• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/LoopUtils.h"
36 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "loop-unroll"
40 
41 // TODO: Should these be here or in LoopUnroll?
42 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
43 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
44 
45 /// RemapInstruction - Convert the instruction operands from referencing the
46 /// current values into those specified by VMap.
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap)47 static inline void RemapInstruction(Instruction *I,
48                                     ValueToValueMapTy &VMap) {
49   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
50     Value *Op = I->getOperand(op);
51     ValueToValueMapTy::iterator It = VMap.find(Op);
52     if (It != VMap.end())
53       I->setOperand(op, It->second);
54   }
55 
56   if (PHINode *PN = dyn_cast<PHINode>(I)) {
57     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
58       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
59       if (It != VMap.end())
60         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
61     }
62   }
63 }
64 
65 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
66 /// only has one predecessor, and that predecessor only has one successor.
67 /// The LoopInfo Analysis that is passed will be kept consistent.
68 /// Returns the new combined block.
FoldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,LPPassManager * LPM)69 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
70                                             LPPassManager *LPM) {
71   // Merge basic blocks into their predecessor if there is only one distinct
72   // pred, and if there is only one distinct successor of the predecessor, and
73   // if there are no PHI nodes.
74   BasicBlock *OnlyPred = BB->getSinglePredecessor();
75   if (!OnlyPred) return nullptr;
76 
77   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
78     return nullptr;
79 
80   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
81 
82   // Resolve any PHI nodes at the start of the block.  They are all
83   // guaranteed to have exactly one entry if they exist, unless there are
84   // multiple duplicate (but guaranteed to be equal) entries for the
85   // incoming edges.  This occurs when there are multiple edges from
86   // OnlyPred to OnlySucc.
87   FoldSingleEntryPHINodes(BB);
88 
89   // Delete the unconditional branch from the predecessor...
90   OnlyPred->getInstList().pop_back();
91 
92   // Make all PHI nodes that referred to BB now refer to Pred as their
93   // source...
94   BB->replaceAllUsesWith(OnlyPred);
95 
96   // Move all definitions in the successor to the predecessor...
97   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
98 
99   // OldName will be valid until erased.
100   StringRef OldName = BB->getName();
101 
102   // Erase basic block from the function...
103 
104   // ScalarEvolution holds references to loop exit blocks.
105   if (LPM) {
106     if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
107       if (Loop *L = LI->getLoopFor(BB))
108         SE->forgetLoop(L);
109     }
110   }
111   LI->removeBlock(BB);
112 
113   // Inherit predecessor's name if it exists...
114   if (!OldName.empty() && !OnlyPred->hasName())
115     OnlyPred->setName(OldName);
116 
117   BB->eraseFromParent();
118 
119   return OnlyPred;
120 }
121 
122 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
123 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
124 /// can only fail when the loop's latch block is not terminated by a conditional
125 /// branch instruction. However, if the trip count (and multiple) are not known,
126 /// loop unrolling will mostly produce more code that is no faster.
127 ///
128 /// TripCount is generally defined as the number of times the loop header
129 /// executes. UnrollLoop relaxes the definition to permit early exits: here
130 /// TripCount is the iteration on which control exits LatchBlock if no early
131 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
132 /// terminates LatchBlock in order to remove unnecesssary instances of the
133 /// test. In other words, control may exit the loop prior to TripCount
134 /// iterations via an early branch, but control may not exit the loop from the
135 /// LatchBlock's terminator prior to TripCount iterations.
136 ///
137 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
138 /// execute without exiting the loop.
139 ///
140 /// The LoopInfo Analysis that is passed will be kept consistent.
141 ///
142 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
143 /// removed from the LoopPassManager as well. LPM can also be NULL.
144 ///
145 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
146 /// available from the Pass it must also preserve those analyses.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,bool AllowRuntime,unsigned TripMultiple,LoopInfo * LI,Pass * PP,LPPassManager * LPM)147 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
148                       bool AllowRuntime, unsigned TripMultiple,
149                       LoopInfo *LI, Pass *PP, LPPassManager *LPM) {
150   BasicBlock *Preheader = L->getLoopPreheader();
151   if (!Preheader) {
152     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
153     return false;
154   }
155 
156   BasicBlock *LatchBlock = L->getLoopLatch();
157   if (!LatchBlock) {
158     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
159     return false;
160   }
161 
162   // Loops with indirectbr cannot be cloned.
163   if (!L->isSafeToClone()) {
164     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
165     return false;
166   }
167 
168   BasicBlock *Header = L->getHeader();
169   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
170 
171   if (!BI || BI->isUnconditional()) {
172     // The loop-rotate pass can be helpful to avoid this in many cases.
173     DEBUG(dbgs() <<
174              "  Can't unroll; loop not terminated by a conditional branch.\n");
175     return false;
176   }
177 
178   if (Header->hasAddressTaken()) {
179     // The loop-rotate pass can be helpful to avoid this in many cases.
180     DEBUG(dbgs() <<
181           "  Won't unroll loop: address of header block is taken.\n");
182     return false;
183   }
184 
185   if (TripCount != 0)
186     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
187   if (TripMultiple != 1)
188     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
189 
190   // Effectively "DCE" unrolled iterations that are beyond the tripcount
191   // and will never be executed.
192   if (TripCount != 0 && Count > TripCount)
193     Count = TripCount;
194 
195   // Don't enter the unroll code if there is nothing to do. This way we don't
196   // need to support "partial unrolling by 1".
197   if (TripCount == 0 && Count < 2)
198     return false;
199 
200   assert(Count > 0);
201   assert(TripMultiple > 0);
202   assert(TripCount == 0 || TripCount % TripMultiple == 0);
203 
204   // Are we eliminating the loop control altogether?
205   bool CompletelyUnroll = Count == TripCount;
206 
207   // We assume a run-time trip count if the compiler cannot
208   // figure out the loop trip count and the unroll-runtime
209   // flag is specified.
210   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
211 
212   if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
213     return false;
214 
215   // Notify ScalarEvolution that the loop will be substantially changed,
216   // if not outright eliminated.
217   if (PP) {
218     ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
219     if (SE)
220       SE->forgetLoop(L);
221   }
222 
223   // If we know the trip count, we know the multiple...
224   unsigned BreakoutTrip = 0;
225   if (TripCount != 0) {
226     BreakoutTrip = TripCount % Count;
227     TripMultiple = 0;
228   } else {
229     // Figure out what multiple to use.
230     BreakoutTrip = TripMultiple =
231       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
232   }
233 
234   // Report the unrolling decision.
235   DebugLoc LoopLoc = L->getStartLoc();
236   Function *F = Header->getParent();
237   LLVMContext &Ctx = F->getContext();
238 
239   if (CompletelyUnroll) {
240     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
241           << " with trip count " << TripCount << "!\n");
242     emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
243                            Twine("completely unrolled loop with ") +
244                                Twine(TripCount) + " iterations");
245   } else {
246     auto EmitDiag = [&](const Twine &T) {
247       emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
248                              "unrolled loop by a factor of " + Twine(Count) +
249                                  T);
250     };
251 
252     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
253           << " by " << Count);
254     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
255       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
256       EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
257     } else if (TripMultiple != 1) {
258       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
259       EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
260     } else if (RuntimeTripCount) {
261       DEBUG(dbgs() << " with run-time trip count");
262       EmitDiag(" with run-time trip count");
263     }
264     DEBUG(dbgs() << "!\n");
265   }
266 
267   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
268   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
269 
270   // For the first iteration of the loop, we should use the precloned values for
271   // PHI nodes.  Insert associations now.
272   ValueToValueMapTy LastValueMap;
273   std::vector<PHINode*> OrigPHINode;
274   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
275     OrigPHINode.push_back(cast<PHINode>(I));
276   }
277 
278   std::vector<BasicBlock*> Headers;
279   std::vector<BasicBlock*> Latches;
280   Headers.push_back(Header);
281   Latches.push_back(LatchBlock);
282 
283   // The current on-the-fly SSA update requires blocks to be processed in
284   // reverse postorder so that LastValueMap contains the correct value at each
285   // exit.
286   LoopBlocksDFS DFS(L);
287   DFS.perform(LI);
288 
289   // Stash the DFS iterators before adding blocks to the loop.
290   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
291   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
292 
293   for (unsigned It = 1; It != Count; ++It) {
294     std::vector<BasicBlock*> NewBlocks;
295 
296     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
297       ValueToValueMapTy VMap;
298       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
299       Header->getParent()->getBasicBlockList().push_back(New);
300 
301       // Loop over all of the PHI nodes in the block, changing them to use the
302       // incoming values from the previous block.
303       if (*BB == Header)
304         for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
305           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
306           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
307           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
308             if (It > 1 && L->contains(InValI))
309               InVal = LastValueMap[InValI];
310           VMap[OrigPHINode[i]] = InVal;
311           New->getInstList().erase(NewPHI);
312         }
313 
314       // Update our running map of newest clones
315       LastValueMap[*BB] = New;
316       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
317            VI != VE; ++VI)
318         LastValueMap[VI->first] = VI->second;
319 
320       L->addBasicBlockToLoop(New, LI->getBase());
321 
322       // Add phi entries for newly created values to all exit blocks.
323       for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
324            SI != SE; ++SI) {
325         if (L->contains(*SI))
326           continue;
327         for (BasicBlock::iterator BBI = (*SI)->begin();
328              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
329           Value *Incoming = phi->getIncomingValueForBlock(*BB);
330           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
331           if (It != LastValueMap.end())
332             Incoming = It->second;
333           phi->addIncoming(Incoming, New);
334         }
335       }
336       // Keep track of new headers and latches as we create them, so that
337       // we can insert the proper branches later.
338       if (*BB == Header)
339         Headers.push_back(New);
340       if (*BB == LatchBlock)
341         Latches.push_back(New);
342 
343       NewBlocks.push_back(New);
344     }
345 
346     // Remap all instructions in the most recent iteration
347     for (unsigned i = 0; i < NewBlocks.size(); ++i)
348       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
349            E = NewBlocks[i]->end(); I != E; ++I)
350         ::RemapInstruction(I, LastValueMap);
351   }
352 
353   // Loop over the PHI nodes in the original block, setting incoming values.
354   for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
355     PHINode *PN = OrigPHINode[i];
356     if (CompletelyUnroll) {
357       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
358       Header->getInstList().erase(PN);
359     }
360     else if (Count > 1) {
361       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
362       // If this value was defined in the loop, take the value defined by the
363       // last iteration of the loop.
364       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
365         if (L->contains(InValI))
366           InVal = LastValueMap[InVal];
367       }
368       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
369       PN->addIncoming(InVal, Latches.back());
370     }
371   }
372 
373   // Now that all the basic blocks for the unrolled iterations are in place,
374   // set up the branches to connect them.
375   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
376     // The original branch was replicated in each unrolled iteration.
377     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
378 
379     // The branch destination.
380     unsigned j = (i + 1) % e;
381     BasicBlock *Dest = Headers[j];
382     bool NeedConditional = true;
383 
384     if (RuntimeTripCount && j != 0) {
385       NeedConditional = false;
386     }
387 
388     // For a complete unroll, make the last iteration end with a branch
389     // to the exit block.
390     if (CompletelyUnroll && j == 0) {
391       Dest = LoopExit;
392       NeedConditional = false;
393     }
394 
395     // If we know the trip count or a multiple of it, we can safely use an
396     // unconditional branch for some iterations.
397     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
398       NeedConditional = false;
399     }
400 
401     if (NeedConditional) {
402       // Update the conditional branch's successor for the following
403       // iteration.
404       Term->setSuccessor(!ContinueOnTrue, Dest);
405     } else {
406       // Remove phi operands at this loop exit
407       if (Dest != LoopExit) {
408         BasicBlock *BB = Latches[i];
409         for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
410              SI != SE; ++SI) {
411           if (*SI == Headers[i])
412             continue;
413           for (BasicBlock::iterator BBI = (*SI)->begin();
414                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
415             Phi->removeIncomingValue(BB, false);
416           }
417         }
418       }
419       // Replace the conditional branch with an unconditional one.
420       BranchInst::Create(Dest, Term);
421       Term->eraseFromParent();
422     }
423   }
424 
425   // Merge adjacent basic blocks, if possible.
426   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
427     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
428     if (Term->isUnconditional()) {
429       BasicBlock *Dest = Term->getSuccessor(0);
430       if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
431         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
432     }
433   }
434 
435   DominatorTree *DT = nullptr;
436   if (PP) {
437     // FIXME: Reconstruct dom info, because it is not preserved properly.
438     // Incrementally updating domtree after loop unrolling would be easy.
439     if (DominatorTreeWrapperPass *DTWP =
440             PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
441       DT = &DTWP->getDomTree();
442       DT->recalculate(*L->getHeader()->getParent());
443     }
444 
445     // Simplify any new induction variables in the partially unrolled loop.
446     ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
447     if (SE && !CompletelyUnroll) {
448       SmallVector<WeakVH, 16> DeadInsts;
449       simplifyLoopIVs(L, SE, LPM, DeadInsts);
450 
451       // Aggressively clean up dead instructions that simplifyLoopIVs already
452       // identified. Any remaining should be cleaned up below.
453       while (!DeadInsts.empty())
454         if (Instruction *Inst =
455             dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
456           RecursivelyDeleteTriviallyDeadInstructions(Inst);
457     }
458   }
459   // At this point, the code is well formed.  We now do a quick sweep over the
460   // inserted code, doing constant propagation and dead code elimination as we
461   // go.
462   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
463   for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
464        BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
465     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
466       Instruction *Inst = I++;
467 
468       if (isInstructionTriviallyDead(Inst))
469         (*BB)->getInstList().erase(Inst);
470       else if (Value *V = SimplifyInstruction(Inst))
471         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
472           Inst->replaceAllUsesWith(V);
473           (*BB)->getInstList().erase(Inst);
474         }
475     }
476 
477   NumCompletelyUnrolled += CompletelyUnroll;
478   ++NumUnrolled;
479 
480   Loop *OuterL = L->getParentLoop();
481   // Remove the loop from the LoopPassManager if it's completely removed.
482   if (CompletelyUnroll && LPM != nullptr)
483     LPM->deleteLoopFromQueue(L);
484 
485   // If we have a pass and a DominatorTree we should re-simplify impacted loops
486   // to ensure subsequent analyses can rely on this form. We want to simplify
487   // at least one layer outside of the loop that was unrolled so that any
488   // changes to the parent loop exposed by the unrolling are considered.
489   if (PP && DT) {
490     if (!OuterL && !CompletelyUnroll)
491       OuterL = L;
492     if (OuterL) {
493       DataLayoutPass *DLP = PP->getAnalysisIfAvailable<DataLayoutPass>();
494       const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
495       ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
496       simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, DL);
497 
498       // LCSSA must be performed on the outermost affected loop. The unrolled
499       // loop's last loop latch is guaranteed to be in the outermost loop after
500       // deleteLoopFromQueue updates LoopInfo.
501       Loop *LatchLoop = LI->getLoopFor(Latches.back());
502       if (!OuterL->contains(LatchLoop))
503         while (OuterL->getParentLoop() != LatchLoop)
504           OuterL = OuterL->getParentLoop();
505 
506       formLCSSARecursively(*OuterL, *DT, SE);
507     }
508   }
509 
510   return true;
511 }
512