• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define ATRACE_TAG ATRACE_TAG_DALVIK
18 
19 #include "thread.h"
20 
21 #include <cutils/trace.h>
22 #include <pthread.h>
23 #include <signal.h>
24 #include <sys/resource.h>
25 #include <sys/time.h>
26 
27 #include <algorithm>
28 #include <bitset>
29 #include <cerrno>
30 #include <iostream>
31 #include <list>
32 
33 #include "arch/context.h"
34 #include "base/mutex.h"
35 #include "class_linker-inl.h"
36 #include "class_linker.h"
37 #include "debugger.h"
38 #include "dex_file-inl.h"
39 #include "entrypoints/entrypoint_utils.h"
40 #include "entrypoints/quick/quick_alloc_entrypoints.h"
41 #include "gc_map.h"
42 #include "gc/accounting/card_table-inl.h"
43 #include "gc/allocator/rosalloc.h"
44 #include "gc/heap.h"
45 #include "gc/space/space.h"
46 #include "handle_scope-inl.h"
47 #include "handle_scope.h"
48 #include "indirect_reference_table-inl.h"
49 #include "jni_internal.h"
50 #include "mirror/art_field-inl.h"
51 #include "mirror/art_method-inl.h"
52 #include "mirror/class_loader.h"
53 #include "mirror/class-inl.h"
54 #include "mirror/object_array-inl.h"
55 #include "mirror/stack_trace_element.h"
56 #include "monitor.h"
57 #include "object_lock.h"
58 #include "quick_exception_handler.h"
59 #include "quick/quick_method_frame_info.h"
60 #include "reflection.h"
61 #include "runtime.h"
62 #include "scoped_thread_state_change.h"
63 #include "ScopedLocalRef.h"
64 #include "ScopedUtfChars.h"
65 #include "stack.h"
66 #include "thread_list.h"
67 #include "thread-inl.h"
68 #include "utils.h"
69 #include "verifier/dex_gc_map.h"
70 #include "verify_object-inl.h"
71 #include "vmap_table.h"
72 #include "well_known_classes.h"
73 
74 namespace art {
75 
76 bool Thread::is_started_ = false;
77 pthread_key_t Thread::pthread_key_self_;
78 ConditionVariable* Thread::resume_cond_ = nullptr;
79 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80 
81 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82 
InitCardTable()83 void Thread::InitCardTable() {
84   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85 }
86 
UnimplementedEntryPoint()87 static void UnimplementedEntryPoint() {
88   UNIMPLEMENTED(FATAL);
89 }
90 
91 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                      PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93 
InitTlsEntryPoints()94 void Thread::InitTlsEntryPoints() {
95   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97   uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                 sizeof(tlsPtr_.quick_entrypoints));
99   for (uintptr_t* it = begin; it != end; ++it) {
100     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101   }
102   InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                   &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104 }
105 
ResetQuickAllocEntryPointsForThread()106 void Thread::ResetQuickAllocEntryPointsForThread() {
107   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108 }
109 
SetDeoptimizationShadowFrame(ShadowFrame * sf)110 void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111   tlsPtr_.deoptimization_shadow_frame = sf;
112 }
113 
SetDeoptimizationReturnValue(const JValue & ret_val)114 void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115   tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116 }
117 
GetAndClearDeoptimizationShadowFrame(JValue * ret_val)118 ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119   ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120   tlsPtr_.deoptimization_shadow_frame = nullptr;
121   ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122   return sf;
123 }
124 
SetShadowFrameUnderConstruction(ShadowFrame * sf)125 void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126   sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127   tlsPtr_.shadow_frame_under_construction = sf;
128 }
129 
ClearShadowFrameUnderConstruction()130 void Thread::ClearShadowFrameUnderConstruction() {
131   CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132   tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133 }
134 
InitTid()135 void Thread::InitTid() {
136   tls32_.tid = ::art::GetTid();
137 }
138 
InitAfterFork()139 void Thread::InitAfterFork() {
140   // One thread (us) survived the fork, but we have a new tid so we need to
141   // update the value stashed in this Thread*.
142   InitTid();
143 }
144 
CreateCallback(void * arg)145 void* Thread::CreateCallback(void* arg) {
146   Thread* self = reinterpret_cast<Thread*>(arg);
147   Runtime* runtime = Runtime::Current();
148   if (runtime == nullptr) {
149     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150     return nullptr;
151   }
152   {
153     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154     //       after self->Init().
155     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156     // Check that if we got here we cannot be shutting down (as shutdown should never have started
157     // while threads are being born).
158     CHECK(!runtime->IsShuttingDownLocked());
159     self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160     Runtime::Current()->EndThreadBirth();
161   }
162   {
163     ScopedObjectAccess soa(self);
164 
165     // Copy peer into self, deleting global reference when done.
166     CHECK(self->tlsPtr_.jpeer != nullptr);
167     self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169     self->tlsPtr_.jpeer = nullptr;
170     self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171 
172     mirror::ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
173     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
174     Dbg::PostThreadStart(self);
175 
176     // Invoke the 'run' method of our java.lang.Thread.
177     mirror::Object* receiver = self->tlsPtr_.opeer;
178     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
179     InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
180   }
181   // Detach and delete self.
182   Runtime::Current()->GetThreadList()->Unregister(self);
183 
184   return nullptr;
185 }
186 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,mirror::Object * thread_peer)187 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
188                                   mirror::Object* thread_peer) {
189   mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
190   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
191   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
192   // to stop it from going away.
193   if (kIsDebugBuild) {
194     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
195     if (result != nullptr && !result->IsSuspended()) {
196       Locks::thread_list_lock_->AssertHeld(soa.Self());
197     }
198   }
199   return result;
200 }
201 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)202 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
203                                   jobject java_thread) {
204   return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
205 }
206 
FixStackSize(size_t stack_size)207 static size_t FixStackSize(size_t stack_size) {
208   // A stack size of zero means "use the default".
209   if (stack_size == 0) {
210     stack_size = Runtime::Current()->GetDefaultStackSize();
211   }
212 
213   // Dalvik used the bionic pthread default stack size for native threads,
214   // so include that here to support apps that expect large native stacks.
215   stack_size += 1 * MB;
216 
217   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
218   if (stack_size < PTHREAD_STACK_MIN) {
219     stack_size = PTHREAD_STACK_MIN;
220   }
221 
222   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
223     // It's likely that callers are trying to ensure they have at least a certain amount of
224     // stack space, so we should add our reserved space on top of what they requested, rather
225     // than implicitly take it away from them.
226     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
227   } else {
228     // If we are going to use implicit stack checks, allocate space for the protected
229     // region at the bottom of the stack.
230     stack_size += Thread::kStackOverflowImplicitCheckSize +
231         GetStackOverflowReservedBytes(kRuntimeISA);
232   }
233 
234   // Some systems require the stack size to be a multiple of the system page size, so round up.
235   stack_size = RoundUp(stack_size, kPageSize);
236 
237   return stack_size;
238 }
239 
240 // Global variable to prevent the compiler optimizing away the page reads for the stack.
241 byte dont_optimize_this;
242 
243 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
244 // overflow is detected.  It is located right below the stack_begin_.
245 //
246 // There is a little complexity here that deserves a special mention.  On some
247 // architectures, the stack created using a VM_GROWSDOWN flag
248 // to prevent memory being allocated when it's not needed.  This flag makes the
249 // kernel only allocate memory for the stack by growing down in memory.  Because we
250 // want to put an mprotected region far away from that at the stack top, we need
251 // to make sure the pages for the stack are mapped in before we call mprotect.  We do
252 // this by reading every page from the stack bottom (highest address) to the stack top.
253 // We then madvise this away.
InstallImplicitProtection()254 void Thread::InstallImplicitProtection() {
255   byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
256   byte* stack_himem = tlsPtr_.stack_end;
257   byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
258       ~(kPageSize - 1));    // Page containing current top of stack.
259 
260   // First remove the protection on the protected region as will want to read and
261   // write it.  This may fail (on the first attempt when the stack is not mapped)
262   // but we ignore that.
263   UnprotectStack();
264 
265   // Map in the stack.  This must be done by reading from the
266   // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
267   // in the kernel.  Any access more than a page below the current SP might cause
268   // a segv.
269 
270   // Read every page from the high address to the low.
271   for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
272     dont_optimize_this = *p;
273   }
274 
275   VLOG(threads) << "installing stack protected region at " << std::hex <<
276       static_cast<void*>(pregion) << " to " <<
277       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
278 
279   // Protect the bottom of the stack to prevent read/write to it.
280   ProtectStack();
281 
282   // Tell the kernel that we won't be needing these pages any more.
283   // NB. madvise will probably write zeroes into the memory (on linux it does).
284   uint32_t unwanted_size = stack_top - pregion - kPageSize;
285   madvise(pregion, unwanted_size, MADV_DONTNEED);
286 }
287 
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)288 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
289   CHECK(java_peer != nullptr);
290   Thread* self = static_cast<JNIEnvExt*>(env)->self;
291   Runtime* runtime = Runtime::Current();
292 
293   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
294   bool thread_start_during_shutdown = false;
295   {
296     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
297     if (runtime->IsShuttingDownLocked()) {
298       thread_start_during_shutdown = true;
299     } else {
300       runtime->StartThreadBirth();
301     }
302   }
303   if (thread_start_during_shutdown) {
304     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
305     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
306     return;
307   }
308 
309   Thread* child_thread = new Thread(is_daemon);
310   // Use global JNI ref to hold peer live while child thread starts.
311   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
312   stack_size = FixStackSize(stack_size);
313 
314   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
315   // assign it.
316   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
317                     reinterpret_cast<jlong>(child_thread));
318 
319   pthread_t new_pthread;
320   pthread_attr_t attr;
321   CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
322   CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
323   CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
324   int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
325   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
326 
327   if (pthread_create_result != 0) {
328     // pthread_create(3) failed, so clean up.
329     {
330       MutexLock mu(self, *Locks::runtime_shutdown_lock_);
331       runtime->EndThreadBirth();
332     }
333     // Manually delete the global reference since Thread::Init will not have been run.
334     env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
335     child_thread->tlsPtr_.jpeer = nullptr;
336     delete child_thread;
337     child_thread = nullptr;
338     // TODO: remove from thread group?
339     env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
340     {
341       std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
342                                    PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
343       ScopedObjectAccess soa(env);
344       soa.Self()->ThrowOutOfMemoryError(msg.c_str());
345     }
346   }
347 }
348 
Init(ThreadList * thread_list,JavaVMExt * java_vm)349 void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
350   // This function does all the initialization that must be run by the native thread it applies to.
351   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
352   // we can handshake with the corresponding native thread when it's ready.) Check this native
353   // thread hasn't been through here already...
354   CHECK(Thread::Current() == nullptr);
355   SetUpAlternateSignalStack();
356   InitCpu();
357   InitTlsEntryPoints();
358   RemoveSuspendTrigger();
359   InitCardTable();
360   InitTid();
361   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
362   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
363   tlsPtr_.pthread_self = pthread_self();
364   CHECK(is_started_);
365   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
366   DCHECK_EQ(Thread::Current(), this);
367 
368   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
369   InitStackHwm();
370 
371   tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
372   thread_list->Register(this);
373 }
374 
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)375 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
376                        bool create_peer) {
377   Thread* self;
378   Runtime* runtime = Runtime::Current();
379   if (runtime == nullptr) {
380     LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
381     return nullptr;
382   }
383   {
384     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
385     if (runtime->IsShuttingDownLocked()) {
386       LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
387       return nullptr;
388     } else {
389       Runtime::Current()->StartThreadBirth();
390       self = new Thread(as_daemon);
391       self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
392       Runtime::Current()->EndThreadBirth();
393     }
394   }
395 
396   CHECK_NE(self->GetState(), kRunnable);
397   self->SetState(kNative);
398 
399   // If we're the main thread, ClassLinker won't be created until after we're attached,
400   // so that thread needs a two-stage attach. Regular threads don't need this hack.
401   // In the compiler, all threads need this hack, because no-one's going to be getting
402   // a native peer!
403   if (create_peer) {
404     self->CreatePeer(thread_name, as_daemon, thread_group);
405   } else {
406     // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
407     if (thread_name != nullptr) {
408       self->tlsPtr_.name->assign(thread_name);
409       ::art::SetThreadName(thread_name);
410     } else if (self->GetJniEnv()->check_jni) {
411       LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
412     }
413   }
414 
415   {
416     ScopedObjectAccess soa(self);
417     Dbg::PostThreadStart(self);
418   }
419 
420   return self;
421 }
422 
CreatePeer(const char * name,bool as_daemon,jobject thread_group)423 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
424   Runtime* runtime = Runtime::Current();
425   CHECK(runtime->IsStarted());
426   JNIEnv* env = tlsPtr_.jni_env;
427 
428   if (thread_group == nullptr) {
429     thread_group = runtime->GetMainThreadGroup();
430   }
431   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
432   if (name != nullptr && thread_name.get() == nullptr) {
433     CHECK(IsExceptionPending());
434     return;
435   }
436   jint thread_priority = GetNativePriority();
437   jboolean thread_is_daemon = as_daemon;
438 
439   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
440   if (peer.get() == nullptr) {
441     CHECK(IsExceptionPending());
442     return;
443   }
444   {
445     ScopedObjectAccess soa(this);
446     tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
447   }
448   env->CallNonvirtualVoidMethod(peer.get(),
449                                 WellKnownClasses::java_lang_Thread,
450                                 WellKnownClasses::java_lang_Thread_init,
451                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
452   AssertNoPendingException();
453 
454   Thread* self = this;
455   DCHECK_EQ(self, Thread::Current());
456   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
457                     reinterpret_cast<jlong>(self));
458 
459   ScopedObjectAccess soa(self);
460   StackHandleScope<1> hs(self);
461   Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
462   if (peer_thread_name.Get() == nullptr) {
463     // The Thread constructor should have set the Thread.name to a
464     // non-null value. However, because we can run without code
465     // available (in the compiler, in tests), we manually assign the
466     // fields the constructor should have set.
467     if (runtime->IsActiveTransaction()) {
468       InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
469     } else {
470       InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
471     }
472     peer_thread_name.Assign(GetThreadName(soa));
473   }
474   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
475   if (peer_thread_name.Get() != nullptr) {
476     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
477   }
478 }
479 
480 template<bool kTransactionActive>
InitPeer(ScopedObjectAccess & soa,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)481 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
482                       jobject thread_name, jint thread_priority) {
483   soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
484       SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
485   soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
486       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
487   soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
488       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
489   soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
490       SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
491 }
492 
SetThreadName(const char * name)493 void Thread::SetThreadName(const char* name) {
494   tlsPtr_.name->assign(name);
495   ::art::SetThreadName(name);
496   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
497 }
498 
InitStackHwm()499 void Thread::InitStackHwm() {
500   void* read_stack_base;
501   size_t read_stack_size;
502   size_t read_guard_size;
503   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
504 
505   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
506   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
507                                 read_stack_base,
508                                 PrettySize(read_stack_size).c_str(),
509                                 PrettySize(read_guard_size).c_str());
510 
511   tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
512   tlsPtr_.stack_size = read_stack_size;
513 
514   // The minimum stack size we can cope with is the overflow reserved bytes (typically
515   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
516   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
517   // between 8K and 12K.
518   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
519     + 4 * KB;
520   if (read_stack_size <= min_stack) {
521     LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
522         << " bytes)";
523   }
524 
525   // TODO: move this into the Linux GetThreadStack implementation.
526 #if !defined(__APPLE__)
527   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
528   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
529   // will be broken because we'll die long before we get close to 2GB.
530   bool is_main_thread = (::art::GetTid() == getpid());
531   if (is_main_thread) {
532     rlimit stack_limit;
533     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
534       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
535     }
536     if (stack_limit.rlim_cur == RLIM_INFINITY) {
537       // Find the default stack size for new threads...
538       pthread_attr_t default_attributes;
539       size_t default_stack_size;
540       CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
541       CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
542                          "default stack size query");
543       CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
544 
545       // ...and use that as our limit.
546       size_t old_stack_size = read_stack_size;
547       tlsPtr_.stack_size = default_stack_size;
548       tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
549       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
550                     << " to " << PrettySize(default_stack_size)
551                     << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
552     }
553   }
554 #endif
555 
556   // Set stack_end_ to the bottom of the stack saving space of stack overflows
557 
558   Runtime* runtime = Runtime::Current();
559   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsCompiler();
560   ResetDefaultStackEnd();
561 
562   // Install the protected region if we are doing implicit overflow checks.
563   if (implicit_stack_check) {
564     // The thread might have protected region at the bottom.  We need
565     // to install our own region so we need to move the limits
566     // of the stack to make room for it.
567 
568     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
569     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
570     tlsPtr_.stack_size -= read_guard_size;
571 
572     InstallImplicitProtection();
573   }
574 
575   // Sanity check.
576   int stack_variable;
577   CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
578 }
579 
ShortDump(std::ostream & os) const580 void Thread::ShortDump(std::ostream& os) const {
581   os << "Thread[";
582   if (GetThreadId() != 0) {
583     // If we're in kStarting, we won't have a thin lock id or tid yet.
584     os << GetThreadId()
585              << ",tid=" << GetTid() << ',';
586   }
587   os << GetState()
588            << ",Thread*=" << this
589            << ",peer=" << tlsPtr_.opeer
590            << ",\"" << *tlsPtr_.name << "\""
591            << "]";
592 }
593 
Dump(std::ostream & os) const594 void Thread::Dump(std::ostream& os) const {
595   DumpState(os);
596   DumpStack(os);
597 }
598 
GetThreadName(const ScopedObjectAccessAlreadyRunnable & soa) const599 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
600   mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
601   return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
602 }
603 
GetThreadName(std::string & name) const604 void Thread::GetThreadName(std::string& name) const {
605   name.assign(*tlsPtr_.name);
606 }
607 
GetCpuMicroTime() const608 uint64_t Thread::GetCpuMicroTime() const {
609 #if defined(HAVE_POSIX_CLOCKS)
610   clockid_t cpu_clock_id;
611   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
612   timespec now;
613   clock_gettime(cpu_clock_id, &now);
614   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
615 #else
616   UNIMPLEMENTED(WARNING);
617   return -1;
618 #endif
619 }
620 
621 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)622 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
623   LOG(ERROR) << *thread << " suspend count already zero.";
624   Locks::thread_suspend_count_lock_->Unlock(self);
625   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
626     Locks::mutator_lock_->SharedTryLock(self);
627     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
628       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
629     }
630   }
631   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
632     Locks::thread_list_lock_->TryLock(self);
633     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
634       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
635     }
636   }
637   std::ostringstream ss;
638   Runtime::Current()->GetThreadList()->DumpLocked(ss);
639   LOG(FATAL) << ss.str();
640 }
641 
ModifySuspendCount(Thread * self,int delta,bool for_debugger)642 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
643   if (kIsDebugBuild) {
644     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
645           << delta << " " << tls32_.debug_suspend_count << " " << this;
646     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
647     Locks::thread_suspend_count_lock_->AssertHeld(self);
648     if (this != self && !IsSuspended()) {
649       Locks::thread_list_lock_->AssertHeld(self);
650     }
651   }
652   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
653     UnsafeLogFatalForSuspendCount(self, this);
654     return;
655   }
656 
657   tls32_.suspend_count += delta;
658   if (for_debugger) {
659     tls32_.debug_suspend_count += delta;
660   }
661 
662   if (tls32_.suspend_count == 0) {
663     AtomicClearFlag(kSuspendRequest);
664   } else {
665     AtomicSetFlag(kSuspendRequest);
666     TriggerSuspend();
667   }
668 }
669 
RunCheckpointFunction()670 void Thread::RunCheckpointFunction() {
671   Closure *checkpoints[kMaxCheckpoints];
672 
673   // Grab the suspend_count lock and copy the current set of
674   // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
675   // function will also grab this lock so we prevent a race between setting
676   // the kCheckpointRequest flag and clearing it.
677   {
678     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
679     for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
680       checkpoints[i] = tlsPtr_.checkpoint_functions[i];
681       tlsPtr_.checkpoint_functions[i] = nullptr;
682     }
683     AtomicClearFlag(kCheckpointRequest);
684   }
685 
686   // Outside the lock, run all the checkpoint functions that
687   // we collected.
688   bool found_checkpoint = false;
689   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
690     if (checkpoints[i] != nullptr) {
691       ATRACE_BEGIN("Checkpoint function");
692       checkpoints[i]->Run(this);
693       ATRACE_END();
694       found_checkpoint = true;
695     }
696   }
697   CHECK(found_checkpoint);
698 }
699 
RequestCheckpoint(Closure * function)700 bool Thread::RequestCheckpoint(Closure* function) {
701   union StateAndFlags old_state_and_flags;
702   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
703   if (old_state_and_flags.as_struct.state != kRunnable) {
704     return false;  // Fail, thread is suspended and so can't run a checkpoint.
705   }
706 
707   uint32_t available_checkpoint = kMaxCheckpoints;
708   for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
709     if (tlsPtr_.checkpoint_functions[i] == nullptr) {
710       available_checkpoint = i;
711       break;
712     }
713   }
714   if (available_checkpoint == kMaxCheckpoints) {
715     // No checkpoint functions available, we can't run a checkpoint
716     return false;
717   }
718   tlsPtr_.checkpoint_functions[available_checkpoint] = function;
719 
720   // Checkpoint function installed now install flag bit.
721   // We must be runnable to request a checkpoint.
722   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
723   union StateAndFlags new_state_and_flags;
724   new_state_and_flags.as_int = old_state_and_flags.as_int;
725   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
726   bool success =
727       tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
728                                                                                        new_state_and_flags.as_int);
729   if (UNLIKELY(!success)) {
730     // The thread changed state before the checkpoint was installed.
731     CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
732     tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
733   } else {
734     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
735     TriggerSuspend();
736   }
737   return success;
738 }
739 
FullSuspendCheck()740 void Thread::FullSuspendCheck() {
741   VLOG(threads) << this << " self-suspending";
742   ATRACE_BEGIN("Full suspend check");
743   // Make thread appear suspended to other threads, release mutator_lock_.
744   TransitionFromRunnableToSuspended(kSuspended);
745   // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
746   TransitionFromSuspendedToRunnable();
747   ATRACE_END();
748   VLOG(threads) << this << " self-reviving";
749 }
750 
DumpState(std::ostream & os,const Thread * thread,pid_t tid)751 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
752   std::string group_name;
753   int priority;
754   bool is_daemon = false;
755   Thread* self = Thread::Current();
756 
757   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
758   // cause ScopedObjectAccessUnchecked to deadlock.
759   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
760     ScopedObjectAccessUnchecked soa(self);
761     priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
762         ->GetInt(thread->tlsPtr_.opeer);
763     is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
764         ->GetBoolean(thread->tlsPtr_.opeer);
765 
766     mirror::Object* thread_group =
767         soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
768 
769     if (thread_group != nullptr) {
770       mirror::ArtField* group_name_field =
771           soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
772       mirror::String* group_name_string =
773           reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
774       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
775     }
776   } else {
777     priority = GetNativePriority();
778   }
779 
780   std::string scheduler_group_name(GetSchedulerGroupName(tid));
781   if (scheduler_group_name.empty()) {
782     scheduler_group_name = "default";
783   }
784 
785   if (thread != nullptr) {
786     os << '"' << *thread->tlsPtr_.name << '"';
787     if (is_daemon) {
788       os << " daemon";
789     }
790     os << " prio=" << priority
791        << " tid=" << thread->GetThreadId()
792        << " " << thread->GetState();
793     if (thread->IsStillStarting()) {
794       os << " (still starting up)";
795     }
796     os << "\n";
797   } else {
798     os << '"' << ::art::GetThreadName(tid) << '"'
799        << " prio=" << priority
800        << " (not attached)\n";
801   }
802 
803   if (thread != nullptr) {
804     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
805     os << "  | group=\"" << group_name << "\""
806        << " sCount=" << thread->tls32_.suspend_count
807        << " dsCount=" << thread->tls32_.debug_suspend_count
808        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
809        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
810   }
811 
812   os << "  | sysTid=" << tid
813      << " nice=" << getpriority(PRIO_PROCESS, tid)
814      << " cgrp=" << scheduler_group_name;
815   if (thread != nullptr) {
816     int policy;
817     sched_param sp;
818     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
819                        __FUNCTION__);
820     os << " sched=" << policy << "/" << sp.sched_priority
821        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
822   }
823   os << "\n";
824 
825   // Grab the scheduler stats for this thread.
826   std::string scheduler_stats;
827   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
828     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
829   } else {
830     scheduler_stats = "0 0 0";
831   }
832 
833   char native_thread_state = '?';
834   int utime = 0;
835   int stime = 0;
836   int task_cpu = 0;
837   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
838 
839   os << "  | state=" << native_thread_state
840      << " schedstat=( " << scheduler_stats << " )"
841      << " utm=" << utime
842      << " stm=" << stime
843      << " core=" << task_cpu
844      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
845   if (thread != nullptr) {
846     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
847         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
848         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
849     // Dump the held mutexes.
850     os << "  | held mutexes=";
851     for (size_t i = 0; i < kLockLevelCount; ++i) {
852       if (i != kMonitorLock) {
853         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
854         if (mutex != nullptr) {
855           os << " \"" << mutex->GetName() << "\"";
856           if (mutex->IsReaderWriterMutex()) {
857             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
858             if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
859               os << "(exclusive held)";
860             } else {
861               os << "(shared held)";
862             }
863           }
864         }
865       }
866     }
867     os << "\n";
868   }
869 }
870 
DumpState(std::ostream & os) const871 void Thread::DumpState(std::ostream& os) const {
872   Thread::DumpState(os, this, GetTid());
873 }
874 
875 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor876   StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
877       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
878       : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
879         last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
880   }
881 
~StackDumpVisitorart::StackDumpVisitor882   virtual ~StackDumpVisitor() {
883     if (frame_count == 0) {
884       os << "  (no managed stack frames)\n";
885     }
886   }
887 
VisitFrameart::StackDumpVisitor888   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
889     mirror::ArtMethod* m = GetMethod();
890     if (m->IsRuntimeMethod()) {
891       return true;
892     }
893     const int kMaxRepetition = 3;
894     mirror::Class* c = m->GetDeclaringClass();
895     mirror::DexCache* dex_cache = c->GetDexCache();
896     int line_number = -1;
897     if (dex_cache != nullptr) {  // be tolerant of bad input
898       const DexFile& dex_file = *dex_cache->GetDexFile();
899       line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
900     }
901     if (line_number == last_line_number && last_method == m) {
902       ++repetition_count;
903     } else {
904       if (repetition_count >= kMaxRepetition) {
905         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
906       }
907       repetition_count = 0;
908       last_line_number = line_number;
909       last_method = m;
910     }
911     if (repetition_count < kMaxRepetition) {
912       os << "  at " << PrettyMethod(m, false);
913       if (m->IsNative()) {
914         os << "(Native method)";
915       } else {
916         const char* source_file(m->GetDeclaringClassSourceFile());
917         os << "(" << (source_file != nullptr ? source_file : "unavailable")
918            << ":" << line_number << ")";
919       }
920       os << "\n";
921       if (frame_count == 0) {
922         Monitor::DescribeWait(os, thread);
923       }
924       if (can_allocate) {
925         // Visit locks, but do not abort on errors. This would trigger a nested abort.
926         Monitor::VisitLocks(this, DumpLockedObject, &os, false);
927       }
928     }
929 
930     ++frame_count;
931     return true;
932   }
933 
DumpLockedObjectart::StackDumpVisitor934   static void DumpLockedObject(mirror::Object* o, void* context)
935       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
936     std::ostream& os = *reinterpret_cast<std::ostream*>(context);
937     os << "  - locked ";
938     if (o == nullptr) {
939       os << "an unknown object";
940     } else {
941       if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
942           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
943         // Getting the identity hashcode here would result in lock inflation and suspension of the
944         // current thread, which isn't safe if this is the only runnable thread.
945         os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
946                            PrettyTypeOf(o).c_str());
947       } else {
948         os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
949       }
950     }
951     os << "\n";
952   }
953 
954   std::ostream& os;
955   const Thread* thread;
956   const bool can_allocate;
957   mirror::ArtMethod* last_method;
958   int last_line_number;
959   int repetition_count;
960   int frame_count;
961 };
962 
ShouldShowNativeStack(const Thread * thread)963 static bool ShouldShowNativeStack(const Thread* thread)
964     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
965   ThreadState state = thread->GetState();
966 
967   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
968   if (state > kWaiting && state < kStarting) {
969     return true;
970   }
971 
972   // In an Object.wait variant or Thread.sleep? That's not interesting.
973   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
974     return false;
975   }
976 
977   // Threads with no managed stack frames should be shown.
978   const ManagedStack* managed_stack = thread->GetManagedStack();
979   if (managed_stack == NULL || (managed_stack->GetTopQuickFrame() == NULL &&
980       managed_stack->GetTopShadowFrame() == NULL)) {
981     return true;
982   }
983 
984   // In some other native method? That's interesting.
985   // We don't just check kNative because native methods will be in state kSuspended if they're
986   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
987   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
988   mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
989   return current_method != nullptr && current_method->IsNative();
990 }
991 
DumpJavaStack(std::ostream & os) const992 void Thread::DumpJavaStack(std::ostream& os) const {
993   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
994   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
995   // TODO: Find a way to avoid const_cast.
996   StackHandleScope<3> scope(const_cast<Thread*>(this));
997   Handle<mirror::Throwable> exc;
998   Handle<mirror::Object> throw_location_this_object;
999   Handle<mirror::ArtMethod> throw_location_method;
1000   uint32_t throw_location_dex_pc;
1001   bool have_exception = false;
1002   if (IsExceptionPending()) {
1003     ThrowLocation exc_location;
1004     exc = scope.NewHandle(GetException(&exc_location));
1005     throw_location_this_object = scope.NewHandle(exc_location.GetThis());
1006     throw_location_method = scope.NewHandle(exc_location.GetMethod());
1007     throw_location_dex_pc = exc_location.GetDexPc();
1008     const_cast<Thread*>(this)->ClearException();
1009     have_exception = true;
1010   }
1011 
1012   std::unique_ptr<Context> context(Context::Create());
1013   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1014                           !tls32_.throwing_OutOfMemoryError);
1015   dumper.WalkStack();
1016 
1017   if (have_exception) {
1018     ThrowLocation exc_location(throw_location_this_object.Get(),
1019                                throw_location_method.Get(),
1020                                throw_location_dex_pc);
1021     const_cast<Thread*>(this)->SetException(exc_location, exc.Get());
1022   }
1023 }
1024 
DumpStack(std::ostream & os) const1025 void Thread::DumpStack(std::ostream& os) const {
1026   // TODO: we call this code when dying but may not have suspended the thread ourself. The
1027   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1028   //       the race with the thread_suspend_count_lock_).
1029   bool dump_for_abort = (gAborting > 0);
1030   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1031   if (!kIsDebugBuild) {
1032     // We always want to dump the stack for an abort, however, there is no point dumping another
1033     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1034     safe_to_dump = (safe_to_dump || dump_for_abort);
1035   }
1036   if (safe_to_dump) {
1037     // If we're currently in native code, dump that stack before dumping the managed stack.
1038     if (dump_for_abort || ShouldShowNativeStack(this)) {
1039       DumpKernelStack(os, GetTid(), "  kernel: ", false);
1040       DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr, !dump_for_abort));
1041     }
1042     DumpJavaStack(os);
1043   } else {
1044     os << "Not able to dump stack of thread that isn't suspended";
1045   }
1046 }
1047 
ThreadExitCallback(void * arg)1048 void Thread::ThreadExitCallback(void* arg) {
1049   Thread* self = reinterpret_cast<Thread*>(arg);
1050   if (self->tls32_.thread_exit_check_count == 0) {
1051     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1052         "going to use a pthread_key_create destructor?): " << *self;
1053     CHECK(is_started_);
1054     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1055     self->tls32_.thread_exit_check_count = 1;
1056   } else {
1057     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1058   }
1059 }
1060 
Startup()1061 void Thread::Startup() {
1062   CHECK(!is_started_);
1063   is_started_ = true;
1064   {
1065     // MutexLock to keep annotalysis happy.
1066     //
1067     // Note we use nullptr for the thread because Thread::Current can
1068     // return garbage since (is_started_ == true) and
1069     // Thread::pthread_key_self_ is not yet initialized.
1070     // This was seen on glibc.
1071     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1072     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1073                                          *Locks::thread_suspend_count_lock_);
1074   }
1075 
1076   // Allocate a TLS slot.
1077   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1078 
1079   // Double-check the TLS slot allocation.
1080   if (pthread_getspecific(pthread_key_self_) != nullptr) {
1081     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1082   }
1083 }
1084 
FinishStartup()1085 void Thread::FinishStartup() {
1086   Runtime* runtime = Runtime::Current();
1087   CHECK(runtime->IsStarted());
1088 
1089   // Finish attaching the main thread.
1090   ScopedObjectAccess soa(Thread::Current());
1091   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1092 
1093   Runtime::Current()->GetClassLinker()->RunRootClinits();
1094 }
1095 
Shutdown()1096 void Thread::Shutdown() {
1097   CHECK(is_started_);
1098   is_started_ = false;
1099   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1100   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1101   if (resume_cond_ != nullptr) {
1102     delete resume_cond_;
1103     resume_cond_ = nullptr;
1104   }
1105 }
1106 
Thread(bool daemon)1107 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1108   wait_mutex_ = new Mutex("a thread wait mutex");
1109   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1110   tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1111   tlsPtr_.single_step_control = new SingleStepControl;
1112   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1113   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1114   tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1115 
1116   CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1117   tls32_.state_and_flags.as_struct.flags = 0;
1118   tls32_.state_and_flags.as_struct.state = kNative;
1119   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1120   std::fill(tlsPtr_.rosalloc_runs,
1121             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1122             gc::allocator::RosAlloc::GetDedicatedFullRun());
1123   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1124     tlsPtr_.checkpoint_functions[i] = nullptr;
1125   }
1126 }
1127 
IsStillStarting() const1128 bool Thread::IsStillStarting() const {
1129   // You might think you can check whether the state is kStarting, but for much of thread startup,
1130   // the thread is in kNative; it might also be in kVmWait.
1131   // You might think you can check whether the peer is nullptr, but the peer is actually created and
1132   // assigned fairly early on, and needs to be.
1133   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1134   // this thread _ever_ entered kRunnable".
1135   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1136       (*tlsPtr_.name == kThreadNameDuringStartup);
1137 }
1138 
AssertNoPendingException() const1139 void Thread::AssertNoPendingException() const {
1140   if (UNLIKELY(IsExceptionPending())) {
1141     ScopedObjectAccess soa(Thread::Current());
1142     mirror::Throwable* exception = GetException(nullptr);
1143     LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1144   }
1145 }
1146 
AssertNoPendingExceptionForNewException(const char * msg) const1147 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1148   if (UNLIKELY(IsExceptionPending())) {
1149     ScopedObjectAccess soa(Thread::Current());
1150     mirror::Throwable* exception = GetException(nullptr);
1151     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1152         << exception->Dump();
1153   }
1154 }
1155 
MonitorExitVisitor(mirror::Object ** object,void * arg,const RootInfo &)1156 static void MonitorExitVisitor(mirror::Object** object, void* arg, const RootInfo& /*root_info*/)
1157     NO_THREAD_SAFETY_ANALYSIS {
1158   Thread* self = reinterpret_cast<Thread*>(arg);
1159   mirror::Object* entered_monitor = *object;
1160   if (self->HoldsLock(entered_monitor)) {
1161     LOG(WARNING) << "Calling MonitorExit on object "
1162                  << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1163                  << " left locked by native thread "
1164                  << *Thread::Current() << " which is detaching";
1165     entered_monitor->MonitorExit(self);
1166   }
1167 }
1168 
Destroy()1169 void Thread::Destroy() {
1170   Thread* self = this;
1171   DCHECK_EQ(self, Thread::Current());
1172 
1173   if (tlsPtr_.opeer != nullptr) {
1174     ScopedObjectAccess soa(self);
1175     // We may need to call user-supplied managed code, do this before final clean-up.
1176     HandleUncaughtExceptions(soa);
1177     RemoveFromThreadGroup(soa);
1178 
1179     // this.nativePeer = 0;
1180     if (Runtime::Current()->IsActiveTransaction()) {
1181       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1182           ->SetLong<true>(tlsPtr_.opeer, 0);
1183     } else {
1184       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1185           ->SetLong<false>(tlsPtr_.opeer, 0);
1186     }
1187     Dbg::PostThreadDeath(self);
1188 
1189     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1190     // who is waiting.
1191     mirror::Object* lock =
1192         soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1193     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1194     if (lock != nullptr) {
1195       StackHandleScope<1> hs(self);
1196       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1197       ObjectLock<mirror::Object> locker(self, h_obj);
1198       locker.NotifyAll();
1199     }
1200   }
1201 
1202   // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1203   if (tlsPtr_.jni_env != nullptr) {
1204     tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, RootInfo(kRootVMInternal));
1205   }
1206 }
1207 
~Thread()1208 Thread::~Thread() {
1209   if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1210     // If pthread_create fails we don't have a jni env here.
1211     tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1212     tlsPtr_.jpeer = nullptr;
1213   }
1214   tlsPtr_.opeer = nullptr;
1215 
1216   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1217   if (initialized) {
1218     delete tlsPtr_.jni_env;
1219     tlsPtr_.jni_env = nullptr;
1220   }
1221   CHECK_NE(GetState(), kRunnable);
1222   CHECK_NE(ReadFlag(kCheckpointRequest), true);
1223   CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1224   CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1225   CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1226 
1227   // We may be deleting a still born thread.
1228   SetStateUnsafe(kTerminated);
1229 
1230   delete wait_cond_;
1231   delete wait_mutex_;
1232 
1233   if (tlsPtr_.long_jump_context != nullptr) {
1234     delete tlsPtr_.long_jump_context;
1235   }
1236 
1237   if (initialized) {
1238     CleanupCpu();
1239   }
1240 
1241   delete tlsPtr_.debug_invoke_req;
1242   delete tlsPtr_.single_step_control;
1243   delete tlsPtr_.instrumentation_stack;
1244   delete tlsPtr_.name;
1245   delete tlsPtr_.stack_trace_sample;
1246   free(tlsPtr_.nested_signal_state);
1247 
1248   Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1249 
1250   TearDownAlternateSignalStack();
1251 }
1252 
HandleUncaughtExceptions(ScopedObjectAccess & soa)1253 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1254   if (!IsExceptionPending()) {
1255     return;
1256   }
1257   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1258   ScopedThreadStateChange tsc(this, kNative);
1259 
1260   // Get and clear the exception.
1261   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1262   tlsPtr_.jni_env->ExceptionClear();
1263 
1264   // If the thread has its own handler, use that.
1265   ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1266                                   tlsPtr_.jni_env->GetObjectField(peer.get(),
1267                                       WellKnownClasses::java_lang_Thread_uncaughtHandler));
1268   if (handler.get() == nullptr) {
1269     // Otherwise use the thread group's default handler.
1270     handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1271                                                   WellKnownClasses::java_lang_Thread_group));
1272   }
1273 
1274   // Call the handler.
1275   tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1276       WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1277       peer.get(), exception.get());
1278 
1279   // If the handler threw, clear that exception too.
1280   tlsPtr_.jni_env->ExceptionClear();
1281 }
1282 
RemoveFromThreadGroup(ScopedObjectAccess & soa)1283 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1284   // this.group.removeThread(this);
1285   // group can be null if we're in the compiler or a test.
1286   mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1287       ->GetObject(tlsPtr_.opeer);
1288   if (ogroup != nullptr) {
1289     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1290     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1291     ScopedThreadStateChange tsc(soa.Self(), kNative);
1292     tlsPtr_.jni_env->CallVoidMethod(group.get(),
1293                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
1294                                     peer.get());
1295   }
1296 }
1297 
NumHandleReferences()1298 size_t Thread::NumHandleReferences() {
1299   size_t count = 0;
1300   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1301     count += cur->NumberOfReferences();
1302   }
1303   return count;
1304 }
1305 
HandleScopeContains(jobject obj) const1306 bool Thread::HandleScopeContains(jobject obj) const {
1307   StackReference<mirror::Object>* hs_entry =
1308       reinterpret_cast<StackReference<mirror::Object>*>(obj);
1309   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1310     if (cur->Contains(hs_entry)) {
1311       return true;
1312     }
1313   }
1314   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1315   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1316 }
1317 
HandleScopeVisitRoots(RootCallback * visitor,void * arg,uint32_t thread_id)1318 void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1319   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1320     size_t num_refs = cur->NumberOfReferences();
1321     for (size_t j = 0; j < num_refs; ++j) {
1322       mirror::Object* object = cur->GetReference(j);
1323       if (object != nullptr) {
1324         mirror::Object* old_obj = object;
1325         visitor(&object, arg, RootInfo(kRootNativeStack, thread_id));
1326         if (old_obj != object) {
1327           cur->SetReference(j, object);
1328         }
1329       }
1330     }
1331   }
1332 }
1333 
DecodeJObject(jobject obj) const1334 mirror::Object* Thread::DecodeJObject(jobject obj) const {
1335   Locks::mutator_lock_->AssertSharedHeld(this);
1336   if (obj == nullptr) {
1337     return nullptr;
1338   }
1339   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1340   IndirectRefKind kind = GetIndirectRefKind(ref);
1341   mirror::Object* result;
1342   // The "kinds" below are sorted by the frequency we expect to encounter them.
1343   if (kind == kLocal) {
1344     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1345     // Local references do not need a read barrier.
1346     result = locals.Get<kWithoutReadBarrier>(ref);
1347   } else if (kind == kHandleScopeOrInvalid) {
1348     // TODO: make stack indirect reference table lookup more efficient.
1349     // Check if this is a local reference in the handle scope.
1350     if (LIKELY(HandleScopeContains(obj))) {
1351       // Read from handle scope.
1352       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1353       VerifyObject(result);
1354     } else {
1355       result = kInvalidIndirectRefObject;
1356     }
1357   } else if (kind == kGlobal) {
1358     JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1359     result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1360   } else {
1361     DCHECK_EQ(kind, kWeakGlobal);
1362     result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1363     if (result == kClearedJniWeakGlobal) {
1364       // This is a special case where it's okay to return nullptr.
1365       return nullptr;
1366     }
1367   }
1368 
1369   if (UNLIKELY(result == nullptr)) {
1370     JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1371   }
1372   return result;
1373 }
1374 
1375 // Implements java.lang.Thread.interrupted.
Interrupted()1376 bool Thread::Interrupted() {
1377   MutexLock mu(Thread::Current(), *wait_mutex_);
1378   bool interrupted = IsInterruptedLocked();
1379   SetInterruptedLocked(false);
1380   return interrupted;
1381 }
1382 
1383 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()1384 bool Thread::IsInterrupted() {
1385   MutexLock mu(Thread::Current(), *wait_mutex_);
1386   return IsInterruptedLocked();
1387 }
1388 
Interrupt(Thread * self)1389 void Thread::Interrupt(Thread* self) {
1390   MutexLock mu(self, *wait_mutex_);
1391   if (interrupted_) {
1392     return;
1393   }
1394   interrupted_ = true;
1395   NotifyLocked(self);
1396 }
1397 
Notify()1398 void Thread::Notify() {
1399   Thread* self = Thread::Current();
1400   MutexLock mu(self, *wait_mutex_);
1401   NotifyLocked(self);
1402 }
1403 
NotifyLocked(Thread * self)1404 void Thread::NotifyLocked(Thread* self) {
1405   if (wait_monitor_ != nullptr) {
1406     wait_cond_->Signal(self);
1407   }
1408 }
1409 
1410 class CountStackDepthVisitor : public StackVisitor {
1411  public:
1412   explicit CountStackDepthVisitor(Thread* thread)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)1413       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1414       : StackVisitor(thread, nullptr),
1415         depth_(0), skip_depth_(0), skipping_(true) {}
1416 
VisitFrame()1417   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1418     // We want to skip frames up to and including the exception's constructor.
1419     // Note we also skip the frame if it doesn't have a method (namely the callee
1420     // save frame)
1421     mirror::ArtMethod* m = GetMethod();
1422     if (skipping_ && !m->IsRuntimeMethod() &&
1423         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1424       skipping_ = false;
1425     }
1426     if (!skipping_) {
1427       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1428         ++depth_;
1429       }
1430     } else {
1431       ++skip_depth_;
1432     }
1433     return true;
1434   }
1435 
GetDepth() const1436   int GetDepth() const {
1437     return depth_;
1438   }
1439 
GetSkipDepth() const1440   int GetSkipDepth() const {
1441     return skip_depth_;
1442   }
1443 
1444  private:
1445   uint32_t depth_;
1446   uint32_t skip_depth_;
1447   bool skipping_;
1448 };
1449 
1450 template<bool kTransactionActive>
1451 class BuildInternalStackTraceVisitor : public StackVisitor {
1452  public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)1453   explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1454       : StackVisitor(thread, nullptr), self_(self),
1455         skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1456 
Init(int depth)1457   bool Init(int depth)
1458       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1459     // Allocate method trace with an extra slot that will hold the PC trace
1460     StackHandleScope<1> hs(self_);
1461     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1462     Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1463         hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1464     if (method_trace.Get() == nullptr) {
1465       return false;
1466     }
1467     mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1468     if (dex_pc_trace == nullptr) {
1469       return false;
1470     }
1471     // Save PC trace in last element of method trace, also places it into the
1472     // object graph.
1473     // We are called from native: use non-transactional mode.
1474     method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1475     // Set the Object*s and assert that no thread suspension is now possible.
1476     const char* last_no_suspend_cause =
1477         self_->StartAssertNoThreadSuspension("Building internal stack trace");
1478     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1479     method_trace_ = method_trace.Get();
1480     dex_pc_trace_ = dex_pc_trace;
1481     return true;
1482   }
1483 
~BuildInternalStackTraceVisitor()1484   virtual ~BuildInternalStackTraceVisitor() {
1485     if (method_trace_ != nullptr) {
1486       self_->EndAssertNoThreadSuspension(nullptr);
1487     }
1488   }
1489 
VisitFrame()1490   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1491     if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1492       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1493     }
1494     if (skip_depth_ > 0) {
1495       skip_depth_--;
1496       return true;
1497     }
1498     mirror::ArtMethod* m = GetMethod();
1499     if (m->IsRuntimeMethod()) {
1500       return true;  // Ignore runtime frames (in particular callee save).
1501     }
1502     method_trace_->Set<kTransactionActive>(count_, m);
1503     dex_pc_trace_->Set<kTransactionActive>(count_,
1504         m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1505     ++count_;
1506     return true;
1507   }
1508 
GetInternalStackTrace() const1509   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1510     return method_trace_;
1511   }
1512 
1513  private:
1514   Thread* const self_;
1515   // How many more frames to skip.
1516   int32_t skip_depth_;
1517   // Current position down stack trace.
1518   uint32_t count_;
1519   // Array of dex PC values.
1520   mirror::IntArray* dex_pc_trace_;
1521   // An array of the methods on the stack, the last entry is a reference to the PC trace.
1522   mirror::ObjectArray<mirror::Object>* method_trace_;
1523 };
1524 
1525 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const1526 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1527   // Compute depth of stack
1528   CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1529   count_visitor.WalkStack();
1530   int32_t depth = count_visitor.GetDepth();
1531   int32_t skip_depth = count_visitor.GetSkipDepth();
1532 
1533   // Build internal stack trace.
1534   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1535                                                                          const_cast<Thread*>(this),
1536                                                                          skip_depth);
1537   if (!build_trace_visitor.Init(depth)) {
1538     return nullptr;  // Allocation failed.
1539   }
1540   build_trace_visitor.WalkStack();
1541   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1542   if (kIsDebugBuild) {
1543     for (int32_t i = 0; i < trace->GetLength(); ++i) {
1544       CHECK(trace->Get(i) != nullptr);
1545     }
1546   }
1547   return soa.AddLocalReference<jobjectArray>(trace);
1548 }
1549 template jobject Thread::CreateInternalStackTrace<false>(
1550     const ScopedObjectAccessAlreadyRunnable& soa) const;
1551 template jobject Thread::CreateInternalStackTrace<true>(
1552     const ScopedObjectAccessAlreadyRunnable& soa) const;
1553 
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)1554 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1555     const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1556     int* stack_depth) {
1557   // Decode the internal stack trace into the depth, method trace and PC trace
1558   int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1559 
1560   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1561 
1562   jobjectArray result;
1563 
1564   if (output_array != nullptr) {
1565     // Reuse the array we were given.
1566     result = output_array;
1567     // ...adjusting the number of frames we'll write to not exceed the array length.
1568     const int32_t traces_length =
1569         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1570     depth = std::min(depth, traces_length);
1571   } else {
1572     // Create java_trace array and place in local reference table
1573     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1574         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1575     if (java_traces == nullptr) {
1576       return nullptr;
1577     }
1578     result = soa.AddLocalReference<jobjectArray>(java_traces);
1579   }
1580 
1581   if (stack_depth != nullptr) {
1582     *stack_depth = depth;
1583   }
1584 
1585   for (int32_t i = 0; i < depth; ++i) {
1586     mirror::ObjectArray<mirror::Object>* method_trace =
1587           soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1588     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1589     mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1590     int32_t line_number;
1591     StackHandleScope<3> hs(soa.Self());
1592     auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1593     auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1594     if (method->IsProxyMethod()) {
1595       line_number = -1;
1596       class_name_object.Assign(method->GetDeclaringClass()->GetName());
1597       // source_name_object intentionally left null for proxy methods
1598     } else {
1599       mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1600       uint32_t dex_pc = pc_trace->Get(i);
1601       line_number = method->GetLineNumFromDexPC(dex_pc);
1602       // Allocate element, potentially triggering GC
1603       // TODO: reuse class_name_object via Class::name_?
1604       const char* descriptor = method->GetDeclaringClassDescriptor();
1605       CHECK(descriptor != nullptr);
1606       std::string class_name(PrettyDescriptor(descriptor));
1607       class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1608       if (class_name_object.Get() == nullptr) {
1609         return nullptr;
1610       }
1611       const char* source_file = method->GetDeclaringClassSourceFile();
1612       if (source_file != nullptr) {
1613         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1614         if (source_name_object.Get() == nullptr) {
1615           return nullptr;
1616         }
1617       }
1618     }
1619     const char* method_name = method->GetName();
1620     CHECK(method_name != nullptr);
1621     Handle<mirror::String> method_name_object(
1622         hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1623     if (method_name_object.Get() == nullptr) {
1624       return nullptr;
1625     }
1626     mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1627         soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1628     if (obj == nullptr) {
1629       return nullptr;
1630     }
1631     // We are called from native: use non-transactional mode.
1632     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1633   }
1634   return result;
1635 }
1636 
ThrowNewExceptionF(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * fmt,...)1637 void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1638                                 const char* exception_class_descriptor, const char* fmt, ...) {
1639   va_list args;
1640   va_start(args, fmt);
1641   ThrowNewExceptionV(throw_location, exception_class_descriptor,
1642                      fmt, args);
1643   va_end(args);
1644 }
1645 
ThrowNewExceptionV(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * fmt,va_list ap)1646 void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1647                                 const char* exception_class_descriptor,
1648                                 const char* fmt, va_list ap) {
1649   std::string msg;
1650   StringAppendV(&msg, fmt, ap);
1651   ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1652 }
1653 
ThrowNewException(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * msg)1654 void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1655                                const char* msg) {
1656   // Callers should either clear or call ThrowNewWrappedException.
1657   AssertNoPendingExceptionForNewException(msg);
1658   ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1659 }
1660 
ThrowNewWrappedException(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * msg)1661 void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1662                                       const char* exception_class_descriptor,
1663                                       const char* msg) {
1664   DCHECK_EQ(this, Thread::Current());
1665   ScopedObjectAccessUnchecked soa(this);
1666   StackHandleScope<5> hs(soa.Self());
1667   // Ensure we don't forget arguments over object allocation.
1668   Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1669   Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1670   // Ignore the cause throw location. TODO: should we report this as a re-throw?
1671   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1672   bool is_exception_reported = IsExceptionReportedToInstrumentation();
1673   ClearException();
1674   Runtime* runtime = Runtime::Current();
1675 
1676   mirror::ClassLoader* cl = nullptr;
1677   if (saved_throw_method.Get() != nullptr) {
1678     cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1679   }
1680   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1681   Handle<mirror::Class> exception_class(
1682       hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1683                                                         class_loader)));
1684   if (UNLIKELY(exception_class.Get() == nullptr)) {
1685     CHECK(IsExceptionPending());
1686     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1687     return;
1688   }
1689 
1690   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1691     DCHECK(IsExceptionPending());
1692     return;
1693   }
1694   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1695   Handle<mirror::Throwable> exception(
1696       hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1697 
1698   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1699   if (exception.Get() == nullptr) {
1700     ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1701                                          throw_location.GetDexPc());
1702     SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1703     SetExceptionReportedToInstrumentation(is_exception_reported);
1704     return;
1705   }
1706 
1707   // Choose an appropriate constructor and set up the arguments.
1708   const char* signature;
1709   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1710   if (msg != nullptr) {
1711     // Ensure we remember this and the method over the String allocation.
1712     msg_string.reset(
1713         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1714     if (UNLIKELY(msg_string.get() == nullptr)) {
1715       CHECK(IsExceptionPending());  // OOME.
1716       return;
1717     }
1718     if (cause.get() == nullptr) {
1719       signature = "(Ljava/lang/String;)V";
1720     } else {
1721       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1722     }
1723   } else {
1724     if (cause.get() == nullptr) {
1725       signature = "()V";
1726     } else {
1727       signature = "(Ljava/lang/Throwable;)V";
1728     }
1729   }
1730   mirror::ArtMethod* exception_init_method =
1731       exception_class->FindDeclaredDirectMethod("<init>", signature);
1732 
1733   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1734       << PrettyDescriptor(exception_class_descriptor);
1735 
1736   if (UNLIKELY(!runtime->IsStarted())) {
1737     // Something is trying to throw an exception without a started runtime, which is the common
1738     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1739     // the exception fields directly.
1740     if (msg != nullptr) {
1741       exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1742     }
1743     if (cause.get() != nullptr) {
1744       exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1745     }
1746     ScopedLocalRef<jobject> trace(GetJniEnv(),
1747                                   Runtime::Current()->IsActiveTransaction()
1748                                       ? CreateInternalStackTrace<true>(soa)
1749                                       : CreateInternalStackTrace<false>(soa));
1750     if (trace.get() != nullptr) {
1751       exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1752     }
1753     ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1754                                          throw_location.GetDexPc());
1755     SetException(gc_safe_throw_location, exception.Get());
1756     SetExceptionReportedToInstrumentation(is_exception_reported);
1757   } else {
1758     jvalue jv_args[2];
1759     size_t i = 0;
1760 
1761     if (msg != nullptr) {
1762       jv_args[i].l = msg_string.get();
1763       ++i;
1764     }
1765     if (cause.get() != nullptr) {
1766       jv_args[i].l = cause.get();
1767       ++i;
1768     }
1769     InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1770     if (LIKELY(!IsExceptionPending())) {
1771       ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1772                                            throw_location.GetDexPc());
1773       SetException(gc_safe_throw_location, exception.Get());
1774       SetExceptionReportedToInstrumentation(is_exception_reported);
1775     }
1776   }
1777 }
1778 
ThrowOutOfMemoryError(const char * msg)1779 void Thread::ThrowOutOfMemoryError(const char* msg) {
1780   LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1781       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1782   ThrowLocation throw_location = GetCurrentLocationForThrow();
1783   if (!tls32_.throwing_OutOfMemoryError) {
1784     tls32_.throwing_OutOfMemoryError = true;
1785     ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1786     tls32_.throwing_OutOfMemoryError = false;
1787   } else {
1788     Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1789     SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1790   }
1791 }
1792 
CurrentFromGdb()1793 Thread* Thread::CurrentFromGdb() {
1794   return Thread::Current();
1795 }
1796 
DumpFromGdb() const1797 void Thread::DumpFromGdb() const {
1798   std::ostringstream ss;
1799   Dump(ss);
1800   std::string str(ss.str());
1801   // log to stderr for debugging command line processes
1802   std::cerr << str;
1803 #ifdef HAVE_ANDROID_OS
1804   // log to logcat for debugging frameworks processes
1805   LOG(INFO) << str;
1806 #endif
1807 }
1808 
1809 // Explicitly instantiate 32 and 64bit thread offset dumping support.
1810 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1811 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1812 
1813 template<size_t ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)1814 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1815 #define DO_THREAD_OFFSET(x, y) \
1816     if (offset == x.Uint32Value()) { \
1817       os << y; \
1818       return; \
1819     }
1820   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1821   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1822   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1823   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1824   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1825   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1826   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1827   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1828   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1829   DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1830   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1831   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1832   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1833 #undef DO_THREAD_OFFSET
1834 
1835 #define INTERPRETER_ENTRY_POINT_INFO(x) \
1836     if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1837       os << #x; \
1838       return; \
1839     }
1840   INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1841   INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1842 #undef INTERPRETER_ENTRY_POINT_INFO
1843 
1844 #define JNI_ENTRY_POINT_INFO(x) \
1845     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1846       os << #x; \
1847       return; \
1848     }
1849   JNI_ENTRY_POINT_INFO(pDlsymLookup)
1850 #undef JNI_ENTRY_POINT_INFO
1851 
1852 #define PORTABLE_ENTRY_POINT_INFO(x) \
1853     if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1854       os << #x; \
1855       return; \
1856     }
1857   PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1858   PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1859   PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1860 #undef PORTABLE_ENTRY_POINT_INFO
1861 
1862 #define QUICK_ENTRY_POINT_INFO(x) \
1863     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1864       os << #x; \
1865       return; \
1866     }
1867   QUICK_ENTRY_POINT_INFO(pAllocArray)
1868   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1869   QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1870   QUICK_ENTRY_POINT_INFO(pAllocObject)
1871   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1872   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1873   QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1874   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1875   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1876   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1877   QUICK_ENTRY_POINT_INFO(pCheckCast)
1878   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1879   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1880   QUICK_ENTRY_POINT_INFO(pInitializeType)
1881   QUICK_ENTRY_POINT_INFO(pResolveString)
1882   QUICK_ENTRY_POINT_INFO(pSet32Instance)
1883   QUICK_ENTRY_POINT_INFO(pSet32Static)
1884   QUICK_ENTRY_POINT_INFO(pSet64Instance)
1885   QUICK_ENTRY_POINT_INFO(pSet64Static)
1886   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1887   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1888   QUICK_ENTRY_POINT_INFO(pGet32Instance)
1889   QUICK_ENTRY_POINT_INFO(pGet32Static)
1890   QUICK_ENTRY_POINT_INFO(pGet64Instance)
1891   QUICK_ENTRY_POINT_INFO(pGet64Static)
1892   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1893   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1894   QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1895   QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1896   QUICK_ENTRY_POINT_INFO(pAputObject)
1897   QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1898   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1899   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1900   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1901   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1902   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1903   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1904   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1905   QUICK_ENTRY_POINT_INFO(pLockObject)
1906   QUICK_ENTRY_POINT_INFO(pUnlockObject)
1907   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1908   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1909   QUICK_ENTRY_POINT_INFO(pCmplDouble)
1910   QUICK_ENTRY_POINT_INFO(pCmplFloat)
1911   QUICK_ENTRY_POINT_INFO(pFmod)
1912   QUICK_ENTRY_POINT_INFO(pL2d)
1913   QUICK_ENTRY_POINT_INFO(pFmodf)
1914   QUICK_ENTRY_POINT_INFO(pL2f)
1915   QUICK_ENTRY_POINT_INFO(pD2iz)
1916   QUICK_ENTRY_POINT_INFO(pF2iz)
1917   QUICK_ENTRY_POINT_INFO(pIdivmod)
1918   QUICK_ENTRY_POINT_INFO(pD2l)
1919   QUICK_ENTRY_POINT_INFO(pF2l)
1920   QUICK_ENTRY_POINT_INFO(pLdiv)
1921   QUICK_ENTRY_POINT_INFO(pLmod)
1922   QUICK_ENTRY_POINT_INFO(pLmul)
1923   QUICK_ENTRY_POINT_INFO(pShlLong)
1924   QUICK_ENTRY_POINT_INFO(pShrLong)
1925   QUICK_ENTRY_POINT_INFO(pUshrLong)
1926   QUICK_ENTRY_POINT_INFO(pIndexOf)
1927   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1928   QUICK_ENTRY_POINT_INFO(pMemcpy)
1929   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1930   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1931   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1932   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1933   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1934   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1935   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1936   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1937   QUICK_ENTRY_POINT_INFO(pTestSuspend)
1938   QUICK_ENTRY_POINT_INFO(pDeliverException)
1939   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1940   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1941   QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1942   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1943   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1944   QUICK_ENTRY_POINT_INFO(pA64Load)
1945   QUICK_ENTRY_POINT_INFO(pA64Store)
1946 #undef QUICK_ENTRY_POINT_INFO
1947 
1948   os << offset;
1949 }
1950 
QuickDeliverException()1951 void Thread::QuickDeliverException() {
1952   // Get exception from thread.
1953   ThrowLocation throw_location;
1954   mirror::Throwable* exception = GetException(&throw_location);
1955   CHECK(exception != nullptr);
1956   // Don't leave exception visible while we try to find the handler, which may cause class
1957   // resolution.
1958   bool is_exception_reported = IsExceptionReportedToInstrumentation();
1959   ClearException();
1960   bool is_deoptimization = (exception == GetDeoptimizationException());
1961   QuickExceptionHandler exception_handler(this, is_deoptimization);
1962   if (is_deoptimization) {
1963     exception_handler.DeoptimizeStack();
1964   } else {
1965     exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1966   }
1967   exception_handler.UpdateInstrumentationStack();
1968   exception_handler.DoLongJump();
1969   LOG(FATAL) << "UNREACHABLE";
1970 }
1971 
GetLongJumpContext()1972 Context* Thread::GetLongJumpContext() {
1973   Context* result = tlsPtr_.long_jump_context;
1974   if (result == nullptr) {
1975     result = Context::Create();
1976   } else {
1977     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1978     result->Reset();
1979   }
1980   return result;
1981 }
1982 
1983 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1984 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1985 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL1986   CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1987       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1988       : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1989         abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL1990   bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1991     mirror::ArtMethod* m = GetMethod();
1992     if (m->IsRuntimeMethod()) {
1993       // Continue if this is a runtime method.
1994       return true;
1995     }
1996     if (context_ != nullptr) {
1997       this_object_ = GetThisObject();
1998     }
1999     method_ = m;
2000     dex_pc_ = GetDexPc(abort_on_error_);
2001     return false;
2002   }
2003   mirror::Object* this_object_;
2004   mirror::ArtMethod* method_;
2005   uint32_t dex_pc_;
2006   const bool abort_on_error_;
2007 };
2008 
GetCurrentMethod(uint32_t * dex_pc,bool abort_on_error) const2009 mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
2010   CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
2011   visitor.WalkStack(false);
2012   if (dex_pc != nullptr) {
2013     *dex_pc = visitor.dex_pc_;
2014   }
2015   return visitor.method_;
2016 }
2017 
GetCurrentLocationForThrow()2018 ThrowLocation Thread::GetCurrentLocationForThrow() {
2019   Context* context = GetLongJumpContext();
2020   CurrentMethodVisitor visitor(this, context, true);
2021   visitor.WalkStack(false);
2022   ReleaseLongJumpContext(context);
2023   return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
2024 }
2025 
HoldsLock(mirror::Object * object) const2026 bool Thread::HoldsLock(mirror::Object* object) const {
2027   if (object == nullptr) {
2028     return false;
2029   }
2030   return object->GetLockOwnerThreadId() == GetThreadId();
2031 }
2032 
2033 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2034 template <typename RootVisitor>
2035 class ReferenceMapVisitor : public StackVisitor {
2036  public:
ReferenceMapVisitor(Thread * thread,Context * context,const RootVisitor & visitor)2037   ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2038       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2039       : StackVisitor(thread, context), visitor_(visitor) {}
2040 
VisitFrame()2041   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2042     if (false) {
2043       LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2044                 << StringPrintf("@ PC:%04x", GetDexPc());
2045     }
2046     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2047     if (shadow_frame != nullptr) {
2048       VisitShadowFrame(shadow_frame);
2049     } else {
2050       VisitQuickFrame();
2051     }
2052     return true;
2053   }
2054 
VisitShadowFrame(ShadowFrame * shadow_frame)2055   void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2056     mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2057     visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2058     mirror::ArtMethod* m = *method_addr;
2059     DCHECK(m != nullptr);
2060     size_t num_regs = shadow_frame->NumberOfVRegs();
2061     if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2062       // handle scope for JNI or References for interpreter.
2063       for (size_t reg = 0; reg < num_regs; ++reg) {
2064         mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2065         if (ref != nullptr) {
2066           mirror::Object* new_ref = ref;
2067           visitor_(&new_ref, reg, this);
2068           if (new_ref != ref) {
2069             shadow_frame->SetVRegReference(reg, new_ref);
2070           }
2071         }
2072       }
2073     } else {
2074       // Java method.
2075       // Portable path use DexGcMap and store in Method.native_gc_map_.
2076       const uint8_t* gc_map = m->GetNativeGcMap(sizeof(void*));
2077       CHECK(gc_map != nullptr) << PrettyMethod(m);
2078       verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2079       uint32_t dex_pc = shadow_frame->GetDexPC();
2080       const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2081       DCHECK(reg_bitmap != nullptr);
2082       num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2083       for (size_t reg = 0; reg < num_regs; ++reg) {
2084         if (TestBitmap(reg, reg_bitmap)) {
2085           mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2086           if (ref != nullptr) {
2087             mirror::Object* new_ref = ref;
2088             visitor_(&new_ref, reg, this);
2089             if (new_ref != ref) {
2090               shadow_frame->SetVRegReference(reg, new_ref);
2091             }
2092           }
2093         }
2094       }
2095     }
2096   }
2097 
2098  private:
VisitQuickFrame()2099   void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2100     StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2101     mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2102     mirror::ArtMethod* old_method = m;
2103     visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2104     if (m != old_method) {
2105       cur_quick_frame->Assign(m);
2106     }
2107 
2108     // Process register map (which native and runtime methods don't have)
2109     if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2110       const uint8_t* native_gc_map = m->GetNativeGcMap(sizeof(void*));
2111       CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2112       const DexFile::CodeItem* code_item = m->GetCodeItem();
2113       DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2114       NativePcOffsetToReferenceMap map(native_gc_map);
2115       size_t num_regs = std::min(map.RegWidth() * 8,
2116                                  static_cast<size_t>(code_item->registers_size_));
2117       if (num_regs > 0) {
2118         Runtime* runtime = Runtime::Current();
2119         const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
2120         uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2121         const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2122         DCHECK(reg_bitmap != nullptr);
2123         const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2124         const VmapTable vmap_table(m->GetVmapTable(code_pointer, sizeof(void*)));
2125         QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2126         // For all dex registers in the bitmap
2127         StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2128         DCHECK(cur_quick_frame != nullptr);
2129         for (size_t reg = 0; reg < num_regs; ++reg) {
2130           // Does this register hold a reference?
2131           if (TestBitmap(reg, reg_bitmap)) {
2132             uint32_t vmap_offset;
2133             if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2134               int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2135                                                         kReferenceVReg);
2136               // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2137               mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2138               if (*ref_addr != nullptr) {
2139                 visitor_(ref_addr, reg, this);
2140               }
2141             } else {
2142               StackReference<mirror::Object>* ref_addr =
2143                   reinterpret_cast<StackReference<mirror::Object>*>(
2144                       GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2145                                   frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2146               mirror::Object* ref = ref_addr->AsMirrorPtr();
2147               if (ref != nullptr) {
2148                 mirror::Object* new_ref = ref;
2149                 visitor_(&new_ref, reg, this);
2150                 if (ref != new_ref) {
2151                   ref_addr->Assign(new_ref);
2152                 }
2153               }
2154             }
2155           }
2156         }
2157       }
2158     }
2159   }
2160 
TestBitmap(size_t reg,const uint8_t * reg_vector)2161   static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2162     return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2163   }
2164 
2165   // Visitor for when we visit a root.
2166   const RootVisitor& visitor_;
2167 };
2168 
2169 class RootCallbackVisitor {
2170  public:
RootCallbackVisitor(RootCallback * callback,void * arg,uint32_t tid)2171   RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2172      : callback_(callback), arg_(arg), tid_(tid) {}
2173 
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const2174   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const {
2175     callback_(obj, arg_, JavaFrameRootInfo(tid_, stack_visitor, vreg));
2176   }
2177 
2178  private:
2179   RootCallback* const callback_;
2180   void* const arg_;
2181   const uint32_t tid_;
2182 };
2183 
SetClassLoaderOverride(mirror::ClassLoader * class_loader_override)2184 void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2185   VerifyObject(class_loader_override);
2186   tlsPtr_.class_loader_override = class_loader_override;
2187 }
2188 
VisitRoots(RootCallback * visitor,void * arg)2189 void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2190   uint32_t thread_id = GetThreadId();
2191   if (tlsPtr_.opeer != nullptr) {
2192     visitor(&tlsPtr_.opeer, arg, RootInfo(kRootThreadObject, thread_id));
2193   }
2194   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2195     visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg,
2196             RootInfo(kRootNativeStack, thread_id));
2197   }
2198   tlsPtr_.throw_location.VisitRoots(visitor, arg);
2199   if (tlsPtr_.class_loader_override != nullptr) {
2200     visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg,
2201             RootInfo(kRootNativeStack, thread_id));
2202   }
2203   if (tlsPtr_.monitor_enter_object != nullptr) {
2204     visitor(&tlsPtr_.monitor_enter_object, arg, RootInfo(kRootNativeStack, thread_id));
2205   }
2206   tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, RootInfo(kRootJNILocal, thread_id));
2207   tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, RootInfo(kRootJNIMonitor, thread_id));
2208   HandleScopeVisitRoots(visitor, arg, thread_id);
2209   if (tlsPtr_.debug_invoke_req != nullptr) {
2210     tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, RootInfo(kRootDebugger, thread_id));
2211   }
2212   if (tlsPtr_.single_step_control != nullptr) {
2213     tlsPtr_.single_step_control->VisitRoots(visitor, arg, RootInfo(kRootDebugger, thread_id));
2214   }
2215   if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2216     RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2217     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2218     for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2219         shadow_frame = shadow_frame->GetLink()) {
2220       mapper.VisitShadowFrame(shadow_frame);
2221     }
2222   }
2223   if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2224     RootCallbackVisitor visitor_to_callback(visitor, arg, thread_id);
2225     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
2226     for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2227         shadow_frame != nullptr;
2228         shadow_frame = shadow_frame->GetLink()) {
2229       mapper.VisitShadowFrame(shadow_frame);
2230     }
2231   }
2232   // Visit roots on this thread's stack
2233   Context* context = GetLongJumpContext();
2234   RootCallbackVisitor visitor_to_callback(visitor, arg, thread_id);
2235   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback);
2236   mapper.WalkStack();
2237   ReleaseLongJumpContext(context);
2238   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2239     if (frame.this_object_ != nullptr) {
2240       visitor(&frame.this_object_, arg, RootInfo(kRootVMInternal, thread_id));
2241     }
2242     DCHECK(frame.method_ != nullptr);
2243     visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg,
2244             RootInfo(kRootVMInternal, thread_id));
2245   }
2246 }
2247 
VerifyRoot(mirror::Object ** root,void *,const RootInfo &)2248 static void VerifyRoot(mirror::Object** root, void* /*arg*/, const RootInfo& /*root_info*/)
2249     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2250   VerifyObject(*root);
2251 }
2252 
VerifyStackImpl()2253 void Thread::VerifyStackImpl() {
2254   std::unique_ptr<Context> context(Context::Create());
2255   RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2256   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2257   mapper.WalkStack();
2258 }
2259 
2260 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()2261 void Thread::SetStackEndForStackOverflow() {
2262   // During stack overflow we allow use of the full stack.
2263   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2264     // However, we seem to have already extended to use the full stack.
2265     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2266                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2267     DumpStack(LOG(ERROR));
2268     LOG(FATAL) << "Recursive stack overflow.";
2269   }
2270 
2271   tlsPtr_.stack_end = tlsPtr_.stack_begin;
2272 
2273   // Remove the stack overflow protection if is it set up.
2274   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2275   if (implicit_stack_check) {
2276     if (!UnprotectStack()) {
2277       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2278     }
2279   }
2280 }
2281 
SetTlab(byte * start,byte * end)2282 void Thread::SetTlab(byte* start, byte* end) {
2283   DCHECK_LE(start, end);
2284   tlsPtr_.thread_local_start = start;
2285   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2286   tlsPtr_.thread_local_end = end;
2287   tlsPtr_.thread_local_objects = 0;
2288 }
2289 
HasTlab() const2290 bool Thread::HasTlab() const {
2291   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2292   if (has_tlab) {
2293     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2294   } else {
2295     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2296   }
2297   return has_tlab;
2298 }
2299 
operator <<(std::ostream & os,const Thread & thread)2300 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2301   thread.ShortDump(os);
2302   return os;
2303 }
2304 
ProtectStack()2305 void Thread::ProtectStack() {
2306   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2307   VLOG(threads) << "Protecting stack at " << pregion;
2308   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2309     LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2310         "Reason: "
2311         << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
2312   }
2313 }
2314 
UnprotectStack()2315 bool Thread::UnprotectStack() {
2316   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2317   VLOG(threads) << "Unprotecting stack at " << pregion;
2318   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2319 }
2320 
2321 
2322 }  // namespace art
2323