• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis member access expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Scope.h"
23 #include "clang/Sema/ScopeInfo.h"
24 
25 using namespace clang;
26 using namespace sema;
27 
28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
BaseIsNotInSet(const CXXRecordDecl * Base,void * BasesPtr)29 static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
30   const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
31   return !Bases.count(Base->getCanonicalDecl());
32 }
33 
34 /// Determines if the given class is provably not derived from all of
35 /// the prospective base classes.
isProvablyNotDerivedFrom(Sema & SemaRef,CXXRecordDecl * Record,const BaseSet & Bases)36 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
37                                      const BaseSet &Bases) {
38   void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
39   return BaseIsNotInSet(Record, BasesPtr) &&
40          Record->forallBases(BaseIsNotInSet, BasesPtr);
41 }
42 
43 enum IMAKind {
44   /// The reference is definitely not an instance member access.
45   IMA_Static,
46 
47   /// The reference may be an implicit instance member access.
48   IMA_Mixed,
49 
50   /// The reference may be to an instance member, but it might be invalid if
51   /// so, because the context is not an instance method.
52   IMA_Mixed_StaticContext,
53 
54   /// The reference may be to an instance member, but it is invalid if
55   /// so, because the context is from an unrelated class.
56   IMA_Mixed_Unrelated,
57 
58   /// The reference is definitely an implicit instance member access.
59   IMA_Instance,
60 
61   /// The reference may be to an unresolved using declaration.
62   IMA_Unresolved,
63 
64   /// The reference is a contextually-permitted abstract member reference.
65   IMA_Abstract,
66 
67   /// The reference may be to an unresolved using declaration and the
68   /// context is not an instance method.
69   IMA_Unresolved_StaticContext,
70 
71   // The reference refers to a field which is not a member of the containing
72   // class, which is allowed because we're in C++11 mode and the context is
73   // unevaluated.
74   IMA_Field_Uneval_Context,
75 
76   /// All possible referrents are instance members and the current
77   /// context is not an instance method.
78   IMA_Error_StaticContext,
79 
80   /// All possible referrents are instance members of an unrelated
81   /// class.
82   IMA_Error_Unrelated
83 };
84 
85 /// The given lookup names class member(s) and is not being used for
86 /// an address-of-member expression.  Classify the type of access
87 /// according to whether it's possible that this reference names an
88 /// instance member.  This is best-effort in dependent contexts; it is okay to
89 /// conservatively answer "yes", in which case some errors will simply
90 /// not be caught until template-instantiation.
ClassifyImplicitMemberAccess(Sema & SemaRef,Scope * CurScope,const LookupResult & R)91 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
92                                             Scope *CurScope,
93                                             const LookupResult &R) {
94   assert(!R.empty() && (*R.begin())->isCXXClassMember());
95 
96   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
97 
98   bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
99     (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
100 
101   if (R.isUnresolvableResult())
102     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
103 
104   // Collect all the declaring classes of instance members we find.
105   bool hasNonInstance = false;
106   bool isField = false;
107   BaseSet Classes;
108   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
109     NamedDecl *D = *I;
110 
111     if (D->isCXXInstanceMember()) {
112       if (dyn_cast<FieldDecl>(D) || dyn_cast<MSPropertyDecl>(D)
113           || dyn_cast<IndirectFieldDecl>(D))
114         isField = true;
115 
116       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
117       Classes.insert(R->getCanonicalDecl());
118     }
119     else
120       hasNonInstance = true;
121   }
122 
123   // If we didn't find any instance members, it can't be an implicit
124   // member reference.
125   if (Classes.empty())
126     return IMA_Static;
127 
128   // C++11 [expr.prim.general]p12:
129   //   An id-expression that denotes a non-static data member or non-static
130   //   member function of a class can only be used:
131   //   (...)
132   //   - if that id-expression denotes a non-static data member and it
133   //     appears in an unevaluated operand.
134   //
135   // This rule is specific to C++11.  However, we also permit this form
136   // in unevaluated inline assembly operands, like the operand to a SIZE.
137   IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
138   assert(!AbstractInstanceResult);
139   switch (SemaRef.ExprEvalContexts.back().Context) {
140   case Sema::Unevaluated:
141     if (isField && SemaRef.getLangOpts().CPlusPlus11)
142       AbstractInstanceResult = IMA_Field_Uneval_Context;
143     break;
144 
145   case Sema::UnevaluatedAbstract:
146     AbstractInstanceResult = IMA_Abstract;
147     break;
148 
149   case Sema::ConstantEvaluated:
150   case Sema::PotentiallyEvaluated:
151   case Sema::PotentiallyEvaluatedIfUsed:
152     break;
153   }
154 
155   // If the current context is not an instance method, it can't be
156   // an implicit member reference.
157   if (isStaticContext) {
158     if (hasNonInstance)
159       return IMA_Mixed_StaticContext;
160 
161     return AbstractInstanceResult ? AbstractInstanceResult
162                                   : IMA_Error_StaticContext;
163   }
164 
165   CXXRecordDecl *contextClass;
166   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
167     contextClass = MD->getParent()->getCanonicalDecl();
168   else
169     contextClass = cast<CXXRecordDecl>(DC);
170 
171   // [class.mfct.non-static]p3:
172   // ...is used in the body of a non-static member function of class X,
173   // if name lookup (3.4.1) resolves the name in the id-expression to a
174   // non-static non-type member of some class C [...]
175   // ...if C is not X or a base class of X, the class member access expression
176   // is ill-formed.
177   if (R.getNamingClass() &&
178       contextClass->getCanonicalDecl() !=
179         R.getNamingClass()->getCanonicalDecl()) {
180     // If the naming class is not the current context, this was a qualified
181     // member name lookup, and it's sufficient to check that we have the naming
182     // class as a base class.
183     Classes.clear();
184     Classes.insert(R.getNamingClass()->getCanonicalDecl());
185   }
186 
187   // If we can prove that the current context is unrelated to all the
188   // declaring classes, it can't be an implicit member reference (in
189   // which case it's an error if any of those members are selected).
190   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
191     return hasNonInstance ? IMA_Mixed_Unrelated :
192            AbstractInstanceResult ? AbstractInstanceResult :
193                                     IMA_Error_Unrelated;
194 
195   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
196 }
197 
198 /// Diagnose a reference to a field with no object available.
diagnoseInstanceReference(Sema & SemaRef,const CXXScopeSpec & SS,NamedDecl * Rep,const DeclarationNameInfo & nameInfo)199 static void diagnoseInstanceReference(Sema &SemaRef,
200                                       const CXXScopeSpec &SS,
201                                       NamedDecl *Rep,
202                                       const DeclarationNameInfo &nameInfo) {
203   SourceLocation Loc = nameInfo.getLoc();
204   SourceRange Range(Loc);
205   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
206 
207   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
208   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
209   CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
210   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
211 
212   bool InStaticMethod = Method && Method->isStatic();
213   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
214 
215   if (IsField && InStaticMethod)
216     // "invalid use of member 'x' in static member function"
217     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
218         << Range << nameInfo.getName();
219   else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
220            !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
221     // Unqualified lookup in a non-static member function found a member of an
222     // enclosing class.
223     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
224       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
225   else if (IsField)
226     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
227       << nameInfo.getName() << Range;
228   else
229     SemaRef.Diag(Loc, diag::err_member_call_without_object)
230       << Range;
231 }
232 
233 /// Builds an expression which might be an implicit member expression.
234 ExprResult
BuildPossibleImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)235 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
236                                       SourceLocation TemplateKWLoc,
237                                       LookupResult &R,
238                                 const TemplateArgumentListInfo *TemplateArgs) {
239   switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
240   case IMA_Instance:
241     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
242 
243   case IMA_Mixed:
244   case IMA_Mixed_Unrelated:
245   case IMA_Unresolved:
246     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
247 
248   case IMA_Field_Uneval_Context:
249     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
250       << R.getLookupNameInfo().getName();
251     // Fall through.
252   case IMA_Static:
253   case IMA_Abstract:
254   case IMA_Mixed_StaticContext:
255   case IMA_Unresolved_StaticContext:
256     if (TemplateArgs || TemplateKWLoc.isValid())
257       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
258     return BuildDeclarationNameExpr(SS, R, false);
259 
260   case IMA_Error_StaticContext:
261   case IMA_Error_Unrelated:
262     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
263                               R.getLookupNameInfo());
264     return ExprError();
265   }
266 
267   llvm_unreachable("unexpected instance member access kind");
268 }
269 
270 /// Determine whether input char is from rgba component set.
271 static bool
IsRGBA(char c)272 IsRGBA(char c) {
273   switch (c) {
274   case 'r':
275   case 'g':
276   case 'b':
277   case 'a':
278     return true;
279   default:
280     return false;
281   }
282 }
283 
284 /// Check an ext-vector component access expression.
285 ///
286 /// VK should be set in advance to the value kind of the base
287 /// expression.
288 static QualType
CheckExtVectorComponent(Sema & S,QualType baseType,ExprValueKind & VK,SourceLocation OpLoc,const IdentifierInfo * CompName,SourceLocation CompLoc)289 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
290                         SourceLocation OpLoc, const IdentifierInfo *CompName,
291                         SourceLocation CompLoc) {
292   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
293   // see FIXME there.
294   //
295   // FIXME: This logic can be greatly simplified by splitting it along
296   // halving/not halving and reworking the component checking.
297   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
298 
299   // The vector accessor can't exceed the number of elements.
300   const char *compStr = CompName->getNameStart();
301 
302   // This flag determines whether or not the component is one of the four
303   // special names that indicate a subset of exactly half the elements are
304   // to be selected.
305   bool HalvingSwizzle = false;
306 
307   // This flag determines whether or not CompName has an 's' char prefix,
308   // indicating that it is a string of hex values to be used as vector indices.
309   bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
310 
311   bool HasRepeated = false;
312   bool HasIndex[16] = {};
313 
314   int Idx;
315 
316   // Check that we've found one of the special components, or that the component
317   // names must come from the same set.
318   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
319       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
320     HalvingSwizzle = true;
321   } else if (!HexSwizzle &&
322              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
323     bool HasRGBA = IsRGBA(*compStr);
324     do {
325       if (HasRGBA != IsRGBA(*compStr))
326         break;
327       if (HasIndex[Idx]) HasRepeated = true;
328       HasIndex[Idx] = true;
329       compStr++;
330     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
331   } else {
332     if (HexSwizzle) compStr++;
333     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
334       if (HasIndex[Idx]) HasRepeated = true;
335       HasIndex[Idx] = true;
336       compStr++;
337     }
338   }
339 
340   if (!HalvingSwizzle && *compStr) {
341     // We didn't get to the end of the string. This means the component names
342     // didn't come from the same set *or* we encountered an illegal name.
343     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
344       << StringRef(compStr, 1) << SourceRange(CompLoc);
345     return QualType();
346   }
347 
348   // Ensure no component accessor exceeds the width of the vector type it
349   // operates on.
350   if (!HalvingSwizzle) {
351     compStr = CompName->getNameStart();
352 
353     if (HexSwizzle)
354       compStr++;
355 
356     while (*compStr) {
357       if (!vecType->isAccessorWithinNumElements(*compStr++)) {
358         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
359           << baseType << SourceRange(CompLoc);
360         return QualType();
361       }
362     }
363   }
364 
365   // The component accessor looks fine - now we need to compute the actual type.
366   // The vector type is implied by the component accessor. For example,
367   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
368   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
369   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
370   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
371                                      : CompName->getLength();
372   if (HexSwizzle)
373     CompSize--;
374 
375   if (CompSize == 1)
376     return vecType->getElementType();
377 
378   if (HasRepeated) VK = VK_RValue;
379 
380   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
381   // Now look up the TypeDefDecl from the vector type. Without this,
382   // diagostics look bad. We want extended vector types to appear built-in.
383   for (Sema::ExtVectorDeclsType::iterator
384          I = S.ExtVectorDecls.begin(S.getExternalSource()),
385          E = S.ExtVectorDecls.end();
386        I != E; ++I) {
387     if ((*I)->getUnderlyingType() == VT)
388       return S.Context.getTypedefType(*I);
389   }
390 
391   return VT; // should never get here (a typedef type should always be found).
392 }
393 
FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl * PDecl,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)394 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
395                                                 IdentifierInfo *Member,
396                                                 const Selector &Sel,
397                                                 ASTContext &Context) {
398   if (Member)
399     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
400       return PD;
401   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
402     return OMD;
403 
404   for (const auto *I : PDecl->protocols()) {
405     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
406                                                            Context))
407       return D;
408   }
409   return nullptr;
410 }
411 
FindGetterSetterNameDecl(const ObjCObjectPointerType * QIdTy,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)412 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
413                                       IdentifierInfo *Member,
414                                       const Selector &Sel,
415                                       ASTContext &Context) {
416   // Check protocols on qualified interfaces.
417   Decl *GDecl = nullptr;
418   for (const auto *I : QIdTy->quals()) {
419     if (Member)
420       if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) {
421         GDecl = PD;
422         break;
423       }
424     // Also must look for a getter or setter name which uses property syntax.
425     if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
426       GDecl = OMD;
427       break;
428     }
429   }
430   if (!GDecl) {
431     for (const auto *I : QIdTy->quals()) {
432       // Search in the protocol-qualifier list of current protocol.
433       GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
434       if (GDecl)
435         return GDecl;
436     }
437   }
438   return GDecl;
439 }
440 
441 ExprResult
ActOnDependentMemberExpr(Expr * BaseExpr,QualType BaseType,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)442 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
443                                bool IsArrow, SourceLocation OpLoc,
444                                const CXXScopeSpec &SS,
445                                SourceLocation TemplateKWLoc,
446                                NamedDecl *FirstQualifierInScope,
447                                const DeclarationNameInfo &NameInfo,
448                                const TemplateArgumentListInfo *TemplateArgs) {
449   // Even in dependent contexts, try to diagnose base expressions with
450   // obviously wrong types, e.g.:
451   //
452   // T* t;
453   // t.f;
454   //
455   // In Obj-C++, however, the above expression is valid, since it could be
456   // accessing the 'f' property if T is an Obj-C interface. The extra check
457   // allows this, while still reporting an error if T is a struct pointer.
458   if (!IsArrow) {
459     const PointerType *PT = BaseType->getAs<PointerType>();
460     if (PT && (!getLangOpts().ObjC1 ||
461                PT->getPointeeType()->isRecordType())) {
462       assert(BaseExpr && "cannot happen with implicit member accesses");
463       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
464         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
465       return ExprError();
466     }
467   }
468 
469   assert(BaseType->isDependentType() ||
470          NameInfo.getName().isDependentName() ||
471          isDependentScopeSpecifier(SS));
472 
473   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
474   // must have pointer type, and the accessed type is the pointee.
475   return CXXDependentScopeMemberExpr::Create(
476       Context, BaseExpr, BaseType, IsArrow, OpLoc,
477       SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
478       NameInfo, TemplateArgs);
479 }
480 
481 /// We know that the given qualified member reference points only to
482 /// declarations which do not belong to the static type of the base
483 /// expression.  Diagnose the problem.
DiagnoseQualifiedMemberReference(Sema & SemaRef,Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,NamedDecl * rep,const DeclarationNameInfo & nameInfo)484 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
485                                              Expr *BaseExpr,
486                                              QualType BaseType,
487                                              const CXXScopeSpec &SS,
488                                              NamedDecl *rep,
489                                        const DeclarationNameInfo &nameInfo) {
490   // If this is an implicit member access, use a different set of
491   // diagnostics.
492   if (!BaseExpr)
493     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
494 
495   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
496     << SS.getRange() << rep << BaseType;
497 }
498 
499 // Check whether the declarations we found through a nested-name
500 // specifier in a member expression are actually members of the base
501 // type.  The restriction here is:
502 //
503 //   C++ [expr.ref]p2:
504 //     ... In these cases, the id-expression shall name a
505 //     member of the class or of one of its base classes.
506 //
507 // So it's perfectly legitimate for the nested-name specifier to name
508 // an unrelated class, and for us to find an overload set including
509 // decls from classes which are not superclasses, as long as the decl
510 // we actually pick through overload resolution is from a superclass.
CheckQualifiedMemberReference(Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,const LookupResult & R)511 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
512                                          QualType BaseType,
513                                          const CXXScopeSpec &SS,
514                                          const LookupResult &R) {
515   CXXRecordDecl *BaseRecord =
516     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
517   if (!BaseRecord) {
518     // We can't check this yet because the base type is still
519     // dependent.
520     assert(BaseType->isDependentType());
521     return false;
522   }
523 
524   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
525     // If this is an implicit member reference and we find a
526     // non-instance member, it's not an error.
527     if (!BaseExpr && !(*I)->isCXXInstanceMember())
528       return false;
529 
530     // Note that we use the DC of the decl, not the underlying decl.
531     DeclContext *DC = (*I)->getDeclContext();
532     while (DC->isTransparentContext())
533       DC = DC->getParent();
534 
535     if (!DC->isRecord())
536       continue;
537 
538     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
539     if (BaseRecord->getCanonicalDecl() == MemberRecord ||
540         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
541       return false;
542   }
543 
544   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
545                                    R.getRepresentativeDecl(),
546                                    R.getLookupNameInfo());
547   return true;
548 }
549 
550 namespace {
551 
552 // Callback to only accept typo corrections that are either a ValueDecl or a
553 // FunctionTemplateDecl and are declared in the current record or, for a C++
554 // classes, one of its base classes.
555 class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
556  public:
RecordMemberExprValidatorCCC(const RecordType * RTy)557   explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
558       : Record(RTy->getDecl()) {}
559 
ValidateCandidate(const TypoCorrection & candidate)560   bool ValidateCandidate(const TypoCorrection &candidate) override {
561     NamedDecl *ND = candidate.getCorrectionDecl();
562     // Don't accept candidates that cannot be member functions, constants,
563     // variables, or templates.
564     if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
565       return false;
566 
567     // Accept candidates that occur in the current record.
568     if (Record->containsDecl(ND))
569       return true;
570 
571     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
572       // Accept candidates that occur in any of the current class' base classes.
573       for (const auto &BS : RD->bases()) {
574         if (const RecordType *BSTy = dyn_cast_or_null<RecordType>(
575                 BS.getType().getTypePtrOrNull())) {
576           if (BSTy->getDecl()->containsDecl(ND))
577             return true;
578         }
579       }
580     }
581 
582     return false;
583   }
584 
585  private:
586   const RecordDecl *const Record;
587 };
588 
589 }
590 
591 static bool
LookupMemberExprInRecord(Sema & SemaRef,LookupResult & R,SourceRange BaseRange,const RecordType * RTy,SourceLocation OpLoc,CXXScopeSpec & SS,bool HasTemplateArgs)592 LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
593                          SourceRange BaseRange, const RecordType *RTy,
594                          SourceLocation OpLoc, CXXScopeSpec &SS,
595                          bool HasTemplateArgs) {
596   RecordDecl *RDecl = RTy->getDecl();
597   if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
598       SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
599                                   diag::err_typecheck_incomplete_tag,
600                                   BaseRange))
601     return true;
602 
603   if (HasTemplateArgs) {
604     // LookupTemplateName doesn't expect these both to exist simultaneously.
605     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
606 
607     bool MOUS;
608     SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
609     return false;
610   }
611 
612   DeclContext *DC = RDecl;
613   if (SS.isSet()) {
614     // If the member name was a qualified-id, look into the
615     // nested-name-specifier.
616     DC = SemaRef.computeDeclContext(SS, false);
617 
618     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
619       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
620         << SS.getRange() << DC;
621       return true;
622     }
623 
624     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
625 
626     if (!isa<TypeDecl>(DC)) {
627       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
628         << DC << SS.getRange();
629       return true;
630     }
631   }
632 
633   // The record definition is complete, now look up the member.
634   SemaRef.LookupQualifiedName(R, DC);
635 
636   if (!R.empty())
637     return false;
638 
639   // We didn't find anything with the given name, so try to correct
640   // for typos.
641   DeclarationName Name = R.getLookupName();
642   RecordMemberExprValidatorCCC Validator(RTy);
643   TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
644                                                  R.getLookupKind(), nullptr,
645                                                  &SS, Validator,
646                                                  Sema::CTK_ErrorRecovery, DC);
647   R.clear();
648   if (Corrected.isResolved() && !Corrected.isKeyword()) {
649     R.setLookupName(Corrected.getCorrection());
650     for (TypoCorrection::decl_iterator DI = Corrected.begin(),
651                                        DIEnd = Corrected.end();
652          DI != DIEnd; ++DI) {
653       R.addDecl(*DI);
654     }
655     R.resolveKind();
656 
657     // If we're typo-correcting to an overloaded name, we don't yet have enough
658     // information to do overload resolution, so we don't know which previous
659     // declaration to point to.
660     if (Corrected.isOverloaded())
661       Corrected.setCorrectionDecl(nullptr);
662     bool DroppedSpecifier =
663         Corrected.WillReplaceSpecifier() &&
664         Name.getAsString() == Corrected.getAsString(SemaRef.getLangOpts());
665     SemaRef.diagnoseTypo(Corrected,
666                          SemaRef.PDiag(diag::err_no_member_suggest)
667                            << Name << DC << DroppedSpecifier << SS.getRange());
668   }
669 
670   return false;
671 }
672 
673 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
674                                    ExprResult &BaseExpr, bool &IsArrow,
675                                    SourceLocation OpLoc, CXXScopeSpec &SS,
676                                    Decl *ObjCImpDecl, bool HasTemplateArgs);
677 
678 ExprResult
BuildMemberReferenceExpr(Expr * Base,QualType BaseType,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,ActOnMemberAccessExtraArgs * ExtraArgs)679 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
680                                SourceLocation OpLoc, bool IsArrow,
681                                CXXScopeSpec &SS,
682                                SourceLocation TemplateKWLoc,
683                                NamedDecl *FirstQualifierInScope,
684                                const DeclarationNameInfo &NameInfo,
685                                const TemplateArgumentListInfo *TemplateArgs,
686                                ActOnMemberAccessExtraArgs *ExtraArgs) {
687   if (BaseType->isDependentType() ||
688       (SS.isSet() && isDependentScopeSpecifier(SS)))
689     return ActOnDependentMemberExpr(Base, BaseType,
690                                     IsArrow, OpLoc,
691                                     SS, TemplateKWLoc, FirstQualifierInScope,
692                                     NameInfo, TemplateArgs);
693 
694   LookupResult R(*this, NameInfo, LookupMemberName);
695 
696   // Implicit member accesses.
697   if (!Base) {
698     QualType RecordTy = BaseType;
699     if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
700     if (LookupMemberExprInRecord(*this, R, SourceRange(),
701                                  RecordTy->getAs<RecordType>(),
702                                  OpLoc, SS, TemplateArgs != nullptr))
703       return ExprError();
704 
705   // Explicit member accesses.
706   } else {
707     ExprResult BaseResult = Base;
708     ExprResult Result = LookupMemberExpr(
709         *this, R, BaseResult, IsArrow, OpLoc, SS,
710         ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
711         TemplateArgs != nullptr);
712 
713     if (BaseResult.isInvalid())
714       return ExprError();
715     Base = BaseResult.get();
716 
717     if (Result.isInvalid())
718       return ExprError();
719 
720     if (Result.get())
721       return Result;
722 
723     // LookupMemberExpr can modify Base, and thus change BaseType
724     BaseType = Base->getType();
725   }
726 
727   return BuildMemberReferenceExpr(Base, BaseType,
728                                   OpLoc, IsArrow, SS, TemplateKWLoc,
729                                   FirstQualifierInScope, R, TemplateArgs,
730                                   false, ExtraArgs);
731 }
732 
733 static ExprResult
734 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
735                         const CXXScopeSpec &SS, FieldDecl *Field,
736                         DeclAccessPair FoundDecl,
737                         const DeclarationNameInfo &MemberNameInfo);
738 
739 ExprResult
BuildAnonymousStructUnionMemberReference(const CXXScopeSpec & SS,SourceLocation loc,IndirectFieldDecl * indirectField,DeclAccessPair foundDecl,Expr * baseObjectExpr,SourceLocation opLoc)740 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
741                                                SourceLocation loc,
742                                                IndirectFieldDecl *indirectField,
743                                                DeclAccessPair foundDecl,
744                                                Expr *baseObjectExpr,
745                                                SourceLocation opLoc) {
746   // First, build the expression that refers to the base object.
747 
748   bool baseObjectIsPointer = false;
749   Qualifiers baseQuals;
750 
751   // Case 1:  the base of the indirect field is not a field.
752   VarDecl *baseVariable = indirectField->getVarDecl();
753   CXXScopeSpec EmptySS;
754   if (baseVariable) {
755     assert(baseVariable->getType()->isRecordType());
756 
757     // In principle we could have a member access expression that
758     // accesses an anonymous struct/union that's a static member of
759     // the base object's class.  However, under the current standard,
760     // static data members cannot be anonymous structs or unions.
761     // Supporting this is as easy as building a MemberExpr here.
762     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
763 
764     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
765 
766     ExprResult result
767       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
768     if (result.isInvalid()) return ExprError();
769 
770     baseObjectExpr = result.get();
771     baseObjectIsPointer = false;
772     baseQuals = baseObjectExpr->getType().getQualifiers();
773 
774     // Case 2: the base of the indirect field is a field and the user
775     // wrote a member expression.
776   } else if (baseObjectExpr) {
777     // The caller provided the base object expression. Determine
778     // whether its a pointer and whether it adds any qualifiers to the
779     // anonymous struct/union fields we're looking into.
780     QualType objectType = baseObjectExpr->getType();
781 
782     if (const PointerType *ptr = objectType->getAs<PointerType>()) {
783       baseObjectIsPointer = true;
784       objectType = ptr->getPointeeType();
785     } else {
786       baseObjectIsPointer = false;
787     }
788     baseQuals = objectType.getQualifiers();
789 
790     // Case 3: the base of the indirect field is a field and we should
791     // build an implicit member access.
792   } else {
793     // We've found a member of an anonymous struct/union that is
794     // inside a non-anonymous struct/union, so in a well-formed
795     // program our base object expression is "this".
796     QualType ThisTy = getCurrentThisType();
797     if (ThisTy.isNull()) {
798       Diag(loc, diag::err_invalid_member_use_in_static_method)
799         << indirectField->getDeclName();
800       return ExprError();
801     }
802 
803     // Our base object expression is "this".
804     CheckCXXThisCapture(loc);
805     baseObjectExpr
806       = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
807     baseObjectIsPointer = true;
808     baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
809   }
810 
811   // Build the implicit member references to the field of the
812   // anonymous struct/union.
813   Expr *result = baseObjectExpr;
814   IndirectFieldDecl::chain_iterator
815   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
816 
817   // Build the first member access in the chain with full information.
818   if (!baseVariable) {
819     FieldDecl *field = cast<FieldDecl>(*FI);
820 
821     // Make a nameInfo that properly uses the anonymous name.
822     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
823 
824     result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
825                                      EmptySS, field, foundDecl,
826                                      memberNameInfo).get();
827     if (!result)
828       return ExprError();
829 
830     // FIXME: check qualified member access
831   }
832 
833   // In all cases, we should now skip the first declaration in the chain.
834   ++FI;
835 
836   while (FI != FEnd) {
837     FieldDecl *field = cast<FieldDecl>(*FI++);
838 
839     // FIXME: these are somewhat meaningless
840     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
841     DeclAccessPair fakeFoundDecl =
842         DeclAccessPair::make(field, field->getAccess());
843 
844     result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
845                                      (FI == FEnd? SS : EmptySS), field,
846                                      fakeFoundDecl, memberNameInfo).get();
847   }
848 
849   return result;
850 }
851 
852 static ExprResult
BuildMSPropertyRefExpr(Sema & S,Expr * BaseExpr,bool IsArrow,const CXXScopeSpec & SS,MSPropertyDecl * PD,const DeclarationNameInfo & NameInfo)853 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
854                        const CXXScopeSpec &SS,
855                        MSPropertyDecl *PD,
856                        const DeclarationNameInfo &NameInfo) {
857   // Property names are always simple identifiers and therefore never
858   // require any interesting additional storage.
859   return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
860                                            S.Context.PseudoObjectTy, VK_LValue,
861                                            SS.getWithLocInContext(S.Context),
862                                            NameInfo.getLoc());
863 }
864 
865 /// \brief Build a MemberExpr AST node.
866 static MemberExpr *
BuildMemberExpr(Sema & SemaRef,ASTContext & C,Expr * Base,bool isArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,ValueDecl * Member,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo,QualType Ty,ExprValueKind VK,ExprObjectKind OK,const TemplateArgumentListInfo * TemplateArgs=nullptr)867 BuildMemberExpr(Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
868                 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
869                 ValueDecl *Member, DeclAccessPair FoundDecl,
870                 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
871                 ExprValueKind VK, ExprObjectKind OK,
872                 const TemplateArgumentListInfo *TemplateArgs = nullptr) {
873   assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
874   MemberExpr *E =
875       MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
876                          TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
877                          TemplateArgs, Ty, VK, OK);
878   SemaRef.MarkMemberReferenced(E);
879   return E;
880 }
881 
882 ExprResult
BuildMemberReferenceExpr(Expr * BaseExpr,QualType BaseExprType,SourceLocation OpLoc,bool IsArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool SuppressQualifierCheck,ActOnMemberAccessExtraArgs * ExtraArgs)883 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
884                                SourceLocation OpLoc, bool IsArrow,
885                                const CXXScopeSpec &SS,
886                                SourceLocation TemplateKWLoc,
887                                NamedDecl *FirstQualifierInScope,
888                                LookupResult &R,
889                                const TemplateArgumentListInfo *TemplateArgs,
890                                bool SuppressQualifierCheck,
891                                ActOnMemberAccessExtraArgs *ExtraArgs) {
892   QualType BaseType = BaseExprType;
893   if (IsArrow) {
894     assert(BaseType->isPointerType());
895     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
896   }
897   R.setBaseObjectType(BaseType);
898 
899   LambdaScopeInfo *const CurLSI = getCurLambda();
900   // If this is an implicit member reference and the overloaded
901   // name refers to both static and non-static member functions
902   // (i.e. BaseExpr is null) and if we are currently processing a lambda,
903   // check if we should/can capture 'this'...
904   // Keep this example in mind:
905   //  struct X {
906   //   void f(int) { }
907   //   static void f(double) { }
908   //
909   //   int g() {
910   //     auto L = [=](auto a) {
911   //       return [](int i) {
912   //         return [=](auto b) {
913   //           f(b);
914   //           //f(decltype(a){});
915   //         };
916   //       };
917   //     };
918   //     auto M = L(0.0);
919   //     auto N = M(3);
920   //     N(5.32); // OK, must not error.
921   //     return 0;
922   //   }
923   //  };
924   //
925   if (!BaseExpr && CurLSI) {
926     SourceLocation Loc = R.getNameLoc();
927     if (SS.getRange().isValid())
928       Loc = SS.getRange().getBegin();
929     DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
930     // If the enclosing function is not dependent, then this lambda is
931     // capture ready, so if we can capture this, do so.
932     if (!EnclosingFunctionCtx->isDependentContext()) {
933       // If the current lambda and all enclosing lambdas can capture 'this' -
934       // then go ahead and capture 'this' (since our unresolved overload set
935       // contains both static and non-static member functions).
936       if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
937         CheckCXXThisCapture(Loc);
938     } else if (CurContext->isDependentContext()) {
939       // ... since this is an implicit member reference, that might potentially
940       // involve a 'this' capture, mark 'this' for potential capture in
941       // enclosing lambdas.
942       if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
943         CurLSI->addPotentialThisCapture(Loc);
944     }
945   }
946   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
947   DeclarationName MemberName = MemberNameInfo.getName();
948   SourceLocation MemberLoc = MemberNameInfo.getLoc();
949 
950   if (R.isAmbiguous())
951     return ExprError();
952 
953   if (R.empty()) {
954     // Rederive where we looked up.
955     DeclContext *DC = (SS.isSet()
956                        ? computeDeclContext(SS, false)
957                        : BaseType->getAs<RecordType>()->getDecl());
958 
959     if (ExtraArgs) {
960       ExprResult RetryExpr;
961       if (!IsArrow && BaseExpr) {
962         SFINAETrap Trap(*this, true);
963         ParsedType ObjectType;
964         bool MayBePseudoDestructor = false;
965         RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
966                                                  OpLoc, tok::arrow, ObjectType,
967                                                  MayBePseudoDestructor);
968         if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
969           CXXScopeSpec TempSS(SS);
970           RetryExpr = ActOnMemberAccessExpr(
971               ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
972               TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
973               ExtraArgs->HasTrailingLParen);
974         }
975         if (Trap.hasErrorOccurred())
976           RetryExpr = ExprError();
977       }
978       if (RetryExpr.isUsable()) {
979         Diag(OpLoc, diag::err_no_member_overloaded_arrow)
980           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
981         return RetryExpr;
982       }
983     }
984 
985     Diag(R.getNameLoc(), diag::err_no_member)
986       << MemberName << DC
987       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
988     return ExprError();
989   }
990 
991   // Diagnose lookups that find only declarations from a non-base
992   // type.  This is possible for either qualified lookups (which may
993   // have been qualified with an unrelated type) or implicit member
994   // expressions (which were found with unqualified lookup and thus
995   // may have come from an enclosing scope).  Note that it's okay for
996   // lookup to find declarations from a non-base type as long as those
997   // aren't the ones picked by overload resolution.
998   if ((SS.isSet() || !BaseExpr ||
999        (isa<CXXThisExpr>(BaseExpr) &&
1000         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1001       !SuppressQualifierCheck &&
1002       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1003     return ExprError();
1004 
1005   // Construct an unresolved result if we in fact got an unresolved
1006   // result.
1007   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1008     // Suppress any lookup-related diagnostics; we'll do these when we
1009     // pick a member.
1010     R.suppressDiagnostics();
1011 
1012     UnresolvedMemberExpr *MemExpr
1013       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1014                                      BaseExpr, BaseExprType,
1015                                      IsArrow, OpLoc,
1016                                      SS.getWithLocInContext(Context),
1017                                      TemplateKWLoc, MemberNameInfo,
1018                                      TemplateArgs, R.begin(), R.end());
1019 
1020     return MemExpr;
1021   }
1022 
1023   assert(R.isSingleResult());
1024   DeclAccessPair FoundDecl = R.begin().getPair();
1025   NamedDecl *MemberDecl = R.getFoundDecl();
1026 
1027   // FIXME: diagnose the presence of template arguments now.
1028 
1029   // If the decl being referenced had an error, return an error for this
1030   // sub-expr without emitting another error, in order to avoid cascading
1031   // error cases.
1032   if (MemberDecl->isInvalidDecl())
1033     return ExprError();
1034 
1035   // Handle the implicit-member-access case.
1036   if (!BaseExpr) {
1037     // If this is not an instance member, convert to a non-member access.
1038     if (!MemberDecl->isCXXInstanceMember())
1039       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
1040 
1041     SourceLocation Loc = R.getNameLoc();
1042     if (SS.getRange().isValid())
1043       Loc = SS.getRange().getBegin();
1044     CheckCXXThisCapture(Loc);
1045     BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
1046   }
1047 
1048   bool ShouldCheckUse = true;
1049   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1050     // Don't diagnose the use of a virtual member function unless it's
1051     // explicitly qualified.
1052     if (MD->isVirtual() && !SS.isSet())
1053       ShouldCheckUse = false;
1054   }
1055 
1056   // Check the use of this member.
1057   if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1058     return ExprError();
1059 
1060   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1061     return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
1062                                    SS, FD, FoundDecl, MemberNameInfo);
1063 
1064   if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1065     return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1066                                   MemberNameInfo);
1067 
1068   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1069     // We may have found a field within an anonymous union or struct
1070     // (C++ [class.union]).
1071     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1072                                                     FoundDecl, BaseExpr,
1073                                                     OpLoc);
1074 
1075   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1076     return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1077                            Var, FoundDecl, MemberNameInfo,
1078                            Var->getType().getNonReferenceType(), VK_LValue,
1079                            OK_Ordinary);
1080   }
1081 
1082   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1083     ExprValueKind valueKind;
1084     QualType type;
1085     if (MemberFn->isInstance()) {
1086       valueKind = VK_RValue;
1087       type = Context.BoundMemberTy;
1088     } else {
1089       valueKind = VK_LValue;
1090       type = MemberFn->getType();
1091     }
1092 
1093     return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1094                            MemberFn, FoundDecl, MemberNameInfo, type, valueKind,
1095                            OK_Ordinary);
1096   }
1097   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1098 
1099   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1100     return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1101                            Enum, FoundDecl, MemberNameInfo, Enum->getType(),
1102                            VK_RValue, OK_Ordinary);
1103   }
1104 
1105   // We found something that we didn't expect. Complain.
1106   if (isa<TypeDecl>(MemberDecl))
1107     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1108       << MemberName << BaseType << int(IsArrow);
1109   else
1110     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1111       << MemberName << BaseType << int(IsArrow);
1112 
1113   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1114     << MemberName;
1115   R.suppressDiagnostics();
1116   return ExprError();
1117 }
1118 
1119 /// Given that normal member access failed on the given expression,
1120 /// and given that the expression's type involves builtin-id or
1121 /// builtin-Class, decide whether substituting in the redefinition
1122 /// types would be profitable.  The redefinition type is whatever
1123 /// this translation unit tried to typedef to id/Class;  we store
1124 /// it to the side and then re-use it in places like this.
ShouldTryAgainWithRedefinitionType(Sema & S,ExprResult & base)1125 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1126   const ObjCObjectPointerType *opty
1127     = base.get()->getType()->getAs<ObjCObjectPointerType>();
1128   if (!opty) return false;
1129 
1130   const ObjCObjectType *ty = opty->getObjectType();
1131 
1132   QualType redef;
1133   if (ty->isObjCId()) {
1134     redef = S.Context.getObjCIdRedefinitionType();
1135   } else if (ty->isObjCClass()) {
1136     redef = S.Context.getObjCClassRedefinitionType();
1137   } else {
1138     return false;
1139   }
1140 
1141   // Do the substitution as long as the redefinition type isn't just a
1142   // possibly-qualified pointer to builtin-id or builtin-Class again.
1143   opty = redef->getAs<ObjCObjectPointerType>();
1144   if (opty && !opty->getObjectType()->getInterface())
1145     return false;
1146 
1147   base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1148   return true;
1149 }
1150 
isRecordType(QualType T)1151 static bool isRecordType(QualType T) {
1152   return T->isRecordType();
1153 }
isPointerToRecordType(QualType T)1154 static bool isPointerToRecordType(QualType T) {
1155   if (const PointerType *PT = T->getAs<PointerType>())
1156     return PT->getPointeeType()->isRecordType();
1157   return false;
1158 }
1159 
1160 /// Perform conversions on the LHS of a member access expression.
1161 ExprResult
PerformMemberExprBaseConversion(Expr * Base,bool IsArrow)1162 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1163   if (IsArrow && !Base->getType()->isFunctionType())
1164     return DefaultFunctionArrayLvalueConversion(Base);
1165 
1166   return CheckPlaceholderExpr(Base);
1167 }
1168 
1169 /// Look up the given member of the given non-type-dependent
1170 /// expression.  This can return in one of two ways:
1171 ///  * If it returns a sentinel null-but-valid result, the caller will
1172 ///    assume that lookup was performed and the results written into
1173 ///    the provided structure.  It will take over from there.
1174 ///  * Otherwise, the returned expression will be produced in place of
1175 ///    an ordinary member expression.
1176 ///
1177 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1178 /// fixed for ObjC++.
LookupMemberExpr(Sema & S,LookupResult & R,ExprResult & BaseExpr,bool & IsArrow,SourceLocation OpLoc,CXXScopeSpec & SS,Decl * ObjCImpDecl,bool HasTemplateArgs)1179 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1180                                    ExprResult &BaseExpr, bool &IsArrow,
1181                                    SourceLocation OpLoc, CXXScopeSpec &SS,
1182                                    Decl *ObjCImpDecl, bool HasTemplateArgs) {
1183   assert(BaseExpr.get() && "no base expression");
1184 
1185   // Perform default conversions.
1186   BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1187   if (BaseExpr.isInvalid())
1188     return ExprError();
1189 
1190   QualType BaseType = BaseExpr.get()->getType();
1191   assert(!BaseType->isDependentType());
1192 
1193   DeclarationName MemberName = R.getLookupName();
1194   SourceLocation MemberLoc = R.getNameLoc();
1195 
1196   // For later type-checking purposes, turn arrow accesses into dot
1197   // accesses.  The only access type we support that doesn't follow
1198   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1199   // and those never use arrows, so this is unaffected.
1200   if (IsArrow) {
1201     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1202       BaseType = Ptr->getPointeeType();
1203     else if (const ObjCObjectPointerType *Ptr
1204                = BaseType->getAs<ObjCObjectPointerType>())
1205       BaseType = Ptr->getPointeeType();
1206     else if (BaseType->isRecordType()) {
1207       // Recover from arrow accesses to records, e.g.:
1208       //   struct MyRecord foo;
1209       //   foo->bar
1210       // This is actually well-formed in C++ if MyRecord has an
1211       // overloaded operator->, but that should have been dealt with
1212       // by now--or a diagnostic message already issued if a problem
1213       // was encountered while looking for the overloaded operator->.
1214       if (!S.getLangOpts().CPlusPlus) {
1215         S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1216           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1217           << FixItHint::CreateReplacement(OpLoc, ".");
1218       }
1219       IsArrow = false;
1220     } else if (BaseType->isFunctionType()) {
1221       goto fail;
1222     } else {
1223       S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1224         << BaseType << BaseExpr.get()->getSourceRange();
1225       return ExprError();
1226     }
1227   }
1228 
1229   // Handle field access to simple records.
1230   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1231     if (LookupMemberExprInRecord(S, R, BaseExpr.get()->getSourceRange(),
1232                                  RTy, OpLoc, SS, HasTemplateArgs))
1233       return ExprError();
1234 
1235     // Returning valid-but-null is how we indicate to the caller that
1236     // the lookup result was filled in.
1237     return ExprResult((Expr *)nullptr);
1238   }
1239 
1240   // Handle ivar access to Objective-C objects.
1241   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1242     if (!SS.isEmpty() && !SS.isInvalid()) {
1243       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1244         << 1 << SS.getScopeRep()
1245         << FixItHint::CreateRemoval(SS.getRange());
1246       SS.clear();
1247     }
1248 
1249     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1250 
1251     // There are three cases for the base type:
1252     //   - builtin id (qualified or unqualified)
1253     //   - builtin Class (qualified or unqualified)
1254     //   - an interface
1255     ObjCInterfaceDecl *IDecl = OTy->getInterface();
1256     if (!IDecl) {
1257       if (S.getLangOpts().ObjCAutoRefCount &&
1258           (OTy->isObjCId() || OTy->isObjCClass()))
1259         goto fail;
1260       // There's an implicit 'isa' ivar on all objects.
1261       // But we only actually find it this way on objects of type 'id',
1262       // apparently.
1263       if (OTy->isObjCId() && Member->isStr("isa"))
1264         return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1265                                            OpLoc, S.Context.getObjCClassType());
1266       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1267         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1268                                 ObjCImpDecl, HasTemplateArgs);
1269       goto fail;
1270     }
1271 
1272     if (S.RequireCompleteType(OpLoc, BaseType,
1273                               diag::err_typecheck_incomplete_tag,
1274                               BaseExpr.get()))
1275       return ExprError();
1276 
1277     ObjCInterfaceDecl *ClassDeclared = nullptr;
1278     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1279 
1280     if (!IV) {
1281       // Attempt to correct for typos in ivar names.
1282       DeclFilterCCC<ObjCIvarDecl> Validator;
1283       Validator.IsObjCIvarLookup = IsArrow;
1284       if (TypoCorrection Corrected = S.CorrectTypo(
1285               R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1286               Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1287         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1288         S.diagnoseTypo(
1289             Corrected,
1290             S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1291                 << IDecl->getDeclName() << MemberName);
1292 
1293         // Figure out the class that declares the ivar.
1294         assert(!ClassDeclared);
1295         Decl *D = cast<Decl>(IV->getDeclContext());
1296         if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1297           D = CAT->getClassInterface();
1298         ClassDeclared = cast<ObjCInterfaceDecl>(D);
1299       } else {
1300         if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1301           S.Diag(MemberLoc, diag::err_property_found_suggest)
1302               << Member << BaseExpr.get()->getType()
1303               << FixItHint::CreateReplacement(OpLoc, ".");
1304           return ExprError();
1305         }
1306 
1307         S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1308             << IDecl->getDeclName() << MemberName
1309             << BaseExpr.get()->getSourceRange();
1310         return ExprError();
1311       }
1312     }
1313 
1314     assert(ClassDeclared);
1315 
1316     // If the decl being referenced had an error, return an error for this
1317     // sub-expr without emitting another error, in order to avoid cascading
1318     // error cases.
1319     if (IV->isInvalidDecl())
1320       return ExprError();
1321 
1322     // Check whether we can reference this field.
1323     if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1324       return ExprError();
1325     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1326         IV->getAccessControl() != ObjCIvarDecl::Package) {
1327       ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1328       if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1329         ClassOfMethodDecl =  MD->getClassInterface();
1330       else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1331         // Case of a c-function declared inside an objc implementation.
1332         // FIXME: For a c-style function nested inside an objc implementation
1333         // class, there is no implementation context available, so we pass
1334         // down the context as argument to this routine. Ideally, this context
1335         // need be passed down in the AST node and somehow calculated from the
1336         // AST for a function decl.
1337         if (ObjCImplementationDecl *IMPD =
1338               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1339           ClassOfMethodDecl = IMPD->getClassInterface();
1340         else if (ObjCCategoryImplDecl* CatImplClass =
1341                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1342           ClassOfMethodDecl = CatImplClass->getClassInterface();
1343       }
1344       if (!S.getLangOpts().DebuggerSupport) {
1345         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1346           if (!declaresSameEntity(ClassDeclared, IDecl) ||
1347               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1348             S.Diag(MemberLoc, diag::error_private_ivar_access)
1349               << IV->getDeclName();
1350         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1351           // @protected
1352           S.Diag(MemberLoc, diag::error_protected_ivar_access)
1353               << IV->getDeclName();
1354       }
1355     }
1356     bool warn = true;
1357     if (S.getLangOpts().ObjCAutoRefCount) {
1358       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1359       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1360         if (UO->getOpcode() == UO_Deref)
1361           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1362 
1363       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1364         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1365           S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1366           warn = false;
1367         }
1368     }
1369     if (warn) {
1370       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1371         ObjCMethodFamily MF = MD->getMethodFamily();
1372         warn = (MF != OMF_init && MF != OMF_dealloc &&
1373                 MF != OMF_finalize &&
1374                 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1375       }
1376       if (warn)
1377         S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1378     }
1379 
1380     ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1381         IV, IV->getType(), MemberLoc, OpLoc, BaseExpr.get(), IsArrow);
1382 
1383     if (S.getLangOpts().ObjCAutoRefCount) {
1384       if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1385         if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1386           S.recordUseOfEvaluatedWeak(Result);
1387       }
1388     }
1389 
1390     return Result;
1391   }
1392 
1393   // Objective-C property access.
1394   const ObjCObjectPointerType *OPT;
1395   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1396     if (!SS.isEmpty() && !SS.isInvalid()) {
1397       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1398           << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1399       SS.clear();
1400     }
1401 
1402     // This actually uses the base as an r-value.
1403     BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1404     if (BaseExpr.isInvalid())
1405       return ExprError();
1406 
1407     assert(S.Context.hasSameUnqualifiedType(BaseType,
1408                                             BaseExpr.get()->getType()));
1409 
1410     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1411 
1412     const ObjCObjectType *OT = OPT->getObjectType();
1413 
1414     // id, with and without qualifiers.
1415     if (OT->isObjCId()) {
1416       // Check protocols on qualified interfaces.
1417       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1418       if (Decl *PMDecl =
1419               FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1420         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1421           // Check the use of this declaration
1422           if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1423             return ExprError();
1424 
1425           return new (S.Context)
1426               ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1427                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1428         }
1429 
1430         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1431           // Check the use of this method.
1432           if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
1433             return ExprError();
1434           Selector SetterSel =
1435             SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1436                                                    S.PP.getSelectorTable(),
1437                                                    Member);
1438           ObjCMethodDecl *SMD = nullptr;
1439           if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1440                                                      /*Property id*/ nullptr,
1441                                                      SetterSel, S.Context))
1442             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1443 
1444           return new (S.Context)
1445               ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1446                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1447         }
1448       }
1449       // Use of id.member can only be for a property reference. Do not
1450       // use the 'id' redefinition in this case.
1451       if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1452         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1453                                 ObjCImpDecl, HasTemplateArgs);
1454 
1455       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1456                          << MemberName << BaseType);
1457     }
1458 
1459     // 'Class', unqualified only.
1460     if (OT->isObjCClass()) {
1461       // Only works in a method declaration (??!).
1462       ObjCMethodDecl *MD = S.getCurMethodDecl();
1463       if (!MD) {
1464         if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1465           return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1466                                   ObjCImpDecl, HasTemplateArgs);
1467 
1468         goto fail;
1469       }
1470 
1471       // Also must look for a getter name which uses property syntax.
1472       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1473       ObjCInterfaceDecl *IFace = MD->getClassInterface();
1474       ObjCMethodDecl *Getter;
1475       if ((Getter = IFace->lookupClassMethod(Sel))) {
1476         // Check the use of this method.
1477         if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1478           return ExprError();
1479       } else
1480         Getter = IFace->lookupPrivateMethod(Sel, false);
1481       // If we found a getter then this may be a valid dot-reference, we
1482       // will look for the matching setter, in case it is needed.
1483       Selector SetterSel =
1484         SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1485                                                S.PP.getSelectorTable(),
1486                                                Member);
1487       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1488       if (!Setter) {
1489         // If this reference is in an @implementation, also check for 'private'
1490         // methods.
1491         Setter = IFace->lookupPrivateMethod(SetterSel, false);
1492       }
1493 
1494       if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1495         return ExprError();
1496 
1497       if (Getter || Setter) {
1498         return new (S.Context) ObjCPropertyRefExpr(
1499             Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1500             OK_ObjCProperty, MemberLoc, BaseExpr.get());
1501       }
1502 
1503       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1504         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1505                                 ObjCImpDecl, HasTemplateArgs);
1506 
1507       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1508                          << MemberName << BaseType);
1509     }
1510 
1511     // Normal property access.
1512     return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1513                                        MemberLoc, SourceLocation(), QualType(),
1514                                        false);
1515   }
1516 
1517   // Handle 'field access' to vectors, such as 'V.xx'.
1518   if (BaseType->isExtVectorType()) {
1519     // FIXME: this expr should store IsArrow.
1520     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1521     ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1522     QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1523                                            Member, MemberLoc);
1524     if (ret.isNull())
1525       return ExprError();
1526 
1527     return new (S.Context)
1528         ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1529   }
1530 
1531   // Adjust builtin-sel to the appropriate redefinition type if that's
1532   // not just a pointer to builtin-sel again.
1533   if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1534       !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1535     BaseExpr = S.ImpCastExprToType(
1536         BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1537     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1538                             ObjCImpDecl, HasTemplateArgs);
1539   }
1540 
1541   // Failure cases.
1542  fail:
1543 
1544   // Recover from dot accesses to pointers, e.g.:
1545   //   type *foo;
1546   //   foo.bar
1547   // This is actually well-formed in two cases:
1548   //   - 'type' is an Objective C type
1549   //   - 'bar' is a pseudo-destructor name which happens to refer to
1550   //     the appropriate pointer type
1551   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1552     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1553         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1554       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1555           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1556           << FixItHint::CreateReplacement(OpLoc, "->");
1557 
1558       // Recurse as an -> access.
1559       IsArrow = true;
1560       return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1561                               ObjCImpDecl, HasTemplateArgs);
1562     }
1563   }
1564 
1565   // If the user is trying to apply -> or . to a function name, it's probably
1566   // because they forgot parentheses to call that function.
1567   if (S.tryToRecoverWithCall(
1568           BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1569           /*complain*/ false,
1570           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1571     if (BaseExpr.isInvalid())
1572       return ExprError();
1573     BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1574     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1575                             ObjCImpDecl, HasTemplateArgs);
1576   }
1577 
1578   S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1579     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1580 
1581   return ExprError();
1582 }
1583 
1584 /// The main callback when the parser finds something like
1585 ///   expression . [nested-name-specifier] identifier
1586 ///   expression -> [nested-name-specifier] identifier
1587 /// where 'identifier' encompasses a fairly broad spectrum of
1588 /// possibilities, including destructor and operator references.
1589 ///
1590 /// \param OpKind either tok::arrow or tok::period
1591 /// \param HasTrailingLParen whether the next token is '(', which
1592 ///   is used to diagnose mis-uses of special members that can
1593 ///   only be called
1594 /// \param ObjCImpDecl the current Objective-C \@implementation
1595 ///   decl; this is an ugly hack around the fact that Objective-C
1596 ///   \@implementations aren't properly put in the context chain
ActOnMemberAccessExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,Decl * ObjCImpDecl,bool HasTrailingLParen)1597 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1598                                        SourceLocation OpLoc,
1599                                        tok::TokenKind OpKind,
1600                                        CXXScopeSpec &SS,
1601                                        SourceLocation TemplateKWLoc,
1602                                        UnqualifiedId &Id,
1603                                        Decl *ObjCImpDecl,
1604                                        bool HasTrailingLParen) {
1605   if (SS.isSet() && SS.isInvalid())
1606     return ExprError();
1607 
1608   // The only way a reference to a destructor can be used is to
1609   // immediately call it. If the next token is not a '(', produce
1610   // a diagnostic and build the call now.
1611   if (!HasTrailingLParen &&
1612       Id.getKind() == UnqualifiedId::IK_DestructorName) {
1613     ExprResult DtorAccess =
1614         ActOnMemberAccessExpr(S, Base, OpLoc, OpKind, SS, TemplateKWLoc, Id,
1615                               ObjCImpDecl, /*HasTrailingLParen*/true);
1616     if (DtorAccess.isInvalid())
1617       return DtorAccess;
1618     return DiagnoseDtorReference(Id.getLocStart(), DtorAccess.get());
1619   }
1620 
1621   // Warn about the explicit constructor calls Microsoft extension.
1622   if (getLangOpts().MicrosoftExt &&
1623       Id.getKind() == UnqualifiedId::IK_ConstructorName)
1624     Diag(Id.getSourceRange().getBegin(),
1625          diag::ext_ms_explicit_constructor_call);
1626 
1627   TemplateArgumentListInfo TemplateArgsBuffer;
1628 
1629   // Decompose the name into its component parts.
1630   DeclarationNameInfo NameInfo;
1631   const TemplateArgumentListInfo *TemplateArgs;
1632   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1633                          NameInfo, TemplateArgs);
1634 
1635   DeclarationName Name = NameInfo.getName();
1636   bool IsArrow = (OpKind == tok::arrow);
1637 
1638   NamedDecl *FirstQualifierInScope
1639     = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1640 
1641   // This is a postfix expression, so get rid of ParenListExprs.
1642   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1643   if (Result.isInvalid()) return ExprError();
1644   Base = Result.get();
1645 
1646   if (Base->getType()->isDependentType() || Name.isDependentName() ||
1647       isDependentScopeSpecifier(SS)) {
1648     return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1649                                     TemplateKWLoc, FirstQualifierInScope,
1650                                     NameInfo, TemplateArgs);
1651   }
1652 
1653   ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl,
1654                                           HasTrailingLParen};
1655   return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
1656                                   TemplateKWLoc, FirstQualifierInScope,
1657                                   NameInfo, TemplateArgs, &ExtraArgs);
1658 }
1659 
1660 static ExprResult
BuildFieldReferenceExpr(Sema & S,Expr * BaseExpr,bool IsArrow,const CXXScopeSpec & SS,FieldDecl * Field,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo)1661 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1662                         const CXXScopeSpec &SS, FieldDecl *Field,
1663                         DeclAccessPair FoundDecl,
1664                         const DeclarationNameInfo &MemberNameInfo) {
1665   // x.a is an l-value if 'a' has a reference type. Otherwise:
1666   // x.a is an l-value/x-value/pr-value if the base is (and note
1667   //   that *x is always an l-value), except that if the base isn't
1668   //   an ordinary object then we must have an rvalue.
1669   ExprValueKind VK = VK_LValue;
1670   ExprObjectKind OK = OK_Ordinary;
1671   if (!IsArrow) {
1672     if (BaseExpr->getObjectKind() == OK_Ordinary)
1673       VK = BaseExpr->getValueKind();
1674     else
1675       VK = VK_RValue;
1676   }
1677   if (VK != VK_RValue && Field->isBitField())
1678     OK = OK_BitField;
1679 
1680   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1681   QualType MemberType = Field->getType();
1682   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1683     MemberType = Ref->getPointeeType();
1684     VK = VK_LValue;
1685   } else {
1686     QualType BaseType = BaseExpr->getType();
1687     if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1688 
1689     Qualifiers BaseQuals = BaseType.getQualifiers();
1690 
1691     // GC attributes are never picked up by members.
1692     BaseQuals.removeObjCGCAttr();
1693 
1694     // CVR attributes from the base are picked up by members,
1695     // except that 'mutable' members don't pick up 'const'.
1696     if (Field->isMutable()) BaseQuals.removeConst();
1697 
1698     Qualifiers MemberQuals
1699     = S.Context.getCanonicalType(MemberType).getQualifiers();
1700 
1701     assert(!MemberQuals.hasAddressSpace());
1702 
1703 
1704     Qualifiers Combined = BaseQuals + MemberQuals;
1705     if (Combined != MemberQuals)
1706       MemberType = S.Context.getQualifiedType(MemberType, Combined);
1707   }
1708 
1709   S.UnusedPrivateFields.remove(Field);
1710 
1711   ExprResult Base =
1712   S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1713                                   FoundDecl, Field);
1714   if (Base.isInvalid())
1715     return ExprError();
1716   return BuildMemberExpr(S, S.Context, Base.get(), IsArrow, SS,
1717                          /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1718                          MemberNameInfo, MemberType, VK, OK);
1719 }
1720 
1721 /// Builds an implicit member access expression.  The current context
1722 /// is known to be an instance method, and the given unqualified lookup
1723 /// set is known to contain only instance members, at least one of which
1724 /// is from an appropriate type.
1725 ExprResult
BuildImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool IsKnownInstance)1726 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1727                               SourceLocation TemplateKWLoc,
1728                               LookupResult &R,
1729                               const TemplateArgumentListInfo *TemplateArgs,
1730                               bool IsKnownInstance) {
1731   assert(!R.empty() && !R.isAmbiguous());
1732 
1733   SourceLocation loc = R.getNameLoc();
1734 
1735   // If this is known to be an instance access, go ahead and build an
1736   // implicit 'this' expression now.
1737   // 'this' expression now.
1738   QualType ThisTy = getCurrentThisType();
1739   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1740 
1741   Expr *baseExpr = nullptr; // null signifies implicit access
1742   if (IsKnownInstance) {
1743     SourceLocation Loc = R.getNameLoc();
1744     if (SS.getRange().isValid())
1745       Loc = SS.getRange().getBegin();
1746     CheckCXXThisCapture(Loc);
1747     baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1748   }
1749 
1750   return BuildMemberReferenceExpr(baseExpr, ThisTy,
1751                                   /*OpLoc*/ SourceLocation(),
1752                                   /*IsArrow*/ true,
1753                                   SS, TemplateKWLoc,
1754                                   /*FirstQualifierInScope*/ nullptr,
1755                                   R, TemplateArgs);
1756 }
1757