1 //===- ThreadSafetyTIL.h ---------------------------------------*- C++ --*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT in the llvm repository for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a simple Typed Intermediate Language, or TIL, that is used
11 // by the thread safety analysis (See ThreadSafety.cpp). The TIL is intended
12 // to be largely independent of clang, in the hope that the analysis can be
13 // reused for other non-C++ languages. All dependencies on clang/llvm should
14 // go in ThreadSafetyUtil.h.
15 //
16 // Thread safety analysis works by comparing mutex expressions, e.g.
17 //
18 // class A { Mutex mu; int dat GUARDED_BY(this->mu); }
19 // class B { A a; }
20 //
21 // void foo(B* b) {
22 // (*b).a.mu.lock(); // locks (*b).a.mu
23 // b->a.dat = 0; // substitute &b->a for 'this';
24 // // requires lock on (&b->a)->mu
25 // (b->a.mu).unlock(); // unlocks (b->a.mu)
26 // }
27 //
28 // As illustrated by the above example, clang Exprs are not well-suited to
29 // represent mutex expressions directly, since there is no easy way to compare
30 // Exprs for equivalence. The thread safety analysis thus lowers clang Exprs
31 // into a simple intermediate language (IL). The IL supports:
32 //
33 // (1) comparisons for semantic equality of expressions
34 // (2) SSA renaming of variables
35 // (3) wildcards and pattern matching over expressions
36 // (4) hash-based expression lookup
37 //
38 // The TIL is currently very experimental, is intended only for use within
39 // the thread safety analysis, and is subject to change without notice.
40 // After the API stabilizes and matures, it may be appropriate to make this
41 // more generally available to other analyses.
42 //
43 // UNDER CONSTRUCTION. USE AT YOUR OWN RISK.
44 //
45 //===----------------------------------------------------------------------===//
46
47 #ifndef LLVM_CLANG_THREAD_SAFETY_TIL_H
48 #define LLVM_CLANG_THREAD_SAFETY_TIL_H
49
50 // All clang include dependencies for this file must be put in
51 // ThreadSafetyUtil.h.
52 #include "ThreadSafetyUtil.h"
53
54 #include <stdint.h>
55 #include <algorithm>
56 #include <cassert>
57 #include <cstddef>
58 #include <utility>
59
60
61 namespace clang {
62 namespace threadSafety {
63 namespace til {
64
65
66 enum TIL_Opcode {
67 #define TIL_OPCODE_DEF(X) COP_##X,
68 #include "ThreadSafetyOps.def"
69 #undef TIL_OPCODE_DEF
70 };
71
72 enum TIL_UnaryOpcode : unsigned char {
73 UOP_Minus, // -
74 UOP_BitNot, // ~
75 UOP_LogicNot // !
76 };
77
78 enum TIL_BinaryOpcode : unsigned char {
79 BOP_Mul, // *
80 BOP_Div, // /
81 BOP_Rem, // %
82 BOP_Add, // +
83 BOP_Sub, // -
84 BOP_Shl, // <<
85 BOP_Shr, // >>
86 BOP_BitAnd, // &
87 BOP_BitXor, // ^
88 BOP_BitOr, // |
89 BOP_Eq, // ==
90 BOP_Neq, // !=
91 BOP_Lt, // <
92 BOP_Leq, // <=
93 BOP_LogicAnd, // &&
94 BOP_LogicOr // ||
95 };
96
97 enum TIL_CastOpcode : unsigned char {
98 CAST_none = 0,
99 CAST_extendNum, // extend precision of numeric type
100 CAST_truncNum, // truncate precision of numeric type
101 CAST_toFloat, // convert to floating point type
102 CAST_toInt, // convert to integer type
103 };
104
105 const TIL_Opcode COP_Min = COP_Future;
106 const TIL_Opcode COP_Max = COP_Branch;
107 const TIL_UnaryOpcode UOP_Min = UOP_Minus;
108 const TIL_UnaryOpcode UOP_Max = UOP_LogicNot;
109 const TIL_BinaryOpcode BOP_Min = BOP_Mul;
110 const TIL_BinaryOpcode BOP_Max = BOP_LogicOr;
111 const TIL_CastOpcode CAST_Min = CAST_none;
112 const TIL_CastOpcode CAST_Max = CAST_toInt;
113
114 StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
115 StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
116
117
118 // ValueTypes are data types that can actually be held in registers.
119 // All variables and expressions must have a vBNF_Nonealue type.
120 // Pointer types are further subdivided into the various heap-allocated
121 // types, such as functions, records, etc.
122 // Structured types that are passed by value (e.g. complex numbers)
123 // require special handling; they use BT_ValueRef, and size ST_0.
124 struct ValueType {
125 enum BaseType : unsigned char {
126 BT_Void = 0,
127 BT_Bool,
128 BT_Int,
129 BT_Float,
130 BT_String, // String literals
131 BT_Pointer,
132 BT_ValueRef
133 };
134
135 enum SizeType : unsigned char {
136 ST_0 = 0,
137 ST_1,
138 ST_8,
139 ST_16,
140 ST_32,
141 ST_64,
142 ST_128
143 };
144
145 inline static SizeType getSizeType(unsigned nbytes);
146
147 template <class T>
148 inline static ValueType getValueType();
149
ValueTypeValueType150 ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS)
151 : Base(B), Size(Sz), Signed(S), VectSize(VS)
152 { }
153
154 BaseType Base;
155 SizeType Size;
156 bool Signed;
157 unsigned char VectSize; // 0 for scalar, otherwise num elements in vector
158 };
159
160
getSizeType(unsigned nbytes)161 inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) {
162 switch (nbytes) {
163 case 1: return ST_8;
164 case 2: return ST_16;
165 case 4: return ST_32;
166 case 8: return ST_64;
167 case 16: return ST_128;
168 default: return ST_0;
169 }
170 }
171
172
173 template<>
174 inline ValueType ValueType::getValueType<void>() {
175 return ValueType(BT_Void, ST_0, false, 0);
176 }
177
178 template<>
179 inline ValueType ValueType::getValueType<bool>() {
180 return ValueType(BT_Bool, ST_1, false, 0);
181 }
182
183 template<>
184 inline ValueType ValueType::getValueType<int8_t>() {
185 return ValueType(BT_Int, ST_8, true, 0);
186 }
187
188 template<>
189 inline ValueType ValueType::getValueType<uint8_t>() {
190 return ValueType(BT_Int, ST_8, false, 0);
191 }
192
193 template<>
194 inline ValueType ValueType::getValueType<int16_t>() {
195 return ValueType(BT_Int, ST_16, true, 0);
196 }
197
198 template<>
199 inline ValueType ValueType::getValueType<uint16_t>() {
200 return ValueType(BT_Int, ST_16, false, 0);
201 }
202
203 template<>
204 inline ValueType ValueType::getValueType<int32_t>() {
205 return ValueType(BT_Int, ST_32, true, 0);
206 }
207
208 template<>
209 inline ValueType ValueType::getValueType<uint32_t>() {
210 return ValueType(BT_Int, ST_32, false, 0);
211 }
212
213 template<>
214 inline ValueType ValueType::getValueType<int64_t>() {
215 return ValueType(BT_Int, ST_64, true, 0);
216 }
217
218 template<>
219 inline ValueType ValueType::getValueType<uint64_t>() {
220 return ValueType(BT_Int, ST_64, false, 0);
221 }
222
223 template<>
224 inline ValueType ValueType::getValueType<float>() {
225 return ValueType(BT_Float, ST_32, true, 0);
226 }
227
228 template<>
229 inline ValueType ValueType::getValueType<double>() {
230 return ValueType(BT_Float, ST_64, true, 0);
231 }
232
233 template<>
234 inline ValueType ValueType::getValueType<long double>() {
235 return ValueType(BT_Float, ST_128, true, 0);
236 }
237
238 template<>
239 inline ValueType ValueType::getValueType<StringRef>() {
240 return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0);
241 }
242
243 template<>
244 inline ValueType ValueType::getValueType<void*>() {
245 return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0);
246 }
247
248
249
250 // Base class for AST nodes in the typed intermediate language.
251 class SExpr {
252 public:
opcode()253 TIL_Opcode opcode() const { return static_cast<TIL_Opcode>(Opcode); }
254
255 // Subclasses of SExpr must define the following:
256 //
257 // This(const This& E, ...) {
258 // copy constructor: construct copy of E, with some additional arguments.
259 // }
260 //
261 // template <class V>
262 // typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
263 // traverse all subexpressions, following the traversal/rewriter interface.
264 // }
265 //
266 // template <class C> typename C::CType compare(CType* E, C& Cmp) {
267 // compare all subexpressions, following the comparator interface
268 // }
269
new(size_t S,MemRegionRef & R)270 void *operator new(size_t S, MemRegionRef &R) {
271 return ::operator new(S, R);
272 }
273
274 // SExpr objects cannot be deleted.
275 // This declaration is public to workaround a gcc bug that breaks building
276 // with REQUIRES_EH=1.
277 void operator delete(void *) LLVM_DELETED_FUNCTION;
278
279 protected:
SExpr(TIL_Opcode Op)280 SExpr(TIL_Opcode Op) : Opcode(Op), Reserved(0), Flags(0) {}
SExpr(const SExpr & E)281 SExpr(const SExpr &E) : Opcode(E.Opcode), Reserved(0), Flags(E.Flags) {}
282
283 const unsigned char Opcode;
284 unsigned char Reserved;
285 unsigned short Flags;
286
287 private:
288 SExpr() LLVM_DELETED_FUNCTION;
289
290 // SExpr objects must be created in an arena.
291 void *operator new(size_t) LLVM_DELETED_FUNCTION;
292 };
293
294
295 // Class for owning references to SExprs.
296 // Includes attach/detach logic for counting variable references and lazy
297 // rewriting strategies.
298 class SExprRef {
299 public:
SExprRef()300 SExprRef() : Ptr(nullptr) { }
SExprRef(std::nullptr_t P)301 SExprRef(std::nullptr_t P) : Ptr(nullptr) { }
SExprRef(SExprRef && R)302 SExprRef(SExprRef &&R) : Ptr(R.Ptr) { R.Ptr = nullptr; }
303
304 // Defined after Variable and Future, below.
305 inline SExprRef(SExpr *P);
306 inline ~SExprRef();
307
get()308 SExpr *get() { return Ptr; }
get()309 const SExpr *get() const { return Ptr; }
310
311 SExpr *operator->() { return get(); }
312 const SExpr *operator->() const { return get(); }
313
314 SExpr &operator*() { return *Ptr; }
315 const SExpr &operator*() const { return *Ptr; }
316
317 bool operator==(const SExprRef &R) const { return Ptr == R.Ptr; }
318 bool operator!=(const SExprRef &R) const { return !operator==(R); }
319 bool operator==(const SExpr *P) const { return Ptr == P; }
320 bool operator!=(const SExpr *P) const { return !operator==(P); }
321 bool operator==(std::nullptr_t) const { return Ptr == nullptr; }
322 bool operator!=(std::nullptr_t) const { return Ptr != nullptr; }
323
324 inline void reset(SExpr *E);
325
326 private:
327 inline void attach();
328 inline void detach();
329
330 SExpr *Ptr;
331 };
332
333
334 // Contains various helper functions for SExprs.
335 namespace ThreadSafetyTIL {
isTrivial(const SExpr * E)336 inline bool isTrivial(const SExpr *E) {
337 unsigned Op = E->opcode();
338 return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
339 }
340 }
341
342 // Nodes which declare variables
343 class Function;
344 class SFunction;
345 class BasicBlock;
346 class Let;
347
348
349 // A named variable, e.g. "x".
350 //
351 // There are two distinct places in which a Variable can appear in the AST.
352 // A variable declaration introduces a new variable, and can occur in 3 places:
353 // Let-expressions: (Let (x = t) u)
354 // Functions: (Function (x : t) u)
355 // Self-applicable functions (SFunction (x) t)
356 //
357 // If a variable occurs in any other location, it is a reference to an existing
358 // variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
359 // allocate a separate AST node for variable references; a reference is just a
360 // pointer to the original declaration.
361 class Variable : public SExpr {
362 public:
classof(const SExpr * E)363 static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
364
365 // Let-variable, function parameter, or self-variable
366 enum VariableKind {
367 VK_Let,
368 VK_LetBB,
369 VK_Fun,
370 VK_SFun
371 };
372
373 // These are defined after SExprRef contructor, below
374 inline Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr);
375 inline Variable(StringRef s, SExpr *D = nullptr);
376 inline Variable(const Variable &Vd, SExpr *D);
377
kind()378 VariableKind kind() const { return static_cast<VariableKind>(Flags); }
379
name()380 const StringRef name() const { return Name; }
clangDecl()381 const clang::ValueDecl *clangDecl() const { return Cvdecl; }
382
383 // Returns the definition (for let vars) or type (for parameter & self vars)
definition()384 SExpr *definition() { return Definition.get(); }
definition()385 const SExpr *definition() const { return Definition.get(); }
386
attachVar()387 void attachVar() const { ++NumUses; }
detachVar()388 void detachVar() const { assert(NumUses > 0); --NumUses; }
389
getID()390 unsigned getID() const { return Id; }
getBlockID()391 unsigned getBlockID() const { return BlockID; }
392
setName(StringRef S)393 void setName(StringRef S) { Name = S; }
setID(unsigned Bid,unsigned I)394 void setID(unsigned Bid, unsigned I) {
395 BlockID = static_cast<unsigned short>(Bid);
396 Id = static_cast<unsigned short>(I);
397 }
setClangDecl(const clang::ValueDecl * VD)398 void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }
399 void setDefinition(SExpr *E);
setKind(VariableKind K)400 void setKind(VariableKind K) { Flags = K; }
401
402 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)403 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
404 // This routine is only called for variable references.
405 return Vs.reduceVariableRef(this);
406 }
407
compare(Variable * E,C & Cmp)408 template <class C> typename C::CType compare(Variable* E, C& Cmp) {
409 return Cmp.compareVariableRefs(this, E);
410 }
411
412 private:
413 friend class Function;
414 friend class SFunction;
415 friend class BasicBlock;
416 friend class Let;
417
418 StringRef Name; // The name of the variable.
419 SExprRef Definition; // The TIL type or definition
420 const clang::ValueDecl *Cvdecl; // The clang declaration for this variable.
421
422 unsigned short BlockID;
423 unsigned short Id;
424 mutable unsigned NumUses;
425 };
426
427
428 // Placeholder for an expression that has not yet been created.
429 // Used to implement lazy copy and rewriting strategies.
430 class Future : public SExpr {
431 public:
classof(const SExpr * E)432 static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
433
434 enum FutureStatus {
435 FS_pending,
436 FS_evaluating,
437 FS_done
438 };
439
Future()440 Future() :
441 SExpr(COP_Future), Status(FS_pending), Result(nullptr), Location(nullptr)
442 {}
443 private:
444 virtual ~Future() LLVM_DELETED_FUNCTION;
445 public:
446
447 // Registers the location in the AST where this future is stored.
448 // Forcing the future will automatically update the AST.
registerLocation(SExprRef * Member)449 static inline void registerLocation(SExprRef *Member) {
450 if (Future *F = dyn_cast_or_null<Future>(Member->get()))
451 F->Location = Member;
452 }
453
454 // A lazy rewriting strategy should subclass Future and override this method.
create()455 virtual SExpr *create() { return nullptr; }
456
457 // Return the result of this future if it exists, otherwise return null.
maybeGetResult()458 SExpr *maybeGetResult() {
459 return Result;
460 }
461
462 // Return the result of this future; forcing it if necessary.
result()463 SExpr *result() {
464 switch (Status) {
465 case FS_pending:
466 force();
467 return Result;
468 case FS_evaluating:
469 return nullptr; // infinite loop; illegal recursion.
470 case FS_done:
471 return Result;
472 }
473 }
474
475 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)476 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
477 assert(Result && "Cannot traverse Future that has not been forced.");
478 return Vs.traverse(Result, Ctx);
479 }
480
compare(Future * E,C & Cmp)481 template <class C> typename C::CType compare(Future* E, C& Cmp) {
482 if (!Result || !E->Result)
483 return Cmp.comparePointers(this, E);
484 return Cmp.compare(Result, E->Result);
485 }
486
487 private:
488 // Force the future.
489 inline void force();
490
491 FutureStatus Status;
492 SExpr *Result;
493 SExprRef *Location;
494 };
495
496
attach()497 inline void SExprRef::attach() {
498 if (!Ptr)
499 return;
500
501 TIL_Opcode Op = Ptr->opcode();
502 if (Op == COP_Variable) {
503 cast<Variable>(Ptr)->attachVar();
504 } else if (Op == COP_Future) {
505 cast<Future>(Ptr)->registerLocation(this);
506 }
507 }
508
detach()509 inline void SExprRef::detach() {
510 if (Ptr && Ptr->opcode() == COP_Variable) {
511 cast<Variable>(Ptr)->detachVar();
512 }
513 }
514
SExprRef(SExpr * P)515 inline SExprRef::SExprRef(SExpr *P) : Ptr(P) {
516 attach();
517 }
518
~SExprRef()519 inline SExprRef::~SExprRef() {
520 detach();
521 }
522
reset(SExpr * P)523 inline void SExprRef::reset(SExpr *P) {
524 detach();
525 Ptr = P;
526 attach();
527 }
528
529
Variable(StringRef s,SExpr * D)530 inline Variable::Variable(StringRef s, SExpr *D)
531 : SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr),
532 BlockID(0), Id(0), NumUses(0) {
533 Flags = VK_Let;
534 }
535
Variable(SExpr * D,const clang::ValueDecl * Cvd)536 inline Variable::Variable(SExpr *D, const clang::ValueDecl *Cvd)
537 : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
538 Definition(D), Cvdecl(Cvd), BlockID(0), Id(0), NumUses(0) {
539 Flags = VK_Let;
540 }
541
Variable(const Variable & Vd,SExpr * D)542 inline Variable::Variable(const Variable &Vd, SExpr *D) // rewrite constructor
543 : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl),
544 BlockID(0), Id(0), NumUses(0) {
545 Flags = Vd.kind();
546 }
547
setDefinition(SExpr * E)548 inline void Variable::setDefinition(SExpr *E) {
549 Definition.reset(E);
550 }
551
force()552 void Future::force() {
553 Status = FS_evaluating;
554 SExpr *R = create();
555 Result = R;
556 if (Location)
557 Location->reset(R);
558 Status = FS_done;
559 }
560
561
562 // Placeholder for C++ expressions that cannot be represented in the TIL.
563 class Undefined : public SExpr {
564 public:
classof(const SExpr * E)565 static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
566
SExpr(COP_Undefined)567 Undefined(const clang::Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {}
Undefined(const Undefined & U)568 Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {}
569
570 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)571 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
572 return Vs.reduceUndefined(*this);
573 }
574
compare(Undefined * E,C & Cmp)575 template <class C> typename C::CType compare(Undefined* E, C& Cmp) {
576 return Cmp.comparePointers(Cstmt, E->Cstmt);
577 }
578
579 private:
580 const clang::Stmt *Cstmt;
581 };
582
583
584 // Placeholder for a wildcard that matches any other expression.
585 class Wildcard : public SExpr {
586 public:
classof(const SExpr * E)587 static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
588
Wildcard()589 Wildcard() : SExpr(COP_Wildcard) {}
Wildcard(const Wildcard & W)590 Wildcard(const Wildcard &W) : SExpr(W) {}
591
traverse(V & Vs,typename V::R_Ctx Ctx)592 template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
593 return Vs.reduceWildcard(*this);
594 }
595
compare(Wildcard * E,C & Cmp)596 template <class C> typename C::CType compare(Wildcard* E, C& Cmp) {
597 return Cmp.trueResult();
598 }
599 };
600
601
602 template <class T> class LiteralT;
603
604 // Base class for literal values.
605 class Literal : public SExpr {
606 public:
classof(const SExpr * E)607 static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; }
608
Literal(const clang::Expr * C)609 Literal(const clang::Expr *C)
610 : SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C)
611 { }
Literal(ValueType VT)612 Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT), Cexpr(nullptr) {}
Literal(const Literal & L)613 Literal(const Literal &L) : SExpr(L), ValType(L.ValType), Cexpr(L.Cexpr) {}
614
615 // The clang expression for this literal.
clangExpr()616 const clang::Expr *clangExpr() const { return Cexpr; }
617
valueType()618 ValueType valueType() const { return ValType; }
619
as()620 template<class T> const LiteralT<T>& as() const {
621 return *static_cast<const LiteralT<T>*>(this);
622 }
as()623 template<class T> LiteralT<T>& as() {
624 return *static_cast<LiteralT<T>*>(this);
625 }
626
627 template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
628
compare(Literal * E,C & Cmp)629 template <class C> typename C::CType compare(Literal* E, C& Cmp) {
630 // TODO -- use value, not pointer equality
631 return Cmp.comparePointers(Cexpr, E->Cexpr);
632 }
633
634 private:
635 const ValueType ValType;
636 const clang::Expr *Cexpr;
637 };
638
639
640 // Derived class for literal values, which stores the actual value.
641 template<class T>
642 class LiteralT : public Literal {
643 public:
LiteralT(T Dat)644 LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) { }
LiteralT(const LiteralT<T> & L)645 LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) { }
646
value()647 T value() const { return Val;}
value()648 T& value() { return Val; }
649
650 private:
651 T Val;
652 };
653
654
655
656 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)657 typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
658 if (Cexpr)
659 return Vs.reduceLiteral(*this);
660
661 switch (ValType.Base) {
662 case ValueType::BT_Void:
663 break;
664 case ValueType::BT_Bool:
665 return Vs.reduceLiteralT(as<bool>());
666 case ValueType::BT_Int: {
667 switch (ValType.Size) {
668 case ValueType::ST_8:
669 if (ValType.Signed)
670 return Vs.reduceLiteralT(as<int8_t>());
671 else
672 return Vs.reduceLiteralT(as<uint8_t>());
673 case ValueType::ST_16:
674 if (ValType.Signed)
675 return Vs.reduceLiteralT(as<int16_t>());
676 else
677 return Vs.reduceLiteralT(as<uint16_t>());
678 case ValueType::ST_32:
679 if (ValType.Signed)
680 return Vs.reduceLiteralT(as<int32_t>());
681 else
682 return Vs.reduceLiteralT(as<uint32_t>());
683 case ValueType::ST_64:
684 if (ValType.Signed)
685 return Vs.reduceLiteralT(as<int64_t>());
686 else
687 return Vs.reduceLiteralT(as<uint64_t>());
688 default:
689 break;
690 }
691 }
692 case ValueType::BT_Float: {
693 switch (ValType.Size) {
694 case ValueType::ST_32:
695 return Vs.reduceLiteralT(as<float>());
696 case ValueType::ST_64:
697 return Vs.reduceLiteralT(as<double>());
698 default:
699 break;
700 }
701 }
702 case ValueType::BT_String:
703 return Vs.reduceLiteralT(as<StringRef>());
704 case ValueType::BT_Pointer:
705 return Vs.reduceLiteralT(as<void*>());
706 case ValueType::BT_ValueRef:
707 break;
708 }
709 return Vs.reduceLiteral(*this);
710 }
711
712
713 // Literal pointer to an object allocated in memory.
714 // At compile time, pointer literals are represented by symbolic names.
715 class LiteralPtr : public SExpr {
716 public:
classof(const SExpr * E)717 static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
718
LiteralPtr(const clang::ValueDecl * D)719 LiteralPtr(const clang::ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {}
LiteralPtr(const LiteralPtr & R)720 LiteralPtr(const LiteralPtr &R) : SExpr(R), Cvdecl(R.Cvdecl) {}
721
722 // The clang declaration for the value that this pointer points to.
clangDecl()723 const clang::ValueDecl *clangDecl() const { return Cvdecl; }
724
725 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)726 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
727 return Vs.reduceLiteralPtr(*this);
728 }
729
compare(LiteralPtr * E,C & Cmp)730 template <class C> typename C::CType compare(LiteralPtr* E, C& Cmp) {
731 return Cmp.comparePointers(Cvdecl, E->Cvdecl);
732 }
733
734 private:
735 const clang::ValueDecl *Cvdecl;
736 };
737
738
739 // A function -- a.k.a. lambda abstraction.
740 // Functions with multiple arguments are created by currying,
741 // e.g. (function (x: Int) (function (y: Int) (add x y)))
742 class Function : public SExpr {
743 public:
classof(const SExpr * E)744 static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
745
Function(Variable * Vd,SExpr * Bd)746 Function(Variable *Vd, SExpr *Bd)
747 : SExpr(COP_Function), VarDecl(Vd), Body(Bd) {
748 Vd->setKind(Variable::VK_Fun);
749 }
Function(const Function & F,Variable * Vd,SExpr * Bd)750 Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor
751 : SExpr(F), VarDecl(Vd), Body(Bd) {
752 Vd->setKind(Variable::VK_Fun);
753 }
754
variableDecl()755 Variable *variableDecl() { return VarDecl; }
variableDecl()756 const Variable *variableDecl() const { return VarDecl; }
757
body()758 SExpr *body() { return Body.get(); }
body()759 const SExpr *body() const { return Body.get(); }
760
761 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)762 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
763 // This is a variable declaration, so traverse the definition.
764 auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx));
765 // Tell the rewriter to enter the scope of the function.
766 Variable *Nvd = Vs.enterScope(*VarDecl, E0);
767 auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
768 Vs.exitScope(*VarDecl);
769 return Vs.reduceFunction(*this, Nvd, E1);
770 }
771
compare(Function * E,C & Cmp)772 template <class C> typename C::CType compare(Function* E, C& Cmp) {
773 typename C::CType Ct =
774 Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
775 if (Cmp.notTrue(Ct))
776 return Ct;
777 Cmp.enterScope(variableDecl(), E->variableDecl());
778 Ct = Cmp.compare(body(), E->body());
779 Cmp.leaveScope();
780 return Ct;
781 }
782
783 private:
784 Variable *VarDecl;
785 SExprRef Body;
786 };
787
788
789 // A self-applicable function.
790 // A self-applicable function can be applied to itself. It's useful for
791 // implementing objects and late binding
792 class SFunction : public SExpr {
793 public:
classof(const SExpr * E)794 static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
795
SFunction(Variable * Vd,SExpr * B)796 SFunction(Variable *Vd, SExpr *B)
797 : SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
798 assert(Vd->Definition == nullptr);
799 Vd->setKind(Variable::VK_SFun);
800 Vd->Definition.reset(this);
801 }
SFunction(const SFunction & F,Variable * Vd,SExpr * B)802 SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
803 : SExpr(F), VarDecl(Vd), Body(B) {
804 assert(Vd->Definition == nullptr);
805 Vd->setKind(Variable::VK_SFun);
806 Vd->Definition.reset(this);
807 }
808
variableDecl()809 Variable *variableDecl() { return VarDecl; }
variableDecl()810 const Variable *variableDecl() const { return VarDecl; }
811
body()812 SExpr *body() { return Body.get(); }
body()813 const SExpr *body() const { return Body.get(); }
814
815 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)816 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
817 // A self-variable points to the SFunction itself.
818 // A rewrite must introduce the variable with a null definition, and update
819 // it after 'this' has been rewritten.
820 Variable *Nvd = Vs.enterScope(*VarDecl, nullptr);
821 auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
822 Vs.exitScope(*VarDecl);
823 // A rewrite operation will call SFun constructor to set Vvd->Definition.
824 return Vs.reduceSFunction(*this, Nvd, E1);
825 }
826
compare(SFunction * E,C & Cmp)827 template <class C> typename C::CType compare(SFunction* E, C& Cmp) {
828 Cmp.enterScope(variableDecl(), E->variableDecl());
829 typename C::CType Ct = Cmp.compare(body(), E->body());
830 Cmp.leaveScope();
831 return Ct;
832 }
833
834 private:
835 Variable *VarDecl;
836 SExprRef Body;
837 };
838
839
840 // A block of code -- e.g. the body of a function.
841 class Code : public SExpr {
842 public:
classof(const SExpr * E)843 static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
844
Code(SExpr * T,SExpr * B)845 Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {}
Code(const Code & C,SExpr * T,SExpr * B)846 Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
847 : SExpr(C), ReturnType(T), Body(B) {}
848
returnType()849 SExpr *returnType() { return ReturnType.get(); }
returnType()850 const SExpr *returnType() const { return ReturnType.get(); }
851
body()852 SExpr *body() { return Body.get(); }
body()853 const SExpr *body() const { return Body.get(); }
854
855 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)856 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
857 auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx));
858 auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
859 return Vs.reduceCode(*this, Nt, Nb);
860 }
861
compare(Code * E,C & Cmp)862 template <class C> typename C::CType compare(Code* E, C& Cmp) {
863 typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
864 if (Cmp.notTrue(Ct))
865 return Ct;
866 return Cmp.compare(body(), E->body());
867 }
868
869 private:
870 SExprRef ReturnType;
871 SExprRef Body;
872 };
873
874
875 // A typed, writable location in memory
876 class Field : public SExpr {
877 public:
classof(const SExpr * E)878 static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
879
Field(SExpr * R,SExpr * B)880 Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {}
Field(const Field & C,SExpr * R,SExpr * B)881 Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
882 : SExpr(C), Range(R), Body(B) {}
883
range()884 SExpr *range() { return Range.get(); }
range()885 const SExpr *range() const { return Range.get(); }
886
body()887 SExpr *body() { return Body.get(); }
body()888 const SExpr *body() const { return Body.get(); }
889
890 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)891 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
892 auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx));
893 auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
894 return Vs.reduceField(*this, Nr, Nb);
895 }
896
compare(Field * E,C & Cmp)897 template <class C> typename C::CType compare(Field* E, C& Cmp) {
898 typename C::CType Ct = Cmp.compare(range(), E->range());
899 if (Cmp.notTrue(Ct))
900 return Ct;
901 return Cmp.compare(body(), E->body());
902 }
903
904 private:
905 SExprRef Range;
906 SExprRef Body;
907 };
908
909
910 // Apply an argument to a function
911 class Apply : public SExpr {
912 public:
classof(const SExpr * E)913 static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
914
Apply(SExpr * F,SExpr * A)915 Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {}
Apply(const Apply & A,SExpr * F,SExpr * Ar)916 Apply(const Apply &A, SExpr *F, SExpr *Ar) // rewrite constructor
917 : SExpr(A), Fun(F), Arg(Ar)
918 {}
919
fun()920 SExpr *fun() { return Fun.get(); }
fun()921 const SExpr *fun() const { return Fun.get(); }
922
arg()923 SExpr *arg() { return Arg.get(); }
arg()924 const SExpr *arg() const { return Arg.get(); }
925
926 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)927 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
928 auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx));
929 auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx));
930 return Vs.reduceApply(*this, Nf, Na);
931 }
932
compare(Apply * E,C & Cmp)933 template <class C> typename C::CType compare(Apply* E, C& Cmp) {
934 typename C::CType Ct = Cmp.compare(fun(), E->fun());
935 if (Cmp.notTrue(Ct))
936 return Ct;
937 return Cmp.compare(arg(), E->arg());
938 }
939
940 private:
941 SExprRef Fun;
942 SExprRef Arg;
943 };
944
945
946 // Apply a self-argument to a self-applicable function
947 class SApply : public SExpr {
948 public:
classof(const SExpr * E)949 static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
950
SExpr(COP_SApply)951 SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {}
952 SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
SExpr(A)953 : SExpr(A), Sfun(Sf), Arg(Ar) {}
954
sfun()955 SExpr *sfun() { return Sfun.get(); }
sfun()956 const SExpr *sfun() const { return Sfun.get(); }
957
arg()958 SExpr *arg() { return Arg.get() ? Arg.get() : Sfun.get(); }
arg()959 const SExpr *arg() const { return Arg.get() ? Arg.get() : Sfun.get(); }
960
isDelegation()961 bool isDelegation() const { return Arg == nullptr; }
962
963 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)964 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
965 auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
966 typename V::R_SExpr Na = Arg.get() ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
967 : nullptr;
968 return Vs.reduceSApply(*this, Nf, Na);
969 }
970
compare(SApply * E,C & Cmp)971 template <class C> typename C::CType compare(SApply* E, C& Cmp) {
972 typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
973 if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
974 return Ct;
975 return Cmp.compare(arg(), E->arg());
976 }
977
978 private:
979 SExprRef Sfun;
980 SExprRef Arg;
981 };
982
983
984 // Project a named slot from a C++ struct or class.
985 class Project : public SExpr {
986 public:
classof(const SExpr * E)987 static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
988
Project(SExpr * R,StringRef SName)989 Project(SExpr *R, StringRef SName)
990 : SExpr(COP_Project), Rec(R), SlotName(SName), Cvdecl(nullptr)
991 { }
Project(SExpr * R,clang::ValueDecl * Cvd)992 Project(SExpr *R, clang::ValueDecl *Cvd)
993 : SExpr(COP_Project), Rec(R), SlotName(Cvd->getName()), Cvdecl(Cvd)
994 { }
Project(const Project & P,SExpr * R)995 Project(const Project &P, SExpr *R)
996 : SExpr(P), Rec(R), SlotName(P.SlotName), Cvdecl(P.Cvdecl)
997 { }
998
record()999 SExpr *record() { return Rec.get(); }
record()1000 const SExpr *record() const { return Rec.get(); }
1001
clangValueDecl()1002 const clang::ValueDecl *clangValueDecl() const { return Cvdecl; }
1003
slotName()1004 StringRef slotName() const {
1005 if (Cvdecl)
1006 return Cvdecl->getName();
1007 else
1008 return SlotName;
1009 }
1010
1011 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1012 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1013 auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx));
1014 return Vs.reduceProject(*this, Nr);
1015 }
1016
compare(Project * E,C & Cmp)1017 template <class C> typename C::CType compare(Project* E, C& Cmp) {
1018 typename C::CType Ct = Cmp.compare(record(), E->record());
1019 if (Cmp.notTrue(Ct))
1020 return Ct;
1021 return Cmp.comparePointers(Cvdecl, E->Cvdecl);
1022 }
1023
1024 private:
1025 SExprRef Rec;
1026 StringRef SlotName;
1027 clang::ValueDecl *Cvdecl;
1028 };
1029
1030
1031 // Call a function (after all arguments have been applied).
1032 class Call : public SExpr {
1033 public:
classof(const SExpr * E)1034 static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
1035
1036 Call(SExpr *T, const clang::CallExpr *Ce = nullptr)
SExpr(COP_Call)1037 : SExpr(COP_Call), Target(T), Cexpr(Ce) {}
Call(const Call & C,SExpr * T)1038 Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
1039
target()1040 SExpr *target() { return Target.get(); }
target()1041 const SExpr *target() const { return Target.get(); }
1042
clangCallExpr()1043 const clang::CallExpr *clangCallExpr() const { return Cexpr; }
1044
1045 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1046 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1047 auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx));
1048 return Vs.reduceCall(*this, Nt);
1049 }
1050
compare(Call * E,C & Cmp)1051 template <class C> typename C::CType compare(Call* E, C& Cmp) {
1052 return Cmp.compare(target(), E->target());
1053 }
1054
1055 private:
1056 SExprRef Target;
1057 const clang::CallExpr *Cexpr;
1058 };
1059
1060
1061 // Allocate memory for a new value on the heap or stack.
1062 class Alloc : public SExpr {
1063 public:
classof(const SExpr * E)1064 static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
1065
1066 enum AllocKind {
1067 AK_Stack,
1068 AK_Heap
1069 };
1070
Alloc(SExpr * D,AllocKind K)1071 Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; }
Alloc(const Alloc & A,SExpr * Dt)1072 Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); }
1073
kind()1074 AllocKind kind() const { return static_cast<AllocKind>(Flags); }
1075
dataType()1076 SExpr *dataType() { return Dtype.get(); }
dataType()1077 const SExpr *dataType() const { return Dtype.get(); }
1078
1079 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1080 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1081 auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx));
1082 return Vs.reduceAlloc(*this, Nd);
1083 }
1084
compare(Alloc * E,C & Cmp)1085 template <class C> typename C::CType compare(Alloc* E, C& Cmp) {
1086 typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
1087 if (Cmp.notTrue(Ct))
1088 return Ct;
1089 return Cmp.compare(dataType(), E->dataType());
1090 }
1091
1092 private:
1093 SExprRef Dtype;
1094 };
1095
1096
1097 // Load a value from memory.
1098 class Load : public SExpr {
1099 public:
classof(const SExpr * E)1100 static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
1101
Load(SExpr * P)1102 Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
Load(const Load & L,SExpr * P)1103 Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
1104
pointer()1105 SExpr *pointer() { return Ptr.get(); }
pointer()1106 const SExpr *pointer() const { return Ptr.get(); }
1107
1108 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1109 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1110 auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx));
1111 return Vs.reduceLoad(*this, Np);
1112 }
1113
compare(Load * E,C & Cmp)1114 template <class C> typename C::CType compare(Load* E, C& Cmp) {
1115 return Cmp.compare(pointer(), E->pointer());
1116 }
1117
1118 private:
1119 SExprRef Ptr;
1120 };
1121
1122
1123 // Store a value to memory.
1124 // Source is a pointer, destination is the value to store.
1125 class Store : public SExpr {
1126 public:
classof(const SExpr * E)1127 static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
1128
Store(SExpr * P,SExpr * V)1129 Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
Store(const Store & S,SExpr * P,SExpr * V)1130 Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
1131
destination()1132 SExpr *destination() { return Dest.get(); } // Address to store to
destination()1133 const SExpr *destination() const { return Dest.get(); }
1134
source()1135 SExpr *source() { return Source.get(); } // Value to store
source()1136 const SExpr *source() const { return Source.get(); }
1137
1138 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1139 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1140 auto Np = Vs.traverse(Dest, Vs.subExprCtx(Ctx));
1141 auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx));
1142 return Vs.reduceStore(*this, Np, Nv);
1143 }
1144
compare(Store * E,C & Cmp)1145 template <class C> typename C::CType compare(Store* E, C& Cmp) {
1146 typename C::CType Ct = Cmp.compare(destination(), E->destination());
1147 if (Cmp.notTrue(Ct))
1148 return Ct;
1149 return Cmp.compare(source(), E->source());
1150 }
1151
1152 private:
1153 SExprRef Dest;
1154 SExprRef Source;
1155 };
1156
1157
1158 // If p is a reference to an array, then first(p) is a reference to the first
1159 // element. The usual array notation p[i] becomes first(p + i).
1160 class ArrayIndex : public SExpr {
1161 public:
classof(const SExpr * E)1162 static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
1163
ArrayIndex(SExpr * A,SExpr * N)1164 ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {}
ArrayIndex(const ArrayIndex & E,SExpr * A,SExpr * N)1165 ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
1166 : SExpr(E), Array(A), Index(N) {}
1167
array()1168 SExpr *array() { return Array.get(); }
array()1169 const SExpr *array() const { return Array.get(); }
1170
index()1171 SExpr *index() { return Index.get(); }
index()1172 const SExpr *index() const { return Index.get(); }
1173
1174 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1175 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1176 auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1177 auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1178 return Vs.reduceArrayIndex(*this, Na, Ni);
1179 }
1180
compare(ArrayIndex * E,C & Cmp)1181 template <class C> typename C::CType compare(ArrayIndex* E, C& Cmp) {
1182 typename C::CType Ct = Cmp.compare(array(), E->array());
1183 if (Cmp.notTrue(Ct))
1184 return Ct;
1185 return Cmp.compare(index(), E->index());
1186 }
1187
1188 private:
1189 SExprRef Array;
1190 SExprRef Index;
1191 };
1192
1193
1194 // Pointer arithmetic, restricted to arrays only.
1195 // If p is a reference to an array, then p + n, where n is an integer, is
1196 // a reference to a subarray.
1197 class ArrayAdd : public SExpr {
1198 public:
classof(const SExpr * E)1199 static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
1200
ArrayAdd(SExpr * A,SExpr * N)1201 ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {}
ArrayAdd(const ArrayAdd & E,SExpr * A,SExpr * N)1202 ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
1203 : SExpr(E), Array(A), Index(N) {}
1204
array()1205 SExpr *array() { return Array.get(); }
array()1206 const SExpr *array() const { return Array.get(); }
1207
index()1208 SExpr *index() { return Index.get(); }
index()1209 const SExpr *index() const { return Index.get(); }
1210
1211 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1212 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1213 auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1214 auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1215 return Vs.reduceArrayAdd(*this, Na, Ni);
1216 }
1217
compare(ArrayAdd * E,C & Cmp)1218 template <class C> typename C::CType compare(ArrayAdd* E, C& Cmp) {
1219 typename C::CType Ct = Cmp.compare(array(), E->array());
1220 if (Cmp.notTrue(Ct))
1221 return Ct;
1222 return Cmp.compare(index(), E->index());
1223 }
1224
1225 private:
1226 SExprRef Array;
1227 SExprRef Index;
1228 };
1229
1230
1231 // Simple unary operation -- e.g. !, ~, etc.
1232 class UnaryOp : public SExpr {
1233 public:
classof(const SExpr * E)1234 static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
1235
UnaryOp(TIL_UnaryOpcode Op,SExpr * E)1236 UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) {
1237 Flags = Op;
1238 }
UnaryOp(const UnaryOp & U,SExpr * E)1239 UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; }
1240
unaryOpcode()1241 TIL_UnaryOpcode unaryOpcode() const {
1242 return static_cast<TIL_UnaryOpcode>(Flags);
1243 }
1244
expr()1245 SExpr *expr() { return Expr0.get(); }
expr()1246 const SExpr *expr() const { return Expr0.get(); }
1247
1248 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1249 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1250 auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1251 return Vs.reduceUnaryOp(*this, Ne);
1252 }
1253
compare(UnaryOp * E,C & Cmp)1254 template <class C> typename C::CType compare(UnaryOp* E, C& Cmp) {
1255 typename C::CType Ct =
1256 Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
1257 if (Cmp.notTrue(Ct))
1258 return Ct;
1259 return Cmp.compare(expr(), E->expr());
1260 }
1261
1262 private:
1263 SExprRef Expr0;
1264 };
1265
1266
1267 // Simple binary operation -- e.g. +, -, etc.
1268 class BinaryOp : public SExpr {
1269 public:
classof(const SExpr * E)1270 static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
1271
BinaryOp(TIL_BinaryOpcode Op,SExpr * E0,SExpr * E1)1272 BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1)
1273 : SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) {
1274 Flags = Op;
1275 }
BinaryOp(const BinaryOp & B,SExpr * E0,SExpr * E1)1276 BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1)
1277 : SExpr(B), Expr0(E0), Expr1(E1) {
1278 Flags = B.Flags;
1279 }
1280
binaryOpcode()1281 TIL_BinaryOpcode binaryOpcode() const {
1282 return static_cast<TIL_BinaryOpcode>(Flags);
1283 }
1284
expr0()1285 SExpr *expr0() { return Expr0.get(); }
expr0()1286 const SExpr *expr0() const { return Expr0.get(); }
1287
expr1()1288 SExpr *expr1() { return Expr1.get(); }
expr1()1289 const SExpr *expr1() const { return Expr1.get(); }
1290
1291 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1292 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1293 auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1294 auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx));
1295 return Vs.reduceBinaryOp(*this, Ne0, Ne1);
1296 }
1297
compare(BinaryOp * E,C & Cmp)1298 template <class C> typename C::CType compare(BinaryOp* E, C& Cmp) {
1299 typename C::CType Ct =
1300 Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
1301 if (Cmp.notTrue(Ct))
1302 return Ct;
1303 Ct = Cmp.compare(expr0(), E->expr0());
1304 if (Cmp.notTrue(Ct))
1305 return Ct;
1306 return Cmp.compare(expr1(), E->expr1());
1307 }
1308
1309 private:
1310 SExprRef Expr0;
1311 SExprRef Expr1;
1312 };
1313
1314
1315 // Cast expression
1316 class Cast : public SExpr {
1317 public:
classof(const SExpr * E)1318 static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
1319
Cast(TIL_CastOpcode Op,SExpr * E)1320 Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; }
Cast(const Cast & C,SExpr * E)1321 Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; }
1322
castOpcode()1323 TIL_CastOpcode castOpcode() const {
1324 return static_cast<TIL_CastOpcode>(Flags);
1325 }
1326
expr()1327 SExpr *expr() { return Expr0.get(); }
expr()1328 const SExpr *expr() const { return Expr0.get(); }
1329
1330 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1331 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1332 auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1333 return Vs.reduceCast(*this, Ne);
1334 }
1335
compare(Cast * E,C & Cmp)1336 template <class C> typename C::CType compare(Cast* E, C& Cmp) {
1337 typename C::CType Ct =
1338 Cmp.compareIntegers(castOpcode(), E->castOpcode());
1339 if (Cmp.notTrue(Ct))
1340 return Ct;
1341 return Cmp.compare(expr(), E->expr());
1342 }
1343
1344 private:
1345 SExprRef Expr0;
1346 };
1347
1348
1349 class SCFG;
1350
1351
1352 class Phi : public SExpr {
1353 public:
1354 // TODO: change to SExprRef
1355 typedef SimpleArray<SExpr *> ValArray;
1356
1357 // In minimal SSA form, all Phi nodes are MultiVal.
1358 // During conversion to SSA, incomplete Phi nodes may be introduced, which
1359 // are later determined to be SingleVal, and are thus redundant.
1360 enum Status {
1361 PH_MultiVal = 0, // Phi node has multiple distinct values. (Normal)
1362 PH_SingleVal, // Phi node has one distinct value, and can be eliminated
1363 PH_Incomplete // Phi node is incomplete
1364 };
1365
classof(const SExpr * E)1366 static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
1367
Phi()1368 Phi() : SExpr(COP_Phi) {}
Phi(MemRegionRef A,unsigned Nvals)1369 Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}
Phi(const Phi & P,ValArray && Vs)1370 Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {}
1371
values()1372 const ValArray &values() const { return Values; }
values()1373 ValArray &values() { return Values; }
1374
status()1375 Status status() const { return static_cast<Status>(Flags); }
setStatus(Status s)1376 void setStatus(Status s) { Flags = s; }
1377
1378 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1379 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1380 typename V::template Container<typename V::R_SExpr>
1381 Nvs(Vs, Values.size());
1382
1383 for (auto *Val : Values) {
1384 Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) );
1385 }
1386 return Vs.reducePhi(*this, Nvs);
1387 }
1388
compare(Phi * E,C & Cmp)1389 template <class C> typename C::CType compare(Phi *E, C &Cmp) {
1390 // TODO: implement CFG comparisons
1391 return Cmp.comparePointers(this, E);
1392 }
1393
1394 private:
1395 ValArray Values;
1396 };
1397
1398
1399 // A basic block is part of an SCFG, and can be treated as a function in
1400 // continuation passing style. It consists of a sequence of phi nodes, which
1401 // are "arguments" to the function, followed by a sequence of instructions.
1402 // Both arguments and instructions define new variables. It ends with a
1403 // branch or goto to another basic block in the same SCFG.
1404 class BasicBlock : public SExpr {
1405 public:
1406 typedef SimpleArray<Variable*> VarArray;
1407 typedef SimpleArray<BasicBlock*> BlockArray;
1408
classof(const SExpr * E)1409 static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
1410
1411 explicit BasicBlock(MemRegionRef A, BasicBlock* P = nullptr)
SExpr(COP_BasicBlock)1412 : SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),
1413 Parent(P), Terminator(nullptr)
1414 { }
BasicBlock(BasicBlock & B,VarArray && As,VarArray && Is,SExpr * T)1415 BasicBlock(BasicBlock &B, VarArray &&As, VarArray &&Is, SExpr *T)
1416 : SExpr(COP_BasicBlock), Arena(B.Arena), CFGPtr(nullptr), BlockID(0),
1417 Parent(nullptr), Args(std::move(As)), Instrs(std::move(Is)),
1418 Terminator(T)
1419 { }
1420
blockID()1421 unsigned blockID() const { return BlockID; }
numPredecessors()1422 unsigned numPredecessors() const { return Predecessors.size(); }
1423
cfg()1424 const SCFG* cfg() const { return CFGPtr; }
cfg()1425 SCFG* cfg() { return CFGPtr; }
1426
parent()1427 const BasicBlock *parent() const { return Parent; }
parent()1428 BasicBlock *parent() { return Parent; }
1429
arguments()1430 const VarArray &arguments() const { return Args; }
arguments()1431 VarArray &arguments() { return Args; }
1432
instructions()1433 const VarArray &instructions() const { return Instrs; }
instructions()1434 VarArray &instructions() { return Instrs; }
1435
predecessors()1436 const BlockArray &predecessors() const { return Predecessors; }
predecessors()1437 BlockArray &predecessors() { return Predecessors; }
1438
terminator()1439 const SExpr *terminator() const { return Terminator.get(); }
terminator()1440 SExpr *terminator() { return Terminator.get(); }
1441
setBlockID(unsigned i)1442 void setBlockID(unsigned i) { BlockID = i; }
setParent(BasicBlock * P)1443 void setParent(BasicBlock *P) { Parent = P; }
setTerminator(SExpr * E)1444 void setTerminator(SExpr *E) { Terminator.reset(E); }
1445
1446 // Add a new argument. V must define a phi-node.
addArgument(Variable * V)1447 void addArgument(Variable *V) {
1448 V->setKind(Variable::VK_LetBB);
1449 Args.reserveCheck(1, Arena);
1450 Args.push_back(V);
1451 }
1452 // Add a new instruction.
addInstruction(Variable * V)1453 void addInstruction(Variable *V) {
1454 V->setKind(Variable::VK_LetBB);
1455 Instrs.reserveCheck(1, Arena);
1456 Instrs.push_back(V);
1457 }
1458 // Add a new predecessor, and return the phi-node index for it.
1459 // Will add an argument to all phi-nodes, initialized to nullptr.
1460 unsigned addPredecessor(BasicBlock *Pred);
1461
1462 // Reserve space for Nargs arguments.
reserveArguments(unsigned Nargs)1463 void reserveArguments(unsigned Nargs) { Args.reserve(Nargs, Arena); }
1464
1465 // Reserve space for Nins instructions.
reserveInstructions(unsigned Nins)1466 void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); }
1467
1468 // Reserve space for NumPreds predecessors, including space in phi nodes.
1469 void reservePredecessors(unsigned NumPreds);
1470
1471 // Return the index of BB, or Predecessors.size if BB is not a predecessor.
findPredecessorIndex(const BasicBlock * BB)1472 unsigned findPredecessorIndex(const BasicBlock *BB) const {
1473 auto I = std::find(Predecessors.cbegin(), Predecessors.cend(), BB);
1474 return std::distance(Predecessors.cbegin(), I);
1475 }
1476
1477 // Set id numbers for variables.
1478 void renumberVars();
1479
1480 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1481 typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
1482 typename V::template Container<Variable*> Nas(Vs, Args.size());
1483 typename V::template Container<Variable*> Nis(Vs, Instrs.size());
1484
1485 // Entering the basic block should do any scope initialization.
1486 Vs.enterBasicBlock(*this);
1487
1488 for (auto *A : Args) {
1489 auto Ne = Vs.traverse(A->Definition, Vs.subExprCtx(Ctx));
1490 Variable *Nvd = Vs.enterScope(*A, Ne);
1491 Nas.push_back(Nvd);
1492 }
1493 for (auto *I : Instrs) {
1494 auto Ne = Vs.traverse(I->Definition, Vs.subExprCtx(Ctx));
1495 Variable *Nvd = Vs.enterScope(*I, Ne);
1496 Nis.push_back(Nvd);
1497 }
1498 auto Nt = Vs.traverse(Terminator, Ctx);
1499
1500 // Exiting the basic block should handle any scope cleanup.
1501 Vs.exitBasicBlock(*this);
1502
1503 return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
1504 }
1505
compare(BasicBlock * E,C & Cmp)1506 template <class C> typename C::CType compare(BasicBlock *E, C &Cmp) {
1507 // TODO: implement CFG comparisons
1508 return Cmp.comparePointers(this, E);
1509 }
1510
1511 private:
1512 friend class SCFG;
1513
1514 MemRegionRef Arena;
1515
1516 SCFG *CFGPtr; // The CFG that contains this block.
1517 unsigned BlockID; // unique id for this BB in the containing CFG
1518 BasicBlock *Parent; // The parent block is the enclosing lexical scope.
1519 // The parent dominates this block.
1520 BlockArray Predecessors; // Predecessor blocks in the CFG.
1521 VarArray Args; // Phi nodes. One argument per predecessor.
1522 VarArray Instrs; // Instructions.
1523 SExprRef Terminator; // Branch or Goto
1524 };
1525
1526
1527 // An SCFG is a control-flow graph. It consists of a set of basic blocks, each
1528 // of which terminates in a branch to another basic block. There is one
1529 // entry point, and one exit point.
1530 class SCFG : public SExpr {
1531 public:
1532 typedef SimpleArray<BasicBlock *> BlockArray;
1533 typedef BlockArray::iterator iterator;
1534 typedef BlockArray::const_iterator const_iterator;
1535
classof(const SExpr * E)1536 static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; }
1537
SCFG(MemRegionRef A,unsigned Nblocks)1538 SCFG(MemRegionRef A, unsigned Nblocks)
1539 : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks),
1540 Entry(nullptr), Exit(nullptr) {
1541 Entry = new (A) BasicBlock(A, nullptr);
1542 Exit = new (A) BasicBlock(A, Entry);
1543 auto *V = new (A) Variable(new (A) Phi());
1544 Exit->addArgument(V);
1545 add(Entry);
1546 add(Exit);
1547 }
SCFG(const SCFG & Cfg,BlockArray && Ba)1548 SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
1549 : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)),
1550 Entry(nullptr), Exit(nullptr) {
1551 // TODO: set entry and exit!
1552 }
1553
begin()1554 iterator begin() { return Blocks.begin(); }
end()1555 iterator end() { return Blocks.end(); }
1556
begin()1557 const_iterator begin() const { return cbegin(); }
end()1558 const_iterator end() const { return cend(); }
1559
cbegin()1560 const_iterator cbegin() const { return Blocks.cbegin(); }
cend()1561 const_iterator cend() const { return Blocks.cend(); }
1562
entry()1563 const BasicBlock *entry() const { return Entry; }
entry()1564 BasicBlock *entry() { return Entry; }
exit()1565 const BasicBlock *exit() const { return Exit; }
exit()1566 BasicBlock *exit() { return Exit; }
1567
add(BasicBlock * BB)1568 inline void add(BasicBlock *BB) {
1569 assert(BB->CFGPtr == nullptr || BB->CFGPtr == this);
1570 BB->setBlockID(Blocks.size());
1571 BB->CFGPtr = this;
1572 Blocks.reserveCheck(1, Arena);
1573 Blocks.push_back(BB);
1574 }
1575
setEntry(BasicBlock * BB)1576 void setEntry(BasicBlock *BB) { Entry = BB; }
setExit(BasicBlock * BB)1577 void setExit(BasicBlock *BB) { Exit = BB; }
1578
1579 // Set varable ids in all blocks.
1580 void renumberVars();
1581
1582 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1583 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1584 Vs.enterCFG(*this);
1585 typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
1586 for (auto *B : Blocks) {
1587 Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
1588 }
1589 Vs.exitCFG(*this);
1590 return Vs.reduceSCFG(*this, Bbs);
1591 }
1592
compare(SCFG * E,C & Cmp)1593 template <class C> typename C::CType compare(SCFG *E, C &Cmp) {
1594 // TODO -- implement CFG comparisons
1595 return Cmp.comparePointers(this, E);
1596 }
1597
1598 private:
1599 MemRegionRef Arena;
1600 BlockArray Blocks;
1601 BasicBlock *Entry;
1602 BasicBlock *Exit;
1603 };
1604
1605
1606 class Goto : public SExpr {
1607 public:
classof(const SExpr * E)1608 static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
1609
Goto(BasicBlock * B,unsigned I)1610 Goto(BasicBlock *B, unsigned I)
1611 : SExpr(COP_Goto), TargetBlock(B), Index(I) {}
Goto(const Goto & G,BasicBlock * B,unsigned I)1612 Goto(const Goto &G, BasicBlock *B, unsigned I)
1613 : SExpr(COP_Goto), TargetBlock(B), Index(I) {}
1614
targetBlock()1615 const BasicBlock *targetBlock() const { return TargetBlock; }
targetBlock()1616 BasicBlock *targetBlock() { return TargetBlock; }
1617
index()1618 unsigned index() const { return Index; }
1619
1620 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1621 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1622 BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
1623 return Vs.reduceGoto(*this, Ntb);
1624 }
1625
compare(Goto * E,C & Cmp)1626 template <class C> typename C::CType compare(Goto *E, C &Cmp) {
1627 // TODO -- implement CFG comparisons
1628 return Cmp.comparePointers(this, E);
1629 }
1630
1631 private:
1632 BasicBlock *TargetBlock;
1633 unsigned Index; // Index into Phi nodes of target block.
1634 };
1635
1636
1637 class Branch : public SExpr {
1638 public:
classof(const SExpr * E)1639 static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
1640
Branch(SExpr * C,BasicBlock * T,BasicBlock * E,unsigned TI,unsigned EI)1641 Branch(SExpr *C, BasicBlock *T, BasicBlock *E, unsigned TI, unsigned EI)
1642 : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
1643 ThenIndex(TI), ElseIndex(EI)
1644 {}
Branch(const Branch & Br,SExpr * C,BasicBlock * T,BasicBlock * E,unsigned TI,unsigned EI)1645 Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E,
1646 unsigned TI, unsigned EI)
1647 : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
1648 ThenIndex(TI), ElseIndex(EI)
1649 {}
1650
condition()1651 const SExpr *condition() const { return Condition; }
condition()1652 SExpr *condition() { return Condition; }
1653
thenBlock()1654 const BasicBlock *thenBlock() const { return ThenBlock; }
thenBlock()1655 BasicBlock *thenBlock() { return ThenBlock; }
1656
elseBlock()1657 const BasicBlock *elseBlock() const { return ElseBlock; }
elseBlock()1658 BasicBlock *elseBlock() { return ElseBlock; }
1659
thenIndex()1660 unsigned thenIndex() const { return ThenIndex; }
elseIndex()1661 unsigned elseIndex() const { return ElseIndex; }
1662
1663 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1664 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1665 auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1666 BasicBlock *Ntb = Vs.reduceBasicBlockRef(ThenBlock);
1667 BasicBlock *Nte = Vs.reduceBasicBlockRef(ElseBlock);
1668 return Vs.reduceBranch(*this, Nc, Ntb, Nte);
1669 }
1670
compare(Branch * E,C & Cmp)1671 template <class C> typename C::CType compare(Branch *E, C &Cmp) {
1672 // TODO -- implement CFG comparisons
1673 return Cmp.comparePointers(this, E);
1674 }
1675
1676 private:
1677 SExpr *Condition;
1678 BasicBlock *ThenBlock;
1679 BasicBlock *ElseBlock;
1680 unsigned ThenIndex;
1681 unsigned ElseIndex;
1682 };
1683
1684
1685 // An identifier, e.g. 'foo' or 'x'.
1686 // This is a pseduo-term; it will be lowered to a variable or projection.
1687 class Identifier : public SExpr {
1688 public:
classof(const SExpr * E)1689 static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
1690
Identifier(StringRef Id)1691 Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) { }
Identifier(const Identifier & I)1692 Identifier(const Identifier& I) : SExpr(I), Name(I.Name) { }
1693
name()1694 StringRef name() const { return Name; }
1695
1696 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1697 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1698 return Vs.reduceIdentifier(*this);
1699 }
1700
compare(Identifier * E,C & Cmp)1701 template <class C> typename C::CType compare(Identifier* E, C& Cmp) {
1702 return Cmp.compareStrings(name(), E->name());
1703 }
1704
1705 private:
1706 StringRef Name;
1707 };
1708
1709
1710 // An if-then-else expression.
1711 // This is a pseduo-term; it will be lowered to a branch in a CFG.
1712 class IfThenElse : public SExpr {
1713 public:
classof(const SExpr * E)1714 static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
1715
IfThenElse(SExpr * C,SExpr * T,SExpr * E)1716 IfThenElse(SExpr *C, SExpr *T, SExpr *E)
1717 : SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E)
1718 { }
IfThenElse(const IfThenElse & I,SExpr * C,SExpr * T,SExpr * E)1719 IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E)
1720 : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E)
1721 { }
1722
condition()1723 SExpr *condition() { return Condition.get(); } // Address to store to
condition()1724 const SExpr *condition() const { return Condition.get(); }
1725
thenExpr()1726 SExpr *thenExpr() { return ThenExpr.get(); } // Value to store
thenExpr()1727 const SExpr *thenExpr() const { return ThenExpr.get(); }
1728
elseExpr()1729 SExpr *elseExpr() { return ElseExpr.get(); } // Value to store
elseExpr()1730 const SExpr *elseExpr() const { return ElseExpr.get(); }
1731
1732 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1733 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1734 auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1735 auto Nt = Vs.traverse(ThenExpr, Vs.subExprCtx(Ctx));
1736 auto Ne = Vs.traverse(ElseExpr, Vs.subExprCtx(Ctx));
1737 return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
1738 }
1739
compare(IfThenElse * E,C & Cmp)1740 template <class C> typename C::CType compare(IfThenElse* E, C& Cmp) {
1741 typename C::CType Ct = Cmp.compare(condition(), E->condition());
1742 if (Cmp.notTrue(Ct))
1743 return Ct;
1744 Ct = Cmp.compare(thenExpr(), E->thenExpr());
1745 if (Cmp.notTrue(Ct))
1746 return Ct;
1747 return Cmp.compare(elseExpr(), E->elseExpr());
1748 }
1749
1750 private:
1751 SExprRef Condition;
1752 SExprRef ThenExpr;
1753 SExprRef ElseExpr;
1754 };
1755
1756
1757 // A let-expression, e.g. let x=t; u.
1758 // This is a pseduo-term; it will be lowered to instructions in a CFG.
1759 class Let : public SExpr {
1760 public:
classof(const SExpr * E)1761 static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
1762
Let(Variable * Vd,SExpr * Bd)1763 Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) {
1764 Vd->setKind(Variable::VK_Let);
1765 }
Let(const Let & L,Variable * Vd,SExpr * Bd)1766 Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) {
1767 Vd->setKind(Variable::VK_Let);
1768 }
1769
variableDecl()1770 Variable *variableDecl() { return VarDecl; }
variableDecl()1771 const Variable *variableDecl() const { return VarDecl; }
1772
body()1773 SExpr *body() { return Body.get(); }
body()1774 const SExpr *body() const { return Body.get(); }
1775
1776 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1777 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1778 // This is a variable declaration, so traverse the definition.
1779 auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx));
1780 // Tell the rewriter to enter the scope of the let variable.
1781 Variable *Nvd = Vs.enterScope(*VarDecl, E0);
1782 auto E1 = Vs.traverse(Body, Ctx);
1783 Vs.exitScope(*VarDecl);
1784 return Vs.reduceLet(*this, Nvd, E1);
1785 }
1786
compare(Let * E,C & Cmp)1787 template <class C> typename C::CType compare(Let* E, C& Cmp) {
1788 typename C::CType Ct =
1789 Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
1790 if (Cmp.notTrue(Ct))
1791 return Ct;
1792 Cmp.enterScope(variableDecl(), E->variableDecl());
1793 Ct = Cmp.compare(body(), E->body());
1794 Cmp.leaveScope();
1795 return Ct;
1796 }
1797
1798 private:
1799 Variable *VarDecl;
1800 SExprRef Body;
1801 };
1802
1803
1804
1805 SExpr *getCanonicalVal(SExpr *E);
1806 void simplifyIncompleteArg(Variable *V, til::Phi *Ph);
1807
1808
1809 } // end namespace til
1810 } // end namespace threadSafety
1811 } // end namespace clang
1812
1813 #endif // LLVM_CLANG_THREAD_SAFETY_TIL_H
1814