of new space found in memory interval
829   // from start to end.
830   void IterateAndMarkPointersToFromSpace(Address start, Address end,
831                                          ObjectSlotCallback callback);
832 
833   // Returns whether the object resides in new space.
834   inline bool InNewSpace(Object* object);
835   inline bool InNewSpace(Address address);
836   inline bool InNewSpacePage(Address address);
837   inline bool InFromSpace(Object* object);
838   inline bool InToSpace(Object* object);
839 
840   // Returns whether the object resides in old pointer space.
841   inline bool InOldPointerSpace(Address address);
842   inline bool InOldPointerSpace(Object* object);
843 
844   // Returns whether the object resides in old data space.
845   inline bool InOldDataSpace(Address address);
846   inline bool InOldDataSpace(Object* object);
847 
848   // Checks whether an address/object in the heap (including auxiliary
849   // area and unused area).
850   bool Contains(Address addr);
851   bool Contains(HeapObject* value);
852 
853   // Checks whether an address/object in a space.
854   // Currently used by tests, serialization and heap verification only.
855   bool InSpace(Address addr, AllocationSpace space);
856   bool InSpace(HeapObject* value, AllocationSpace space);
857 
858   // Finds out which space an object should get promoted to based on its type.
859   inline OldSpace* TargetSpace(HeapObject* object);
860   static inline AllocationSpace TargetSpaceId(InstanceType type);
861 
862   // Checks whether the given object is allowed to be migrated from it's
863   // current space into the given destination space. Used for debugging.
864   inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
865 
866   // Sets the stub_cache_ (only used when expanding the dictionary).
public_set_code_stubs(UnseededNumberDictionary * value)867   void public_set_code_stubs(UnseededNumberDictionary* value) {
868     roots_[kCodeStubsRootIndex] = value;
869   }
870 
871   // Support for computing object sizes for old objects during GCs. Returns
872   // a function that is guaranteed to be safe for computing object sizes in
873   // the current GC phase.
GcSafeSizeOfOldObjectFunction()874   HeapObjectCallback GcSafeSizeOfOldObjectFunction() {
875     return gc_safe_size_of_old_object_;
876   }
877 
878   // Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
public_set_non_monomorphic_cache(UnseededNumberDictionary * value)879   void public_set_non_monomorphic_cache(UnseededNumberDictionary* value) {
880     roots_[kNonMonomorphicCacheRootIndex] = value;
881   }
882 
public_set_empty_script(Script * script)883   void public_set_empty_script(Script* script) {
884     roots_[kEmptyScriptRootIndex] = script;
885   }
886 
public_set_store_buffer_top(Address * top)887   void public_set_store_buffer_top(Address* top) {
888     roots_[kStoreBufferTopRootIndex] = reinterpret_cast<Smi*>(top);
889   }
890 
public_set_materialized_objects(FixedArray * objects)891   void public_set_materialized_objects(FixedArray* objects) {
892     roots_[kMaterializedObjectsRootIndex] = objects;
893   }
894 
895   // Generated code can embed this address to get access to the roots.
roots_array_start()896   Object** roots_array_start() { return roots_; }
897 
store_buffer_top_address()898   Address* store_buffer_top_address() {
899     return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]);
900   }
901 
902 #ifdef VERIFY_HEAP
903   // Verify the heap is in its normal state before or after a GC.
904   void Verify();
905 
906 
weak_embedded_objects_verification_enabled()907   bool weak_embedded_objects_verification_enabled() {
908     return no_weak_object_verification_scope_depth_ == 0;
909   }
910 #endif
911 
912 #ifdef DEBUG
913   void Print();
914   void PrintHandles();
915 
916   void OldPointerSpaceCheckStoreBuffer();
917   void MapSpaceCheckStoreBuffer();
918   void LargeObjectSpaceCheckStoreBuffer();
919 
920   // Report heap statistics.
921   void ReportHeapStatistics(const char* title);
922   void ReportCodeStatistics(const char* title);
923 #endif
924 
925   // Zapping is needed for verify heap, and always done in debug builds.
ShouldZapGarbage()926   static inline bool ShouldZapGarbage() {
927 #ifdef DEBUG
928     return true;
929 #else
930 #ifdef VERIFY_HEAP
931     return FLAG_verify_heap;
932 #else
933     return false;
934 #endif
935 #endif
936   }
937 
938   // Number of "runtime allocations" done so far.
allocations_count()939   uint32_t allocations_count() { return allocations_count_; }
940 
941   // Returns deterministic "time" value in ms. Works only with
942   // FLAG_verify_predictable.
synthetic_time()943   double synthetic_time() { return allocations_count_ / 2.0; }
944 
945   // Print short heap statistics.
946   void PrintShortHeapStatistics();
947 
948   // Write barrier support for address[offset] = o.
949   INLINE(void RecordWrite(Address address, int offset));
950 
951   // Write barrier support for address[start : start + len[ = o.
952   INLINE(void RecordWrites(Address address, int start, int len));
953 
954   enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
gc_state()955   inline HeapState gc_state() { return gc_state_; }
956 
IsInGCPostProcessing()957   inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
958 
959 #ifdef DEBUG
set_allocation_timeout(int timeout)960   void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
961 
962   void TracePathToObjectFrom(Object* target, Object* root);
963   void TracePathToObject(Object* target);
964   void TracePathToGlobal();
965 #endif
966 
967   // Callback function passed to Heap::Iterate etc.  Copies an object if
968   // necessary, the object might be promoted to an old space.  The caller must
969   // ensure the precondition that the object is (a) a heap object and (b) in
970   // the heap's from space.
971   static inline void ScavengePointer(HeapObject** p);
972   static inline void ScavengeObject(HeapObject** p, HeapObject* object);
973 
974   enum ScratchpadSlotMode { IGNORE_SCRATCHPAD_SLOT, RECORD_SCRATCHPAD_SLOT };
975 
976   // If an object has an AllocationMemento trailing it, return it, otherwise
977   // return NULL;
978   inline AllocationMemento* FindAllocationMemento(HeapObject* object);
979 
980   // An object may have an AllocationSite associated with it through a trailing
981   // AllocationMemento. Its feedback should be updated when objects are found
982   // in the heap.
983   static inline void UpdateAllocationSiteFeedback(HeapObject* object,
984                                                   ScratchpadSlotMode mode);
985 
986   // Support for partial snapshots.  After calling this we have a linear
987   // space to write objects in each space.
988   void ReserveSpace(int* sizes, Address* addresses);
989 
990   //
991   // Support for the API.
992   //
993 
994   void CreateApiObjects();
995 
PromotedTotalSize()996   inline intptr_t PromotedTotalSize() {
997     int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
998     if (total > kMaxInt) return static_cast<intptr_t>(kMaxInt);
999     if (total < 0) return 0;
1000     return static_cast<intptr_t>(total);
1001   }
1002 
OldGenerationSpaceAvailable()1003   inline intptr_t OldGenerationSpaceAvailable() {
1004     return old_generation_allocation_limit_ - PromotedTotalSize();
1005   }
1006 
OldGenerationCapacityAvailable()1007   inline intptr_t OldGenerationCapacityAvailable() {
1008     return max_old_generation_size_ - PromotedTotalSize();
1009   }
1010 
1011   static const intptr_t kMinimumOldGenerationAllocationLimit =
1012       8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
1013 
1014   static const int kPointerMultiplier = i::kPointerSize / 4;
1015 
1016   // The new space size has to be a power of 2. Sizes are in MB.
1017   static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
1018   static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
1019   static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
1020   static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
1021 
1022   // The old space size has to be a multiple of Page::kPageSize.
1023   // Sizes are in MB.
1024   static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
1025   static const int kMaxOldSpaceSizeMediumMemoryDevice =
1026       256 * kPointerMultiplier;
1027   static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
1028   static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;
1029 
1030   // The executable size has to be a multiple of Page::kPageSize.
1031   // Sizes are in MB.
1032   static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
1033   static const int kMaxExecutableSizeMediumMemoryDevice =
1034       192 * kPointerMultiplier;
1035   static const int kMaxExecutableSizeHighMemoryDevice =
1036       256 * kPointerMultiplier;
1037   static const int kMaxExecutableSizeHugeMemoryDevice =
1038       256 * kPointerMultiplier;
1039 
1040   intptr_t OldGenerationAllocationLimit(intptr_t old_gen_size,
1041                                         int freed_global_handles);
1042 
1043   // Indicates whether inline bump-pointer allocation has been disabled.
inline_allocation_disabled()1044   bool inline_allocation_disabled() { return inline_allocation_disabled_; }
1045 
1046   // Switch whether inline bump-pointer allocation should be used.
1047   void EnableInlineAllocation();
1048   void DisableInlineAllocation();
1049 
1050   // Implements the corresponding V8 API function.
1051   bool IdleNotification(int idle_time_in_ms);
1052 
1053   // Declare all the root indices.  This defines the root list order.
1054   enum RootListIndex {
1055 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1056     STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
1057 #undef ROOT_INDEX_DECLARATION
1058 
1059 #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
1060     INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
1061 #undef STRING_DECLARATION
1062 
1063 // Utility type maps
1064 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
1065     STRUCT_LIST(DECLARE_STRUCT_MAP)
1066 #undef DECLARE_STRUCT_MAP
1067     kStringTableRootIndex,
1068 
1069 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1070     SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
1071 #undef ROOT_INDEX_DECLARATION
1072     kRootListLength,
1073     kStrongRootListLength = kStringTableRootIndex,
1074     kSmiRootsStart = kStringTableRootIndex + 1
1075   };
1076 
1077   STATIC_ASSERT(kUndefinedValueRootIndex ==
1078                 Internals::kUndefinedValueRootIndex);
1079   STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
1080   STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
1081   STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
1082   STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
1083 
1084   // Generated code can embed direct references to non-writable roots if
1085   // they are in new space.
1086   static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
1087   // Generated code can treat direct references to this root as constant.
1088   bool RootCanBeTreatedAsConstant(RootListIndex root_index);
1089 
1090   Map* MapForFixedTypedArray(ExternalArrayType array_type);
1091   RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type);
1092 
1093   Map* MapForExternalArrayType(ExternalArrayType array_type);
1094   RootListIndex RootIndexForExternalArrayType(ExternalArrayType array_type);
1095 
1096   RootListIndex RootIndexForEmptyExternalArray(ElementsKind kind);
1097   RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
1098   ExternalArray* EmptyExternalArrayForMap(Map* map);
1099   FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);
1100 
1101   void RecordStats(HeapStats* stats, bool take_snapshot = false);
1102 
1103   // Copy block of memory from src to dst. Size of block should be aligned
1104   // by pointer size.
1105   static inline void CopyBlock(Address dst, Address src, int byte_size);
1106 
1107   // Optimized version of memmove for blocks with pointer size aligned sizes and
1108   // pointer size aligned addresses.
1109   static inline void MoveBlock(Address dst, Address src, int byte_size);
1110 
1111   // Check new space expansion criteria and expand semispaces if it was hit.
1112   void CheckNewSpaceExpansionCriteria();
1113 
IncrementPromotedObjectsSize(int object_size)1114   inline void IncrementPromotedObjectsSize(int object_size) {
1115     DCHECK(object_size > 0);
1116     promoted_objects_size_ += object_size;
1117   }
1118 
IncrementSemiSpaceCopiedObjectSize(int object_size)1119   inline void IncrementSemiSpaceCopiedObjectSize(int object_size) {
1120     DCHECK(object_size > 0);
1121     semi_space_copied_object_size_ += object_size;
1122   }
1123 
IncrementNodesDiedInNewSpace()1124   inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
1125 
IncrementNodesCopiedInNewSpace()1126   inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
1127 
IncrementNodesPromoted()1128   inline void IncrementNodesPromoted() { nodes_promoted_++; }
1129 
IncrementYoungSurvivorsCounter(int survived)1130   inline void IncrementYoungSurvivorsCounter(int survived) {
1131     DCHECK(survived >= 0);
1132     survived_since_last_expansion_ += survived;
1133   }
1134 
NextGCIsLikelyToBeFull()1135   inline bool NextGCIsLikelyToBeFull() {
1136     if (FLAG_gc_global) return true;
1137 
1138     if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
1139 
1140     intptr_t adjusted_allocation_limit =
1141         old_generation_allocation_limit_ - new_space_.Capacity();
1142 
1143     if (PromotedTotalSize() >= adjusted_allocation_limit) return true;
1144 
1145     return false;
1146   }
1147 
1148   void UpdateNewSpaceReferencesInExternalStringTable(
1149       ExternalStringTableUpdaterCallback updater_func);
1150 
1151   void UpdateReferencesInExternalStringTable(
1152       ExternalStringTableUpdaterCallback updater_func);
1153 
1154   void ProcessWeakReferences(WeakObjectRetainer* retainer);
1155 
1156   void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
1157 
1158   // An object should be promoted if the object has survived a
1159   // scavenge operation.
1160   inline bool ShouldBePromoted(Address old_address, int object_size);
1161 
1162   void ClearJSFunctionResultCaches();
1163 
1164   void ClearNormalizedMapCaches();
1165 
tracer()1166   GCTracer* tracer() { return &tracer_; }
1167 
1168   // Returns the size of objects residing in non new spaces.
1169   intptr_t PromotedSpaceSizeOfObjects();
1170 
total_regexp_code_generated()1171   double total_regexp_code_generated() { return total_regexp_code_generated_; }
IncreaseTotalRegexpCodeGenerated(int size)1172   void IncreaseTotalRegexpCodeGenerated(int size) {
1173     total_regexp_code_generated_ += size;
1174   }
1175 
IncrementCodeGeneratedBytes(bool is_crankshafted,int size)1176   void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
1177     if (is_crankshafted) {
1178       crankshaft_codegen_bytes_generated_ += size;
1179     } else {
1180       full_codegen_bytes_generated_ += size;
1181     }
1182   }
1183 
1184   // Update GC statistics that are tracked on the Heap.
1185   void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator,
1186                                     double marking_time);
1187 
1188   // Returns maximum GC pause.
get_max_gc_pause()1189   double get_max_gc_pause() { return max_gc_pause_; }
1190 
1191   // Returns maximum size of objects alive after GC.
get_max_alive_after_gc()1192   intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
1193 
1194   // Returns minimal interval between two subsequent collections.
get_min_in_mutator()1195   double get_min_in_mutator() { return min_in_mutator_; }
1196 
mark_compact_collector()1197   MarkCompactCollector* mark_compact_collector() {
1198     return &mark_compact_collector_;
1199   }
1200 
store_buffer()1201   StoreBuffer* store_buffer() { return &store_buffer_; }
1202 
marking()1203   Marking* marking() { return &marking_; }
1204 
incremental_marking()1205   IncrementalMarking* incremental_marking() { return &incremental_marking_; }
1206 
external_string_table()1207   ExternalStringTable* external_string_table() {
1208     return &external_string_table_;
1209   }
1210 
1211   // Returns the current sweep generation.
sweep_generation()1212   int sweep_generation() { return sweep_generation_; }
1213 
1214   inline Isolate* isolate();
1215 
1216   void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
1217   void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
1218 
1219   inline bool OldGenerationAllocationLimitReached();
1220 
DoScavengeObject(Map * map,HeapObject ** slot,HeapObject * obj)1221   inline void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) {
1222     scavenging_visitors_table_.GetVisitor(map)(map, slot, obj);
1223   }
1224 
1225   void QueueMemoryChunkForFree(MemoryChunk* chunk);
1226   void FreeQueuedChunks();
1227 
gc_count()1228   int gc_count() const { return gc_count_; }
1229 
1230   // Completely clear the Instanceof cache (to stop it keeping objects alive
1231   // around a GC).
1232   inline void CompletelyClearInstanceofCache();
1233 
1234   // The roots that have an index less than this are always in old space.
1235   static const int kOldSpaceRoots = 0x20;
1236 
HashSeed()1237   uint32_t HashSeed() {
1238     uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
1239     DCHECK(FLAG_randomize_hashes || seed == 0);
1240     return seed;
1241   }
1242 
SetArgumentsAdaptorDeoptPCOffset(int pc_offset)1243   void SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
1244     DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0));
1245     set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
1246   }
1247 
SetConstructStubDeoptPCOffset(int pc_offset)1248   void SetConstructStubDeoptPCOffset(int pc_offset) {
1249     DCHECK(construct_stub_deopt_pc_offset() == Smi::FromInt(0));
1250     set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1251   }
1252 
SetGetterStubDeoptPCOffset(int pc_offset)1253   void SetGetterStubDeoptPCOffset(int pc_offset) {
1254     DCHECK(getter_stub_deopt_pc_offset() == Smi::FromInt(0));
1255     set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1256   }
1257 
SetSetterStubDeoptPCOffset(int pc_offset)1258   void SetSetterStubDeoptPCOffset(int pc_offset) {
1259     DCHECK(setter_stub_deopt_pc_offset() == Smi::FromInt(0));
1260     set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1261   }
1262 
1263   // For post mortem debugging.
1264   void RememberUnmappedPage(Address page, bool compacted);
1265 
1266   // Global inline caching age: it is incremented on some GCs after context
1267   // disposal. We use it to flush inline caches.
global_ic_age()1268   int global_ic_age() { return global_ic_age_; }
1269 
AgeInlineCaches()1270   void AgeInlineCaches() {
1271     global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
1272   }
1273 
flush_monomorphic_ics()1274   bool flush_monomorphic_ics() { return flush_monomorphic_ics_; }
1275 
amount_of_external_allocated_memory()1276   int64_t amount_of_external_allocated_memory() {
1277     return amount_of_external_allocated_memory_;
1278   }
1279 
1280   void DeoptMarkedAllocationSites();
1281 
MaximumSizeScavenge()1282   bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
1283 
DeoptMaybeTenuredAllocationSites()1284   bool DeoptMaybeTenuredAllocationSites() {
1285     return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
1286   }
1287 
1288   // ObjectStats are kept in two arrays, counts and sizes. Related stats are
1289   // stored in a contiguous linear buffer. Stats groups are stored one after
1290   // another.
1291   enum {
1292     FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1,
1293     FIRST_FIXED_ARRAY_SUB_TYPE =
1294         FIRST_CODE_KIND_SUB_TYPE + Code::NUMBER_OF_KINDS,
1295     FIRST_CODE_AGE_SUB_TYPE =
1296         FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1,
1297     OBJECT_STATS_COUNT = FIRST_CODE_AGE_SUB_TYPE + Code::kCodeAgeCount + 1
1298   };
1299 
RecordObjectStats(InstanceType type,size_t size)1300   void RecordObjectStats(InstanceType type, size_t size) {
1301     DCHECK(type <= LAST_TYPE);
1302     object_counts_[type]++;
1303     object_sizes_[type] += size;
1304   }
1305 
RecordCodeSubTypeStats(int code_sub_type,int code_age,size_t size)1306   void RecordCodeSubTypeStats(int code_sub_type, int code_age, size_t size) {
1307     int code_sub_type_index = FIRST_CODE_KIND_SUB_TYPE + code_sub_type;
1308     int code_age_index =
1309         FIRST_CODE_AGE_SUB_TYPE + code_age - Code::kFirstCodeAge;
1310     DCHECK(code_sub_type_index >= FIRST_CODE_KIND_SUB_TYPE &&
1311            code_sub_type_index < FIRST_CODE_AGE_SUB_TYPE);
1312     DCHECK(code_age_index >= FIRST_CODE_AGE_SUB_TYPE &&
1313            code_age_index < OBJECT_STATS_COUNT);
1314     object_counts_[code_sub_type_index]++;
1315     object_sizes_[code_sub_type_index] += size;
1316     object_counts_[code_age_index]++;
1317     object_sizes_[code_age_index] += size;
1318   }
1319 
RecordFixedArraySubTypeStats(int array_sub_type,size_t size)1320   void RecordFixedArraySubTypeStats(int array_sub_type, size_t size) {
1321     DCHECK(array_sub_type <= LAST_FIXED_ARRAY_SUB_TYPE);
1322     object_counts_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type]++;
1323     object_sizes_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type] += size;
1324   }
1325 
1326   void CheckpointObjectStats();
1327 
1328   // We don't use a LockGuard here since we want to lock the heap
1329   // only when FLAG_concurrent_recompilation is true.
1330   class RelocationLock {
1331    public:
RelocationLock(Heap * heap)1332     explicit RelocationLock(Heap* heap) : heap_(heap) {
1333       heap_->relocation_mutex_.Lock();
1334     }
1335 
1336 
~RelocationLock()1337     ~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
1338 
1339    private:
1340     Heap* heap_;
1341   };
1342 
1343   void AddWeakObjectToCodeDependency(Handle<Object> obj,
1344                                      Handle<DependentCode> dep);
1345 
1346   DependentCode* LookupWeakObjectToCodeDependency(Handle<Object> obj);
1347 
InitializeWeakObjectToCodeTable()1348   void InitializeWeakObjectToCodeTable() {
1349     set_weak_object_to_code_table(undefined_value());
1350   }
1351 
1352   void EnsureWeakObjectToCodeTable();
1353 
1354   static void FatalProcessOutOfMemory(const char* location,
1355                                       bool take_snapshot = false);
1356 
1357   // This event is triggered after successful allocation of a new object made
1358   // by runtime. Allocations of target space for object evacuation do not
1359   // trigger the event. In order to track ALL allocations one must turn off
1360   // FLAG_inline_new and FLAG_use_allocation_folding.
1361   inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);
1362 
1363   // This event is triggered after object is moved to a new place.
1364   inline void OnMoveEvent(HeapObject* target, HeapObject* source,
1365                           int size_in_bytes);
1366 
1367  protected:
1368   // Methods made available to tests.
1369 
1370   // Allocates a JS Map in the heap.
1371   MUST_USE_RESULT AllocationResult
1372       AllocateMap(InstanceType instance_type, int instance_size,
1373                   ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
1374 
1375   // Allocates and initializes a new JavaScript object based on a
1376   // constructor.
1377   // If allocation_site is non-null, then a memento is emitted after the object
1378   // that points to the site.
1379   MUST_USE_RESULT AllocationResult
1380       AllocateJSObject(JSFunction* constructor,
1381                        PretenureFlag pretenure = NOT_TENURED,
1382                        AllocationSite* allocation_site = NULL);
1383 
1384   // Allocates and initializes a new JavaScript object based on a map.
1385   // Passing an allocation site means that a memento will be created that
1386   // points to the site.
1387   MUST_USE_RESULT AllocationResult
1388       AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
1389                               bool alloc_props = true,
1390                               AllocationSite* allocation_site = NULL);
1391 
1392   // Allocated a HeapNumber from value.
1393   MUST_USE_RESULT AllocationResult
1394       AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
1395                          PretenureFlag pretenure = NOT_TENURED);
1396 
1397   // Allocate a byte array of the specified length
1398   MUST_USE_RESULT AllocationResult
1399       AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
1400 
1401   // Copy the code and scope info part of the code object, but insert
1402   // the provided data as the relocation information.
1403   MUST_USE_RESULT AllocationResult
1404       CopyCode(Code* code, Vector<byte> reloc_info);
1405 
1406   MUST_USE_RESULT AllocationResult CopyCode(Code* code);
1407 
1408   // Allocates a fixed array initialized with undefined values
1409   MUST_USE_RESULT AllocationResult
1410       AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
1411 
1412  private:
1413   Heap();
1414 
1415   // The amount of external memory registered through the API kept alive
1416   // by global handles
1417   int64_t amount_of_external_allocated_memory_;
1418 
1419   // Caches the amount of external memory registered at the last global gc.
1420   int64_t amount_of_external_allocated_memory_at_last_global_gc_;
1421 
1422   // This can be calculated directly from a pointer to the heap; however, it is
1423   // more expedient to get at the isolate directly from within Heap methods.
1424   Isolate* isolate_;
1425 
1426   Object* roots_[kRootListLength];
1427 
1428   size_t code_range_size_;
1429   int reserved_semispace_size_;
1430   int max_semi_space_size_;
1431   int initial_semispace_size_;
1432   intptr_t max_old_generation_size_;
1433   intptr_t max_executable_size_;
1434   intptr_t maximum_committed_;
1435 
1436   // For keeping track of how much data has survived
1437   // scavenge since last new space expansion.
1438   int survived_since_last_expansion_;
1439 
1440   // For keeping track on when to flush RegExp code.
1441   int sweep_generation_;
1442 
1443   int always_allocate_scope_depth_;
1444 
1445   // For keeping track of context disposals.
1446   int contexts_disposed_;
1447 
1448   int global_ic_age_;
1449 
1450   bool flush_monomorphic_ics_;
1451 
1452   int scan_on_scavenge_pages_;
1453 
1454   NewSpace new_space_;
1455   OldSpace* old_pointer_space_;
1456   OldSpace* old_data_space_;
1457   OldSpace* code_space_;
1458   MapSpace* map_space_;
1459   CellSpace* cell_space_;
1460   PropertyCellSpace* property_cell_space_;
1461   LargeObjectSpace* lo_space_;
1462   HeapState gc_state_;
1463   int gc_post_processing_depth_;
1464   Address new_space_top_after_last_gc_;
1465 
1466   // Returns the amount of external memory registered since last global gc.
1467   int64_t PromotedExternalMemorySize();
1468 
1469   // How many "runtime allocations" happened.
1470   uint32_t allocations_count_;
1471 
1472   // Running hash over allocations performed.
1473   uint32_t raw_allocations_hash_;
1474 
1475   // Countdown counter, dumps allocation hash when 0.
1476   uint32_t dump_allocations_hash_countdown_;
1477 
1478   // How many mark-sweep collections happened.
1479   unsigned int ms_count_;
1480 
1481   // How many gc happened.
1482   unsigned int gc_count_;
1483 
1484   // For post mortem debugging.
1485   static const int kRememberedUnmappedPages = 128;
1486   int remembered_unmapped_pages_index_;
1487   Address remembered_unmapped_pages_[kRememberedUnmappedPages];
1488 
1489   // Total length of the strings we failed to flatten since the last GC.
1490   int unflattened_strings_length_;
1491 
1492 #define ROOT_ACCESSOR(type, name, camel_name)                                 \
1493   inline void set_##name(type* value) {                                       \
1494     /* The deserializer makes use of the fact that these common roots are */  \
1495     /* never in new space and never on a page that is being compacted.    */  \
1496     DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
1497     roots_[k##camel_name##RootIndex] = value;                                 \
1498   }
1499   ROOT_LIST(ROOT_ACCESSOR)
1500 #undef ROOT_ACCESSOR
1501 
1502 #ifdef DEBUG
1503   // If the --gc-interval flag is set to a positive value, this
1504   // variable holds the value indicating the number of allocations
1505   // remain until the next failure and garbage collection.
1506   int allocation_timeout_;
1507 #endif  // DEBUG
1508 
1509   // Limit that triggers a global GC on the next (normally caused) GC.  This
1510   // is checked when we have already decided to do a GC to help determine
1511   // which collector to invoke, before expanding a paged space in the old
1512   // generation and on every allocation in large object space.
1513   intptr_t old_generation_allocation_limit_;
1514 
1515   // Indicates that an allocation has failed in the old generation since the
1516   // last GC.
1517   bool old_gen_exhausted_;
1518 
1519   // Indicates that inline bump-pointer allocation has been globally disabled
1520   // for all spaces. This is used to disable allocations in generated code.
1521   bool inline_allocation_disabled_;
1522 
1523   // Weak list heads, threaded through the objects.
1524   // List heads are initilized lazily and contain the undefined_value at start.
1525   Object* native_contexts_list_;
1526   Object* array_buffers_list_;
1527   Object* allocation_sites_list_;
1528 
1529   // WeakHashTable that maps objects embedded in optimized code to dependent
1530   // code list. It is initilized lazily and contains the undefined_value at
1531   // start.
1532   Object* weak_object_to_code_table_;
1533 
1534   // List of encountered weak collections (JSWeakMap and JSWeakSet) during
1535   // marking. It is initialized during marking, destroyed after marking and
1536   // contains Smi(0) while marking is not active.
1537   Object* encountered_weak_collections_;
1538 
1539   StoreBufferRebuilder store_buffer_rebuilder_;
1540 
1541   struct StringTypeTable {
1542     InstanceType type;
1543     int size;
1544     RootListIndex index;
1545   };
1546 
1547   struct ConstantStringTable {
1548     const char* contents;
1549     RootListIndex index;
1550   };
1551 
1552   struct StructTable {
1553     InstanceType type;
1554     int size;
1555     RootListIndex index;
1556   };
1557 
1558   static const StringTypeTable string_type_table[];
1559   static const ConstantStringTable constant_string_table[];
1560   static const StructTable struct_table[];
1561 
1562   // The special hidden string which is an empty string, but does not match
1563   // any string when looked up in properties.
1564   String* hidden_string_;
1565 
1566   // GC callback function, called before and after mark-compact GC.
1567   // Allocations in the callback function are disallowed.
1568   struct GCPrologueCallbackPair {
GCPrologueCallbackPairGCPrologueCallbackPair1569     GCPrologueCallbackPair(v8::Isolate::GCPrologueCallback callback,
1570                            GCType gc_type, bool pass_isolate)
1571         : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {}
1572     bool operator==(const GCPrologueCallbackPair& pair) const {
1573       return pair.callback == callback;
1574     }
1575     v8::Isolate::GCPrologueCallback callback;
1576     GCType gc_type;
1577     // TODO(dcarney): remove variable
1578     bool pass_isolate_;
1579   };
1580   List<GCPrologueCallbackPair> gc_prologue_callbacks_;
1581 
1582   struct GCEpilogueCallbackPair {
GCEpilogueCallbackPairGCEpilogueCallbackPair1583     GCEpilogueCallbackPair(v8::Isolate::GCPrologueCallback callback,
1584                            GCType gc_type, bool pass_isolate)
1585         : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {}
1586     bool operator==(const GCEpilogueCallbackPair& pair) const {
1587       return pair.callback == callback;
1588     }
1589     v8::Isolate::GCPrologueCallback callback;
1590     GCType gc_type;
1591     // TODO(dcarney): remove variable
1592     bool pass_isolate_;
1593   };
1594   List<GCEpilogueCallbackPair> gc_epilogue_callbacks_;
1595 
1596   // Support for computing object sizes during GC.
1597   HeapObjectCallback gc_safe_size_of_old_object_;
1598   static int GcSafeSizeOfOldObject(HeapObject* object);
1599 
1600   // Update the GC state. Called from the mark-compact collector.
MarkMapPointersAsEncoded(bool encoded)1601   void MarkMapPointersAsEncoded(bool encoded) {
1602     DCHECK(!encoded);
1603     gc_safe_size_of_old_object_ = &GcSafeSizeOfOldObject;
1604   }
1605 
1606   // Code that should be run before and after each GC.  Includes some
1607   // reporting/verification activities when compiled with DEBUG set.
1608   void GarbageCollectionPrologue();
1609   void GarbageCollectionEpilogue();
1610 
1611   // Pretenuring decisions are made based on feedback collected during new
1612   // space evacuation. Note that between feedback collection and calling this
1613   // method object in old space must not move.
1614   // Right now we only process pretenuring feedback in high promotion mode.
1615   void ProcessPretenuringFeedback();
1616 
1617   // Checks whether a global GC is necessary
1618   GarbageCollector SelectGarbageCollector(AllocationSpace space,
1619                                           const char** reason);
1620 
1621   // Make sure there is a filler value behind the top of the new space
1622   // so that the GC does not confuse some unintialized/stale memory
1623   // with the allocation memento of the object at the top
1624   void EnsureFillerObjectAtTop();
1625 
1626   // Ensure that we have swept all spaces in such a way that we can iterate
1627   // over all objects.  May cause a GC.
1628   void MakeHeapIterable();
1629 
1630   // Performs garbage collection operation.
1631   // Returns whether there is a chance that another major GC could
1632   // collect more garbage.
1633   bool CollectGarbage(
1634       GarbageCollector collector, const char* gc_reason,
1635       const char* collector_reason,
1636       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1637 
1638   // Performs garbage collection
1639   // Returns whether there is a chance another major GC could
1640   // collect more garbage.
1641   bool PerformGarbageCollection(
1642       GarbageCollector collector,
1643       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1644 
1645   inline void UpdateOldSpaceLimits();
1646 
1647   // Selects the proper allocation space depending on the given object
1648   // size, pretenuring decision, and preferred old-space.
SelectSpace(int object_size,AllocationSpace preferred_old_space,PretenureFlag pretenure)1649   static AllocationSpace SelectSpace(int object_size,
1650                                      AllocationSpace preferred_old_space,
1651                                      PretenureFlag pretenure) {
1652     DCHECK(preferred_old_space == OLD_POINTER_SPACE ||
1653            preferred_old_space == OLD_DATA_SPACE);
1654     if (object_size > Page::kMaxRegularHeapObjectSize) return LO_SPACE;
1655     return (pretenure == TENURED) ? preferred_old_space : NEW_SPACE;
1656   }
1657 
1658   // Allocate an uninitialized object.  The memory is non-executable if the
1659   // hardware and OS allow.  This is the single choke-point for allocations
1660   // performed by the runtime and should not be bypassed (to extend this to
1661   // inlined allocations, use the Heap::DisableInlineAllocation() support).
1662   MUST_USE_RESULT inline AllocationResult AllocateRaw(
1663       int size_in_bytes, AllocationSpace space, AllocationSpace retry_space);
1664 
1665   // Allocates a heap object based on the map.
1666   MUST_USE_RESULT AllocationResult
1667       Allocate(Map* map, AllocationSpace space,
1668                AllocationSite* allocation_site = NULL);
1669 
1670   // Allocates a partial map for bootstrapping.
1671   MUST_USE_RESULT AllocationResult
1672       AllocatePartialMap(InstanceType instance_type, int instance_size);
1673 
1674   // Initializes a JSObject based on its map.
1675   void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
1676                                  Map* map);
1677   void InitializeAllocationMemento(AllocationMemento* memento,
1678                                    AllocationSite* allocation_site);
1679 
1680   // Allocate a block of memory in the given space (filled with a filler).
1681   // Used as a fall-back for generated code when the space is full.
1682   MUST_USE_RESULT AllocationResult
1683       AllocateFillerObject(int size, bool double_align, AllocationSpace space);
1684 
1685   // Allocate an uninitialized fixed array.
1686   MUST_USE_RESULT AllocationResult
1687       AllocateRawFixedArray(int length, PretenureFlag pretenure);
1688 
1689   // Allocate an uninitialized fixed double array.
1690   MUST_USE_RESULT AllocationResult
1691       AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure);
1692 
1693   // Allocate an initialized fixed array with the given filler value.
1694   MUST_USE_RESULT AllocationResult
1695       AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure,
1696                                    Object* filler);
1697 
1698   // Allocate and partially initializes a String.  There are two String
1699   // encodings: one-byte and two-byte.  These functions allocate a string of
1700   // the given length and set its map and length fields.  The characters of
1701   // the string are uninitialized.
1702   MUST_USE_RESULT AllocationResult
1703       AllocateRawOneByteString(int length, PretenureFlag pretenure);
1704   MUST_USE_RESULT AllocationResult
1705       AllocateRawTwoByteString(int length, PretenureFlag pretenure);
1706 
1707   bool CreateInitialMaps();
1708   void CreateInitialObjects();
1709 
1710   // Allocates an internalized string in old space based on the character
1711   // stream.
1712   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
1713       Vector<const char> str, int chars, uint32_t hash_field);
1714 
1715   MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
1716       Vector<const uint8_t> str, uint32_t hash_field);
1717 
1718   MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
1719       Vector<const uc16> str, uint32_t hash_field);
1720 
1721   template <bool is_one_byte, typename T>
1722   MUST_USE_RESULT AllocationResult
1723       AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field);
1724 
1725   template <typename T>
1726   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
1727       T t, int chars, uint32_t hash_field);
1728 
1729   // Allocates an uninitialized fixed array. It must be filled by the caller.
1730   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);
1731 
1732   // Make a copy of src and return it. Returns
1733   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1734   MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);
1735 
1736   // Make a copy of src, set the map, and return the copy. Returns
1737   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1738   MUST_USE_RESULT AllocationResult
1739       CopyFixedArrayWithMap(FixedArray* src, Map* map);
1740 
1741   // Make a copy of src and return it. Returns
1742   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1743   MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
1744       FixedDoubleArray* src);
1745 
1746   // Make a copy of src and return it. Returns
1747   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1748   MUST_USE_RESULT inline AllocationResult CopyConstantPoolArray(
1749       ConstantPoolArray* src);
1750 
1751 
1752   // Computes a single character string where the character has code.
1753   // A cache is used for one-byte (Latin1) codes.
1754   MUST_USE_RESULT AllocationResult
1755       LookupSingleCharacterStringFromCode(uint16_t code);
1756 
1757   // Allocate a symbol in old space.
1758   MUST_USE_RESULT AllocationResult AllocateSymbol();
1759 
1760   // Make a copy of src, set the map, and return the copy.
1761   MUST_USE_RESULT AllocationResult
1762       CopyConstantPoolArrayWithMap(ConstantPoolArray* src, Map* map);
1763 
1764   MUST_USE_RESULT AllocationResult AllocateConstantPoolArray(
1765       const ConstantPoolArray::NumberOfEntries& small);
1766 
1767   MUST_USE_RESULT AllocationResult AllocateExtendedConstantPoolArray(
1768       const ConstantPoolArray::NumberOfEntries& small,
1769       const ConstantPoolArray::NumberOfEntries& extended);
1770 
1771   // Allocates an external array of the specified length and type.
1772   MUST_USE_RESULT AllocationResult
1773       AllocateExternalArray(int length, ExternalArrayType array_type,
1774                             void* external_pointer, PretenureFlag pretenure);
1775 
1776   // Allocates a fixed typed array of the specified length and type.
1777   MUST_USE_RESULT AllocationResult
1778       AllocateFixedTypedArray(int length, ExternalArrayType array_type,
1779                               PretenureFlag pretenure);
1780 
1781   // Make a copy of src and return it.
1782   MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);
1783 
1784   // Make a copy of src, set the map, and return the copy.
1785   MUST_USE_RESULT AllocationResult
1786       CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map);
1787 
1788   // Allocates a fixed double array with uninitialized values. Returns
1789   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
1790       int length, PretenureFlag pretenure = NOT_TENURED);
1791 
1792   // These five Create*EntryStub functions are here and forced to not be inlined
1793   // because of a gcc-4.4 bug that assigns wrong vtable entries.
1794   NO_INLINE(void CreateJSEntryStub());
1795   NO_INLINE(void CreateJSConstructEntryStub());
1796 
1797   void CreateFixedStubs();
1798 
1799   // Allocate empty fixed array.
1800   MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
1801 
1802   // Allocate empty external array of given type.
1803   MUST_USE_RESULT AllocationResult
1804       AllocateEmptyExternalArray(ExternalArrayType array_type);
1805 
1806   // Allocate empty fixed typed array of given type.
1807   MUST_USE_RESULT AllocationResult
1808       AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
1809 
1810   // Allocate empty constant pool array.
1811   MUST_USE_RESULT AllocationResult AllocateEmptyConstantPoolArray();
1812 
1813   // Allocate a tenured simple cell.
1814   MUST_USE_RESULT AllocationResult AllocateCell(Object* value);
1815 
1816   // Allocate a tenured JS global property cell initialized with the hole.
1817   MUST_USE_RESULT AllocationResult AllocatePropertyCell();
1818 
1819   // Allocates a new utility object in the old generation.
1820   MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);
1821 
1822   // Allocates a new foreign object.
1823   MUST_USE_RESULT AllocationResult
1824       AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED);
1825 
1826   MUST_USE_RESULT AllocationResult
1827       AllocateCode(int object_size, bool immovable);
1828 
1829   MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key);
1830 
1831   MUST_USE_RESULT AllocationResult InternalizeString(String* str);
1832 
1833   // Performs a minor collection in new generation.
1834   void Scavenge();
1835 
1836   // Commits from space if it is uncommitted.
1837   void EnsureFromSpaceIsCommitted();
1838 
1839   // Uncommit unused semi space.
UncommitFromSpace()1840   bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
1841 
1842   // Fill in bogus values in from space
1843   void ZapFromSpace();
1844 
1845   static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
1846       Heap* heap, Object** pointer);
1847 
1848   Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
1849   static void ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page,
1850                                           StoreBufferEvent event);
1851 
1852   // Performs a major collection in the whole heap.
1853   void MarkCompact();
1854 
1855   // Code to be run before and after mark-compact.
1856   void MarkCompactPrologue();
1857 
1858   void ProcessNativeContexts(WeakObjectRetainer* retainer);
1859   void ProcessArrayBuffers(WeakObjectRetainer* retainer);
1860   void ProcessAllocationSites(WeakObjectRetainer* retainer);
1861 
1862   // Deopts all code that contains allocation instruction which are tenured or
1863   // not tenured. Moreover it clears the pretenuring allocation site statistics.
1864   void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
1865 
1866   // Evaluates local pretenuring for the old space and calls
1867   // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
1868   // the old space.
1869   void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
1870 
1871   // Called on heap tear-down.
1872   void TearDownArrayBuffers();
1873 
1874   // Record statistics before and after garbage collection.
1875   void ReportStatisticsBeforeGC();
1876   void ReportStatisticsAfterGC();
1877 
1878   // Slow part of scavenge object.
1879   static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
1880 
1881   // Total RegExp code ever generated
1882   double total_regexp_code_generated_;
1883 
1884   GCTracer tracer_;
1885 
1886   // Creates and installs the full-sized number string cache.
1887   int FullSizeNumberStringCacheLength();
1888   // Flush the number to string cache.
1889   void FlushNumberStringCache();
1890 
1891   // Sets used allocation sites entries to undefined.
1892   void FlushAllocationSitesScratchpad();
1893 
1894   // Initializes the allocation sites scratchpad with undefined values.
1895   void InitializeAllocationSitesScratchpad();
1896 
1897   // Adds an allocation site to the scratchpad if there is space left.
1898   void AddAllocationSiteToScratchpad(AllocationSite* site,
1899                                      ScratchpadSlotMode mode);
1900 
1901   void UpdateSurvivalStatistics(int start_new_space_size);
1902 
1903   static const int kYoungSurvivalRateHighThreshold = 90;
1904   static const int kYoungSurvivalRateAllowedDeviation = 15;
1905 
1906   static const int kOldSurvivalRateLowThreshold = 10;
1907 
1908   int high_survival_rate_period_length_;
1909   intptr_t promoted_objects_size_;
1910   double promotion_rate_;
1911   intptr_t semi_space_copied_object_size_;
1912   double semi_space_copied_rate_;
1913   int nodes_died_in_new_space_;
1914   int nodes_copied_in_new_space_;
1915   int nodes_promoted_;
1916 
1917   // This is the pretenuring trigger for allocation sites that are in maybe
1918   // tenure state. When we switched to the maximum new space size we deoptimize
1919   // the code that belongs to the allocation site and derive the lifetime
1920   // of the allocation site.
1921   unsigned int maximum_size_scavenges_;
1922 
1923   // TODO(hpayer): Allocation site pretenuring may make this method obsolete.
1924   // Re-visit incremental marking heuristics.
IsHighSurvivalRate()1925   bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; }
1926 
1927   void SelectScavengingVisitorsTable();
1928 
1929   void IdleMarkCompact(const char* message);
1930 
1931   void AdvanceIdleIncrementalMarking(intptr_t step_size);
1932 
1933   bool WorthActivatingIncrementalMarking();
1934 
1935   void ClearObjectStats(bool clear_last_time_stats = false);
1936 
set_weak_object_to_code_table(Object * value)1937   void set_weak_object_to_code_table(Object* value) {
1938     DCHECK(!InNewSpace(value));
1939     weak_object_to_code_table_ = value;
1940   }
1941 
weak_object_to_code_table_address()1942   Object** weak_object_to_code_table_address() {
1943     return &weak_object_to_code_table_;
1944   }
1945 
1946   inline void UpdateAllocationsHash(HeapObject* object);
1947   inline void UpdateAllocationsHash(uint32_t value);
1948   inline void PrintAlloctionsHash();
1949 
1950   static const int kInitialStringTableSize = 2048;
1951   static const int kInitialEvalCacheSize = 64;
1952   static const int kInitialNumberStringCacheSize = 256;
1953 
1954   // Object counts and used memory by InstanceType
1955   size_t object_counts_[OBJECT_STATS_COUNT];
1956   size_t object_counts_last_time_[OBJECT_STATS_COUNT];
1957   size_t object_sizes_[OBJECT_STATS_COUNT];
1958   size_t object_sizes_last_time_[OBJECT_STATS_COUNT];
1959 
1960   // Maximum GC pause.
1961   double max_gc_pause_;
1962 
1963   // Total time spent in GC.
1964   double total_gc_time_ms_;
1965 
1966   // Maximum size of objects alive after GC.
1967   intptr_t max_alive_after_gc_;
1968 
1969   // Minimal interval between two subsequent collections.
1970   double min_in_mutator_;
1971 
1972   // Cumulative GC time spent in marking
1973   double marking_time_;
1974 
1975   // Cumulative GC time spent in sweeping
1976   double sweeping_time_;
1977 
1978   MarkCompactCollector mark_compact_collector_;
1979 
1980   StoreBuffer store_buffer_;
1981 
1982   Marking marking_;
1983 
1984   IncrementalMarking incremental_marking_;
1985 
1986   GCIdleTimeHandler gc_idle_time_handler_;
1987   unsigned int gc_count_at_last_idle_gc_;
1988 
1989   // These two counters are monotomically increasing and never reset.
1990   size_t full_codegen_bytes_generated_;
1991   size_t crankshaft_codegen_bytes_generated_;
1992 
1993   // If the --deopt_every_n_garbage_collections flag is set to a positive value,
1994   // this variable holds the number of garbage collections since the last
1995   // deoptimization triggered by garbage collection.
1996   int gcs_since_last_deopt_;
1997 
1998 #ifdef VERIFY_HEAP
1999   int no_weak_object_verification_scope_depth_;
2000 #endif
2001 
2002   static const int kAllocationSiteScratchpadSize = 256;
2003   int allocation_sites_scratchpad_length_;
2004 
2005   static const int kMaxMarkCompactsInIdleRound = 7;
2006   static const int kIdleScavengeThreshold = 5;
2007 
2008   // Shared state read by the scavenge collector and set by ScavengeObject.
2009   PromotionQueue promotion_queue_;
2010 
2011   // Flag is set when the heap has been configured.  The heap can be repeatedly
2012   // configured through the API until it is set up.
2013   bool configured_;
2014 
2015   ExternalStringTable external_string_table_;
2016 
2017   VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_;
2018 
2019   MemoryChunk* chunks_queued_for_free_;
2020 
2021   base::Mutex relocation_mutex_;
2022 
2023   int gc_callbacks_depth_;
2024 
2025   friend class AlwaysAllocateScope;
2026   friend class Factory;
2027   friend class GCCallbacksScope;
2028   friend class GCTracer;
2029   friend class HeapIterator;
2030   friend class Isolate;
2031   friend class MarkCompactCollector;
2032   friend class MarkCompactMarkingVisitor;
2033   friend class MapCompact;
2034 #ifdef VERIFY_HEAP
2035   friend class NoWeakObjectVerificationScope;
2036 #endif
2037   friend class Page;
2038 
2039   DISALLOW_COPY_AND_ASSIGN(Heap);
2040 };
2041 
2042 
2043 class HeapStats {
2044  public:
2045   static const int kStartMarker = 0xDECADE00;
2046   static const int kEndMarker = 0xDECADE01;
2047 
2048   int* start_marker;                       //  0
2049   int* new_space_size;                     //  1
2050   int* new_space_capacity;                 //  2
2051   intptr_t* old_pointer_space_size;        //  3
2052   intptr_t* old_pointer_space_capacity;    //  4
2053   intptr_t* old_data_space_size;           //  5
2054   intptr_t* old_data_space_capacity;       //  6
2055   intptr_t* code_space_size;               //  7
2056   intptr_t* code_space_capacity;           //  8
2057   intptr_t* map_space_size;                //  9
2058   intptr_t* map_space_capacity;            // 10
2059   intptr_t* cell_space_size;               // 11
2060   intptr_t* cell_space_capacity;           // 12
2061   intptr_t* lo_space_size;                 // 13
2062   int* global_handle_count;                // 14
2063   int* weak_global_handle_count;           // 15
2064   int* pending_global_handle_count;        // 16
2065   int* near_death_global_handle_count;     // 17
2066   int* free_global_handle_count;           // 18
2067   intptr_t* memory_allocator_size;         // 19
2068   intptr_t* memory_allocator_capacity;     // 20
2069   int* objects_per_type;                   // 21
2070   int* size_per_type;                      // 22
2071   int* os_error;                           // 23
2072   int* end_marker;                         // 24
2073   intptr_t* property_cell_space_size;      // 25
2074   intptr_t* property_cell_space_capacity;  // 26
2075 };
2076 
2077 
2078 class AlwaysAllocateScope {
2079  public:
2080   explicit inline AlwaysAllocateScope(Isolate* isolate);
2081   inline ~AlwaysAllocateScope();
2082 
2083  private:
2084   // Implicitly disable artificial allocation failures.
2085   Heap* heap_;
2086   DisallowAllocationFailure daf_;
2087 };
2088 
2089 
2090 #ifdef VERIFY_HEAP
2091 class NoWeakObjectVerificationScope {
2092  public:
2093   inline NoWeakObjectVerificationScope();
2094   inline ~NoWeakObjectVerificationScope();
2095 };
2096 #endif
2097 
2098 
2099 class GCCallbacksScope {
2100  public:
2101   explicit inline GCCallbacksScope(Heap* heap);
2102   inline ~GCCallbacksScope();
2103 
2104   inline bool CheckReenter();
2105 
2106  private:
2107   Heap* heap_;
2108 };
2109 
2110 
2111 // Visitor class to verify interior pointers in spaces that do not contain
2112 // or care about intergenerational references. All heap object pointers have to
2113 // point into the heap to a location that has a map pointer at its first word.
2114 // Caveat: Heap::Contains is an approximation because it can return true for
2115 // objects in a heap space but above the allocation pointer.
2116 class VerifyPointersVisitor : public ObjectVisitor {
2117  public:
2118   inline void VisitPointers(Object** start, Object** end);
2119 };
2120 
2121 
2122 // Verify that all objects are Smis.
2123 class VerifySmisVisitor : public ObjectVisitor {
2124  public:
2125   inline void VisitPointers(Object** start, Object** end);
2126 };
2127 
2128 
2129 // Space iterator for iterating over all spaces of the heap.  Returns each space
2130 // in turn, and null when it is done.
2131 class AllSpaces BASE_EMBEDDED {
2132  public:
AllSpaces(Heap * heap)2133   explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
2134   Space* next();
2135 
2136  private:
2137   Heap* heap_;
2138   int counter_;
2139 };
2140 
2141 
2142 // Space iterator for iterating over all old spaces of the heap: Old pointer
2143 // space, old data space and code space.  Returns each space in turn, and null
2144 // when it is done.
2145 class OldSpaces BASE_EMBEDDED {
2146  public:
OldSpaces(Heap * heap)2147   explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
2148   OldSpace* next();
2149 
2150  private:
2151   Heap* heap_;
2152   int counter_;
2153 };
2154 
2155 
2156 // Space iterator for iterating over all the paged spaces of the heap: Map
2157 // space, old pointer space, old data space, code space and cell space.  Returns
2158 // each space in turn, and null when it is done.
2159 class PagedSpaces BASE_EMBEDDED {
2160  public:
PagedSpaces(Heap * heap)2161   explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
2162   PagedSpace* next();
2163 
2164  private:
2165   Heap* heap_;
2166   int counter_;
2167 };
2168 
2169 
2170 // Space iterator for iterating over all spaces of the heap.
2171 // For each space an object iterator is provided. The deallocation of the
2172 // returned object iterators is handled by the space iterator.
2173 class SpaceIterator : public Malloced {
2174  public:
2175   explicit SpaceIterator(Heap* heap);
2176   SpaceIterator(Heap* heap, HeapObjectCallback size_func);
2177   virtual ~SpaceIterator();
2178 
2179   bool has_next();
2180   ObjectIterator* next();
2181 
2182  private:
2183   ObjectIterator* CreateIterator();
2184 
2185   Heap* heap_;
2186   int current_space_;         // from enum AllocationSpace.
2187   ObjectIterator* iterator_;  // object iterator for the current space.
2188   HeapObjectCallback size_func_;
2189 };
2190 
2191 
2192 // A HeapIterator provides iteration over the whole heap. It
2193 // aggregates the specific iterators for the different spaces as
2194 // these can only iterate over one space only.
2195 //
2196 // HeapIterator ensures there is no allocation during its lifetime
2197 // (using an embedded DisallowHeapAllocation instance).
2198 //
2199 // HeapIterator can skip free list nodes (that is, de-allocated heap
2200 // objects that still remain in the heap). As implementation of free
2201 // nodes filtering uses GC marks, it can't be used during MS/MC GC
2202 // phases. Also, it is forbidden to interrupt iteration in this mode,
2203 // as this will leave heap objects marked (and thus, unusable).
2204 class HeapObjectsFilter;
2205 
2206 class HeapIterator BASE_EMBEDDED {
2207  public:
2208   enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
2209 
2210   explicit HeapIterator(Heap* heap);
2211   HeapIterator(Heap* heap, HeapObjectsFiltering filtering);
2212   ~HeapIterator();
2213 
2214   HeapObject* next();
2215   void reset();
2216 
2217  private:
2218   struct MakeHeapIterableHelper {
MakeHeapIterableHelperMakeHeapIterableHelper2219     explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); }
2220   };
2221 
2222   // Perform the initialization.
2223   void Init();
2224   // Perform all necessary shutdown (destruction) work.
2225   void Shutdown();
2226   HeapObject* NextObject();
2227 
2228   MakeHeapIterableHelper make_heap_iterable_helper_;
2229   DisallowHeapAllocation no_heap_allocation_;
2230   Heap* heap_;
2231   HeapObjectsFiltering filtering_;
2232   HeapObjectsFilter* filter_;
2233   // Space iterator for iterating all the spaces.
2234   SpaceIterator* space_iterator_;
2235   // Object iterator for the space currently being iterated.
2236   ObjectIterator* object_iterator_;
2237 };
2238 
2239 
2240 // Cache for mapping (map, property name) into field offset.
2241 // Cleared at startup and prior to mark sweep collection.
2242 class KeyedLookupCache {
2243  public:
2244   // Lookup field offset for (map, name). If absent, -1 is returned.
2245   int Lookup(Handle<Map> map, Handle<Name> name);
2246 
2247   // Update an element in the cache.
2248   void Update(Handle<Map> map, Handle<Name> name, int field_offset);
2249 
2250   // Clear the cache.
2251   void Clear();
2252 
2253   static const int kLength = 256;
2254   static const int kCapacityMask = kLength - 1;
2255   static const int kMapHashShift = 5;
2256   static const int kHashMask = -4;  // Zero the last two bits.
2257   static const int kEntriesPerBucket = 4;
2258   static const int kEntryLength = 2;
2259   static const int kMapIndex = 0;
2260   static const int kKeyIndex = 1;
2261   static const int kNotFound = -1;
2262 
2263   // kEntriesPerBucket should be a power of 2.
2264   STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
2265   STATIC_ASSERT(kEntriesPerBucket == -kHashMask);
2266 
2267  private:
KeyedLookupCache()2268   KeyedLookupCache() {
2269     for (int i = 0; i < kLength; ++i) {
2270       keys_[i].map = NULL;
2271       keys_[i].name = NULL;
2272       field_offsets_[i] = kNotFound;
2273     }
2274   }
2275 
2276   static inline int Hash(Handle<Map> map, Handle<Name> name);
2277 
2278   // Get the address of the keys and field_offsets arrays.  Used in
2279   // generated code to perform cache lookups.
keys_address()2280   Address keys_address() { return reinterpret_cast<Address>(&keys_); }
2281 
field_offsets_address()2282   Address field_offsets_address() {
2283     return reinterpret_cast<Address>(&field_offsets_);
2284   }
2285 
2286   struct Key {
2287     Map* map;
2288     Name* name;
2289   };
2290 
2291   Key keys_[kLength];
2292   int field_offsets_[kLength];
2293 
2294   friend class ExternalReference;
2295   friend class Isolate;
2296   DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
2297 };
2298 
2299 
2300 // Cache for mapping (map, property name) into descriptor index.
2301 // The cache contains both positive and negative results.
2302 // Descriptor index equals kNotFound means the property is absent.
2303 // Cleared at startup and prior to any gc.
2304 class DescriptorLookupCache {
2305  public:
2306   // Lookup descriptor index for (map, name).
2307   // If absent, kAbsent is returned.
Lookup(Map * source,Name * name)2308   int Lookup(Map* source, Name* name) {
2309     if (!name->IsUniqueName()) return kAbsent;
2310     int index = Hash(source, name);
2311     Key& key = keys_[index];
2312     if ((key.source == source) && (key.name == name)) return results_[index];
2313     return kAbsent;
2314   }
2315 
2316   // Update an element in the cache.
Update(Map * source,Name * name,int result)2317   void Update(Map* source, Name* name, int result) {
2318     DCHECK(result != kAbsent);
2319     if (name->IsUniqueName()) {
2320       int index = Hash(source, name);
2321       Key& key = keys_[index];
2322       key.source = source;
2323       key.name = name;
2324       results_[index] = result;
2325     }
2326   }
2327 
2328   // Clear the cache.
2329   void Clear();
2330 
2331   static const int kAbsent = -2;
2332 
2333  private:
DescriptorLookupCache()2334   DescriptorLookupCache() {
2335     for (int i = 0; i < kLength; ++i) {
2336       keys_[i].source = NULL;
2337       keys_[i].name = NULL;
2338       results_[i] = kAbsent;
2339     }
2340   }
2341 
Hash(Object * source,Name * name)2342   static int Hash(Object* source, Name* name) {
2343     // Uses only lower 32 bits if pointers are larger.
2344     uint32_t source_hash =
2345         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source)) >>
2346         kPointerSizeLog2;
2347     uint32_t name_hash =
2348         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)) >>
2349         kPointerSizeLog2;
2350     return (source_hash ^ name_hash) % kLength;
2351   }
2352 
2353   static const int kLength = 64;
2354   struct Key {
2355     Map* source;
2356     Name* name;
2357   };
2358 
2359   Key keys_[kLength];
2360   int results_[kLength];
2361 
2362   friend class Isolate;
2363   DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
2364 };
2365 
2366 
2367 class RegExpResultsCache {
2368  public:
2369   enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
2370 
2371   // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
2372   // On success, the returned result is guaranteed to be a COW-array.
2373   static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
2374                         ResultsCacheType type);
2375   // Attempt to add value_array to the cache specified by type.  On success,
2376   // value_array is turned into a COW-array.
2377   static void Enter(Isolate* isolate, Handle<String> key_string,
2378                     Handle<Object> key_pattern, Handle<FixedArray> value_array,
2379                     ResultsCacheType type);
2380   static void Clear(FixedArray* cache);
2381   static const int kRegExpResultsCacheSize = 0x100;
2382 
2383  private:
2384   static const int kArrayEntriesPerCacheEntry = 4;
2385   static const int kStringOffset = 0;
2386   static const int kPatternOffset = 1;
2387   static const int kArrayOffset = 2;
2388 };
2389 
2390 
2391 // Abstract base class for checking whether a weak object should be retained.
2392 class WeakObjectRetainer {
2393  public:
~WeakObjectRetainer()2394   virtual ~WeakObjectRetainer() {}
2395 
2396   // Return whether this object should be retained. If NULL is returned the
2397   // object has no references. Otherwise the address of the retained object
2398   // should be returned as in some GC situations the object has been moved.
2399   virtual Object* RetainAs(Object* object) = 0;
2400 };
2401 
2402 
2403 // Intrusive object marking uses least significant bit of
2404 // heap object's map word to mark objects.
2405 // Normally all map words have least significant bit set
2406 // because they contain tagged map pointer.
2407 // If the bit is not set object is marked.
2408 // All objects should be unmarked before resuming
2409 // JavaScript execution.
2410 class IntrusiveMarking {
2411  public:
IsMarked(HeapObject * object)2412   static bool IsMarked(HeapObject* object) {
2413     return (object->map_word().ToRawValue() & kNotMarkedBit) == 0;
2414   }
2415 
ClearMark(HeapObject * object)2416   static void ClearMark(HeapObject* object) {
2417     uintptr_t map_word = object->map_word().ToRawValue();
2418     object->set_map_word(MapWord::FromRawValue(map_word | kNotMarkedBit));
2419     DCHECK(!IsMarked(object));
2420   }
2421 
SetMark(HeapObject * object)2422   static void SetMark(HeapObject* object) {
2423     uintptr_t map_word = object->map_word().ToRawValue();
2424     object->set_map_word(MapWord::FromRawValue(map_word & ~kNotMarkedBit));
2425     DCHECK(IsMarked(object));
2426   }
2427 
MapOfMarkedObject(HeapObject * object)2428   static Map* MapOfMarkedObject(HeapObject* object) {
2429     uintptr_t map_word = object->map_word().ToRawValue();
2430     return MapWord::FromRawValue(map_word | kNotMarkedBit).ToMap();
2431   }
2432 
SizeOfMarkedObject(HeapObject * object)2433   static int SizeOfMarkedObject(HeapObject* object) {
2434     return object->SizeFromMap(MapOfMarkedObject(object));
2435   }
2436 
2437  private:
2438   static const uintptr_t kNotMarkedBit = 0x1;
2439   STATIC_ASSERT((kHeapObjectTag & kNotMarkedBit) != 0);  // NOLINT
2440 };
2441 
2442 
2443 #ifdef DEBUG
2444 // Helper class for tracing paths to a search target Object from all roots.
2445 // The TracePathFrom() method can be used to trace paths from a specific
2446 // object to the search target object.
2447 class PathTracer : public ObjectVisitor {
2448  public:
2449   enum WhatToFind {
2450     FIND_ALL,   // Will find all matches.
2451     FIND_FIRST  // Will stop the search after first match.
2452   };
2453 
2454   // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
2455   static const int kMarkTag = 2;
2456 
2457   // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
2458   // after the first match.  If FIND_ALL is specified, then tracing will be
2459   // done for all matches.
PathTracer(Object * search_target,WhatToFind what_to_find,VisitMode visit_mode)2460   PathTracer(Object* search_target, WhatToFind what_to_find,
2461              VisitMode visit_mode)
2462       : search_target_(search_target),
2463         found_target_(false),
2464         found_target_in_trace_(false),
2465         what_to_find_(what_to_find),
2466         visit_mode_(visit_mode),
2467         object_stack_(20),
2468         no_allocation() {}
2469 
2470   virtual void VisitPointers(Object** start, Object** end);
2471 
2472   void Reset();
2473   void TracePathFrom(Object** root);
2474 
found()2475   bool found() const { return found_target_; }
2476 
2477   static Object* const kAnyGlobalObject;
2478 
2479  protected:
2480   class MarkVisitor;
2481   class UnmarkVisitor;
2482 
2483   void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
2484   void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
2485   virtual void ProcessResults();
2486 
2487   Object* search_target_;
2488   bool found_target_;
2489   bool found_target_in_trace_;
2490   WhatToFind what_to_find_;
2491   VisitMode visit_mode_;
2492   List<Object*> object_stack_;
2493 
2494   DisallowHeapAllocation no_allocation;  // i.e. no gc allowed.
2495 
2496  private:
2497   DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
2498 };
2499 #endif  // DEBUG
2500 }
2501 }  // namespace v8::internal
2502 
2503 #endif  // V8_HEAP_HEAP_H_
2504