1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ARMAsmPrinter.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMFPUName.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMTargetMachine.h"
21 #include "ARMTargetObjectFile.h"
22 #include "InstPrinter/ARMInstPrinter.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMMCExpr.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/Mangler.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCAssembler.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/MC/MCELFStreamer.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCInstBuilder.h"
42 #include "llvm/MC/MCObjectStreamer.h"
43 #include "llvm/MC/MCSectionMachO.h"
44 #include "llvm/MC/MCStreamer.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/Support/ARMBuildAttributes.h"
47 #include "llvm/Support/COFF.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ELF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/TargetRegistry.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <cctype>
56 using namespace llvm;
57
58 #define DEBUG_TYPE "asm-printer"
59
EmitFunctionBodyEnd()60 void ARMAsmPrinter::EmitFunctionBodyEnd() {
61 // Make sure to terminate any constant pools that were at the end
62 // of the function.
63 if (!InConstantPool)
64 return;
65 InConstantPool = false;
66 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
67 }
68
EmitFunctionEntryLabel()69 void ARMAsmPrinter::EmitFunctionEntryLabel() {
70 if (AFI->isThumbFunction()) {
71 OutStreamer.EmitAssemblerFlag(MCAF_Code16);
72 OutStreamer.EmitThumbFunc(CurrentFnSym);
73 }
74
75 OutStreamer.EmitLabel(CurrentFnSym);
76 }
77
EmitXXStructor(const Constant * CV)78 void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
79 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
80 assert(Size && "C++ constructor pointer had zero size!");
81
82 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
83 assert(GV && "C++ constructor pointer was not a GlobalValue!");
84
85 const MCExpr *E = MCSymbolRefExpr::Create(GetARMGVSymbol(GV,
86 ARMII::MO_NO_FLAG),
87 (Subtarget->isTargetELF()
88 ? MCSymbolRefExpr::VK_ARM_TARGET1
89 : MCSymbolRefExpr::VK_None),
90 OutContext);
91
92 OutStreamer.EmitValue(E, Size);
93 }
94
95 /// runOnMachineFunction - This uses the EmitInstruction()
96 /// method to print assembly for each instruction.
97 ///
runOnMachineFunction(MachineFunction & MF)98 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
99 AFI = MF.getInfo<ARMFunctionInfo>();
100 MCP = MF.getConstantPool();
101
102 SetupMachineFunction(MF);
103
104 if (Subtarget->isTargetCOFF()) {
105 bool Internal = MF.getFunction()->hasInternalLinkage();
106 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
107 : COFF::IMAGE_SYM_CLASS_EXTERNAL;
108 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
109
110 OutStreamer.BeginCOFFSymbolDef(CurrentFnSym);
111 OutStreamer.EmitCOFFSymbolStorageClass(Scl);
112 OutStreamer.EmitCOFFSymbolType(Type);
113 OutStreamer.EndCOFFSymbolDef();
114 }
115
116 // Have common code print out the function header with linkage info etc.
117 EmitFunctionHeader();
118
119 // Emit the rest of the function body.
120 EmitFunctionBody();
121
122 // We didn't modify anything.
123 return false;
124 }
125
printOperand(const MachineInstr * MI,int OpNum,raw_ostream & O,const char * Modifier)126 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
127 raw_ostream &O, const char *Modifier) {
128 const MachineOperand &MO = MI->getOperand(OpNum);
129 unsigned TF = MO.getTargetFlags();
130
131 switch (MO.getType()) {
132 default: llvm_unreachable("<unknown operand type>");
133 case MachineOperand::MO_Register: {
134 unsigned Reg = MO.getReg();
135 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
136 assert(!MO.getSubReg() && "Subregs should be eliminated!");
137 if(ARM::GPRPairRegClass.contains(Reg)) {
138 const MachineFunction &MF = *MI->getParent()->getParent();
139 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
140 Reg = TRI->getSubReg(Reg, ARM::gsub_0);
141 }
142 O << ARMInstPrinter::getRegisterName(Reg);
143 break;
144 }
145 case MachineOperand::MO_Immediate: {
146 int64_t Imm = MO.getImm();
147 O << '#';
148 if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
149 (TF == ARMII::MO_LO16))
150 O << ":lower16:";
151 else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
152 (TF == ARMII::MO_HI16))
153 O << ":upper16:";
154 O << Imm;
155 break;
156 }
157 case MachineOperand::MO_MachineBasicBlock:
158 O << *MO.getMBB()->getSymbol();
159 return;
160 case MachineOperand::MO_GlobalAddress: {
161 const GlobalValue *GV = MO.getGlobal();
162 if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
163 (TF & ARMII::MO_LO16))
164 O << ":lower16:";
165 else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
166 (TF & ARMII::MO_HI16))
167 O << ":upper16:";
168 O << *GetARMGVSymbol(GV, TF);
169
170 printOffset(MO.getOffset(), O);
171 if (TF == ARMII::MO_PLT)
172 O << "(PLT)";
173 break;
174 }
175 case MachineOperand::MO_ConstantPoolIndex:
176 O << *GetCPISymbol(MO.getIndex());
177 break;
178 }
179 }
180
181 //===--------------------------------------------------------------------===//
182
183 MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel2(unsigned uid,unsigned uid2) const184 GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
185 const DataLayout *DL = TM.getDataLayout();
186 SmallString<60> Name;
187 raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI"
188 << getFunctionNumber() << '_' << uid << '_' << uid2;
189 return OutContext.GetOrCreateSymbol(Name.str());
190 }
191
192
GetARMSJLJEHLabel() const193 MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const {
194 const DataLayout *DL = TM.getDataLayout();
195 SmallString<60> Name;
196 raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "SJLJEH"
197 << getFunctionNumber();
198 return OutContext.GetOrCreateSymbol(Name.str());
199 }
200
PrintAsmOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)201 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
202 unsigned AsmVariant, const char *ExtraCode,
203 raw_ostream &O) {
204 // Does this asm operand have a single letter operand modifier?
205 if (ExtraCode && ExtraCode[0]) {
206 if (ExtraCode[1] != 0) return true; // Unknown modifier.
207
208 switch (ExtraCode[0]) {
209 default:
210 // See if this is a generic print operand
211 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
212 case 'a': // Print as a memory address.
213 if (MI->getOperand(OpNum).isReg()) {
214 O << "["
215 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
216 << "]";
217 return false;
218 }
219 // Fallthrough
220 case 'c': // Don't print "#" before an immediate operand.
221 if (!MI->getOperand(OpNum).isImm())
222 return true;
223 O << MI->getOperand(OpNum).getImm();
224 return false;
225 case 'P': // Print a VFP double precision register.
226 case 'q': // Print a NEON quad precision register.
227 printOperand(MI, OpNum, O);
228 return false;
229 case 'y': // Print a VFP single precision register as indexed double.
230 if (MI->getOperand(OpNum).isReg()) {
231 unsigned Reg = MI->getOperand(OpNum).getReg();
232 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
233 // Find the 'd' register that has this 's' register as a sub-register,
234 // and determine the lane number.
235 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
236 if (!ARM::DPRRegClass.contains(*SR))
237 continue;
238 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
239 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
240 return false;
241 }
242 }
243 return true;
244 case 'B': // Bitwise inverse of integer or symbol without a preceding #.
245 if (!MI->getOperand(OpNum).isImm())
246 return true;
247 O << ~(MI->getOperand(OpNum).getImm());
248 return false;
249 case 'L': // The low 16 bits of an immediate constant.
250 if (!MI->getOperand(OpNum).isImm())
251 return true;
252 O << (MI->getOperand(OpNum).getImm() & 0xffff);
253 return false;
254 case 'M': { // A register range suitable for LDM/STM.
255 if (!MI->getOperand(OpNum).isReg())
256 return true;
257 const MachineOperand &MO = MI->getOperand(OpNum);
258 unsigned RegBegin = MO.getReg();
259 // This takes advantage of the 2 operand-ness of ldm/stm and that we've
260 // already got the operands in registers that are operands to the
261 // inline asm statement.
262 O << "{";
263 if (ARM::GPRPairRegClass.contains(RegBegin)) {
264 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
265 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
266 O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
267 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
268 }
269 O << ARMInstPrinter::getRegisterName(RegBegin);
270
271 // FIXME: The register allocator not only may not have given us the
272 // registers in sequence, but may not be in ascending registers. This
273 // will require changes in the register allocator that'll need to be
274 // propagated down here if the operands change.
275 unsigned RegOps = OpNum + 1;
276 while (MI->getOperand(RegOps).isReg()) {
277 O << ", "
278 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
279 RegOps++;
280 }
281
282 O << "}";
283
284 return false;
285 }
286 case 'R': // The most significant register of a pair.
287 case 'Q': { // The least significant register of a pair.
288 if (OpNum == 0)
289 return true;
290 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
291 if (!FlagsOP.isImm())
292 return true;
293 unsigned Flags = FlagsOP.getImm();
294
295 // This operand may not be the one that actually provides the register. If
296 // it's tied to a previous one then we should refer instead to that one
297 // for registers and their classes.
298 unsigned TiedIdx;
299 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
300 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
301 unsigned OpFlags = MI->getOperand(OpNum).getImm();
302 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
303 }
304 Flags = MI->getOperand(OpNum).getImm();
305
306 // Later code expects OpNum to be pointing at the register rather than
307 // the flags.
308 OpNum += 1;
309 }
310
311 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
312 unsigned RC;
313 InlineAsm::hasRegClassConstraint(Flags, RC);
314 if (RC == ARM::GPRPairRegClassID) {
315 if (NumVals != 1)
316 return true;
317 const MachineOperand &MO = MI->getOperand(OpNum);
318 if (!MO.isReg())
319 return true;
320 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
321 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
322 ARM::gsub_0 : ARM::gsub_1);
323 O << ARMInstPrinter::getRegisterName(Reg);
324 return false;
325 }
326 if (NumVals != 2)
327 return true;
328 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
329 if (RegOp >= MI->getNumOperands())
330 return true;
331 const MachineOperand &MO = MI->getOperand(RegOp);
332 if (!MO.isReg())
333 return true;
334 unsigned Reg = MO.getReg();
335 O << ARMInstPrinter::getRegisterName(Reg);
336 return false;
337 }
338
339 case 'e': // The low doubleword register of a NEON quad register.
340 case 'f': { // The high doubleword register of a NEON quad register.
341 if (!MI->getOperand(OpNum).isReg())
342 return true;
343 unsigned Reg = MI->getOperand(OpNum).getReg();
344 if (!ARM::QPRRegClass.contains(Reg))
345 return true;
346 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
347 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
348 ARM::dsub_0 : ARM::dsub_1);
349 O << ARMInstPrinter::getRegisterName(SubReg);
350 return false;
351 }
352
353 // This modifier is not yet supported.
354 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
355 return true;
356 case 'H': { // The highest-numbered register of a pair.
357 const MachineOperand &MO = MI->getOperand(OpNum);
358 if (!MO.isReg())
359 return true;
360 const MachineFunction &MF = *MI->getParent()->getParent();
361 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
362 unsigned Reg = MO.getReg();
363 if(!ARM::GPRPairRegClass.contains(Reg))
364 return false;
365 Reg = TRI->getSubReg(Reg, ARM::gsub_1);
366 O << ARMInstPrinter::getRegisterName(Reg);
367 return false;
368 }
369 }
370 }
371
372 printOperand(MI, OpNum, O);
373 return false;
374 }
375
PrintAsmMemoryOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)376 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
377 unsigned OpNum, unsigned AsmVariant,
378 const char *ExtraCode,
379 raw_ostream &O) {
380 // Does this asm operand have a single letter operand modifier?
381 if (ExtraCode && ExtraCode[0]) {
382 if (ExtraCode[1] != 0) return true; // Unknown modifier.
383
384 switch (ExtraCode[0]) {
385 case 'A': // A memory operand for a VLD1/VST1 instruction.
386 default: return true; // Unknown modifier.
387 case 'm': // The base register of a memory operand.
388 if (!MI->getOperand(OpNum).isReg())
389 return true;
390 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
391 return false;
392 }
393 }
394
395 const MachineOperand &MO = MI->getOperand(OpNum);
396 assert(MO.isReg() && "unexpected inline asm memory operand");
397 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
398 return false;
399 }
400
isThumb(const MCSubtargetInfo & STI)401 static bool isThumb(const MCSubtargetInfo& STI) {
402 return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
403 }
404
emitInlineAsmEnd(const MCSubtargetInfo & StartInfo,const MCSubtargetInfo * EndInfo) const405 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
406 const MCSubtargetInfo *EndInfo) const {
407 // If either end mode is unknown (EndInfo == NULL) or different than
408 // the start mode, then restore the start mode.
409 const bool WasThumb = isThumb(StartInfo);
410 if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
411 OutStreamer.EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
412 }
413 }
414
EmitStartOfAsmFile(Module & M)415 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
416 if (Subtarget->isTargetMachO()) {
417 Reloc::Model RelocM = TM.getRelocationModel();
418 if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
419 // Declare all the text sections up front (before the DWARF sections
420 // emitted by AsmPrinter::doInitialization) so the assembler will keep
421 // them together at the beginning of the object file. This helps
422 // avoid out-of-range branches that are due a fundamental limitation of
423 // the way symbol offsets are encoded with the current Darwin ARM
424 // relocations.
425 const TargetLoweringObjectFileMachO &TLOFMacho =
426 static_cast<const TargetLoweringObjectFileMachO &>(
427 getObjFileLowering());
428
429 // Collect the set of sections our functions will go into.
430 SetVector<const MCSection *, SmallVector<const MCSection *, 8>,
431 SmallPtrSet<const MCSection *, 8> > TextSections;
432 // Default text section comes first.
433 TextSections.insert(TLOFMacho.getTextSection());
434 // Now any user defined text sections from function attributes.
435 for (Module::iterator F = M.begin(), e = M.end(); F != e; ++F)
436 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage())
437 TextSections.insert(TLOFMacho.SectionForGlobal(F, *Mang, TM));
438 // Now the coalescable sections.
439 TextSections.insert(TLOFMacho.getTextCoalSection());
440 TextSections.insert(TLOFMacho.getConstTextCoalSection());
441
442 // Emit the sections in the .s file header to fix the order.
443 for (unsigned i = 0, e = TextSections.size(); i != e; ++i)
444 OutStreamer.SwitchSection(TextSections[i]);
445
446 if (RelocM == Reloc::DynamicNoPIC) {
447 const MCSection *sect =
448 OutContext.getMachOSection("__TEXT", "__symbol_stub4",
449 MachO::S_SYMBOL_STUBS,
450 12, SectionKind::getText());
451 OutStreamer.SwitchSection(sect);
452 } else {
453 const MCSection *sect =
454 OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
455 MachO::S_SYMBOL_STUBS,
456 16, SectionKind::getText());
457 OutStreamer.SwitchSection(sect);
458 }
459 const MCSection *StaticInitSect =
460 OutContext.getMachOSection("__TEXT", "__StaticInit",
461 MachO::S_REGULAR |
462 MachO::S_ATTR_PURE_INSTRUCTIONS,
463 SectionKind::getText());
464 OutStreamer.SwitchSection(StaticInitSect);
465 }
466
467 // Compiling with debug info should not affect the code
468 // generation. Ensure the cstring section comes before the
469 // optional __DWARF secion. Otherwise, PC-relative loads would
470 // have to use different instruction sequences at "-g" in order to
471 // reach global data in the same object file.
472 OutStreamer.SwitchSection(getObjFileLowering().getCStringSection());
473 }
474
475 // Use unified assembler syntax.
476 OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
477
478 // Emit ARM Build Attributes
479 if (Subtarget->isTargetELF())
480 emitAttributes();
481 }
482
483 static void
emitNonLazySymbolPointer(MCStreamer & OutStreamer,MCSymbol * StubLabel,MachineModuleInfoImpl::StubValueTy & MCSym)484 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
485 MachineModuleInfoImpl::StubValueTy &MCSym) {
486 // L_foo$stub:
487 OutStreamer.EmitLabel(StubLabel);
488 // .indirect_symbol _foo
489 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
490
491 if (MCSym.getInt())
492 // External to current translation unit.
493 OutStreamer.EmitIntValue(0, 4/*size*/);
494 else
495 // Internal to current translation unit.
496 //
497 // When we place the LSDA into the TEXT section, the type info
498 // pointers need to be indirect and pc-rel. We accomplish this by
499 // using NLPs; however, sometimes the types are local to the file.
500 // We need to fill in the value for the NLP in those cases.
501 OutStreamer.EmitValue(
502 MCSymbolRefExpr::Create(MCSym.getPointer(), OutStreamer.getContext()),
503 4 /*size*/);
504 }
505
506
EmitEndOfAsmFile(Module & M)507 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
508 if (Subtarget->isTargetMachO()) {
509 // All darwin targets use mach-o.
510 const TargetLoweringObjectFileMachO &TLOFMacho =
511 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
512 MachineModuleInfoMachO &MMIMacho =
513 MMI->getObjFileInfo<MachineModuleInfoMachO>();
514
515 // Output non-lazy-pointers for external and common global variables.
516 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
517
518 if (!Stubs.empty()) {
519 // Switch with ".non_lazy_symbol_pointer" directive.
520 OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
521 EmitAlignment(2);
522
523 for (auto &Stub : Stubs)
524 emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second);
525
526 Stubs.clear();
527 OutStreamer.AddBlankLine();
528 }
529
530 Stubs = MMIMacho.GetHiddenGVStubList();
531 if (!Stubs.empty()) {
532 OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
533 EmitAlignment(2);
534
535 for (auto &Stub : Stubs)
536 emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second);
537
538 Stubs.clear();
539 OutStreamer.AddBlankLine();
540 }
541
542 // Funny Darwin hack: This flag tells the linker that no global symbols
543 // contain code that falls through to other global symbols (e.g. the obvious
544 // implementation of multiple entry points). If this doesn't occur, the
545 // linker can safely perform dead code stripping. Since LLVM never
546 // generates code that does this, it is always safe to set.
547 OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
548 }
549
550 // Emit a .data.rel section containing any stubs that were created.
551 if (Subtarget->isTargetELF()) {
552 const TargetLoweringObjectFileELF &TLOFELF =
553 static_cast<const TargetLoweringObjectFileELF &>(getObjFileLowering());
554
555 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
556
557 // Output stubs for external and common global variables.
558 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
559 if (!Stubs.empty()) {
560 OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
561 const DataLayout *TD = TM.getDataLayout();
562
563 for (auto &stub: Stubs) {
564 OutStreamer.EmitLabel(stub.first);
565 OutStreamer.EmitSymbolValue(stub.second.getPointer(),
566 TD->getPointerSize(0));
567 }
568 Stubs.clear();
569 }
570 }
571 }
572
573 //===----------------------------------------------------------------------===//
574 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
575 // FIXME:
576 // The following seem like one-off assembler flags, but they actually need
577 // to appear in the .ARM.attributes section in ELF.
578 // Instead of subclassing the MCELFStreamer, we do the work here.
579
getArchForCPU(StringRef CPU,const ARMSubtarget * Subtarget)580 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
581 const ARMSubtarget *Subtarget) {
582 if (CPU == "xscale")
583 return ARMBuildAttrs::v5TEJ;
584
585 if (Subtarget->hasV8Ops())
586 return ARMBuildAttrs::v8;
587 else if (Subtarget->hasV7Ops()) {
588 if (Subtarget->isMClass() && Subtarget->hasThumb2DSP())
589 return ARMBuildAttrs::v7E_M;
590 return ARMBuildAttrs::v7;
591 } else if (Subtarget->hasV6T2Ops())
592 return ARMBuildAttrs::v6T2;
593 else if (Subtarget->hasV6MOps())
594 return ARMBuildAttrs::v6S_M;
595 else if (Subtarget->hasV6Ops())
596 return ARMBuildAttrs::v6;
597 else if (Subtarget->hasV5TEOps())
598 return ARMBuildAttrs::v5TE;
599 else if (Subtarget->hasV5TOps())
600 return ARMBuildAttrs::v5T;
601 else if (Subtarget->hasV4TOps())
602 return ARMBuildAttrs::v4T;
603 else
604 return ARMBuildAttrs::v4;
605 }
606
emitAttributes()607 void ARMAsmPrinter::emitAttributes() {
608 MCTargetStreamer &TS = *OutStreamer.getTargetStreamer();
609 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
610
611 ATS.switchVendor("aeabi");
612
613 std::string CPUString = Subtarget->getCPUString();
614
615 // FIXME: remove krait check when GNU tools support krait cpu
616 if (CPUString != "generic" && CPUString != "krait")
617 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
618
619 ATS.emitAttribute(ARMBuildAttrs::CPU_arch,
620 getArchForCPU(CPUString, Subtarget));
621
622 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture
623 // profile is not applicable (e.g. pre v7, or cross-profile code)".
624 if (Subtarget->hasV7Ops()) {
625 if (Subtarget->isAClass()) {
626 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
627 ARMBuildAttrs::ApplicationProfile);
628 } else if (Subtarget->isRClass()) {
629 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
630 ARMBuildAttrs::RealTimeProfile);
631 } else if (Subtarget->isMClass()) {
632 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
633 ARMBuildAttrs::MicroControllerProfile);
634 }
635 }
636
637 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, Subtarget->hasARMOps() ?
638 ARMBuildAttrs::Allowed : ARMBuildAttrs::Not_Allowed);
639 if (Subtarget->isThumb1Only()) {
640 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
641 ARMBuildAttrs::Allowed);
642 } else if (Subtarget->hasThumb2()) {
643 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
644 ARMBuildAttrs::AllowThumb32);
645 }
646
647 if (Subtarget->hasNEON()) {
648 /* NEON is not exactly a VFP architecture, but GAS emit one of
649 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
650 if (Subtarget->hasFPARMv8()) {
651 if (Subtarget->hasCrypto())
652 ATS.emitFPU(ARM::CRYPTO_NEON_FP_ARMV8);
653 else
654 ATS.emitFPU(ARM::NEON_FP_ARMV8);
655 }
656 else if (Subtarget->hasVFP4())
657 ATS.emitFPU(ARM::NEON_VFPV4);
658 else
659 ATS.emitFPU(ARM::NEON);
660 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
661 if (Subtarget->hasV8Ops())
662 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
663 ARMBuildAttrs::AllowNeonARMv8);
664 } else {
665 if (Subtarget->hasFPARMv8())
666 ATS.emitFPU(ARM::FP_ARMV8);
667 else if (Subtarget->hasVFP4())
668 ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV4_D16 : ARM::VFPV4);
669 else if (Subtarget->hasVFP3())
670 ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV3_D16 : ARM::VFPV3);
671 else if (Subtarget->hasVFP2())
672 ATS.emitFPU(ARM::VFPV2);
673 }
674
675 if (TM.getRelocationModel() == Reloc::PIC_) {
676 // PIC specific attributes.
677 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
678 ARMBuildAttrs::AddressRWPCRel);
679 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
680 ARMBuildAttrs::AddressROPCRel);
681 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
682 ARMBuildAttrs::AddressGOT);
683 } else {
684 // Allow direct addressing of imported data for all other relocation models.
685 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
686 ARMBuildAttrs::AddressDirect);
687 }
688
689 // Signal various FP modes.
690 if (!TM.Options.UnsafeFPMath) {
691 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::Allowed);
692 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
693 ARMBuildAttrs::Allowed);
694 }
695
696 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
697 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
698 ARMBuildAttrs::Allowed);
699 else
700 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
701 ARMBuildAttrs::AllowIEE754);
702
703 // FIXME: add more flags to ARMBuildAttributes.h
704 // 8-bytes alignment stuff.
705 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
706 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
707
708 // ABI_HardFP_use attribute to indicate single precision FP.
709 if (Subtarget->isFPOnlySP())
710 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
711 ARMBuildAttrs::HardFPSinglePrecision);
712
713 // Hard float. Use both S and D registers and conform to AAPCS-VFP.
714 if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
715 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
716
717 // FIXME: Should we signal R9 usage?
718
719 if (Subtarget->hasFP16())
720 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
721
722 if (Subtarget->hasMPExtension())
723 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
724
725 // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
726 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
727 // It is not possible to produce DisallowDIV: if hwdiv is present in the base
728 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
729 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
730 // otherwise, the default value (AllowDIVIfExists) applies.
731 if (Subtarget->hasDivideInARMMode() && !Subtarget->hasV8Ops())
732 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
733
734 if (MMI) {
735 if (const Module *SourceModule = MMI->getModule()) {
736 // ABI_PCS_wchar_t to indicate wchar_t width
737 // FIXME: There is no way to emit value 0 (wchar_t prohibited).
738 if (auto WCharWidthValue = cast_or_null<ConstantInt>(
739 SourceModule->getModuleFlag("wchar_size"))) {
740 int WCharWidth = WCharWidthValue->getZExtValue();
741 assert((WCharWidth == 2 || WCharWidth == 4) &&
742 "wchar_t width must be 2 or 4 bytes");
743 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
744 }
745
746 // ABI_enum_size to indicate enum width
747 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
748 // (all enums contain a value needing 32 bits to encode).
749 if (auto EnumWidthValue = cast_or_null<ConstantInt>(
750 SourceModule->getModuleFlag("min_enum_size"))) {
751 int EnumWidth = EnumWidthValue->getZExtValue();
752 assert((EnumWidth == 1 || EnumWidth == 4) &&
753 "Minimum enum width must be 1 or 4 bytes");
754 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
755 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
756 }
757 }
758 }
759
760 if (Subtarget->hasTrustZone() && Subtarget->hasVirtualization())
761 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
762 ARMBuildAttrs::AllowTZVirtualization);
763 else if (Subtarget->hasTrustZone())
764 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
765 ARMBuildAttrs::AllowTZ);
766 else if (Subtarget->hasVirtualization())
767 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
768 ARMBuildAttrs::AllowVirtualization);
769
770 ATS.finishAttributeSection();
771 }
772
773 //===----------------------------------------------------------------------===//
774
getPICLabel(const char * Prefix,unsigned FunctionNumber,unsigned LabelId,MCContext & Ctx)775 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
776 unsigned LabelId, MCContext &Ctx) {
777
778 MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
779 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
780 return Label;
781 }
782
783 static MCSymbolRefExpr::VariantKind
getModifierVariantKind(ARMCP::ARMCPModifier Modifier)784 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
785 switch (Modifier) {
786 case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
787 case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD;
788 case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF;
789 case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF;
790 case ARMCP::GOT: return MCSymbolRefExpr::VK_GOT;
791 case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_GOTOFF;
792 }
793 llvm_unreachable("Invalid ARMCPModifier!");
794 }
795
GetARMGVSymbol(const GlobalValue * GV,unsigned char TargetFlags)796 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
797 unsigned char TargetFlags) {
798 if (Subtarget->isTargetMachO()) {
799 bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) &&
800 Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
801
802 if (!IsIndirect)
803 return getSymbol(GV);
804
805 // FIXME: Remove this when Darwin transition to @GOT like syntax.
806 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
807 MachineModuleInfoMachO &MMIMachO =
808 MMI->getObjFileInfo<MachineModuleInfoMachO>();
809 MachineModuleInfoImpl::StubValueTy &StubSym =
810 GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym)
811 : MMIMachO.getGVStubEntry(MCSym);
812 if (!StubSym.getPointer())
813 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
814 !GV->hasInternalLinkage());
815 return MCSym;
816 } else if (Subtarget->isTargetCOFF()) {
817 assert(Subtarget->isTargetWindows() &&
818 "Windows is the only supported COFF target");
819
820 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
821 if (!IsIndirect)
822 return getSymbol(GV);
823
824 SmallString<128> Name;
825 Name = "__imp_";
826 getNameWithPrefix(Name, GV);
827
828 return OutContext.GetOrCreateSymbol(Name);
829 } else if (Subtarget->isTargetELF()) {
830 return getSymbol(GV);
831 }
832 llvm_unreachable("unexpected target");
833 }
834
835 void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)836 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
837 const DataLayout *DL = TM.getDataLayout();
838 int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType());
839
840 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
841
842 MCSymbol *MCSym;
843 if (ACPV->isLSDA()) {
844 SmallString<128> Str;
845 raw_svector_ostream OS(Str);
846 OS << DL->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
847 MCSym = OutContext.GetOrCreateSymbol(OS.str());
848 } else if (ACPV->isBlockAddress()) {
849 const BlockAddress *BA =
850 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
851 MCSym = GetBlockAddressSymbol(BA);
852 } else if (ACPV->isGlobalValue()) {
853 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
854
855 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
856 // flag the global as MO_NONLAZY.
857 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
858 MCSym = GetARMGVSymbol(GV, TF);
859 } else if (ACPV->isMachineBasicBlock()) {
860 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
861 MCSym = MBB->getSymbol();
862 } else {
863 assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
864 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
865 MCSym = GetExternalSymbolSymbol(Sym);
866 }
867
868 // Create an MCSymbol for the reference.
869 const MCExpr *Expr =
870 MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()),
871 OutContext);
872
873 if (ACPV->getPCAdjustment()) {
874 MCSymbol *PCLabel = getPICLabel(DL->getPrivateGlobalPrefix(),
875 getFunctionNumber(),
876 ACPV->getLabelId(),
877 OutContext);
878 const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext);
879 PCRelExpr =
880 MCBinaryExpr::CreateAdd(PCRelExpr,
881 MCConstantExpr::Create(ACPV->getPCAdjustment(),
882 OutContext),
883 OutContext);
884 if (ACPV->mustAddCurrentAddress()) {
885 // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
886 // label, so just emit a local label end reference that instead.
887 MCSymbol *DotSym = OutContext.CreateTempSymbol();
888 OutStreamer.EmitLabel(DotSym);
889 const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
890 PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext);
891 }
892 Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext);
893 }
894 OutStreamer.EmitValue(Expr, Size);
895 }
896
EmitJumpTable(const MachineInstr * MI)897 void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
898 unsigned Opcode = MI->getOpcode();
899 int OpNum = 1;
900 if (Opcode == ARM::BR_JTadd)
901 OpNum = 2;
902 else if (Opcode == ARM::BR_JTm)
903 OpNum = 3;
904
905 const MachineOperand &MO1 = MI->getOperand(OpNum);
906 const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
907 unsigned JTI = MO1.getIndex();
908
909 // Emit a label for the jump table.
910 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
911 OutStreamer.EmitLabel(JTISymbol);
912
913 // Mark the jump table as data-in-code.
914 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
915
916 // Emit each entry of the table.
917 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
918 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
919 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
920
921 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
922 MachineBasicBlock *MBB = JTBBs[i];
923 // Construct an MCExpr for the entry. We want a value of the form:
924 // (BasicBlockAddr - TableBeginAddr)
925 //
926 // For example, a table with entries jumping to basic blocks BB0 and BB1
927 // would look like:
928 // LJTI_0_0:
929 // .word (LBB0 - LJTI_0_0)
930 // .word (LBB1 - LJTI_0_0)
931 const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
932
933 if (TM.getRelocationModel() == Reloc::PIC_)
934 Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
935 OutContext),
936 OutContext);
937 // If we're generating a table of Thumb addresses in static relocation
938 // model, we need to add one to keep interworking correctly.
939 else if (AFI->isThumbFunction())
940 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext),
941 OutContext);
942 OutStreamer.EmitValue(Expr, 4);
943 }
944 // Mark the end of jump table data-in-code region.
945 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
946 }
947
EmitJump2Table(const MachineInstr * MI)948 void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
949 unsigned Opcode = MI->getOpcode();
950 int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
951 const MachineOperand &MO1 = MI->getOperand(OpNum);
952 const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
953 unsigned JTI = MO1.getIndex();
954
955 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
956 OutStreamer.EmitLabel(JTISymbol);
957
958 // Emit each entry of the table.
959 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
960 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
961 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
962 unsigned OffsetWidth = 4;
963 if (MI->getOpcode() == ARM::t2TBB_JT) {
964 OffsetWidth = 1;
965 // Mark the jump table as data-in-code.
966 OutStreamer.EmitDataRegion(MCDR_DataRegionJT8);
967 } else if (MI->getOpcode() == ARM::t2TBH_JT) {
968 OffsetWidth = 2;
969 // Mark the jump table as data-in-code.
970 OutStreamer.EmitDataRegion(MCDR_DataRegionJT16);
971 }
972
973 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
974 MachineBasicBlock *MBB = JTBBs[i];
975 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
976 OutContext);
977 // If this isn't a TBB or TBH, the entries are direct branch instructions.
978 if (OffsetWidth == 4) {
979 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2B)
980 .addExpr(MBBSymbolExpr)
981 .addImm(ARMCC::AL)
982 .addReg(0));
983 continue;
984 }
985 // Otherwise it's an offset from the dispatch instruction. Construct an
986 // MCExpr for the entry. We want a value of the form:
987 // (BasicBlockAddr - TableBeginAddr) / 2
988 //
989 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
990 // would look like:
991 // LJTI_0_0:
992 // .byte (LBB0 - LJTI_0_0) / 2
993 // .byte (LBB1 - LJTI_0_0) / 2
994 const MCExpr *Expr =
995 MCBinaryExpr::CreateSub(MBBSymbolExpr,
996 MCSymbolRefExpr::Create(JTISymbol, OutContext),
997 OutContext);
998 Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
999 OutContext);
1000 OutStreamer.EmitValue(Expr, OffsetWidth);
1001 }
1002 // Mark the end of jump table data-in-code region. 32-bit offsets use
1003 // actual branch instructions here, so we don't mark those as a data-region
1004 // at all.
1005 if (OffsetWidth != 4)
1006 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1007 }
1008
EmitUnwindingInstruction(const MachineInstr * MI)1009 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1010 assert(MI->getFlag(MachineInstr::FrameSetup) &&
1011 "Only instruction which are involved into frame setup code are allowed");
1012
1013 MCTargetStreamer &TS = *OutStreamer.getTargetStreamer();
1014 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1015 const MachineFunction &MF = *MI->getParent()->getParent();
1016 const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
1017 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1018
1019 unsigned FramePtr = RegInfo->getFrameRegister(MF);
1020 unsigned Opc = MI->getOpcode();
1021 unsigned SrcReg, DstReg;
1022
1023 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1024 // Two special cases:
1025 // 1) tPUSH does not have src/dst regs.
1026 // 2) for Thumb1 code we sometimes materialize the constant via constpool
1027 // load. Yes, this is pretty fragile, but for now I don't see better
1028 // way... :(
1029 SrcReg = DstReg = ARM::SP;
1030 } else {
1031 SrcReg = MI->getOperand(1).getReg();
1032 DstReg = MI->getOperand(0).getReg();
1033 }
1034
1035 // Try to figure out the unwinding opcode out of src / dst regs.
1036 if (MI->mayStore()) {
1037 // Register saves.
1038 assert(DstReg == ARM::SP &&
1039 "Only stack pointer as a destination reg is supported");
1040
1041 SmallVector<unsigned, 4> RegList;
1042 // Skip src & dst reg, and pred ops.
1043 unsigned StartOp = 2 + 2;
1044 // Use all the operands.
1045 unsigned NumOffset = 0;
1046
1047 switch (Opc) {
1048 default:
1049 MI->dump();
1050 llvm_unreachable("Unsupported opcode for unwinding information");
1051 case ARM::tPUSH:
1052 // Special case here: no src & dst reg, but two extra imp ops.
1053 StartOp = 2; NumOffset = 2;
1054 case ARM::STMDB_UPD:
1055 case ARM::t2STMDB_UPD:
1056 case ARM::VSTMDDB_UPD:
1057 assert(SrcReg == ARM::SP &&
1058 "Only stack pointer as a source reg is supported");
1059 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1060 i != NumOps; ++i) {
1061 const MachineOperand &MO = MI->getOperand(i);
1062 // Actually, there should never be any impdef stuff here. Skip it
1063 // temporary to workaround PR11902.
1064 if (MO.isImplicit())
1065 continue;
1066 RegList.push_back(MO.getReg());
1067 }
1068 break;
1069 case ARM::STR_PRE_IMM:
1070 case ARM::STR_PRE_REG:
1071 case ARM::t2STR_PRE:
1072 assert(MI->getOperand(2).getReg() == ARM::SP &&
1073 "Only stack pointer as a source reg is supported");
1074 RegList.push_back(SrcReg);
1075 break;
1076 }
1077 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
1078 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1079 } else {
1080 // Changes of stack / frame pointer.
1081 if (SrcReg == ARM::SP) {
1082 int64_t Offset = 0;
1083 switch (Opc) {
1084 default:
1085 MI->dump();
1086 llvm_unreachable("Unsupported opcode for unwinding information");
1087 case ARM::MOVr:
1088 case ARM::tMOVr:
1089 Offset = 0;
1090 break;
1091 case ARM::ADDri:
1092 Offset = -MI->getOperand(2).getImm();
1093 break;
1094 case ARM::SUBri:
1095 case ARM::t2SUBri:
1096 Offset = MI->getOperand(2).getImm();
1097 break;
1098 case ARM::tSUBspi:
1099 Offset = MI->getOperand(2).getImm()*4;
1100 break;
1101 case ARM::tADDspi:
1102 case ARM::tADDrSPi:
1103 Offset = -MI->getOperand(2).getImm()*4;
1104 break;
1105 case ARM::tLDRpci: {
1106 // Grab the constpool index and check, whether it corresponds to
1107 // original or cloned constpool entry.
1108 unsigned CPI = MI->getOperand(1).getIndex();
1109 const MachineConstantPool *MCP = MF.getConstantPool();
1110 if (CPI >= MCP->getConstants().size())
1111 CPI = AFI.getOriginalCPIdx(CPI);
1112 assert(CPI != -1U && "Invalid constpool index");
1113
1114 // Derive the actual offset.
1115 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1116 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1117 // FIXME: Check for user, it should be "add" instruction!
1118 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1119 break;
1120 }
1121 }
1122
1123 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1124 if (DstReg == FramePtr && FramePtr != ARM::SP)
1125 // Set-up of the frame pointer. Positive values correspond to "add"
1126 // instruction.
1127 ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1128 else if (DstReg == ARM::SP) {
1129 // Change of SP by an offset. Positive values correspond to "sub"
1130 // instruction.
1131 ATS.emitPad(Offset);
1132 } else {
1133 // Move of SP to a register. Positive values correspond to an "add"
1134 // instruction.
1135 ATS.emitMovSP(DstReg, -Offset);
1136 }
1137 }
1138 } else if (DstReg == ARM::SP) {
1139 MI->dump();
1140 llvm_unreachable("Unsupported opcode for unwinding information");
1141 }
1142 else {
1143 MI->dump();
1144 llvm_unreachable("Unsupported opcode for unwinding information");
1145 }
1146 }
1147 }
1148
1149 // Simple pseudo-instructions have their lowering (with expansion to real
1150 // instructions) auto-generated.
1151 #include "ARMGenMCPseudoLowering.inc"
1152
EmitInstruction(const MachineInstr * MI)1153 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1154 const DataLayout *DL = TM.getDataLayout();
1155
1156 // If we just ended a constant pool, mark it as such.
1157 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1158 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1159 InConstantPool = false;
1160 }
1161
1162 // Emit unwinding stuff for frame-related instructions
1163 if (Subtarget->isTargetEHABICompatible() &&
1164 MI->getFlag(MachineInstr::FrameSetup))
1165 EmitUnwindingInstruction(MI);
1166
1167 // Do any auto-generated pseudo lowerings.
1168 if (emitPseudoExpansionLowering(OutStreamer, MI))
1169 return;
1170
1171 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1172 "Pseudo flag setting opcode should be expanded early");
1173
1174 // Check for manual lowerings.
1175 unsigned Opc = MI->getOpcode();
1176 switch (Opc) {
1177 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1178 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1179 case ARM::LEApcrel:
1180 case ARM::tLEApcrel:
1181 case ARM::t2LEApcrel: {
1182 // FIXME: Need to also handle globals and externals
1183 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1184 EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() ==
1185 ARM::t2LEApcrel ? ARM::t2ADR
1186 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1187 : ARM::ADR))
1188 .addReg(MI->getOperand(0).getReg())
1189 .addExpr(MCSymbolRefExpr::Create(CPISymbol, OutContext))
1190 // Add predicate operands.
1191 .addImm(MI->getOperand(2).getImm())
1192 .addReg(MI->getOperand(3).getReg()));
1193 return;
1194 }
1195 case ARM::LEApcrelJT:
1196 case ARM::tLEApcrelJT:
1197 case ARM::t2LEApcrelJT: {
1198 MCSymbol *JTIPICSymbol =
1199 GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(),
1200 MI->getOperand(2).getImm());
1201 EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() ==
1202 ARM::t2LEApcrelJT ? ARM::t2ADR
1203 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1204 : ARM::ADR))
1205 .addReg(MI->getOperand(0).getReg())
1206 .addExpr(MCSymbolRefExpr::Create(JTIPICSymbol, OutContext))
1207 // Add predicate operands.
1208 .addImm(MI->getOperand(3).getImm())
1209 .addReg(MI->getOperand(4).getReg()));
1210 return;
1211 }
1212 // Darwin call instructions are just normal call instructions with different
1213 // clobber semantics (they clobber R9).
1214 case ARM::BX_CALL: {
1215 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
1216 .addReg(ARM::LR)
1217 .addReg(ARM::PC)
1218 // Add predicate operands.
1219 .addImm(ARMCC::AL)
1220 .addReg(0)
1221 // Add 's' bit operand (always reg0 for this)
1222 .addReg(0));
1223
1224 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX)
1225 .addReg(MI->getOperand(0).getReg()));
1226 return;
1227 }
1228 case ARM::tBX_CALL: {
1229 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
1230 .addReg(ARM::LR)
1231 .addReg(ARM::PC)
1232 // Add predicate operands.
1233 .addImm(ARMCC::AL)
1234 .addReg(0));
1235
1236 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX)
1237 .addReg(MI->getOperand(0).getReg())
1238 // Add predicate operands.
1239 .addImm(ARMCC::AL)
1240 .addReg(0));
1241 return;
1242 }
1243 case ARM::BMOVPCRX_CALL: {
1244 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
1245 .addReg(ARM::LR)
1246 .addReg(ARM::PC)
1247 // Add predicate operands.
1248 .addImm(ARMCC::AL)
1249 .addReg(0)
1250 // Add 's' bit operand (always reg0 for this)
1251 .addReg(0));
1252
1253 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
1254 .addReg(ARM::PC)
1255 .addReg(MI->getOperand(0).getReg())
1256 // Add predicate operands.
1257 .addImm(ARMCC::AL)
1258 .addReg(0)
1259 // Add 's' bit operand (always reg0 for this)
1260 .addReg(0));
1261 return;
1262 }
1263 case ARM::BMOVPCB_CALL: {
1264 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
1265 .addReg(ARM::LR)
1266 .addReg(ARM::PC)
1267 // Add predicate operands.
1268 .addImm(ARMCC::AL)
1269 .addReg(0)
1270 // Add 's' bit operand (always reg0 for this)
1271 .addReg(0));
1272
1273 const MachineOperand &Op = MI->getOperand(0);
1274 const GlobalValue *GV = Op.getGlobal();
1275 const unsigned TF = Op.getTargetFlags();
1276 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1277 const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1278 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::Bcc)
1279 .addExpr(GVSymExpr)
1280 // Add predicate operands.
1281 .addImm(ARMCC::AL)
1282 .addReg(0));
1283 return;
1284 }
1285 case ARM::MOVi16_ga_pcrel:
1286 case ARM::t2MOVi16_ga_pcrel: {
1287 MCInst TmpInst;
1288 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1289 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1290
1291 unsigned TF = MI->getOperand(1).getTargetFlags();
1292 const GlobalValue *GV = MI->getOperand(1).getGlobal();
1293 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1294 const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1295
1296 MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(),
1297 getFunctionNumber(),
1298 MI->getOperand(2).getImm(), OutContext);
1299 const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
1300 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1301 const MCExpr *PCRelExpr =
1302 ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr,
1303 MCBinaryExpr::CreateAdd(LabelSymExpr,
1304 MCConstantExpr::Create(PCAdj, OutContext),
1305 OutContext), OutContext), OutContext);
1306 TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
1307
1308 // Add predicate operands.
1309 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1310 TmpInst.addOperand(MCOperand::CreateReg(0));
1311 // Add 's' bit operand (always reg0 for this)
1312 TmpInst.addOperand(MCOperand::CreateReg(0));
1313 EmitToStreamer(OutStreamer, TmpInst);
1314 return;
1315 }
1316 case ARM::MOVTi16_ga_pcrel:
1317 case ARM::t2MOVTi16_ga_pcrel: {
1318 MCInst TmpInst;
1319 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1320 ? ARM::MOVTi16 : ARM::t2MOVTi16);
1321 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1322 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1323
1324 unsigned TF = MI->getOperand(2).getTargetFlags();
1325 const GlobalValue *GV = MI->getOperand(2).getGlobal();
1326 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1327 const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1328
1329 MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(),
1330 getFunctionNumber(),
1331 MI->getOperand(3).getImm(), OutContext);
1332 const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
1333 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1334 const MCExpr *PCRelExpr =
1335 ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr,
1336 MCBinaryExpr::CreateAdd(LabelSymExpr,
1337 MCConstantExpr::Create(PCAdj, OutContext),
1338 OutContext), OutContext), OutContext);
1339 TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
1340 // Add predicate operands.
1341 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1342 TmpInst.addOperand(MCOperand::CreateReg(0));
1343 // Add 's' bit operand (always reg0 for this)
1344 TmpInst.addOperand(MCOperand::CreateReg(0));
1345 EmitToStreamer(OutStreamer, TmpInst);
1346 return;
1347 }
1348 case ARM::tPICADD: {
1349 // This is a pseudo op for a label + instruction sequence, which looks like:
1350 // LPC0:
1351 // add r0, pc
1352 // This adds the address of LPC0 to r0.
1353
1354 // Emit the label.
1355 OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(),
1356 getFunctionNumber(), MI->getOperand(2).getImm(),
1357 OutContext));
1358
1359 // Form and emit the add.
1360 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDhirr)
1361 .addReg(MI->getOperand(0).getReg())
1362 .addReg(MI->getOperand(0).getReg())
1363 .addReg(ARM::PC)
1364 // Add predicate operands.
1365 .addImm(ARMCC::AL)
1366 .addReg(0));
1367 return;
1368 }
1369 case ARM::PICADD: {
1370 // This is a pseudo op for a label + instruction sequence, which looks like:
1371 // LPC0:
1372 // add r0, pc, r0
1373 // This adds the address of LPC0 to r0.
1374
1375 // Emit the label.
1376 OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(),
1377 getFunctionNumber(), MI->getOperand(2).getImm(),
1378 OutContext));
1379
1380 // Form and emit the add.
1381 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr)
1382 .addReg(MI->getOperand(0).getReg())
1383 .addReg(ARM::PC)
1384 .addReg(MI->getOperand(1).getReg())
1385 // Add predicate operands.
1386 .addImm(MI->getOperand(3).getImm())
1387 .addReg(MI->getOperand(4).getReg())
1388 // Add 's' bit operand (always reg0 for this)
1389 .addReg(0));
1390 return;
1391 }
1392 case ARM::PICSTR:
1393 case ARM::PICSTRB:
1394 case ARM::PICSTRH:
1395 case ARM::PICLDR:
1396 case ARM::PICLDRB:
1397 case ARM::PICLDRH:
1398 case ARM::PICLDRSB:
1399 case ARM::PICLDRSH: {
1400 // This is a pseudo op for a label + instruction sequence, which looks like:
1401 // LPC0:
1402 // OP r0, [pc, r0]
1403 // The LCP0 label is referenced by a constant pool entry in order to get
1404 // a PC-relative address at the ldr instruction.
1405
1406 // Emit the label.
1407 OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(),
1408 getFunctionNumber(), MI->getOperand(2).getImm(),
1409 OutContext));
1410
1411 // Form and emit the load
1412 unsigned Opcode;
1413 switch (MI->getOpcode()) {
1414 default:
1415 llvm_unreachable("Unexpected opcode!");
1416 case ARM::PICSTR: Opcode = ARM::STRrs; break;
1417 case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
1418 case ARM::PICSTRH: Opcode = ARM::STRH; break;
1419 case ARM::PICLDR: Opcode = ARM::LDRrs; break;
1420 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
1421 case ARM::PICLDRH: Opcode = ARM::LDRH; break;
1422 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1423 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1424 }
1425 EmitToStreamer(OutStreamer, MCInstBuilder(Opcode)
1426 .addReg(MI->getOperand(0).getReg())
1427 .addReg(ARM::PC)
1428 .addReg(MI->getOperand(1).getReg())
1429 .addImm(0)
1430 // Add predicate operands.
1431 .addImm(MI->getOperand(3).getImm())
1432 .addReg(MI->getOperand(4).getReg()));
1433
1434 return;
1435 }
1436 case ARM::CONSTPOOL_ENTRY: {
1437 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1438 /// in the function. The first operand is the ID# for this instruction, the
1439 /// second is the index into the MachineConstantPool that this is, the third
1440 /// is the size in bytes of this constant pool entry.
1441 /// The required alignment is specified on the basic block holding this MI.
1442 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1443 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
1444
1445 // If this is the first entry of the pool, mark it.
1446 if (!InConstantPool) {
1447 OutStreamer.EmitDataRegion(MCDR_DataRegion);
1448 InConstantPool = true;
1449 }
1450
1451 OutStreamer.EmitLabel(GetCPISymbol(LabelId));
1452
1453 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1454 if (MCPE.isMachineConstantPoolEntry())
1455 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1456 else
1457 EmitGlobalConstant(MCPE.Val.ConstVal);
1458 return;
1459 }
1460 case ARM::t2BR_JT: {
1461 // Lower and emit the instruction itself, then the jump table following it.
1462 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
1463 .addReg(ARM::PC)
1464 .addReg(MI->getOperand(0).getReg())
1465 // Add predicate operands.
1466 .addImm(ARMCC::AL)
1467 .addReg(0));
1468
1469 // Output the data for the jump table itself
1470 EmitJump2Table(MI);
1471 return;
1472 }
1473 case ARM::t2TBB_JT: {
1474 // Lower and emit the instruction itself, then the jump table following it.
1475 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBB)
1476 .addReg(ARM::PC)
1477 .addReg(MI->getOperand(0).getReg())
1478 // Add predicate operands.
1479 .addImm(ARMCC::AL)
1480 .addReg(0));
1481
1482 // Output the data for the jump table itself
1483 EmitJump2Table(MI);
1484 // Make sure the next instruction is 2-byte aligned.
1485 EmitAlignment(1);
1486 return;
1487 }
1488 case ARM::t2TBH_JT: {
1489 // Lower and emit the instruction itself, then the jump table following it.
1490 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBH)
1491 .addReg(ARM::PC)
1492 .addReg(MI->getOperand(0).getReg())
1493 // Add predicate operands.
1494 .addImm(ARMCC::AL)
1495 .addReg(0));
1496
1497 // Output the data for the jump table itself
1498 EmitJump2Table(MI);
1499 return;
1500 }
1501 case ARM::tBR_JTr:
1502 case ARM::BR_JTr: {
1503 // Lower and emit the instruction itself, then the jump table following it.
1504 // mov pc, target
1505 MCInst TmpInst;
1506 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1507 ARM::MOVr : ARM::tMOVr;
1508 TmpInst.setOpcode(Opc);
1509 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1510 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1511 // Add predicate operands.
1512 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1513 TmpInst.addOperand(MCOperand::CreateReg(0));
1514 // Add 's' bit operand (always reg0 for this)
1515 if (Opc == ARM::MOVr)
1516 TmpInst.addOperand(MCOperand::CreateReg(0));
1517 EmitToStreamer(OutStreamer, TmpInst);
1518
1519 // Make sure the Thumb jump table is 4-byte aligned.
1520 if (Opc == ARM::tMOVr)
1521 EmitAlignment(2);
1522
1523 // Output the data for the jump table itself
1524 EmitJumpTable(MI);
1525 return;
1526 }
1527 case ARM::BR_JTm: {
1528 // Lower and emit the instruction itself, then the jump table following it.
1529 // ldr pc, target
1530 MCInst TmpInst;
1531 if (MI->getOperand(1).getReg() == 0) {
1532 // literal offset
1533 TmpInst.setOpcode(ARM::LDRi12);
1534 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1535 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1536 TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
1537 } else {
1538 TmpInst.setOpcode(ARM::LDRrs);
1539 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1540 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1541 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1542 TmpInst.addOperand(MCOperand::CreateImm(0));
1543 }
1544 // Add predicate operands.
1545 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1546 TmpInst.addOperand(MCOperand::CreateReg(0));
1547 EmitToStreamer(OutStreamer, TmpInst);
1548
1549 // Output the data for the jump table itself
1550 EmitJumpTable(MI);
1551 return;
1552 }
1553 case ARM::BR_JTadd: {
1554 // Lower and emit the instruction itself, then the jump table following it.
1555 // add pc, target, idx
1556 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr)
1557 .addReg(ARM::PC)
1558 .addReg(MI->getOperand(0).getReg())
1559 .addReg(MI->getOperand(1).getReg())
1560 // Add predicate operands.
1561 .addImm(ARMCC::AL)
1562 .addReg(0)
1563 // Add 's' bit operand (always reg0 for this)
1564 .addReg(0));
1565
1566 // Output the data for the jump table itself
1567 EmitJumpTable(MI);
1568 return;
1569 }
1570 case ARM::TRAP: {
1571 // Non-Darwin binutils don't yet support the "trap" mnemonic.
1572 // FIXME: Remove this special case when they do.
1573 if (!Subtarget->isTargetMachO()) {
1574 //.long 0xe7ffdefe @ trap
1575 uint32_t Val = 0xe7ffdefeUL;
1576 OutStreamer.AddComment("trap");
1577 OutStreamer.EmitIntValue(Val, 4);
1578 return;
1579 }
1580 break;
1581 }
1582 case ARM::TRAPNaCl: {
1583 //.long 0xe7fedef0 @ trap
1584 uint32_t Val = 0xe7fedef0UL;
1585 OutStreamer.AddComment("trap");
1586 OutStreamer.EmitIntValue(Val, 4);
1587 return;
1588 }
1589 case ARM::tTRAP: {
1590 // Non-Darwin binutils don't yet support the "trap" mnemonic.
1591 // FIXME: Remove this special case when they do.
1592 if (!Subtarget->isTargetMachO()) {
1593 //.short 57086 @ trap
1594 uint16_t Val = 0xdefe;
1595 OutStreamer.AddComment("trap");
1596 OutStreamer.EmitIntValue(Val, 2);
1597 return;
1598 }
1599 break;
1600 }
1601 case ARM::t2Int_eh_sjlj_setjmp:
1602 case ARM::t2Int_eh_sjlj_setjmp_nofp:
1603 case ARM::tInt_eh_sjlj_setjmp: {
1604 // Two incoming args: GPR:$src, GPR:$val
1605 // mov $val, pc
1606 // adds $val, #7
1607 // str $val, [$src, #4]
1608 // movs r0, #0
1609 // b 1f
1610 // movs r0, #1
1611 // 1:
1612 unsigned SrcReg = MI->getOperand(0).getReg();
1613 unsigned ValReg = MI->getOperand(1).getReg();
1614 MCSymbol *Label = GetARMSJLJEHLabel();
1615 OutStreamer.AddComment("eh_setjmp begin");
1616 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
1617 .addReg(ValReg)
1618 .addReg(ARM::PC)
1619 // Predicate.
1620 .addImm(ARMCC::AL)
1621 .addReg(0));
1622
1623 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDi3)
1624 .addReg(ValReg)
1625 // 's' bit operand
1626 .addReg(ARM::CPSR)
1627 .addReg(ValReg)
1628 .addImm(7)
1629 // Predicate.
1630 .addImm(ARMCC::AL)
1631 .addReg(0));
1632
1633 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tSTRi)
1634 .addReg(ValReg)
1635 .addReg(SrcReg)
1636 // The offset immediate is #4. The operand value is scaled by 4 for the
1637 // tSTR instruction.
1638 .addImm(1)
1639 // Predicate.
1640 .addImm(ARMCC::AL)
1641 .addReg(0));
1642
1643 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8)
1644 .addReg(ARM::R0)
1645 .addReg(ARM::CPSR)
1646 .addImm(0)
1647 // Predicate.
1648 .addImm(ARMCC::AL)
1649 .addReg(0));
1650
1651 const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
1652 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tB)
1653 .addExpr(SymbolExpr)
1654 .addImm(ARMCC::AL)
1655 .addReg(0));
1656
1657 OutStreamer.AddComment("eh_setjmp end");
1658 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8)
1659 .addReg(ARM::R0)
1660 .addReg(ARM::CPSR)
1661 .addImm(1)
1662 // Predicate.
1663 .addImm(ARMCC::AL)
1664 .addReg(0));
1665
1666 OutStreamer.EmitLabel(Label);
1667 return;
1668 }
1669
1670 case ARM::Int_eh_sjlj_setjmp_nofp:
1671 case ARM::Int_eh_sjlj_setjmp: {
1672 // Two incoming args: GPR:$src, GPR:$val
1673 // add $val, pc, #8
1674 // str $val, [$src, #+4]
1675 // mov r0, #0
1676 // add pc, pc, #0
1677 // mov r0, #1
1678 unsigned SrcReg = MI->getOperand(0).getReg();
1679 unsigned ValReg = MI->getOperand(1).getReg();
1680
1681 OutStreamer.AddComment("eh_setjmp begin");
1682 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri)
1683 .addReg(ValReg)
1684 .addReg(ARM::PC)
1685 .addImm(8)
1686 // Predicate.
1687 .addImm(ARMCC::AL)
1688 .addReg(0)
1689 // 's' bit operand (always reg0 for this).
1690 .addReg(0));
1691
1692 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::STRi12)
1693 .addReg(ValReg)
1694 .addReg(SrcReg)
1695 .addImm(4)
1696 // Predicate.
1697 .addImm(ARMCC::AL)
1698 .addReg(0));
1699
1700 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi)
1701 .addReg(ARM::R0)
1702 .addImm(0)
1703 // Predicate.
1704 .addImm(ARMCC::AL)
1705 .addReg(0)
1706 // 's' bit operand (always reg0 for this).
1707 .addReg(0));
1708
1709 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri)
1710 .addReg(ARM::PC)
1711 .addReg(ARM::PC)
1712 .addImm(0)
1713 // Predicate.
1714 .addImm(ARMCC::AL)
1715 .addReg(0)
1716 // 's' bit operand (always reg0 for this).
1717 .addReg(0));
1718
1719 OutStreamer.AddComment("eh_setjmp end");
1720 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi)
1721 .addReg(ARM::R0)
1722 .addImm(1)
1723 // Predicate.
1724 .addImm(ARMCC::AL)
1725 .addReg(0)
1726 // 's' bit operand (always reg0 for this).
1727 .addReg(0));
1728 return;
1729 }
1730 case ARM::Int_eh_sjlj_longjmp: {
1731 // ldr sp, [$src, #8]
1732 // ldr $scratch, [$src, #4]
1733 // ldr r7, [$src]
1734 // bx $scratch
1735 unsigned SrcReg = MI->getOperand(0).getReg();
1736 unsigned ScratchReg = MI->getOperand(1).getReg();
1737 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12)
1738 .addReg(ARM::SP)
1739 .addReg(SrcReg)
1740 .addImm(8)
1741 // Predicate.
1742 .addImm(ARMCC::AL)
1743 .addReg(0));
1744
1745 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12)
1746 .addReg(ScratchReg)
1747 .addReg(SrcReg)
1748 .addImm(4)
1749 // Predicate.
1750 .addImm(ARMCC::AL)
1751 .addReg(0));
1752
1753 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12)
1754 .addReg(ARM::R7)
1755 .addReg(SrcReg)
1756 .addImm(0)
1757 // Predicate.
1758 .addImm(ARMCC::AL)
1759 .addReg(0));
1760
1761 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX)
1762 .addReg(ScratchReg)
1763 // Predicate.
1764 .addImm(ARMCC::AL)
1765 .addReg(0));
1766 return;
1767 }
1768 case ARM::tInt_eh_sjlj_longjmp: {
1769 // ldr $scratch, [$src, #8]
1770 // mov sp, $scratch
1771 // ldr $scratch, [$src, #4]
1772 // ldr r7, [$src]
1773 // bx $scratch
1774 unsigned SrcReg = MI->getOperand(0).getReg();
1775 unsigned ScratchReg = MI->getOperand(1).getReg();
1776 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi)
1777 .addReg(ScratchReg)
1778 .addReg(SrcReg)
1779 // The offset immediate is #8. The operand value is scaled by 4 for the
1780 // tLDR instruction.
1781 .addImm(2)
1782 // Predicate.
1783 .addImm(ARMCC::AL)
1784 .addReg(0));
1785
1786 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
1787 .addReg(ARM::SP)
1788 .addReg(ScratchReg)
1789 // Predicate.
1790 .addImm(ARMCC::AL)
1791 .addReg(0));
1792
1793 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi)
1794 .addReg(ScratchReg)
1795 .addReg(SrcReg)
1796 .addImm(1)
1797 // Predicate.
1798 .addImm(ARMCC::AL)
1799 .addReg(0));
1800
1801 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi)
1802 .addReg(ARM::R7)
1803 .addReg(SrcReg)
1804 .addImm(0)
1805 // Predicate.
1806 .addImm(ARMCC::AL)
1807 .addReg(0));
1808
1809 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX)
1810 .addReg(ScratchReg)
1811 // Predicate.
1812 .addImm(ARMCC::AL)
1813 .addReg(0));
1814 return;
1815 }
1816 }
1817
1818 MCInst TmpInst;
1819 LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
1820
1821 EmitToStreamer(OutStreamer, TmpInst);
1822 }
1823
1824 //===----------------------------------------------------------------------===//
1825 // Target Registry Stuff
1826 //===----------------------------------------------------------------------===//
1827
1828 // Force static initialization.
LLVMInitializeARMAsmPrinter()1829 extern "C" void LLVMInitializeARMAsmPrinter() {
1830 RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget);
1831 RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget);
1832 RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget);
1833 RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget);
1834 }
1835