• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "SkTaskGroup.h"
2 
3 #include "SkCondVar.h"
4 #include "SkTDArray.h"
5 #include "SkThread.h"
6 #include "SkThreadUtils.h"
7 
8 #if defined(SK_BUILD_FOR_WIN32)
num_cores()9     static inline int num_cores() {
10         SYSTEM_INFO sysinfo;
11         GetSystemInfo(&sysinfo);
12         return sysinfo.dwNumberOfProcessors;
13     }
14 #else
15     #include <unistd.h>
num_cores()16     static inline int num_cores() {
17         return (int) sysconf(_SC_NPROCESSORS_ONLN);
18     }
19 #endif
20 
21 namespace {
22 
23 class ThreadPool : SkNoncopyable {
24 public:
Add(SkRunnable * task,int32_t * pending)25     static void Add(SkRunnable* task, int32_t* pending) {
26         if (!gGlobal) {  // If we have no threads, run synchronously.
27             return task->run();
28         }
29         gGlobal->add(task, pending);
30     }
31 
Wait(int32_t * pending)32     static void Wait(int32_t* pending) {
33         if (!gGlobal) {  // If we have no threads, the work must already be done.
34             SkASSERT(*pending == 0);
35             return;
36         }
37         while (sk_acquire_load(pending) > 0) {  // Pairs with sk_atomic_dec here or in Loop.
38             // Lend a hand until our SkTaskGroup of interest is done.
39             Work work;
40             {
41                 AutoLock lock(&gGlobal->fReady);
42                 if (gGlobal->fWork.isEmpty()) {
43                     // Someone has picked up all the work (including ours).  How nice of them!
44                     // (They may still be working on it, so we can't assert *pending == 0 here.)
45                     continue;
46                 }
47                 gGlobal->fWork.pop(&work);
48             }
49             // This Work isn't necessarily part of our SkTaskGroup of interest, but that's fine.
50             // We threads gotta stick together.  We're always making forward progress.
51             work.task->run();
52             sk_atomic_dec(work.pending);  // Release pairs with the sk_acquire_load() just above.
53         }
54     }
55 
56 private:
57     struct AutoLock {
AutoLock__anon9ef203180111::ThreadPool::AutoLock58         AutoLock(SkCondVar* c) : fC(c) { fC->lock(); }
~AutoLock__anon9ef203180111::ThreadPool::AutoLock59         ~AutoLock() { fC->unlock(); }
60     private:
61         SkCondVar* fC;
62     };
63 
64     struct Work {
65         SkRunnable* task;  // A task to ->run(),
66         int32_t* pending;  // then sk_atomic_dec(pending) afterwards.
67     };
68 
ThreadPool(int threads)69     explicit ThreadPool(int threads) : fDraining(false) {
70         if (threads == 0) {
71             threads = num_cores();
72         }
73         for (int i = 0; i < threads; i++) {
74             fThreads.push(SkNEW_ARGS(SkThread, (&ThreadPool::Loop, this)));
75             fThreads.top()->start();
76         }
77     }
78 
~ThreadPool()79     ~ThreadPool() {
80         SkASSERT(fWork.isEmpty());  // All SkTaskGroups should be destroyed by now.
81         {
82             AutoLock lock(&fReady);
83             fDraining = true;
84             fReady.broadcast();
85         }
86         for (int i = 0; i < fThreads.count(); i++) {
87             fThreads[i]->join();
88         }
89         SkASSERT(fWork.isEmpty());  // Can't hurt to double check.
90         fThreads.deleteAll();
91     }
92 
add(SkRunnable * task,int32_t * pending)93     void add(SkRunnable* task, int32_t* pending) {
94         Work work = { task, pending };
95         sk_atomic_inc(pending);  // No barrier needed.
96         {
97             AutoLock lock(&fReady);
98             fWork.push(work);
99             fReady.signal();
100         }
101     }
102 
Loop(void * arg)103     static void Loop(void* arg) {
104         ThreadPool* pool = (ThreadPool*)arg;
105         Work work;
106         while (true) {
107             {
108                 AutoLock lock(&pool->fReady);
109                 while (pool->fWork.isEmpty()) {
110                     if (pool->fDraining) {
111                         return;
112                     }
113                     pool->fReady.wait();
114                 }
115                 pool->fWork.pop(&work);
116             }
117             work.task->run();
118             sk_atomic_dec(work.pending);  // Release pairs with sk_acquire_load() in Wait().
119         }
120     }
121 
122     SkTDArray<Work>      fWork;
123     SkTDArray<SkThread*> fThreads;
124     SkCondVar            fReady;
125     bool                 fDraining;
126 
127     static ThreadPool* gGlobal;
128     friend struct SkTaskGroup::Enabler;
129 };
130 ThreadPool* ThreadPool::gGlobal = NULL;
131 
132 }  // namespace
133 
Enabler(int threads)134 SkTaskGroup::Enabler::Enabler(int threads) {
135     SkASSERT(ThreadPool::gGlobal == NULL);
136     ThreadPool::gGlobal = SkNEW_ARGS(ThreadPool, (threads));
137 }
138 
~Enabler()139 SkTaskGroup::Enabler::~Enabler() {
140     SkASSERT(ThreadPool::gGlobal != NULL);
141     SkDELETE(ThreadPool::gGlobal);
142 }
143 
SkTaskGroup()144 SkTaskGroup::SkTaskGroup() : fPending(0) {}
145 
add(SkRunnable * task)146 void SkTaskGroup::add(SkRunnable* task) { ThreadPool::Add(task, &fPending); }
wait()147 void SkTaskGroup::wait()                { ThreadPool::Wait(&fPending); }
148 
149