1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/disk_cache/blockfile/entry_impl.h"
6
7 #include "base/hash.h"
8 #include "base/message_loop/message_loop.h"
9 #include "base/metrics/histogram.h"
10 #include "base/strings/string_util.h"
11 #include "net/base/io_buffer.h"
12 #include "net/base/net_errors.h"
13 #include "net/disk_cache/blockfile/backend_impl.h"
14 #include "net/disk_cache/blockfile/bitmap.h"
15 #include "net/disk_cache/blockfile/disk_format.h"
16 #include "net/disk_cache/blockfile/histogram_macros.h"
17 #include "net/disk_cache/blockfile/sparse_control.h"
18 #include "net/disk_cache/cache_util.h"
19 #include "net/disk_cache/net_log_parameters.h"
20
21 // Provide a BackendImpl object to macros from histogram_macros.h.
22 #define CACHE_UMA_BACKEND_IMPL_OBJ backend_
23
24 using base::Time;
25 using base::TimeDelta;
26 using base::TimeTicks;
27
28 namespace {
29
30 // Index for the file used to store the key, if any (files_[kKeyFileIndex]).
31 const int kKeyFileIndex = 3;
32
33 // This class implements FileIOCallback to buffer the callback from a file IO
34 // operation from the actual net class.
35 class SyncCallback: public disk_cache::FileIOCallback {
36 public:
37 // |end_event_type| is the event type to log on completion. Logs nothing on
38 // discard, or when the NetLog is not set to log all events.
SyncCallback(disk_cache::EntryImpl * entry,net::IOBuffer * buffer,const net::CompletionCallback & callback,net::NetLog::EventType end_event_type)39 SyncCallback(disk_cache::EntryImpl* entry, net::IOBuffer* buffer,
40 const net::CompletionCallback& callback,
41 net::NetLog::EventType end_event_type)
42 : entry_(entry), callback_(callback), buf_(buffer),
43 start_(TimeTicks::Now()), end_event_type_(end_event_type) {
44 entry->AddRef();
45 entry->IncrementIoCount();
46 }
~SyncCallback()47 virtual ~SyncCallback() {}
48
49 virtual void OnFileIOComplete(int bytes_copied) OVERRIDE;
50 void Discard();
51
52 private:
53 disk_cache::EntryImpl* entry_;
54 net::CompletionCallback callback_;
55 scoped_refptr<net::IOBuffer> buf_;
56 TimeTicks start_;
57 const net::NetLog::EventType end_event_type_;
58
59 DISALLOW_COPY_AND_ASSIGN(SyncCallback);
60 };
61
OnFileIOComplete(int bytes_copied)62 void SyncCallback::OnFileIOComplete(int bytes_copied) {
63 entry_->DecrementIoCount();
64 if (!callback_.is_null()) {
65 if (entry_->net_log().IsLogging()) {
66 entry_->net_log().EndEvent(
67 end_event_type_,
68 disk_cache::CreateNetLogReadWriteCompleteCallback(bytes_copied));
69 }
70 entry_->ReportIOTime(disk_cache::EntryImpl::kAsyncIO, start_);
71 buf_ = NULL; // Release the buffer before invoking the callback.
72 callback_.Run(bytes_copied);
73 }
74 entry_->Release();
75 delete this;
76 }
77
Discard()78 void SyncCallback::Discard() {
79 callback_.Reset();
80 buf_ = NULL;
81 OnFileIOComplete(0);
82 }
83
84 const int kMaxBufferSize = 1024 * 1024; // 1 MB.
85
86 } // namespace
87
88 namespace disk_cache {
89
90 // This class handles individual memory buffers that store data before it is
91 // sent to disk. The buffer can start at any offset, but if we try to write to
92 // anywhere in the first 16KB of the file (kMaxBlockSize), we set the offset to
93 // zero. The buffer grows up to a size determined by the backend, to keep the
94 // total memory used under control.
95 class EntryImpl::UserBuffer {
96 public:
UserBuffer(BackendImpl * backend)97 explicit UserBuffer(BackendImpl* backend)
98 : backend_(backend->GetWeakPtr()), offset_(0), grow_allowed_(true) {
99 buffer_.reserve(kMaxBlockSize);
100 }
~UserBuffer()101 ~UserBuffer() {
102 if (backend_.get())
103 backend_->BufferDeleted(capacity() - kMaxBlockSize);
104 }
105
106 // Returns true if we can handle writing |len| bytes to |offset|.
107 bool PreWrite(int offset, int len);
108
109 // Truncates the buffer to |offset| bytes.
110 void Truncate(int offset);
111
112 // Writes |len| bytes from |buf| at the given |offset|.
113 void Write(int offset, IOBuffer* buf, int len);
114
115 // Returns true if we can read |len| bytes from |offset|, given that the
116 // actual file has |eof| bytes stored. Note that the number of bytes to read
117 // may be modified by this method even though it returns false: that means we
118 // should do a smaller read from disk.
119 bool PreRead(int eof, int offset, int* len);
120
121 // Read |len| bytes from |buf| at the given |offset|.
122 int Read(int offset, IOBuffer* buf, int len);
123
124 // Prepare this buffer for reuse.
125 void Reset();
126
Data()127 char* Data() { return buffer_.size() ? &buffer_[0] : NULL; }
Size()128 int Size() { return static_cast<int>(buffer_.size()); }
Start()129 int Start() { return offset_; }
End()130 int End() { return offset_ + Size(); }
131
132 private:
capacity()133 int capacity() { return static_cast<int>(buffer_.capacity()); }
134 bool GrowBuffer(int required, int limit);
135
136 base::WeakPtr<BackendImpl> backend_;
137 int offset_;
138 std::vector<char> buffer_;
139 bool grow_allowed_;
140 DISALLOW_COPY_AND_ASSIGN(UserBuffer);
141 };
142
PreWrite(int offset,int len)143 bool EntryImpl::UserBuffer::PreWrite(int offset, int len) {
144 DCHECK_GE(offset, 0);
145 DCHECK_GE(len, 0);
146 DCHECK_GE(offset + len, 0);
147
148 // We don't want to write before our current start.
149 if (offset < offset_)
150 return false;
151
152 // Lets get the common case out of the way.
153 if (offset + len <= capacity())
154 return true;
155
156 // If we are writing to the first 16K (kMaxBlockSize), we want to keep the
157 // buffer offset_ at 0.
158 if (!Size() && offset > kMaxBlockSize)
159 return GrowBuffer(len, kMaxBufferSize);
160
161 int required = offset - offset_ + len;
162 return GrowBuffer(required, kMaxBufferSize * 6 / 5);
163 }
164
Truncate(int offset)165 void EntryImpl::UserBuffer::Truncate(int offset) {
166 DCHECK_GE(offset, 0);
167 DCHECK_GE(offset, offset_);
168 DVLOG(3) << "Buffer truncate at " << offset << " current " << offset_;
169
170 offset -= offset_;
171 if (Size() >= offset)
172 buffer_.resize(offset);
173 }
174
Write(int offset,IOBuffer * buf,int len)175 void EntryImpl::UserBuffer::Write(int offset, IOBuffer* buf, int len) {
176 DCHECK_GE(offset, 0);
177 DCHECK_GE(len, 0);
178 DCHECK_GE(offset + len, 0);
179 DCHECK_GE(offset, offset_);
180 DVLOG(3) << "Buffer write at " << offset << " current " << offset_;
181
182 if (!Size() && offset > kMaxBlockSize)
183 offset_ = offset;
184
185 offset -= offset_;
186
187 if (offset > Size())
188 buffer_.resize(offset);
189
190 if (!len)
191 return;
192
193 char* buffer = buf->data();
194 int valid_len = Size() - offset;
195 int copy_len = std::min(valid_len, len);
196 if (copy_len) {
197 memcpy(&buffer_[offset], buffer, copy_len);
198 len -= copy_len;
199 buffer += copy_len;
200 }
201 if (!len)
202 return;
203
204 buffer_.insert(buffer_.end(), buffer, buffer + len);
205 }
206
PreRead(int eof,int offset,int * len)207 bool EntryImpl::UserBuffer::PreRead(int eof, int offset, int* len) {
208 DCHECK_GE(offset, 0);
209 DCHECK_GT(*len, 0);
210
211 if (offset < offset_) {
212 // We are reading before this buffer.
213 if (offset >= eof)
214 return true;
215
216 // If the read overlaps with the buffer, change its length so that there is
217 // no overlap.
218 *len = std::min(*len, offset_ - offset);
219 *len = std::min(*len, eof - offset);
220
221 // We should read from disk.
222 return false;
223 }
224
225 if (!Size())
226 return false;
227
228 // See if we can fulfill the first part of the operation.
229 return (offset - offset_ < Size());
230 }
231
Read(int offset,IOBuffer * buf,int len)232 int EntryImpl::UserBuffer::Read(int offset, IOBuffer* buf, int len) {
233 DCHECK_GE(offset, 0);
234 DCHECK_GT(len, 0);
235 DCHECK(Size() || offset < offset_);
236
237 int clean_bytes = 0;
238 if (offset < offset_) {
239 // We don't have a file so lets fill the first part with 0.
240 clean_bytes = std::min(offset_ - offset, len);
241 memset(buf->data(), 0, clean_bytes);
242 if (len == clean_bytes)
243 return len;
244 offset = offset_;
245 len -= clean_bytes;
246 }
247
248 int start = offset - offset_;
249 int available = Size() - start;
250 DCHECK_GE(start, 0);
251 DCHECK_GE(available, 0);
252 len = std::min(len, available);
253 memcpy(buf->data() + clean_bytes, &buffer_[start], len);
254 return len + clean_bytes;
255 }
256
Reset()257 void EntryImpl::UserBuffer::Reset() {
258 if (!grow_allowed_) {
259 if (backend_.get())
260 backend_->BufferDeleted(capacity() - kMaxBlockSize);
261 grow_allowed_ = true;
262 std::vector<char> tmp;
263 buffer_.swap(tmp);
264 buffer_.reserve(kMaxBlockSize);
265 }
266 offset_ = 0;
267 buffer_.clear();
268 }
269
GrowBuffer(int required,int limit)270 bool EntryImpl::UserBuffer::GrowBuffer(int required, int limit) {
271 DCHECK_GE(required, 0);
272 int current_size = capacity();
273 if (required <= current_size)
274 return true;
275
276 if (required > limit)
277 return false;
278
279 if (!backend_.get())
280 return false;
281
282 int to_add = std::max(required - current_size, kMaxBlockSize * 4);
283 to_add = std::max(current_size, to_add);
284 required = std::min(current_size + to_add, limit);
285
286 grow_allowed_ = backend_->IsAllocAllowed(current_size, required);
287 if (!grow_allowed_)
288 return false;
289
290 DVLOG(3) << "Buffer grow to " << required;
291
292 buffer_.reserve(required);
293 return true;
294 }
295
296 // ------------------------------------------------------------------------
297
EntryImpl(BackendImpl * backend,Addr address,bool read_only)298 EntryImpl::EntryImpl(BackendImpl* backend, Addr address, bool read_only)
299 : entry_(NULL, Addr(0)), node_(NULL, Addr(0)),
300 backend_(backend->GetWeakPtr()), doomed_(false), read_only_(read_only),
301 dirty_(false) {
302 entry_.LazyInit(backend->File(address), address);
303 for (int i = 0; i < kNumStreams; i++) {
304 unreported_size_[i] = 0;
305 }
306 }
307
DoomImpl()308 void EntryImpl::DoomImpl() {
309 if (doomed_ || !backend_.get())
310 return;
311
312 SetPointerForInvalidEntry(backend_->GetCurrentEntryId());
313 backend_->InternalDoomEntry(this);
314 }
315
ReadDataImpl(int index,int offset,IOBuffer * buf,int buf_len,const CompletionCallback & callback)316 int EntryImpl::ReadDataImpl(int index, int offset, IOBuffer* buf, int buf_len,
317 const CompletionCallback& callback) {
318 if (net_log_.IsLogging()) {
319 net_log_.BeginEvent(
320 net::NetLog::TYPE_ENTRY_READ_DATA,
321 CreateNetLogReadWriteDataCallback(index, offset, buf_len, false));
322 }
323
324 int result = InternalReadData(index, offset, buf, buf_len, callback);
325
326 if (result != net::ERR_IO_PENDING && net_log_.IsLogging()) {
327 net_log_.EndEvent(
328 net::NetLog::TYPE_ENTRY_READ_DATA,
329 CreateNetLogReadWriteCompleteCallback(result));
330 }
331 return result;
332 }
333
WriteDataImpl(int index,int offset,IOBuffer * buf,int buf_len,const CompletionCallback & callback,bool truncate)334 int EntryImpl::WriteDataImpl(int index, int offset, IOBuffer* buf, int buf_len,
335 const CompletionCallback& callback,
336 bool truncate) {
337 if (net_log_.IsLogging()) {
338 net_log_.BeginEvent(
339 net::NetLog::TYPE_ENTRY_WRITE_DATA,
340 CreateNetLogReadWriteDataCallback(index, offset, buf_len, truncate));
341 }
342
343 int result = InternalWriteData(index, offset, buf, buf_len, callback,
344 truncate);
345
346 if (result != net::ERR_IO_PENDING && net_log_.IsLogging()) {
347 net_log_.EndEvent(
348 net::NetLog::TYPE_ENTRY_WRITE_DATA,
349 CreateNetLogReadWriteCompleteCallback(result));
350 }
351 return result;
352 }
353
ReadSparseDataImpl(int64 offset,IOBuffer * buf,int buf_len,const CompletionCallback & callback)354 int EntryImpl::ReadSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len,
355 const CompletionCallback& callback) {
356 DCHECK(node_.Data()->dirty || read_only_);
357 int result = InitSparseData();
358 if (net::OK != result)
359 return result;
360
361 TimeTicks start = TimeTicks::Now();
362 result = sparse_->StartIO(SparseControl::kReadOperation, offset, buf, buf_len,
363 callback);
364 ReportIOTime(kSparseRead, start);
365 return result;
366 }
367
WriteSparseDataImpl(int64 offset,IOBuffer * buf,int buf_len,const CompletionCallback & callback)368 int EntryImpl::WriteSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len,
369 const CompletionCallback& callback) {
370 DCHECK(node_.Data()->dirty || read_only_);
371 int result = InitSparseData();
372 if (net::OK != result)
373 return result;
374
375 TimeTicks start = TimeTicks::Now();
376 result = sparse_->StartIO(SparseControl::kWriteOperation, offset, buf,
377 buf_len, callback);
378 ReportIOTime(kSparseWrite, start);
379 return result;
380 }
381
GetAvailableRangeImpl(int64 offset,int len,int64 * start)382 int EntryImpl::GetAvailableRangeImpl(int64 offset, int len, int64* start) {
383 int result = InitSparseData();
384 if (net::OK != result)
385 return result;
386
387 return sparse_->GetAvailableRange(offset, len, start);
388 }
389
CancelSparseIOImpl()390 void EntryImpl::CancelSparseIOImpl() {
391 if (!sparse_.get())
392 return;
393
394 sparse_->CancelIO();
395 }
396
ReadyForSparseIOImpl(const CompletionCallback & callback)397 int EntryImpl::ReadyForSparseIOImpl(const CompletionCallback& callback) {
398 DCHECK(sparse_.get());
399 return sparse_->ReadyToUse(callback);
400 }
401
GetHash()402 uint32 EntryImpl::GetHash() {
403 return entry_.Data()->hash;
404 }
405
CreateEntry(Addr node_address,const std::string & key,uint32 hash)406 bool EntryImpl::CreateEntry(Addr node_address, const std::string& key,
407 uint32 hash) {
408 Trace("Create entry In");
409 EntryStore* entry_store = entry_.Data();
410 RankingsNode* node = node_.Data();
411 memset(entry_store, 0, sizeof(EntryStore) * entry_.address().num_blocks());
412 memset(node, 0, sizeof(RankingsNode));
413 if (!node_.LazyInit(backend_->File(node_address), node_address))
414 return false;
415
416 entry_store->rankings_node = node_address.value();
417 node->contents = entry_.address().value();
418
419 entry_store->hash = hash;
420 entry_store->creation_time = Time::Now().ToInternalValue();
421 entry_store->key_len = static_cast<int32>(key.size());
422 if (entry_store->key_len > kMaxInternalKeyLength) {
423 Addr address(0);
424 if (!CreateBlock(entry_store->key_len + 1, &address))
425 return false;
426
427 entry_store->long_key = address.value();
428 File* key_file = GetBackingFile(address, kKeyFileIndex);
429 key_ = key;
430
431 size_t offset = 0;
432 if (address.is_block_file())
433 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
434
435 if (!key_file || !key_file->Write(key.data(), key.size(), offset)) {
436 DeleteData(address, kKeyFileIndex);
437 return false;
438 }
439
440 if (address.is_separate_file())
441 key_file->SetLength(key.size() + 1);
442 } else {
443 memcpy(entry_store->key, key.data(), key.size());
444 entry_store->key[key.size()] = '\0';
445 }
446 backend_->ModifyStorageSize(0, static_cast<int32>(key.size()));
447 CACHE_UMA(COUNTS, "KeySize", 0, static_cast<int32>(key.size()));
448 node->dirty = backend_->GetCurrentEntryId();
449 Log("Create Entry ");
450 return true;
451 }
452
IsSameEntry(const std::string & key,uint32 hash)453 bool EntryImpl::IsSameEntry(const std::string& key, uint32 hash) {
454 if (entry_.Data()->hash != hash ||
455 static_cast<size_t>(entry_.Data()->key_len) != key.size())
456 return false;
457
458 return (key.compare(GetKey()) == 0);
459 }
460
InternalDoom()461 void EntryImpl::InternalDoom() {
462 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM);
463 DCHECK(node_.HasData());
464 if (!node_.Data()->dirty) {
465 node_.Data()->dirty = backend_->GetCurrentEntryId();
466 node_.Store();
467 }
468 doomed_ = true;
469 }
470
DeleteEntryData(bool everything)471 void EntryImpl::DeleteEntryData(bool everything) {
472 DCHECK(doomed_ || !everything);
473
474 if (GetEntryFlags() & PARENT_ENTRY) {
475 // We have some child entries that must go away.
476 SparseControl::DeleteChildren(this);
477 }
478
479 if (GetDataSize(0))
480 CACHE_UMA(COUNTS, "DeleteHeader", 0, GetDataSize(0));
481 if (GetDataSize(1))
482 CACHE_UMA(COUNTS, "DeleteData", 0, GetDataSize(1));
483 for (int index = 0; index < kNumStreams; index++) {
484 Addr address(entry_.Data()->data_addr[index]);
485 if (address.is_initialized()) {
486 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
487 unreported_size_[index], 0);
488 entry_.Data()->data_addr[index] = 0;
489 entry_.Data()->data_size[index] = 0;
490 entry_.Store();
491 DeleteData(address, index);
492 }
493 }
494
495 if (!everything)
496 return;
497
498 // Remove all traces of this entry.
499 backend_->RemoveEntry(this);
500
501 // Note that at this point node_ and entry_ are just two blocks of data, and
502 // even if they reference each other, nobody should be referencing them.
503
504 Addr address(entry_.Data()->long_key);
505 DeleteData(address, kKeyFileIndex);
506 backend_->ModifyStorageSize(entry_.Data()->key_len, 0);
507
508 backend_->DeleteBlock(entry_.address(), true);
509 entry_.Discard();
510
511 if (!LeaveRankingsBehind()) {
512 backend_->DeleteBlock(node_.address(), true);
513 node_.Discard();
514 }
515 }
516
GetNextAddress()517 CacheAddr EntryImpl::GetNextAddress() {
518 return entry_.Data()->next;
519 }
520
SetNextAddress(Addr address)521 void EntryImpl::SetNextAddress(Addr address) {
522 DCHECK_NE(address.value(), entry_.address().value());
523 entry_.Data()->next = address.value();
524 bool success = entry_.Store();
525 DCHECK(success);
526 }
527
LoadNodeAddress()528 bool EntryImpl::LoadNodeAddress() {
529 Addr address(entry_.Data()->rankings_node);
530 if (!node_.LazyInit(backend_->File(address), address))
531 return false;
532 return node_.Load();
533 }
534
Update()535 bool EntryImpl::Update() {
536 DCHECK(node_.HasData());
537
538 if (read_only_)
539 return true;
540
541 RankingsNode* rankings = node_.Data();
542 if (!rankings->dirty) {
543 rankings->dirty = backend_->GetCurrentEntryId();
544 if (!node_.Store())
545 return false;
546 }
547 return true;
548 }
549
SetDirtyFlag(int32 current_id)550 void EntryImpl::SetDirtyFlag(int32 current_id) {
551 DCHECK(node_.HasData());
552 if (node_.Data()->dirty && current_id != node_.Data()->dirty)
553 dirty_ = true;
554
555 if (!current_id)
556 dirty_ = true;
557 }
558
SetPointerForInvalidEntry(int32 new_id)559 void EntryImpl::SetPointerForInvalidEntry(int32 new_id) {
560 node_.Data()->dirty = new_id;
561 node_.Store();
562 }
563
LeaveRankingsBehind()564 bool EntryImpl::LeaveRankingsBehind() {
565 return !node_.Data()->contents;
566 }
567
568 // This only includes checks that relate to the first block of the entry (the
569 // first 256 bytes), and values that should be set from the entry creation.
570 // Basically, even if there is something wrong with this entry, we want to see
571 // if it is possible to load the rankings node and delete them together.
SanityCheck()572 bool EntryImpl::SanityCheck() {
573 if (!entry_.VerifyHash())
574 return false;
575
576 EntryStore* stored = entry_.Data();
577 if (!stored->rankings_node || stored->key_len <= 0)
578 return false;
579
580 if (stored->reuse_count < 0 || stored->refetch_count < 0)
581 return false;
582
583 Addr rankings_addr(stored->rankings_node);
584 if (!rankings_addr.SanityCheckForRankings())
585 return false;
586
587 Addr next_addr(stored->next);
588 if (next_addr.is_initialized() && !next_addr.SanityCheckForEntryV2()) {
589 STRESS_NOTREACHED();
590 return false;
591 }
592 STRESS_DCHECK(next_addr.value() != entry_.address().value());
593
594 if (stored->state > ENTRY_DOOMED || stored->state < ENTRY_NORMAL)
595 return false;
596
597 Addr key_addr(stored->long_key);
598 if ((stored->key_len <= kMaxInternalKeyLength && key_addr.is_initialized()) ||
599 (stored->key_len > kMaxInternalKeyLength && !key_addr.is_initialized()))
600 return false;
601
602 if (!key_addr.SanityCheckV2())
603 return false;
604
605 if (key_addr.is_initialized() &&
606 ((stored->key_len < kMaxBlockSize && key_addr.is_separate_file()) ||
607 (stored->key_len >= kMaxBlockSize && key_addr.is_block_file())))
608 return false;
609
610 int num_blocks = NumBlocksForEntry(stored->key_len);
611 if (entry_.address().num_blocks() != num_blocks)
612 return false;
613
614 return true;
615 }
616
DataSanityCheck()617 bool EntryImpl::DataSanityCheck() {
618 EntryStore* stored = entry_.Data();
619 Addr key_addr(stored->long_key);
620
621 // The key must be NULL terminated.
622 if (!key_addr.is_initialized() && stored->key[stored->key_len])
623 return false;
624
625 if (stored->hash != base::Hash(GetKey()))
626 return false;
627
628 for (int i = 0; i < kNumStreams; i++) {
629 Addr data_addr(stored->data_addr[i]);
630 int data_size = stored->data_size[i];
631 if (data_size < 0)
632 return false;
633 if (!data_size && data_addr.is_initialized())
634 return false;
635 if (!data_addr.SanityCheckV2())
636 return false;
637 if (!data_size)
638 continue;
639 if (data_size <= kMaxBlockSize && data_addr.is_separate_file())
640 return false;
641 if (data_size > kMaxBlockSize && data_addr.is_block_file())
642 return false;
643 }
644 return true;
645 }
646
FixForDelete()647 void EntryImpl::FixForDelete() {
648 EntryStore* stored = entry_.Data();
649 Addr key_addr(stored->long_key);
650
651 if (!key_addr.is_initialized())
652 stored->key[stored->key_len] = '\0';
653
654 for (int i = 0; i < kNumStreams; i++) {
655 Addr data_addr(stored->data_addr[i]);
656 int data_size = stored->data_size[i];
657 if (data_addr.is_initialized()) {
658 if ((data_size <= kMaxBlockSize && data_addr.is_separate_file()) ||
659 (data_size > kMaxBlockSize && data_addr.is_block_file()) ||
660 !data_addr.SanityCheckV2()) {
661 STRESS_NOTREACHED();
662 // The address is weird so don't attempt to delete it.
663 stored->data_addr[i] = 0;
664 // In general, trust the stored size as it should be in sync with the
665 // total size tracked by the backend.
666 }
667 }
668 if (data_size < 0)
669 stored->data_size[i] = 0;
670 }
671 entry_.Store();
672 }
673
IncrementIoCount()674 void EntryImpl::IncrementIoCount() {
675 backend_->IncrementIoCount();
676 }
677
DecrementIoCount()678 void EntryImpl::DecrementIoCount() {
679 if (backend_.get())
680 backend_->DecrementIoCount();
681 }
682
OnEntryCreated(BackendImpl * backend)683 void EntryImpl::OnEntryCreated(BackendImpl* backend) {
684 // Just grab a reference to the backround queue.
685 background_queue_ = backend->GetBackgroundQueue();
686 }
687
SetTimes(base::Time last_used,base::Time last_modified)688 void EntryImpl::SetTimes(base::Time last_used, base::Time last_modified) {
689 node_.Data()->last_used = last_used.ToInternalValue();
690 node_.Data()->last_modified = last_modified.ToInternalValue();
691 node_.set_modified();
692 }
693
ReportIOTime(Operation op,const base::TimeTicks & start)694 void EntryImpl::ReportIOTime(Operation op, const base::TimeTicks& start) {
695 if (!backend_.get())
696 return;
697
698 switch (op) {
699 case kRead:
700 CACHE_UMA(AGE_MS, "ReadTime", 0, start);
701 break;
702 case kWrite:
703 CACHE_UMA(AGE_MS, "WriteTime", 0, start);
704 break;
705 case kSparseRead:
706 CACHE_UMA(AGE_MS, "SparseReadTime", 0, start);
707 break;
708 case kSparseWrite:
709 CACHE_UMA(AGE_MS, "SparseWriteTime", 0, start);
710 break;
711 case kAsyncIO:
712 CACHE_UMA(AGE_MS, "AsyncIOTime", 0, start);
713 break;
714 case kReadAsync1:
715 CACHE_UMA(AGE_MS, "AsyncReadDispatchTime", 0, start);
716 break;
717 case kWriteAsync1:
718 CACHE_UMA(AGE_MS, "AsyncWriteDispatchTime", 0, start);
719 break;
720 default:
721 NOTREACHED();
722 }
723 }
724
BeginLogging(net::NetLog * net_log,bool created)725 void EntryImpl::BeginLogging(net::NetLog* net_log, bool created) {
726 DCHECK(!net_log_.net_log());
727 net_log_ = net::BoundNetLog::Make(
728 net_log, net::NetLog::SOURCE_DISK_CACHE_ENTRY);
729 net_log_.BeginEvent(
730 net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL,
731 CreateNetLogEntryCreationCallback(this, created));
732 }
733
net_log() const734 const net::BoundNetLog& EntryImpl::net_log() const {
735 return net_log_;
736 }
737
738 // static
NumBlocksForEntry(int key_size)739 int EntryImpl::NumBlocksForEntry(int key_size) {
740 // The longest key that can be stored using one block.
741 int key1_len =
742 static_cast<int>(sizeof(EntryStore) - offsetof(EntryStore, key));
743
744 if (key_size < key1_len || key_size > kMaxInternalKeyLength)
745 return 1;
746
747 return ((key_size - key1_len) / 256 + 2);
748 }
749
750 // ------------------------------------------------------------------------
751
Doom()752 void EntryImpl::Doom() {
753 if (background_queue_.get())
754 background_queue_->DoomEntryImpl(this);
755 }
756
Close()757 void EntryImpl::Close() {
758 if (background_queue_.get())
759 background_queue_->CloseEntryImpl(this);
760 }
761
GetKey() const762 std::string EntryImpl::GetKey() const {
763 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
764 int key_len = entry->Data()->key_len;
765 if (key_len <= kMaxInternalKeyLength)
766 return std::string(entry->Data()->key);
767
768 // We keep a copy of the key so that we can always return it, even if the
769 // backend is disabled.
770 if (!key_.empty())
771 return key_;
772
773 Addr address(entry->Data()->long_key);
774 DCHECK(address.is_initialized());
775 size_t offset = 0;
776 if (address.is_block_file())
777 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
778
779 COMPILE_ASSERT(kNumStreams == kKeyFileIndex, invalid_key_index);
780 File* key_file = const_cast<EntryImpl*>(this)->GetBackingFile(address,
781 kKeyFileIndex);
782 if (!key_file)
783 return std::string();
784
785 ++key_len; // We store a trailing \0 on disk that we read back below.
786 if (!offset && key_file->GetLength() != static_cast<size_t>(key_len))
787 return std::string();
788
789 if (!key_file->Read(WriteInto(&key_, key_len), key_len, offset))
790 key_.clear();
791 return key_;
792 }
793
GetLastUsed() const794 Time EntryImpl::GetLastUsed() const {
795 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
796 return Time::FromInternalValue(node->Data()->last_used);
797 }
798
GetLastModified() const799 Time EntryImpl::GetLastModified() const {
800 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
801 return Time::FromInternalValue(node->Data()->last_modified);
802 }
803
GetDataSize(int index) const804 int32 EntryImpl::GetDataSize(int index) const {
805 if (index < 0 || index >= kNumStreams)
806 return 0;
807
808 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
809 return entry->Data()->data_size[index];
810 }
811
ReadData(int index,int offset,IOBuffer * buf,int buf_len,const CompletionCallback & callback)812 int EntryImpl::ReadData(int index, int offset, IOBuffer* buf, int buf_len,
813 const CompletionCallback& callback) {
814 if (callback.is_null())
815 return ReadDataImpl(index, offset, buf, buf_len, callback);
816
817 DCHECK(node_.Data()->dirty || read_only_);
818 if (index < 0 || index >= kNumStreams)
819 return net::ERR_INVALID_ARGUMENT;
820
821 int entry_size = entry_.Data()->data_size[index];
822 if (offset >= entry_size || offset < 0 || !buf_len)
823 return 0;
824
825 if (buf_len < 0)
826 return net::ERR_INVALID_ARGUMENT;
827
828 if (!background_queue_.get())
829 return net::ERR_UNEXPECTED;
830
831 background_queue_->ReadData(this, index, offset, buf, buf_len, callback);
832 return net::ERR_IO_PENDING;
833 }
834
WriteData(int index,int offset,IOBuffer * buf,int buf_len,const CompletionCallback & callback,bool truncate)835 int EntryImpl::WriteData(int index, int offset, IOBuffer* buf, int buf_len,
836 const CompletionCallback& callback, bool truncate) {
837 if (callback.is_null())
838 return WriteDataImpl(index, offset, buf, buf_len, callback, truncate);
839
840 DCHECK(node_.Data()->dirty || read_only_);
841 if (index < 0 || index >= kNumStreams)
842 return net::ERR_INVALID_ARGUMENT;
843
844 if (offset < 0 || buf_len < 0)
845 return net::ERR_INVALID_ARGUMENT;
846
847 if (!background_queue_.get())
848 return net::ERR_UNEXPECTED;
849
850 background_queue_->WriteData(this, index, offset, buf, buf_len, truncate,
851 callback);
852 return net::ERR_IO_PENDING;
853 }
854
ReadSparseData(int64 offset,IOBuffer * buf,int buf_len,const CompletionCallback & callback)855 int EntryImpl::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
856 const CompletionCallback& callback) {
857 if (callback.is_null())
858 return ReadSparseDataImpl(offset, buf, buf_len, callback);
859
860 if (!background_queue_.get())
861 return net::ERR_UNEXPECTED;
862
863 background_queue_->ReadSparseData(this, offset, buf, buf_len, callback);
864 return net::ERR_IO_PENDING;
865 }
866
WriteSparseData(int64 offset,IOBuffer * buf,int buf_len,const CompletionCallback & callback)867 int EntryImpl::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
868 const CompletionCallback& callback) {
869 if (callback.is_null())
870 return WriteSparseDataImpl(offset, buf, buf_len, callback);
871
872 if (!background_queue_.get())
873 return net::ERR_UNEXPECTED;
874
875 background_queue_->WriteSparseData(this, offset, buf, buf_len, callback);
876 return net::ERR_IO_PENDING;
877 }
878
GetAvailableRange(int64 offset,int len,int64 * start,const CompletionCallback & callback)879 int EntryImpl::GetAvailableRange(int64 offset, int len, int64* start,
880 const CompletionCallback& callback) {
881 if (!background_queue_.get())
882 return net::ERR_UNEXPECTED;
883
884 background_queue_->GetAvailableRange(this, offset, len, start, callback);
885 return net::ERR_IO_PENDING;
886 }
887
CouldBeSparse() const888 bool EntryImpl::CouldBeSparse() const {
889 if (sparse_.get())
890 return true;
891
892 scoped_ptr<SparseControl> sparse;
893 sparse.reset(new SparseControl(const_cast<EntryImpl*>(this)));
894 return sparse->CouldBeSparse();
895 }
896
CancelSparseIO()897 void EntryImpl::CancelSparseIO() {
898 if (background_queue_.get())
899 background_queue_->CancelSparseIO(this);
900 }
901
ReadyForSparseIO(const CompletionCallback & callback)902 int EntryImpl::ReadyForSparseIO(const CompletionCallback& callback) {
903 if (!sparse_.get())
904 return net::OK;
905
906 if (!background_queue_.get())
907 return net::ERR_UNEXPECTED;
908
909 background_queue_->ReadyForSparseIO(this, callback);
910 return net::ERR_IO_PENDING;
911 }
912
913 // When an entry is deleted from the cache, we clean up all the data associated
914 // with it for two reasons: to simplify the reuse of the block (we know that any
915 // unused block is filled with zeros), and to simplify the handling of write /
916 // read partial information from an entry (don't have to worry about returning
917 // data related to a previous cache entry because the range was not fully
918 // written before).
~EntryImpl()919 EntryImpl::~EntryImpl() {
920 if (!backend_.get()) {
921 entry_.clear_modified();
922 node_.clear_modified();
923 return;
924 }
925 Log("~EntryImpl in");
926
927 // Save the sparse info to disk. This will generate IO for this entry and
928 // maybe for a child entry, so it is important to do it before deleting this
929 // entry.
930 sparse_.reset();
931
932 // Remove this entry from the list of open entries.
933 backend_->OnEntryDestroyBegin(entry_.address());
934
935 if (doomed_) {
936 DeleteEntryData(true);
937 } else {
938 #if defined(NET_BUILD_STRESS_CACHE)
939 SanityCheck();
940 #endif
941 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_CLOSE);
942 bool ret = true;
943 for (int index = 0; index < kNumStreams; index++) {
944 if (user_buffers_[index].get()) {
945 ret = Flush(index, 0);
946 if (!ret)
947 LOG(ERROR) << "Failed to save user data";
948 }
949 if (unreported_size_[index]) {
950 backend_->ModifyStorageSize(
951 entry_.Data()->data_size[index] - unreported_size_[index],
952 entry_.Data()->data_size[index]);
953 }
954 }
955
956 if (!ret) {
957 // There was a failure writing the actual data. Mark the entry as dirty.
958 int current_id = backend_->GetCurrentEntryId();
959 node_.Data()->dirty = current_id == 1 ? -1 : current_id - 1;
960 node_.Store();
961 } else if (node_.HasData() && !dirty_ && node_.Data()->dirty) {
962 node_.Data()->dirty = 0;
963 node_.Store();
964 }
965 }
966
967 Trace("~EntryImpl out 0x%p", reinterpret_cast<void*>(this));
968 net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL);
969 backend_->OnEntryDestroyEnd();
970 }
971
972 // ------------------------------------------------------------------------
973
InternalReadData(int index,int offset,IOBuffer * buf,int buf_len,const CompletionCallback & callback)974 int EntryImpl::InternalReadData(int index, int offset,
975 IOBuffer* buf, int buf_len,
976 const CompletionCallback& callback) {
977 DCHECK(node_.Data()->dirty || read_only_);
978 DVLOG(2) << "Read from " << index << " at " << offset << " : " << buf_len;
979 if (index < 0 || index >= kNumStreams)
980 return net::ERR_INVALID_ARGUMENT;
981
982 int entry_size = entry_.Data()->data_size[index];
983 if (offset >= entry_size || offset < 0 || !buf_len)
984 return 0;
985
986 if (buf_len < 0)
987 return net::ERR_INVALID_ARGUMENT;
988
989 if (!backend_.get())
990 return net::ERR_UNEXPECTED;
991
992 TimeTicks start = TimeTicks::Now();
993
994 if (offset + buf_len > entry_size)
995 buf_len = entry_size - offset;
996
997 UpdateRank(false);
998
999 backend_->OnEvent(Stats::READ_DATA);
1000 backend_->OnRead(buf_len);
1001
1002 Addr address(entry_.Data()->data_addr[index]);
1003 int eof = address.is_initialized() ? entry_size : 0;
1004 if (user_buffers_[index].get() &&
1005 user_buffers_[index]->PreRead(eof, offset, &buf_len)) {
1006 // Complete the operation locally.
1007 buf_len = user_buffers_[index]->Read(offset, buf, buf_len);
1008 ReportIOTime(kRead, start);
1009 return buf_len;
1010 }
1011
1012 address.set_value(entry_.Data()->data_addr[index]);
1013 DCHECK(address.is_initialized());
1014 if (!address.is_initialized()) {
1015 DoomImpl();
1016 return net::ERR_FAILED;
1017 }
1018
1019 File* file = GetBackingFile(address, index);
1020 if (!file) {
1021 DoomImpl();
1022 LOG(ERROR) << "No file for " << std::hex << address.value();
1023 return net::ERR_FILE_NOT_FOUND;
1024 }
1025
1026 size_t file_offset = offset;
1027 if (address.is_block_file()) {
1028 DCHECK_LE(offset + buf_len, kMaxBlockSize);
1029 file_offset += address.start_block() * address.BlockSize() +
1030 kBlockHeaderSize;
1031 }
1032
1033 SyncCallback* io_callback = NULL;
1034 if (!callback.is_null()) {
1035 io_callback = new SyncCallback(this, buf, callback,
1036 net::NetLog::TYPE_ENTRY_READ_DATA);
1037 }
1038
1039 TimeTicks start_async = TimeTicks::Now();
1040
1041 bool completed;
1042 if (!file->Read(buf->data(), buf_len, file_offset, io_callback, &completed)) {
1043 if (io_callback)
1044 io_callback->Discard();
1045 DoomImpl();
1046 return net::ERR_CACHE_READ_FAILURE;
1047 }
1048
1049 if (io_callback && completed)
1050 io_callback->Discard();
1051
1052 if (io_callback)
1053 ReportIOTime(kReadAsync1, start_async);
1054
1055 ReportIOTime(kRead, start);
1056 return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING;
1057 }
1058
InternalWriteData(int index,int offset,IOBuffer * buf,int buf_len,const CompletionCallback & callback,bool truncate)1059 int EntryImpl::InternalWriteData(int index, int offset,
1060 IOBuffer* buf, int buf_len,
1061 const CompletionCallback& callback,
1062 bool truncate) {
1063 DCHECK(node_.Data()->dirty || read_only_);
1064 DVLOG(2) << "Write to " << index << " at " << offset << " : " << buf_len;
1065 if (index < 0 || index >= kNumStreams)
1066 return net::ERR_INVALID_ARGUMENT;
1067
1068 if (offset < 0 || buf_len < 0)
1069 return net::ERR_INVALID_ARGUMENT;
1070
1071 if (!backend_.get())
1072 return net::ERR_UNEXPECTED;
1073
1074 int max_file_size = backend_->MaxFileSize();
1075
1076 // offset or buf_len could be negative numbers.
1077 if (offset > max_file_size || buf_len > max_file_size ||
1078 offset + buf_len > max_file_size) {
1079 int size = offset + buf_len;
1080 if (size <= max_file_size)
1081 size = kint32max;
1082 backend_->TooMuchStorageRequested(size);
1083 return net::ERR_FAILED;
1084 }
1085
1086 TimeTicks start = TimeTicks::Now();
1087
1088 // Read the size at this point (it may change inside prepare).
1089 int entry_size = entry_.Data()->data_size[index];
1090 bool extending = entry_size < offset + buf_len;
1091 truncate = truncate && entry_size > offset + buf_len;
1092 Trace("To PrepareTarget 0x%x", entry_.address().value());
1093 if (!PrepareTarget(index, offset, buf_len, truncate))
1094 return net::ERR_FAILED;
1095
1096 Trace("From PrepareTarget 0x%x", entry_.address().value());
1097 if (extending || truncate)
1098 UpdateSize(index, entry_size, offset + buf_len);
1099
1100 UpdateRank(true);
1101
1102 backend_->OnEvent(Stats::WRITE_DATA);
1103 backend_->OnWrite(buf_len);
1104
1105 if (user_buffers_[index].get()) {
1106 // Complete the operation locally.
1107 user_buffers_[index]->Write(offset, buf, buf_len);
1108 ReportIOTime(kWrite, start);
1109 return buf_len;
1110 }
1111
1112 Addr address(entry_.Data()->data_addr[index]);
1113 if (offset + buf_len == 0) {
1114 if (truncate) {
1115 DCHECK(!address.is_initialized());
1116 }
1117 return 0;
1118 }
1119
1120 File* file = GetBackingFile(address, index);
1121 if (!file)
1122 return net::ERR_FILE_NOT_FOUND;
1123
1124 size_t file_offset = offset;
1125 if (address.is_block_file()) {
1126 DCHECK_LE(offset + buf_len, kMaxBlockSize);
1127 file_offset += address.start_block() * address.BlockSize() +
1128 kBlockHeaderSize;
1129 } else if (truncate || (extending && !buf_len)) {
1130 if (!file->SetLength(offset + buf_len))
1131 return net::ERR_FAILED;
1132 }
1133
1134 if (!buf_len)
1135 return 0;
1136
1137 SyncCallback* io_callback = NULL;
1138 if (!callback.is_null()) {
1139 io_callback = new SyncCallback(this, buf, callback,
1140 net::NetLog::TYPE_ENTRY_WRITE_DATA);
1141 }
1142
1143 TimeTicks start_async = TimeTicks::Now();
1144
1145 bool completed;
1146 if (!file->Write(buf->data(), buf_len, file_offset, io_callback,
1147 &completed)) {
1148 if (io_callback)
1149 io_callback->Discard();
1150 return net::ERR_CACHE_WRITE_FAILURE;
1151 }
1152
1153 if (io_callback && completed)
1154 io_callback->Discard();
1155
1156 if (io_callback)
1157 ReportIOTime(kWriteAsync1, start_async);
1158
1159 ReportIOTime(kWrite, start);
1160 return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING;
1161 }
1162
1163 // ------------------------------------------------------------------------
1164
CreateDataBlock(int index,int size)1165 bool EntryImpl::CreateDataBlock(int index, int size) {
1166 DCHECK(index >= 0 && index < kNumStreams);
1167
1168 Addr address(entry_.Data()->data_addr[index]);
1169 if (!CreateBlock(size, &address))
1170 return false;
1171
1172 entry_.Data()->data_addr[index] = address.value();
1173 entry_.Store();
1174 return true;
1175 }
1176
CreateBlock(int size,Addr * address)1177 bool EntryImpl::CreateBlock(int size, Addr* address) {
1178 DCHECK(!address->is_initialized());
1179 if (!backend_.get())
1180 return false;
1181
1182 FileType file_type = Addr::RequiredFileType(size);
1183 if (EXTERNAL == file_type) {
1184 if (size > backend_->MaxFileSize())
1185 return false;
1186 if (!backend_->CreateExternalFile(address))
1187 return false;
1188 } else {
1189 int num_blocks = Addr::RequiredBlocks(size, file_type);
1190
1191 if (!backend_->CreateBlock(file_type, num_blocks, address))
1192 return false;
1193 }
1194 return true;
1195 }
1196
1197 // Note that this method may end up modifying a block file so upon return the
1198 // involved block will be free, and could be reused for something else. If there
1199 // is a crash after that point (and maybe before returning to the caller), the
1200 // entry will be left dirty... and at some point it will be discarded; it is
1201 // important that the entry doesn't keep a reference to this address, or we'll
1202 // end up deleting the contents of |address| once again.
DeleteData(Addr address,int index)1203 void EntryImpl::DeleteData(Addr address, int index) {
1204 DCHECK(backend_.get());
1205 if (!address.is_initialized())
1206 return;
1207 if (address.is_separate_file()) {
1208 int failure = !DeleteCacheFile(backend_->GetFileName(address));
1209 CACHE_UMA(COUNTS, "DeleteFailed", 0, failure);
1210 if (failure) {
1211 LOG(ERROR) << "Failed to delete " <<
1212 backend_->GetFileName(address).value() << " from the cache.";
1213 }
1214 if (files_[index].get())
1215 files_[index] = NULL; // Releases the object.
1216 } else {
1217 backend_->DeleteBlock(address, true);
1218 }
1219 }
1220
UpdateRank(bool modified)1221 void EntryImpl::UpdateRank(bool modified) {
1222 if (!backend_.get())
1223 return;
1224
1225 if (!doomed_) {
1226 // Everything is handled by the backend.
1227 backend_->UpdateRank(this, modified);
1228 return;
1229 }
1230
1231 Time current = Time::Now();
1232 node_.Data()->last_used = current.ToInternalValue();
1233
1234 if (modified)
1235 node_.Data()->last_modified = current.ToInternalValue();
1236 }
1237
GetBackingFile(Addr address,int index)1238 File* EntryImpl::GetBackingFile(Addr address, int index) {
1239 if (!backend_.get())
1240 return NULL;
1241
1242 File* file;
1243 if (address.is_separate_file())
1244 file = GetExternalFile(address, index);
1245 else
1246 file = backend_->File(address);
1247 return file;
1248 }
1249
GetExternalFile(Addr address,int index)1250 File* EntryImpl::GetExternalFile(Addr address, int index) {
1251 DCHECK(index >= 0 && index <= kKeyFileIndex);
1252 if (!files_[index].get()) {
1253 // For a key file, use mixed mode IO.
1254 scoped_refptr<File> file(new File(kKeyFileIndex == index));
1255 if (file->Init(backend_->GetFileName(address)))
1256 files_[index].swap(file);
1257 }
1258 return files_[index].get();
1259 }
1260
1261 // We keep a memory buffer for everything that ends up stored on a block file
1262 // (because we don't know yet the final data size), and for some of the data
1263 // that end up on external files. This function will initialize that memory
1264 // buffer and / or the files needed to store the data.
1265 //
1266 // In general, a buffer may overlap data already stored on disk, and in that
1267 // case, the contents of the buffer are the most accurate. It may also extend
1268 // the file, but we don't want to read from disk just to keep the buffer up to
1269 // date. This means that as soon as there is a chance to get confused about what
1270 // is the most recent version of some part of a file, we'll flush the buffer and
1271 // reuse it for the new data. Keep in mind that the normal use pattern is quite
1272 // simple (write sequentially from the beginning), so we optimize for handling
1273 // that case.
PrepareTarget(int index,int offset,int buf_len,bool truncate)1274 bool EntryImpl::PrepareTarget(int index, int offset, int buf_len,
1275 bool truncate) {
1276 if (truncate)
1277 return HandleTruncation(index, offset, buf_len);
1278
1279 if (!offset && !buf_len)
1280 return true;
1281
1282 Addr address(entry_.Data()->data_addr[index]);
1283 if (address.is_initialized()) {
1284 if (address.is_block_file() && !MoveToLocalBuffer(index))
1285 return false;
1286
1287 if (!user_buffers_[index].get() && offset < kMaxBlockSize) {
1288 // We are about to create a buffer for the first 16KB, make sure that we
1289 // preserve existing data.
1290 if (!CopyToLocalBuffer(index))
1291 return false;
1292 }
1293 }
1294
1295 if (!user_buffers_[index].get())
1296 user_buffers_[index].reset(new UserBuffer(backend_.get()));
1297
1298 return PrepareBuffer(index, offset, buf_len);
1299 }
1300
1301 // We get to this function with some data already stored. If there is a
1302 // truncation that results on data stored internally, we'll explicitly
1303 // handle the case here.
HandleTruncation(int index,int offset,int buf_len)1304 bool EntryImpl::HandleTruncation(int index, int offset, int buf_len) {
1305 Addr address(entry_.Data()->data_addr[index]);
1306
1307 int current_size = entry_.Data()->data_size[index];
1308 int new_size = offset + buf_len;
1309
1310 if (!new_size) {
1311 // This is by far the most common scenario.
1312 backend_->ModifyStorageSize(current_size - unreported_size_[index], 0);
1313 entry_.Data()->data_addr[index] = 0;
1314 entry_.Data()->data_size[index] = 0;
1315 unreported_size_[index] = 0;
1316 entry_.Store();
1317 DeleteData(address, index);
1318
1319 user_buffers_[index].reset();
1320 return true;
1321 }
1322
1323 // We never postpone truncating a file, if there is one, but we may postpone
1324 // telling the backend about the size reduction.
1325 if (user_buffers_[index].get()) {
1326 DCHECK_GE(current_size, user_buffers_[index]->Start());
1327 if (!address.is_initialized()) {
1328 // There is no overlap between the buffer and disk.
1329 if (new_size > user_buffers_[index]->Start()) {
1330 // Just truncate our buffer.
1331 DCHECK_LT(new_size, user_buffers_[index]->End());
1332 user_buffers_[index]->Truncate(new_size);
1333 return true;
1334 }
1335
1336 // Just discard our buffer.
1337 user_buffers_[index]->Reset();
1338 return PrepareBuffer(index, offset, buf_len);
1339 }
1340
1341 // There is some overlap or we need to extend the file before the
1342 // truncation.
1343 if (offset > user_buffers_[index]->Start())
1344 user_buffers_[index]->Truncate(new_size);
1345 UpdateSize(index, current_size, new_size);
1346 if (!Flush(index, 0))
1347 return false;
1348 user_buffers_[index].reset();
1349 }
1350
1351 // We have data somewhere, and it is not in a buffer.
1352 DCHECK(!user_buffers_[index].get());
1353 DCHECK(address.is_initialized());
1354
1355 if (new_size > kMaxBlockSize)
1356 return true; // Let the operation go directly to disk.
1357
1358 return ImportSeparateFile(index, offset + buf_len);
1359 }
1360
CopyToLocalBuffer(int index)1361 bool EntryImpl::CopyToLocalBuffer(int index) {
1362 Addr address(entry_.Data()->data_addr[index]);
1363 DCHECK(!user_buffers_[index].get());
1364 DCHECK(address.is_initialized());
1365
1366 int len = std::min(entry_.Data()->data_size[index], kMaxBlockSize);
1367 user_buffers_[index].reset(new UserBuffer(backend_.get()));
1368 user_buffers_[index]->Write(len, NULL, 0);
1369
1370 File* file = GetBackingFile(address, index);
1371 int offset = 0;
1372
1373 if (address.is_block_file())
1374 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1375
1376 if (!file ||
1377 !file->Read(user_buffers_[index]->Data(), len, offset, NULL, NULL)) {
1378 user_buffers_[index].reset();
1379 return false;
1380 }
1381 return true;
1382 }
1383
MoveToLocalBuffer(int index)1384 bool EntryImpl::MoveToLocalBuffer(int index) {
1385 if (!CopyToLocalBuffer(index))
1386 return false;
1387
1388 Addr address(entry_.Data()->data_addr[index]);
1389 entry_.Data()->data_addr[index] = 0;
1390 entry_.Store();
1391 DeleteData(address, index);
1392
1393 // If we lose this entry we'll see it as zero sized.
1394 int len = entry_.Data()->data_size[index];
1395 backend_->ModifyStorageSize(len - unreported_size_[index], 0);
1396 unreported_size_[index] = len;
1397 return true;
1398 }
1399
ImportSeparateFile(int index,int new_size)1400 bool EntryImpl::ImportSeparateFile(int index, int new_size) {
1401 if (entry_.Data()->data_size[index] > new_size)
1402 UpdateSize(index, entry_.Data()->data_size[index], new_size);
1403
1404 return MoveToLocalBuffer(index);
1405 }
1406
PrepareBuffer(int index,int offset,int buf_len)1407 bool EntryImpl::PrepareBuffer(int index, int offset, int buf_len) {
1408 DCHECK(user_buffers_[index].get());
1409 if ((user_buffers_[index]->End() && offset > user_buffers_[index]->End()) ||
1410 offset > entry_.Data()->data_size[index]) {
1411 // We are about to extend the buffer or the file (with zeros), so make sure
1412 // that we are not overwriting anything.
1413 Addr address(entry_.Data()->data_addr[index]);
1414 if (address.is_initialized() && address.is_separate_file()) {
1415 if (!Flush(index, 0))
1416 return false;
1417 // There is an actual file already, and we don't want to keep track of
1418 // its length so we let this operation go straight to disk.
1419 // The only case when a buffer is allowed to extend the file (as in fill
1420 // with zeros before the start) is when there is no file yet to extend.
1421 user_buffers_[index].reset();
1422 return true;
1423 }
1424 }
1425
1426 if (!user_buffers_[index]->PreWrite(offset, buf_len)) {
1427 if (!Flush(index, offset + buf_len))
1428 return false;
1429
1430 // Lets try again.
1431 if (offset > user_buffers_[index]->End() ||
1432 !user_buffers_[index]->PreWrite(offset, buf_len)) {
1433 // We cannot complete the operation with a buffer.
1434 DCHECK(!user_buffers_[index]->Size());
1435 DCHECK(!user_buffers_[index]->Start());
1436 user_buffers_[index].reset();
1437 }
1438 }
1439 return true;
1440 }
1441
Flush(int index,int min_len)1442 bool EntryImpl::Flush(int index, int min_len) {
1443 Addr address(entry_.Data()->data_addr[index]);
1444 DCHECK(user_buffers_[index].get());
1445 DCHECK(!address.is_initialized() || address.is_separate_file());
1446 DVLOG(3) << "Flush";
1447
1448 int size = std::max(entry_.Data()->data_size[index], min_len);
1449 if (size && !address.is_initialized() && !CreateDataBlock(index, size))
1450 return false;
1451
1452 if (!entry_.Data()->data_size[index]) {
1453 DCHECK(!user_buffers_[index]->Size());
1454 return true;
1455 }
1456
1457 address.set_value(entry_.Data()->data_addr[index]);
1458
1459 int len = user_buffers_[index]->Size();
1460 int offset = user_buffers_[index]->Start();
1461 if (!len && !offset)
1462 return true;
1463
1464 if (address.is_block_file()) {
1465 DCHECK_EQ(len, entry_.Data()->data_size[index]);
1466 DCHECK(!offset);
1467 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1468 }
1469
1470 File* file = GetBackingFile(address, index);
1471 if (!file)
1472 return false;
1473
1474 if (!file->Write(user_buffers_[index]->Data(), len, offset, NULL, NULL))
1475 return false;
1476 user_buffers_[index]->Reset();
1477
1478 return true;
1479 }
1480
UpdateSize(int index,int old_size,int new_size)1481 void EntryImpl::UpdateSize(int index, int old_size, int new_size) {
1482 if (entry_.Data()->data_size[index] == new_size)
1483 return;
1484
1485 unreported_size_[index] += new_size - old_size;
1486 entry_.Data()->data_size[index] = new_size;
1487 entry_.set_modified();
1488 }
1489
InitSparseData()1490 int EntryImpl::InitSparseData() {
1491 if (sparse_.get())
1492 return net::OK;
1493
1494 // Use a local variable so that sparse_ never goes from 'valid' to NULL.
1495 scoped_ptr<SparseControl> sparse(new SparseControl(this));
1496 int result = sparse->Init();
1497 if (net::OK == result)
1498 sparse_.swap(sparse);
1499
1500 return result;
1501 }
1502
SetEntryFlags(uint32 flags)1503 void EntryImpl::SetEntryFlags(uint32 flags) {
1504 entry_.Data()->flags |= flags;
1505 entry_.set_modified();
1506 }
1507
GetEntryFlags()1508 uint32 EntryImpl::GetEntryFlags() {
1509 return entry_.Data()->flags;
1510 }
1511
GetData(int index,char ** buffer,Addr * address)1512 void EntryImpl::GetData(int index, char** buffer, Addr* address) {
1513 DCHECK(backend_.get());
1514 if (user_buffers_[index].get() && user_buffers_[index]->Size() &&
1515 !user_buffers_[index]->Start()) {
1516 // The data is already in memory, just copy it and we're done.
1517 int data_len = entry_.Data()->data_size[index];
1518 if (data_len <= user_buffers_[index]->Size()) {
1519 DCHECK(!user_buffers_[index]->Start());
1520 *buffer = new char[data_len];
1521 memcpy(*buffer, user_buffers_[index]->Data(), data_len);
1522 return;
1523 }
1524 }
1525
1526 // Bad news: we'd have to read the info from disk so instead we'll just tell
1527 // the caller where to read from.
1528 *buffer = NULL;
1529 address->set_value(entry_.Data()->data_addr[index]);
1530 if (address->is_initialized()) {
1531 // Prevent us from deleting the block from the backing store.
1532 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
1533 unreported_size_[index], 0);
1534 entry_.Data()->data_addr[index] = 0;
1535 entry_.Data()->data_size[index] = 0;
1536 }
1537 }
1538
Log(const char * msg)1539 void EntryImpl::Log(const char* msg) {
1540 int dirty = 0;
1541 if (node_.HasData()) {
1542 dirty = node_.Data()->dirty;
1543 }
1544
1545 Trace("%s 0x%p 0x%x 0x%x", msg, reinterpret_cast<void*>(this),
1546 entry_.address().value(), node_.address().value());
1547
1548 Trace(" data: 0x%x 0x%x 0x%x", entry_.Data()->data_addr[0],
1549 entry_.Data()->data_addr[1], entry_.Data()->long_key);
1550
1551 Trace(" doomed: %d 0x%x", doomed_, dirty);
1552 }
1553
1554 } // namespace disk_cache
1555