• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "method_verifier-inl.h"
18 
19 #include <iostream>
20 
21 #include "base/logging.h"
22 #include "base/mutex-inl.h"
23 #include "class_linker.h"
24 #include "compiler_callbacks.h"
25 #include "dex_file-inl.h"
26 #include "dex_instruction-inl.h"
27 #include "dex_instruction_visitor.h"
28 #include "field_helper.h"
29 #include "gc/accounting/card_table-inl.h"
30 #include "indenter.h"
31 #include "intern_table.h"
32 #include "leb128.h"
33 #include "method_helper-inl.h"
34 #include "mirror/art_field-inl.h"
35 #include "mirror/art_method-inl.h"
36 #include "mirror/class.h"
37 #include "mirror/class-inl.h"
38 #include "mirror/dex_cache-inl.h"
39 #include "mirror/object-inl.h"
40 #include "mirror/object_array-inl.h"
41 #include "register_line-inl.h"
42 #include "runtime.h"
43 #include "scoped_thread_state_change.h"
44 #include "handle_scope-inl.h"
45 #include "verifier/dex_gc_map.h"
46 
47 namespace art {
48 namespace verifier {
49 
50 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
51 static constexpr bool gDebugVerify = false;
52 // TODO: Add a constant to method_verifier to turn on verbose logging?
53 
Init(RegisterTrackingMode mode,InstructionFlags * flags,uint32_t insns_size,uint16_t registers_size,MethodVerifier * verifier)54 void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
55                                  uint32_t insns_size, uint16_t registers_size,
56                                  MethodVerifier* verifier) {
57   DCHECK_GT(insns_size, 0U);
58   register_lines_.reset(new RegisterLine*[insns_size]());
59   size_ = insns_size;
60   for (uint32_t i = 0; i < insns_size; i++) {
61     bool interesting = false;
62     switch (mode) {
63       case kTrackRegsAll:
64         interesting = flags[i].IsOpcode();
65         break;
66       case kTrackCompilerInterestPoints:
67         interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
68         break;
69       case kTrackRegsBranches:
70         interesting = flags[i].IsBranchTarget();
71         break;
72       default:
73         break;
74     }
75     if (interesting) {
76       register_lines_[i] = RegisterLine::Create(registers_size, verifier);
77     }
78   }
79 }
80 
~PcToRegisterLineTable()81 PcToRegisterLineTable::~PcToRegisterLineTable() {
82   for (size_t i = 0; i < size_; i++) {
83     delete register_lines_[i];
84     if (kIsDebugBuild) {
85       register_lines_[i] = nullptr;
86     }
87   }
88 }
89 
90 // Note: returns true on failure.
FailOrAbort(MethodVerifier * verifier,bool condition,const char * error_msg,uint32_t work_insn_idx)91 ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
92                                              const char* error_msg, uint32_t work_insn_idx) {
93   if (kIsDebugBuild) {
94     // In a debug build, abort if the error condition is wrong.
95     DCHECK(condition) << error_msg << work_insn_idx;
96   } else {
97     // In a non-debug build, just fail the class.
98     if (!condition) {
99       verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
100       return true;
101     }
102   }
103 
104   return false;
105 }
106 
VerifyClass(mirror::Class * klass,bool allow_soft_failures,std::string * error)107 MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
108                                                         bool allow_soft_failures,
109                                                         std::string* error) {
110   if (klass->IsVerified()) {
111     return kNoFailure;
112   }
113   bool early_failure = false;
114   std::string failure_message;
115   const DexFile& dex_file = klass->GetDexFile();
116   const DexFile::ClassDef* class_def = klass->GetClassDef();
117   mirror::Class* super = klass->GetSuperClass();
118   std::string temp;
119   if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
120     early_failure = true;
121     failure_message = " that has no super class";
122   } else if (super != nullptr && super->IsFinal()) {
123     early_failure = true;
124     failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
125   } else if (class_def == nullptr) {
126     early_failure = true;
127     failure_message = " that isn't present in dex file " + dex_file.GetLocation();
128   }
129   if (early_failure) {
130     *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
131     if (Runtime::Current()->IsCompiler()) {
132       ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
133       Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
134     }
135     return kHardFailure;
136   }
137   StackHandleScope<2> hs(Thread::Current());
138   Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
139   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
140   return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
141 }
142 
VerifyClass(const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef * class_def,bool allow_soft_failures,std::string * error)143 MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
144                                                         Handle<mirror::DexCache> dex_cache,
145                                                         Handle<mirror::ClassLoader> class_loader,
146                                                         const DexFile::ClassDef* class_def,
147                                                         bool allow_soft_failures,
148                                                         std::string* error) {
149   DCHECK(class_def != nullptr);
150   const byte* class_data = dex_file->GetClassData(*class_def);
151   if (class_data == nullptr) {
152     // empty class, probably a marker interface
153     return kNoFailure;
154   }
155   ClassDataItemIterator it(*dex_file, class_data);
156   while (it.HasNextStaticField() || it.HasNextInstanceField()) {
157     it.Next();
158   }
159   size_t error_count = 0;
160   bool hard_fail = false;
161   ClassLinker* linker = Runtime::Current()->GetClassLinker();
162   int64_t previous_direct_method_idx = -1;
163   while (it.HasNextDirectMethod()) {
164     uint32_t method_idx = it.GetMemberIndex();
165     if (method_idx == previous_direct_method_idx) {
166       // smali can create dex files with two encoded_methods sharing the same method_idx
167       // http://code.google.com/p/smali/issues/detail?id=119
168       it.Next();
169       continue;
170     }
171     previous_direct_method_idx = method_idx;
172     InvokeType type = it.GetMethodInvokeType(*class_def);
173     mirror::ArtMethod* method =
174         linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
175                               NullHandle<mirror::ArtMethod>(), type);
176     if (method == nullptr) {
177       DCHECK(Thread::Current()->IsExceptionPending());
178       // We couldn't resolve the method, but continue regardless.
179       Thread::Current()->ClearException();
180     }
181     MethodVerifier::FailureKind result = VerifyMethod(method_idx,
182                                                       dex_file,
183                                                       dex_cache,
184                                                       class_loader,
185                                                       class_def,
186                                                       it.GetMethodCodeItem(),
187                                                       method,
188                                                       it.GetMethodAccessFlags(),
189                                                       allow_soft_failures,
190                                                       false);
191     if (result != kNoFailure) {
192       if (result == kHardFailure) {
193         hard_fail = true;
194         if (error_count > 0) {
195           *error += "\n";
196         }
197         *error = "Verifier rejected class ";
198         *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
199         *error += " due to bad method ";
200         *error += PrettyMethod(method_idx, *dex_file);
201       }
202       ++error_count;
203     }
204     it.Next();
205   }
206   int64_t previous_virtual_method_idx = -1;
207   while (it.HasNextVirtualMethod()) {
208     uint32_t method_idx = it.GetMemberIndex();
209     if (method_idx == previous_virtual_method_idx) {
210       // smali can create dex files with two encoded_methods sharing the same method_idx
211       // http://code.google.com/p/smali/issues/detail?id=119
212       it.Next();
213       continue;
214     }
215     previous_virtual_method_idx = method_idx;
216     InvokeType type = it.GetMethodInvokeType(*class_def);
217     mirror::ArtMethod* method =
218         linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
219                               NullHandle<mirror::ArtMethod>(), type);
220     if (method == nullptr) {
221       DCHECK(Thread::Current()->IsExceptionPending());
222       // We couldn't resolve the method, but continue regardless.
223       Thread::Current()->ClearException();
224     }
225     MethodVerifier::FailureKind result = VerifyMethod(method_idx,
226                                                       dex_file,
227                                                       dex_cache,
228                                                       class_loader,
229                                                       class_def,
230                                                       it.GetMethodCodeItem(),
231                                                       method,
232                                                       it.GetMethodAccessFlags(),
233                                                       allow_soft_failures,
234                                                       false);
235     if (result != kNoFailure) {
236       if (result == kHardFailure) {
237         hard_fail = true;
238         if (error_count > 0) {
239           *error += "\n";
240         }
241         *error = "Verifier rejected class ";
242         *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
243         *error += " due to bad method ";
244         *error += PrettyMethod(method_idx, *dex_file);
245       }
246       ++error_count;
247     }
248     it.Next();
249   }
250   if (error_count == 0) {
251     return kNoFailure;
252   } else {
253     return hard_fail ? kHardFailure : kSoftFailure;
254   }
255 }
256 
VerifyMethod(uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef * class_def,const DexFile::CodeItem * code_item,mirror::ArtMethod * method,uint32_t method_access_flags,bool allow_soft_failures,bool need_precise_constants)257 MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
258                                                          const DexFile* dex_file,
259                                                          Handle<mirror::DexCache> dex_cache,
260                                                          Handle<mirror::ClassLoader> class_loader,
261                                                          const DexFile::ClassDef* class_def,
262                                                          const DexFile::CodeItem* code_item,
263                                                          mirror::ArtMethod* method,
264                                                          uint32_t method_access_flags,
265                                                          bool allow_soft_failures,
266                                                          bool need_precise_constants) {
267   MethodVerifier::FailureKind result = kNoFailure;
268   uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
269 
270   MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
271                            method_idx, method, method_access_flags, true, allow_soft_failures,
272                            need_precise_constants);
273   if (verifier.Verify()) {
274     // Verification completed, however failures may be pending that didn't cause the verification
275     // to hard fail.
276     CHECK(!verifier.have_pending_hard_failure_);
277     if (verifier.failures_.size() != 0) {
278       if (VLOG_IS_ON(verifier)) {
279           verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
280                                 << PrettyMethod(method_idx, *dex_file) << "\n");
281       }
282       result = kSoftFailure;
283     }
284   } else {
285     // Bad method data.
286     CHECK_NE(verifier.failures_.size(), 0U);
287     CHECK(verifier.have_pending_hard_failure_);
288     verifier.DumpFailures(LOG(INFO) << "Verification error in "
289                                     << PrettyMethod(method_idx, *dex_file) << "\n");
290     if (gDebugVerify) {
291       std::cout << "\n" << verifier.info_messages_.str();
292       verifier.Dump(std::cout);
293     }
294     result = kHardFailure;
295   }
296   if (kTimeVerifyMethod) {
297     uint64_t duration_ns = NanoTime() - start_ns;
298     if (duration_ns > MsToNs(100)) {
299       LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
300                    << " took " << PrettyDuration(duration_ns);
301     }
302   }
303   return result;
304 }
305 
VerifyMethodAndDump(std::ostream & os,uint32_t dex_method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef * class_def,const DexFile::CodeItem * code_item,mirror::ArtMethod * method,uint32_t method_access_flags)306 MethodVerifier* MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
307                                                     const DexFile* dex_file,
308                                                     Handle<mirror::DexCache> dex_cache,
309                                                     Handle<mirror::ClassLoader> class_loader,
310                                                     const DexFile::ClassDef* class_def,
311                                                     const DexFile::CodeItem* code_item,
312                                                     mirror::ArtMethod* method,
313                                                     uint32_t method_access_flags) {
314   MethodVerifier* verifier = new MethodVerifier(dex_file, &dex_cache, &class_loader, class_def,
315                                                 code_item, dex_method_idx, method,
316                                                 method_access_flags, true, true, true, true);
317   verifier->Verify();
318   verifier->DumpFailures(os);
319   os << verifier->info_messages_.str();
320   verifier->Dump(os);
321 
322   return verifier;
323 }
324 
MethodVerifier(const DexFile * dex_file,Handle<mirror::DexCache> * dex_cache,Handle<mirror::ClassLoader> * class_loader,const DexFile::ClassDef * class_def,const DexFile::CodeItem * code_item,uint32_t dex_method_idx,mirror::ArtMethod * method,uint32_t method_access_flags,bool can_load_classes,bool allow_soft_failures,bool need_precise_constants,bool verify_to_dump)325 MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache,
326                                Handle<mirror::ClassLoader>* class_loader,
327                                const DexFile::ClassDef* class_def,
328                                const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
329                                mirror::ArtMethod* method, uint32_t method_access_flags,
330                                bool can_load_classes, bool allow_soft_failures,
331                                bool need_precise_constants, bool verify_to_dump)
332     : reg_types_(can_load_classes),
333       work_insn_idx_(-1),
334       dex_method_idx_(dex_method_idx),
335       mirror_method_(method),
336       method_access_flags_(method_access_flags),
337       return_type_(nullptr),
338       dex_file_(dex_file),
339       dex_cache_(dex_cache),
340       class_loader_(class_loader),
341       class_def_(class_def),
342       code_item_(code_item),
343       declaring_class_(nullptr),
344       interesting_dex_pc_(-1),
345       monitor_enter_dex_pcs_(nullptr),
346       have_pending_hard_failure_(false),
347       have_pending_runtime_throw_failure_(false),
348       new_instance_count_(0),
349       monitor_enter_count_(0),
350       can_load_classes_(can_load_classes),
351       allow_soft_failures_(allow_soft_failures),
352       need_precise_constants_(need_precise_constants),
353       has_check_casts_(false),
354       has_virtual_or_interface_invokes_(false),
355       verify_to_dump_(verify_to_dump) {
356   Runtime::Current()->AddMethodVerifier(this);
357   DCHECK(class_def != nullptr);
358 }
359 
~MethodVerifier()360 MethodVerifier::~MethodVerifier() {
361   Runtime::Current()->RemoveMethodVerifier(this);
362   STLDeleteElements(&failure_messages_);
363 }
364 
FindLocksAtDexPc(mirror::ArtMethod * m,uint32_t dex_pc,std::vector<uint32_t> * monitor_enter_dex_pcs)365 void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
366                                       std::vector<uint32_t>* monitor_enter_dex_pcs) {
367   StackHandleScope<2> hs(Thread::Current());
368   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
369   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
370   MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
371                           m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
372                           true, false);
373   verifier.interesting_dex_pc_ = dex_pc;
374   verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
375   verifier.FindLocksAtDexPc();
376 }
377 
FindLocksAtDexPc()378 void MethodVerifier::FindLocksAtDexPc() {
379   CHECK(monitor_enter_dex_pcs_ != nullptr);
380   CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
381 
382   // Strictly speaking, we ought to be able to get away with doing a subset of the full method
383   // verification. In practice, the phase we want relies on data structures set up by all the
384   // earlier passes, so we just run the full method verification and bail out early when we've
385   // got what we wanted.
386   Verify();
387 }
388 
FindAccessedFieldAtDexPc(mirror::ArtMethod * m,uint32_t dex_pc)389 mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
390                                                            uint32_t dex_pc) {
391   StackHandleScope<2> hs(Thread::Current());
392   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
393   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
394   MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
395                           m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
396                           true, false);
397   return verifier.FindAccessedFieldAtDexPc(dex_pc);
398 }
399 
FindAccessedFieldAtDexPc(uint32_t dex_pc)400 mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
401   CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
402 
403   // Strictly speaking, we ought to be able to get away with doing a subset of the full method
404   // verification. In practice, the phase we want relies on data structures set up by all the
405   // earlier passes, so we just run the full method verification and bail out early when we've
406   // got what we wanted.
407   bool success = Verify();
408   if (!success) {
409     return nullptr;
410   }
411   RegisterLine* register_line = reg_table_.GetLine(dex_pc);
412   if (register_line == nullptr) {
413     return nullptr;
414   }
415   const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
416   return GetQuickFieldAccess(inst, register_line);
417 }
418 
FindInvokedMethodAtDexPc(mirror::ArtMethod * m,uint32_t dex_pc)419 mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
420                                                             uint32_t dex_pc) {
421   StackHandleScope<2> hs(Thread::Current());
422   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
423   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
424   MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
425                           m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
426                           true, false);
427   return verifier.FindInvokedMethodAtDexPc(dex_pc);
428 }
429 
FindInvokedMethodAtDexPc(uint32_t dex_pc)430 mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
431   CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
432 
433   // Strictly speaking, we ought to be able to get away with doing a subset of the full method
434   // verification. In practice, the phase we want relies on data structures set up by all the
435   // earlier passes, so we just run the full method verification and bail out early when we've
436   // got what we wanted.
437   bool success = Verify();
438   if (!success) {
439     return nullptr;
440   }
441   RegisterLine* register_line = reg_table_.GetLine(dex_pc);
442   if (register_line == nullptr) {
443     return nullptr;
444   }
445   const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
446   const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
447   return GetQuickInvokedMethod(inst, register_line, is_range);
448 }
449 
Verify()450 bool MethodVerifier::Verify() {
451   // If there aren't any instructions, make sure that's expected, then exit successfully.
452   if (code_item_ == nullptr) {
453     if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
454       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
455       return false;
456     } else {
457       return true;
458     }
459   }
460   // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
461   if (code_item_->ins_size_ > code_item_->registers_size_) {
462     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
463                                       << " regs=" << code_item_->registers_size_;
464     return false;
465   }
466   // Allocate and initialize an array to hold instruction data.
467   insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
468   // Run through the instructions and see if the width checks out.
469   bool result = ComputeWidthsAndCountOps();
470   // Flag instructions guarded by a "try" block and check exception handlers.
471   result = result && ScanTryCatchBlocks();
472   // Perform static instruction verification.
473   result = result && VerifyInstructions();
474   // Perform code-flow analysis and return.
475   result = result && VerifyCodeFlow();
476   // Compute information for compiler.
477   if (result && Runtime::Current()->IsCompiler()) {
478     result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
479   }
480   return result;
481 }
482 
Fail(VerifyError error)483 std::ostream& MethodVerifier::Fail(VerifyError error) {
484   switch (error) {
485     case VERIFY_ERROR_NO_CLASS:
486     case VERIFY_ERROR_NO_FIELD:
487     case VERIFY_ERROR_NO_METHOD:
488     case VERIFY_ERROR_ACCESS_CLASS:
489     case VERIFY_ERROR_ACCESS_FIELD:
490     case VERIFY_ERROR_ACCESS_METHOD:
491     case VERIFY_ERROR_INSTANTIATION:
492     case VERIFY_ERROR_CLASS_CHANGE:
493       if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
494         // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
495         // class change and instantiation errors into soft verification errors so that we re-verify
496         // at runtime. We may fail to find or to agree on access because of not yet available class
497         // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
498         // affect the soundness of the code being compiled. Instead, the generated code runs "slow
499         // paths" that dynamically perform the verification and cause the behavior to be that akin
500         // to an interpreter.
501         error = VERIFY_ERROR_BAD_CLASS_SOFT;
502       } else {
503         // If we fail again at runtime, mark that this instruction would throw and force this
504         // method to be executed using the interpreter with checks.
505         have_pending_runtime_throw_failure_ = true;
506       }
507       break;
508       // Indication that verification should be retried at runtime.
509     case VERIFY_ERROR_BAD_CLASS_SOFT:
510       if (!allow_soft_failures_) {
511         have_pending_hard_failure_ = true;
512       }
513       break;
514       // Hard verification failures at compile time will still fail at runtime, so the class is
515       // marked as rejected to prevent it from being compiled.
516     case VERIFY_ERROR_BAD_CLASS_HARD: {
517       if (Runtime::Current()->IsCompiler()) {
518         ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
519         Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
520       }
521       have_pending_hard_failure_ = true;
522       break;
523     }
524   }
525   failures_.push_back(error);
526   std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
527                                     work_insn_idx_));
528   std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
529   failure_messages_.push_back(failure_message);
530   return *failure_message;
531 }
532 
LogVerifyInfo()533 std::ostream& MethodVerifier::LogVerifyInfo() {
534   return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
535                         << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
536 }
537 
PrependToLastFailMessage(std::string prepend)538 void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
539   size_t failure_num = failure_messages_.size();
540   DCHECK_NE(failure_num, 0U);
541   std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
542   prepend += last_fail_message->str();
543   failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
544   delete last_fail_message;
545 }
546 
AppendToLastFailMessage(std::string append)547 void MethodVerifier::AppendToLastFailMessage(std::string append) {
548   size_t failure_num = failure_messages_.size();
549   DCHECK_NE(failure_num, 0U);
550   std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
551   (*last_fail_message) << append;
552 }
553 
ComputeWidthsAndCountOps()554 bool MethodVerifier::ComputeWidthsAndCountOps() {
555   const uint16_t* insns = code_item_->insns_;
556   size_t insns_size = code_item_->insns_size_in_code_units_;
557   const Instruction* inst = Instruction::At(insns);
558   size_t new_instance_count = 0;
559   size_t monitor_enter_count = 0;
560   size_t dex_pc = 0;
561 
562   while (dex_pc < insns_size) {
563     Instruction::Code opcode = inst->Opcode();
564     switch (opcode) {
565       case Instruction::APUT_OBJECT:
566       case Instruction::CHECK_CAST:
567         has_check_casts_ = true;
568         break;
569       case Instruction::INVOKE_VIRTUAL:
570       case Instruction::INVOKE_VIRTUAL_RANGE:
571       case Instruction::INVOKE_INTERFACE:
572       case Instruction::INVOKE_INTERFACE_RANGE:
573         has_virtual_or_interface_invokes_ = true;
574         break;
575       case Instruction::MONITOR_ENTER:
576         monitor_enter_count++;
577         break;
578       case Instruction::NEW_INSTANCE:
579         new_instance_count++;
580         break;
581       default:
582         break;
583     }
584     size_t inst_size = inst->SizeInCodeUnits();
585     insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
586     dex_pc += inst_size;
587     inst = inst->Next();
588   }
589 
590   if (dex_pc != insns_size) {
591     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
592                                       << dex_pc << " vs. " << insns_size << ")";
593     return false;
594   }
595 
596   new_instance_count_ = new_instance_count;
597   monitor_enter_count_ = monitor_enter_count;
598   return true;
599 }
600 
ScanTryCatchBlocks()601 bool MethodVerifier::ScanTryCatchBlocks() {
602   uint32_t tries_size = code_item_->tries_size_;
603   if (tries_size == 0) {
604     return true;
605   }
606   uint32_t insns_size = code_item_->insns_size_in_code_units_;
607   const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
608 
609   for (uint32_t idx = 0; idx < tries_size; idx++) {
610     const DexFile::TryItem* try_item = &tries[idx];
611     uint32_t start = try_item->start_addr_;
612     uint32_t end = start + try_item->insn_count_;
613     if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
614       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
615                                         << " endAddr=" << end << " (size=" << insns_size << ")";
616       return false;
617     }
618     if (!insn_flags_[start].IsOpcode()) {
619       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
620           << "'try' block starts inside an instruction (" << start << ")";
621       return false;
622     }
623     for (uint32_t dex_pc = start; dex_pc < end;
624         dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
625       insn_flags_[dex_pc].SetInTry();
626     }
627   }
628   // Iterate over each of the handlers to verify target addresses.
629   const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
630   uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
631   ClassLinker* linker = Runtime::Current()->GetClassLinker();
632   for (uint32_t idx = 0; idx < handlers_size; idx++) {
633     CatchHandlerIterator iterator(handlers_ptr);
634     for (; iterator.HasNext(); iterator.Next()) {
635       uint32_t dex_pc= iterator.GetHandlerAddress();
636       if (!insn_flags_[dex_pc].IsOpcode()) {
637         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
638             << "exception handler starts at bad address (" << dex_pc << ")";
639         return false;
640       }
641       insn_flags_[dex_pc].SetBranchTarget();
642       // Ensure exception types are resolved so that they don't need resolution to be delivered,
643       // unresolved exception types will be ignored by exception delivery
644       if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
645         mirror::Class* exception_type = linker->ResolveType(*dex_file_,
646                                                             iterator.GetHandlerTypeIndex(),
647                                                             *dex_cache_, *class_loader_);
648         if (exception_type == nullptr) {
649           DCHECK(Thread::Current()->IsExceptionPending());
650           Thread::Current()->ClearException();
651         }
652       }
653     }
654     handlers_ptr = iterator.EndDataPointer();
655   }
656   return true;
657 }
658 
VerifyInstructions()659 bool MethodVerifier::VerifyInstructions() {
660   const Instruction* inst = Instruction::At(code_item_->insns_);
661 
662   /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
663   insn_flags_[0].SetBranchTarget();
664   insn_flags_[0].SetCompileTimeInfoPoint();
665 
666   uint32_t insns_size = code_item_->insns_size_in_code_units_;
667   for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
668     if (!VerifyInstruction(inst, dex_pc)) {
669       DCHECK_NE(failures_.size(), 0U);
670       return false;
671     }
672     /* Flag instructions that are garbage collection points */
673     // All invoke points are marked as "Throw" points already.
674     // We are relying on this to also count all the invokes as interesting.
675     if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
676       insn_flags_[dex_pc].SetCompileTimeInfoPoint();
677     } else if (inst->IsReturn()) {
678       insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
679     }
680     dex_pc += inst->SizeInCodeUnits();
681     inst = inst->Next();
682   }
683   return true;
684 }
685 
VerifyInstruction(const Instruction * inst,uint32_t code_offset)686 bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
687   bool result = true;
688   switch (inst->GetVerifyTypeArgumentA()) {
689     case Instruction::kVerifyRegA:
690       result = result && CheckRegisterIndex(inst->VRegA());
691       break;
692     case Instruction::kVerifyRegAWide:
693       result = result && CheckWideRegisterIndex(inst->VRegA());
694       break;
695   }
696   switch (inst->GetVerifyTypeArgumentB()) {
697     case Instruction::kVerifyRegB:
698       result = result && CheckRegisterIndex(inst->VRegB());
699       break;
700     case Instruction::kVerifyRegBField:
701       result = result && CheckFieldIndex(inst->VRegB());
702       break;
703     case Instruction::kVerifyRegBMethod:
704       result = result && CheckMethodIndex(inst->VRegB());
705       break;
706     case Instruction::kVerifyRegBNewInstance:
707       result = result && CheckNewInstance(inst->VRegB());
708       break;
709     case Instruction::kVerifyRegBString:
710       result = result && CheckStringIndex(inst->VRegB());
711       break;
712     case Instruction::kVerifyRegBType:
713       result = result && CheckTypeIndex(inst->VRegB());
714       break;
715     case Instruction::kVerifyRegBWide:
716       result = result && CheckWideRegisterIndex(inst->VRegB());
717       break;
718   }
719   switch (inst->GetVerifyTypeArgumentC()) {
720     case Instruction::kVerifyRegC:
721       result = result && CheckRegisterIndex(inst->VRegC());
722       break;
723     case Instruction::kVerifyRegCField:
724       result = result && CheckFieldIndex(inst->VRegC());
725       break;
726     case Instruction::kVerifyRegCNewArray:
727       result = result && CheckNewArray(inst->VRegC());
728       break;
729     case Instruction::kVerifyRegCType:
730       result = result && CheckTypeIndex(inst->VRegC());
731       break;
732     case Instruction::kVerifyRegCWide:
733       result = result && CheckWideRegisterIndex(inst->VRegC());
734       break;
735   }
736   switch (inst->GetVerifyExtraFlags()) {
737     case Instruction::kVerifyArrayData:
738       result = result && CheckArrayData(code_offset);
739       break;
740     case Instruction::kVerifyBranchTarget:
741       result = result && CheckBranchTarget(code_offset);
742       break;
743     case Instruction::kVerifySwitchTargets:
744       result = result && CheckSwitchTargets(code_offset);
745       break;
746     case Instruction::kVerifyVarArgNonZero:
747       // Fall-through.
748     case Instruction::kVerifyVarArg: {
749       if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
750         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
751                                              "non-range invoke";
752         return false;
753       }
754       uint32_t args[Instruction::kMaxVarArgRegs];
755       inst->GetVarArgs(args);
756       result = result && CheckVarArgRegs(inst->VRegA(), args);
757       break;
758     }
759     case Instruction::kVerifyVarArgRangeNonZero:
760       // Fall-through.
761     case Instruction::kVerifyVarArgRange:
762       if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
763           inst->VRegA() <= 0) {
764         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
765                                              "range invoke";
766         return false;
767       }
768       result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
769       break;
770     case Instruction::kVerifyError:
771       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
772       result = false;
773       break;
774   }
775   if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler() && !verify_to_dump_) {
776     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
777     result = false;
778   }
779   return result;
780 }
781 
CheckRegisterIndex(uint32_t idx)782 bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
783   if (idx >= code_item_->registers_size_) {
784     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
785                                       << code_item_->registers_size_ << ")";
786     return false;
787   }
788   return true;
789 }
790 
CheckWideRegisterIndex(uint32_t idx)791 bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
792   if (idx + 1 >= code_item_->registers_size_) {
793     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
794                                       << "+1 >= " << code_item_->registers_size_ << ")";
795     return false;
796   }
797   return true;
798 }
799 
CheckFieldIndex(uint32_t idx)800 bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
801   if (idx >= dex_file_->GetHeader().field_ids_size_) {
802     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
803                                       << dex_file_->GetHeader().field_ids_size_ << ")";
804     return false;
805   }
806   return true;
807 }
808 
CheckMethodIndex(uint32_t idx)809 bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
810   if (idx >= dex_file_->GetHeader().method_ids_size_) {
811     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
812                                       << dex_file_->GetHeader().method_ids_size_ << ")";
813     return false;
814   }
815   return true;
816 }
817 
CheckNewInstance(uint32_t idx)818 bool MethodVerifier::CheckNewInstance(uint32_t idx) {
819   if (idx >= dex_file_->GetHeader().type_ids_size_) {
820     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
821                                       << dex_file_->GetHeader().type_ids_size_ << ")";
822     return false;
823   }
824   // We don't need the actual class, just a pointer to the class name.
825   const char* descriptor = dex_file_->StringByTypeIdx(idx);
826   if (descriptor[0] != 'L') {
827     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
828     return false;
829   }
830   return true;
831 }
832 
CheckStringIndex(uint32_t idx)833 bool MethodVerifier::CheckStringIndex(uint32_t idx) {
834   if (idx >= dex_file_->GetHeader().string_ids_size_) {
835     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
836                                       << dex_file_->GetHeader().string_ids_size_ << ")";
837     return false;
838   }
839   return true;
840 }
841 
CheckTypeIndex(uint32_t idx)842 bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
843   if (idx >= dex_file_->GetHeader().type_ids_size_) {
844     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
845                                       << dex_file_->GetHeader().type_ids_size_ << ")";
846     return false;
847   }
848   return true;
849 }
850 
CheckNewArray(uint32_t idx)851 bool MethodVerifier::CheckNewArray(uint32_t idx) {
852   if (idx >= dex_file_->GetHeader().type_ids_size_) {
853     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
854                                       << dex_file_->GetHeader().type_ids_size_ << ")";
855     return false;
856   }
857   int bracket_count = 0;
858   const char* descriptor = dex_file_->StringByTypeIdx(idx);
859   const char* cp = descriptor;
860   while (*cp++ == '[') {
861     bracket_count++;
862   }
863   if (bracket_count == 0) {
864     /* The given class must be an array type. */
865     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
866         << "can't new-array class '" << descriptor << "' (not an array)";
867     return false;
868   } else if (bracket_count > 255) {
869     /* It is illegal to create an array of more than 255 dimensions. */
870     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
871         << "can't new-array class '" << descriptor << "' (exceeds limit)";
872     return false;
873   }
874   return true;
875 }
876 
CheckArrayData(uint32_t cur_offset)877 bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
878   const uint32_t insn_count = code_item_->insns_size_in_code_units_;
879   const uint16_t* insns = code_item_->insns_ + cur_offset;
880   const uint16_t* array_data;
881   int32_t array_data_offset;
882 
883   DCHECK_LT(cur_offset, insn_count);
884   /* make sure the start of the array data table is in range */
885   array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
886   if ((int32_t) cur_offset + array_data_offset < 0 ||
887       cur_offset + array_data_offset + 2 >= insn_count) {
888     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
889                                       << ", data offset " << array_data_offset
890                                       << ", count " << insn_count;
891     return false;
892   }
893   /* offset to array data table is a relative branch-style offset */
894   array_data = insns + array_data_offset;
895   /* make sure the table is 32-bit aligned */
896   if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
897     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
898                                       << ", data offset " << array_data_offset;
899     return false;
900   }
901   uint32_t value_width = array_data[1];
902   uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
903   uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
904   /* make sure the end of the switch is in range */
905   if (cur_offset + array_data_offset + table_size > insn_count) {
906     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
907                                       << ", data offset " << array_data_offset << ", end "
908                                       << cur_offset + array_data_offset + table_size
909                                       << ", count " << insn_count;
910     return false;
911   }
912   return true;
913 }
914 
CheckBranchTarget(uint32_t cur_offset)915 bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
916   int32_t offset;
917   bool isConditional, selfOkay;
918   if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
919     return false;
920   }
921   if (!selfOkay && offset == 0) {
922     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
923                                       << reinterpret_cast<void*>(cur_offset);
924     return false;
925   }
926   // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
927   // to have identical "wrap-around" behavior, but it's unwise to depend on that.
928   if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
929     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
930                                       << reinterpret_cast<void*>(cur_offset) << " +" << offset;
931     return false;
932   }
933   const uint32_t insn_count = code_item_->insns_size_in_code_units_;
934   int32_t abs_offset = cur_offset + offset;
935   if (abs_offset < 0 ||
936       (uint32_t) abs_offset >= insn_count ||
937       !insn_flags_[abs_offset].IsOpcode()) {
938     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
939                                       << reinterpret_cast<void*>(abs_offset) << ") at "
940                                       << reinterpret_cast<void*>(cur_offset);
941     return false;
942   }
943   insn_flags_[abs_offset].SetBranchTarget();
944   return true;
945 }
946 
GetBranchOffset(uint32_t cur_offset,int32_t * pOffset,bool * pConditional,bool * selfOkay)947 bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
948                                   bool* selfOkay) {
949   const uint16_t* insns = code_item_->insns_ + cur_offset;
950   *pConditional = false;
951   *selfOkay = false;
952   switch (*insns & 0xff) {
953     case Instruction::GOTO:
954       *pOffset = ((int16_t) *insns) >> 8;
955       break;
956     case Instruction::GOTO_32:
957       *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
958       *selfOkay = true;
959       break;
960     case Instruction::GOTO_16:
961       *pOffset = (int16_t) insns[1];
962       break;
963     case Instruction::IF_EQ:
964     case Instruction::IF_NE:
965     case Instruction::IF_LT:
966     case Instruction::IF_GE:
967     case Instruction::IF_GT:
968     case Instruction::IF_LE:
969     case Instruction::IF_EQZ:
970     case Instruction::IF_NEZ:
971     case Instruction::IF_LTZ:
972     case Instruction::IF_GEZ:
973     case Instruction::IF_GTZ:
974     case Instruction::IF_LEZ:
975       *pOffset = (int16_t) insns[1];
976       *pConditional = true;
977       break;
978     default:
979       return false;
980       break;
981   }
982   return true;
983 }
984 
CheckSwitchTargets(uint32_t cur_offset)985 bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
986   const uint32_t insn_count = code_item_->insns_size_in_code_units_;
987   DCHECK_LT(cur_offset, insn_count);
988   const uint16_t* insns = code_item_->insns_ + cur_offset;
989   /* make sure the start of the switch is in range */
990   int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
991   if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
992     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
993                                       << ", switch offset " << switch_offset
994                                       << ", count " << insn_count;
995     return false;
996   }
997   /* offset to switch table is a relative branch-style offset */
998   const uint16_t* switch_insns = insns + switch_offset;
999   /* make sure the table is 32-bit aligned */
1000   if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1001     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1002                                       << ", switch offset " << switch_offset;
1003     return false;
1004   }
1005   uint32_t switch_count = switch_insns[1];
1006   int32_t keys_offset, targets_offset;
1007   uint16_t expected_signature;
1008   if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1009     /* 0=sig, 1=count, 2/3=firstKey */
1010     targets_offset = 4;
1011     keys_offset = -1;
1012     expected_signature = Instruction::kPackedSwitchSignature;
1013   } else {
1014     /* 0=sig, 1=count, 2..count*2 = keys */
1015     keys_offset = 2;
1016     targets_offset = 2 + 2 * switch_count;
1017     expected_signature = Instruction::kSparseSwitchSignature;
1018   }
1019   uint32_t table_size = targets_offset + switch_count * 2;
1020   if (switch_insns[0] != expected_signature) {
1021     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1022         << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1023                         switch_insns[0], expected_signature);
1024     return false;
1025   }
1026   /* make sure the end of the switch is in range */
1027   if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1028     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1029                                       << ", switch offset " << switch_offset
1030                                       << ", end " << (cur_offset + switch_offset + table_size)
1031                                       << ", count " << insn_count;
1032     return false;
1033   }
1034   /* for a sparse switch, verify the keys are in ascending order */
1035   if (keys_offset > 0 && switch_count > 1) {
1036     int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1037     for (uint32_t targ = 1; targ < switch_count; targ++) {
1038       int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1039                     (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1040       if (key <= last_key) {
1041         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1042                                           << ", this=" << key;
1043         return false;
1044       }
1045       last_key = key;
1046     }
1047   }
1048   /* verify each switch target */
1049   for (uint32_t targ = 0; targ < switch_count; targ++) {
1050     int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1051                      (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1052     int32_t abs_offset = cur_offset + offset;
1053     if (abs_offset < 0 ||
1054         abs_offset >= (int32_t) insn_count ||
1055         !insn_flags_[abs_offset].IsOpcode()) {
1056       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1057                                         << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1058                                         << reinterpret_cast<void*>(cur_offset)
1059                                         << "[" << targ << "]";
1060       return false;
1061     }
1062     insn_flags_[abs_offset].SetBranchTarget();
1063   }
1064   return true;
1065 }
1066 
CheckVarArgRegs(uint32_t vA,uint32_t arg[])1067 bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1068   if (vA > Instruction::kMaxVarArgRegs) {
1069     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1070     return false;
1071   }
1072   uint16_t registers_size = code_item_->registers_size_;
1073   for (uint32_t idx = 0; idx < vA; idx++) {
1074     if (arg[idx] >= registers_size) {
1075       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1076                                         << ") in non-range invoke (>= " << registers_size << ")";
1077       return false;
1078     }
1079   }
1080 
1081   return true;
1082 }
1083 
CheckVarArgRangeRegs(uint32_t vA,uint32_t vC)1084 bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1085   uint16_t registers_size = code_item_->registers_size_;
1086   // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1087   // integer overflow when adding them here.
1088   if (vA + vC > registers_size) {
1089     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1090                                       << " in range invoke (> " << registers_size << ")";
1091     return false;
1092   }
1093   return true;
1094 }
1095 
VerifyCodeFlow()1096 bool MethodVerifier::VerifyCodeFlow() {
1097   uint16_t registers_size = code_item_->registers_size_;
1098   uint32_t insns_size = code_item_->insns_size_in_code_units_;
1099 
1100   if (registers_size * insns_size > 4*1024*1024) {
1101     LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1102                  << " insns_size=" << insns_size << ")";
1103   }
1104   /* Create and initialize table holding register status */
1105   reg_table_.Init(kTrackCompilerInterestPoints,
1106                   insn_flags_.get(),
1107                   insns_size,
1108                   registers_size,
1109                   this);
1110 
1111 
1112   work_line_.reset(RegisterLine::Create(registers_size, this));
1113   saved_line_.reset(RegisterLine::Create(registers_size, this));
1114 
1115   /* Initialize register types of method arguments. */
1116   if (!SetTypesFromSignature()) {
1117     DCHECK_NE(failures_.size(), 0U);
1118     std::string prepend("Bad signature in ");
1119     prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1120     PrependToLastFailMessage(prepend);
1121     return false;
1122   }
1123   /* Perform code flow verification. */
1124   if (!CodeFlowVerifyMethod()) {
1125     DCHECK_NE(failures_.size(), 0U);
1126     return false;
1127   }
1128   return true;
1129 }
1130 
DumpFailures(std::ostream & os)1131 std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1132   DCHECK_EQ(failures_.size(), failure_messages_.size());
1133   for (size_t i = 0; i < failures_.size(); ++i) {
1134       os << failure_messages_[i]->str() << "\n";
1135   }
1136   return os;
1137 }
1138 
MethodVerifierGdbDump(MethodVerifier * v)1139 extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1140     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1141   v->Dump(std::cerr);
1142 }
1143 
Dump(std::ostream & os)1144 void MethodVerifier::Dump(std::ostream& os) {
1145   if (code_item_ == nullptr) {
1146     os << "Native method\n";
1147     return;
1148   }
1149   {
1150     os << "Register Types:\n";
1151     Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1152     std::ostream indent_os(&indent_filter);
1153     reg_types_.Dump(indent_os);
1154   }
1155   os << "Dumping instructions and register lines:\n";
1156   Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1157   std::ostream indent_os(&indent_filter);
1158   const Instruction* inst = Instruction::At(code_item_->insns_);
1159   for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1160       dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1161     RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1162     if (reg_line != nullptr) {
1163       indent_os << reg_line->Dump() << "\n";
1164     }
1165     indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1166     const bool kDumpHexOfInstruction = false;
1167     if (kDumpHexOfInstruction) {
1168       indent_os << inst->DumpHex(5) << " ";
1169     }
1170     indent_os << inst->DumpString(dex_file_) << "\n";
1171     inst = inst->Next();
1172   }
1173 }
1174 
IsPrimitiveDescriptor(char descriptor)1175 static bool IsPrimitiveDescriptor(char descriptor) {
1176   switch (descriptor) {
1177     case 'I':
1178     case 'C':
1179     case 'S':
1180     case 'B':
1181     case 'Z':
1182     case 'F':
1183     case 'D':
1184     case 'J':
1185       return true;
1186     default:
1187       return false;
1188   }
1189 }
1190 
SetTypesFromSignature()1191 bool MethodVerifier::SetTypesFromSignature() {
1192   RegisterLine* reg_line = reg_table_.GetLine(0);
1193   int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1194   size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1195 
1196   DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1197   // Include the "this" pointer.
1198   size_t cur_arg = 0;
1199   if (!IsStatic()) {
1200     // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1201     // argument as uninitialized. This restricts field access until the superclass constructor is
1202     // called.
1203     RegType& declaring_class = GetDeclaringClass();
1204     if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1205       reg_line->SetRegisterType(arg_start + cur_arg,
1206                                 reg_types_.UninitializedThisArgument(declaring_class));
1207     } else {
1208       reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1209     }
1210     cur_arg++;
1211   }
1212 
1213   const DexFile::ProtoId& proto_id =
1214       dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1215   DexFileParameterIterator iterator(*dex_file_, proto_id);
1216 
1217   for (; iterator.HasNext(); iterator.Next()) {
1218     const char* descriptor = iterator.GetDescriptor();
1219     if (descriptor == nullptr) {
1220       LOG(FATAL) << "Null descriptor";
1221     }
1222     if (cur_arg >= expected_args) {
1223       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1224                                         << " args, found more (" << descriptor << ")";
1225       return false;
1226     }
1227     switch (descriptor[0]) {
1228       case 'L':
1229       case '[':
1230         // We assume that reference arguments are initialized. The only way it could be otherwise
1231         // (assuming the caller was verified) is if the current method is <init>, but in that case
1232         // it's effectively considered initialized the instant we reach here (in the sense that we
1233         // can return without doing anything or call virtual methods).
1234         {
1235           RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1236           if (!reg_type.IsNonZeroReferenceTypes()) {
1237             DCHECK(HasFailures());
1238             return false;
1239           }
1240           reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1241         }
1242         break;
1243       case 'Z':
1244         reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1245         break;
1246       case 'C':
1247         reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1248         break;
1249       case 'B':
1250         reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1251         break;
1252       case 'I':
1253         reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1254         break;
1255       case 'S':
1256         reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1257         break;
1258       case 'F':
1259         reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1260         break;
1261       case 'J':
1262       case 'D': {
1263         if (cur_arg + 1 >= expected_args) {
1264           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1265               << " args, found more (" << descriptor << ")";
1266           return false;
1267         }
1268 
1269         RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1270         RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1271         reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1272         cur_arg++;
1273         break;
1274       }
1275       default:
1276         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1277                                           << descriptor << "'";
1278         return false;
1279     }
1280     cur_arg++;
1281   }
1282   if (cur_arg != expected_args) {
1283     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1284                                       << " arguments, found " << cur_arg;
1285     return false;
1286   }
1287   const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1288   // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1289   // format. Only major difference from the method argument format is that 'V' is supported.
1290   bool result;
1291   if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1292     result = descriptor[1] == '\0';
1293   } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1294     size_t i = 0;
1295     do {
1296       i++;
1297     } while (descriptor[i] == '[');  // process leading [
1298     if (descriptor[i] == 'L') {  // object array
1299       do {
1300         i++;  // find closing ;
1301       } while (descriptor[i] != ';' && descriptor[i] != '\0');
1302       result = descriptor[i] == ';';
1303     } else {  // primitive array
1304       result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1305     }
1306   } else if (descriptor[0] == 'L') {
1307     // could be more thorough here, but shouldn't be required
1308     size_t i = 0;
1309     do {
1310       i++;
1311     } while (descriptor[i] != ';' && descriptor[i] != '\0');
1312     result = descriptor[i] == ';';
1313   } else {
1314     result = false;
1315   }
1316   if (!result) {
1317     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1318                                       << descriptor << "'";
1319   }
1320   return result;
1321 }
1322 
CodeFlowVerifyMethod()1323 bool MethodVerifier::CodeFlowVerifyMethod() {
1324   const uint16_t* insns = code_item_->insns_;
1325   const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1326 
1327   /* Begin by marking the first instruction as "changed". */
1328   insn_flags_[0].SetChanged();
1329   uint32_t start_guess = 0;
1330 
1331   /* Continue until no instructions are marked "changed". */
1332   while (true) {
1333     // Find the first marked one. Use "start_guess" as a way to find one quickly.
1334     uint32_t insn_idx = start_guess;
1335     for (; insn_idx < insns_size; insn_idx++) {
1336       if (insn_flags_[insn_idx].IsChanged())
1337         break;
1338     }
1339     if (insn_idx == insns_size) {
1340       if (start_guess != 0) {
1341         /* try again, starting from the top */
1342         start_guess = 0;
1343         continue;
1344       } else {
1345         /* all flags are clear */
1346         break;
1347       }
1348     }
1349     // We carry the working set of registers from instruction to instruction. If this address can
1350     // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1351     // "changed" flags, we need to load the set of registers from the table.
1352     // Because we always prefer to continue on to the next instruction, we should never have a
1353     // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1354     // target.
1355     work_insn_idx_ = insn_idx;
1356     if (insn_flags_[insn_idx].IsBranchTarget()) {
1357       work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1358     } else if (kIsDebugBuild) {
1359       /*
1360        * Sanity check: retrieve the stored register line (assuming
1361        * a full table) and make sure it actually matches.
1362        */
1363       RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1364       if (register_line != nullptr) {
1365         if (work_line_->CompareLine(register_line) != 0) {
1366           Dump(std::cout);
1367           std::cout << info_messages_.str();
1368           LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1369                      << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1370                      << " work_line=" << *work_line_ << "\n"
1371                      << "  expected=" << *register_line;
1372         }
1373       }
1374     }
1375     if (!CodeFlowVerifyInstruction(&start_guess)) {
1376       std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1377       prepend += " failed to verify: ";
1378       PrependToLastFailMessage(prepend);
1379       return false;
1380     }
1381     /* Clear "changed" and mark as visited. */
1382     insn_flags_[insn_idx].SetVisited();
1383     insn_flags_[insn_idx].ClearChanged();
1384   }
1385 
1386   if (gDebugVerify) {
1387     /*
1388      * Scan for dead code. There's nothing "evil" about dead code
1389      * (besides the wasted space), but it indicates a flaw somewhere
1390      * down the line, possibly in the verifier.
1391      *
1392      * If we've substituted "always throw" instructions into the stream,
1393      * we are almost certainly going to have some dead code.
1394      */
1395     int dead_start = -1;
1396     uint32_t insn_idx = 0;
1397     for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1398       /*
1399        * Switch-statement data doesn't get "visited" by scanner. It
1400        * may or may not be preceded by a padding NOP (for alignment).
1401        */
1402       if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1403           insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1404           insns[insn_idx] == Instruction::kArrayDataSignature ||
1405           (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1406            (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1407             insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1408             insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1409         insn_flags_[insn_idx].SetVisited();
1410       }
1411 
1412       if (!insn_flags_[insn_idx].IsVisited()) {
1413         if (dead_start < 0)
1414           dead_start = insn_idx;
1415       } else if (dead_start >= 0) {
1416         LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1417                         << "-" << reinterpret_cast<void*>(insn_idx - 1);
1418         dead_start = -1;
1419       }
1420     }
1421     if (dead_start >= 0) {
1422       LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1423                       << "-" << reinterpret_cast<void*>(insn_idx - 1);
1424     }
1425     // To dump the state of the verify after a method, do something like:
1426     // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1427     //     "boolean java.lang.String.equals(java.lang.Object)") {
1428     //   LOG(INFO) << info_messages_.str();
1429     // }
1430   }
1431   return true;
1432 }
1433 
CodeFlowVerifyInstruction(uint32_t * start_guess)1434 bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1435   // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1436   // We want the state _before_ the instruction, for the case where the dex pc we're
1437   // interested in is itself a monitor-enter instruction (which is a likely place
1438   // for a thread to be suspended).
1439   if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1440     monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1441     for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1442       monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1443     }
1444   }
1445 
1446   /*
1447    * Once we finish decoding the instruction, we need to figure out where
1448    * we can go from here. There are three possible ways to transfer
1449    * control to another statement:
1450    *
1451    * (1) Continue to the next instruction. Applies to all but
1452    *     unconditional branches, method returns, and exception throws.
1453    * (2) Branch to one or more possible locations. Applies to branches
1454    *     and switch statements.
1455    * (3) Exception handlers. Applies to any instruction that can
1456    *     throw an exception that is handled by an encompassing "try"
1457    *     block.
1458    *
1459    * We can also return, in which case there is no successor instruction
1460    * from this point.
1461    *
1462    * The behavior can be determined from the opcode flags.
1463    */
1464   const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1465   const Instruction* inst = Instruction::At(insns);
1466   int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1467 
1468   int32_t branch_target = 0;
1469   bool just_set_result = false;
1470   if (gDebugVerify) {
1471     // Generate processing back trace to debug verifier
1472     LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1473                     << *work_line_.get() << "\n";
1474   }
1475 
1476   /*
1477    * Make a copy of the previous register state. If the instruction
1478    * can throw an exception, we will copy/merge this into the "catch"
1479    * address rather than work_line, because we don't want the result
1480    * from the "successful" code path (e.g. a check-cast that "improves"
1481    * a type) to be visible to the exception handler.
1482    */
1483   if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1484     saved_line_->CopyFromLine(work_line_.get());
1485   } else if (kIsDebugBuild) {
1486     saved_line_->FillWithGarbage();
1487   }
1488 
1489 
1490   // We need to ensure the work line is consistent while performing validation. When we spot a
1491   // peephole pattern we compute a new line for either the fallthrough instruction or the
1492   // branch target.
1493   std::unique_ptr<RegisterLine> branch_line;
1494   std::unique_ptr<RegisterLine> fallthrough_line;
1495 
1496   switch (inst->Opcode()) {
1497     case Instruction::NOP:
1498       /*
1499        * A "pure" NOP has no effect on anything. Data tables start with
1500        * a signature that looks like a NOP; if we see one of these in
1501        * the course of executing code then we have a problem.
1502        */
1503       if (inst->VRegA_10x() != 0) {
1504         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1505       }
1506       break;
1507 
1508     case Instruction::MOVE:
1509       work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1510       break;
1511     case Instruction::MOVE_FROM16:
1512       work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1513       break;
1514     case Instruction::MOVE_16:
1515       work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1516       break;
1517     case Instruction::MOVE_WIDE:
1518       work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1519       break;
1520     case Instruction::MOVE_WIDE_FROM16:
1521       work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1522       break;
1523     case Instruction::MOVE_WIDE_16:
1524       work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1525       break;
1526     case Instruction::MOVE_OBJECT:
1527       work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1528       break;
1529     case Instruction::MOVE_OBJECT_FROM16:
1530       work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1531       break;
1532     case Instruction::MOVE_OBJECT_16:
1533       work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1534       break;
1535 
1536     /*
1537      * The move-result instructions copy data out of a "pseudo-register"
1538      * with the results from the last method invocation. In practice we
1539      * might want to hold the result in an actual CPU register, so the
1540      * Dalvik spec requires that these only appear immediately after an
1541      * invoke or filled-new-array.
1542      *
1543      * These calls invalidate the "result" register. (This is now
1544      * redundant with the reset done below, but it can make the debug info
1545      * easier to read in some cases.)
1546      */
1547     case Instruction::MOVE_RESULT:
1548       work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1549       break;
1550     case Instruction::MOVE_RESULT_WIDE:
1551       work_line_->CopyResultRegister2(inst->VRegA_11x());
1552       break;
1553     case Instruction::MOVE_RESULT_OBJECT:
1554       work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1555       break;
1556 
1557     case Instruction::MOVE_EXCEPTION: {
1558       // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1559       // where one entrypoint to the catch block is not actually an exception path.
1560       if (work_insn_idx_ == 0) {
1561         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1562         break;
1563       }
1564       /*
1565        * This statement can only appear as the first instruction in an exception handler. We verify
1566        * that as part of extracting the exception type from the catch block list.
1567        */
1568       RegType& res_type = GetCaughtExceptionType();
1569       work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1570       break;
1571     }
1572     case Instruction::RETURN_VOID:
1573       if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1574         if (!GetMethodReturnType().IsConflict()) {
1575           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1576         }
1577       }
1578       break;
1579     case Instruction::RETURN:
1580       if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1581         /* check the method signature */
1582         RegType& return_type = GetMethodReturnType();
1583         if (!return_type.IsCategory1Types()) {
1584           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1585                                             << return_type;
1586         } else {
1587           // Compilers may generate synthetic functions that write byte values into boolean fields.
1588           // Also, it may use integer values for boolean, byte, short, and character return types.
1589           const uint32_t vregA = inst->VRegA_11x();
1590           RegType& src_type = work_line_->GetRegisterType(vregA);
1591           bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1592                           ((return_type.IsBoolean() || return_type.IsByte() ||
1593                            return_type.IsShort() || return_type.IsChar()) &&
1594                            src_type.IsInteger()));
1595           /* check the register contents */
1596           bool success =
1597               work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1598           if (!success) {
1599             AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1600           }
1601         }
1602       }
1603       break;
1604     case Instruction::RETURN_WIDE:
1605       if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1606         /* check the method signature */
1607         RegType& return_type = GetMethodReturnType();
1608         if (!return_type.IsCategory2Types()) {
1609           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1610         } else {
1611           /* check the register contents */
1612           const uint32_t vregA = inst->VRegA_11x();
1613           bool success = work_line_->VerifyRegisterType(vregA, return_type);
1614           if (!success) {
1615             AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1616           }
1617         }
1618       }
1619       break;
1620     case Instruction::RETURN_OBJECT:
1621       if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1622         RegType& return_type = GetMethodReturnType();
1623         if (!return_type.IsReferenceTypes()) {
1624           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1625         } else {
1626           /* return_type is the *expected* return type, not register value */
1627           DCHECK(!return_type.IsZero());
1628           DCHECK(!return_type.IsUninitializedReference());
1629           const uint32_t vregA = inst->VRegA_11x();
1630           RegType& reg_type = work_line_->GetRegisterType(vregA);
1631           // Disallow returning uninitialized values and verify that the reference in vAA is an
1632           // instance of the "return_type"
1633           if (reg_type.IsUninitializedTypes()) {
1634             Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1635                                               << reg_type << "'";
1636           } else if (!return_type.IsAssignableFrom(reg_type)) {
1637             if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1638               Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1639                   << "' or '" << reg_type << "'";
1640             } else {
1641               Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1642                   << "', but expected from declaration '" << return_type << "'";
1643             }
1644           }
1645         }
1646       }
1647       break;
1648 
1649       /* could be boolean, int, float, or a null reference */
1650     case Instruction::CONST_4: {
1651       int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1652       work_line_->SetRegisterType(inst->VRegA_11n(),
1653                                   DetermineCat1Constant(val, need_precise_constants_));
1654       break;
1655     }
1656     case Instruction::CONST_16: {
1657       int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1658       work_line_->SetRegisterType(inst->VRegA_21s(),
1659                                   DetermineCat1Constant(val, need_precise_constants_));
1660       break;
1661     }
1662     case Instruction::CONST: {
1663       int32_t val = inst->VRegB_31i();
1664       work_line_->SetRegisterType(inst->VRegA_31i(),
1665                                   DetermineCat1Constant(val, need_precise_constants_));
1666       break;
1667     }
1668     case Instruction::CONST_HIGH16: {
1669       int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1670       work_line_->SetRegisterType(inst->VRegA_21h(),
1671                                   DetermineCat1Constant(val, need_precise_constants_));
1672       break;
1673     }
1674       /* could be long or double; resolved upon use */
1675     case Instruction::CONST_WIDE_16: {
1676       int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1677       RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1678       RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1679       work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1680       break;
1681     }
1682     case Instruction::CONST_WIDE_32: {
1683       int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1684       RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1685       RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1686       work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1687       break;
1688     }
1689     case Instruction::CONST_WIDE: {
1690       int64_t val = inst->VRegB_51l();
1691       RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1692       RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1693       work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1694       break;
1695     }
1696     case Instruction::CONST_WIDE_HIGH16: {
1697       int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1698       RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1699       RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1700       work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1701       break;
1702     }
1703     case Instruction::CONST_STRING:
1704       work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1705       break;
1706     case Instruction::CONST_STRING_JUMBO:
1707       work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1708       break;
1709     case Instruction::CONST_CLASS: {
1710       // Get type from instruction if unresolved then we need an access check
1711       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1712       RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1713       // Register holds class, ie its type is class, on error it will hold Conflict.
1714       work_line_->SetRegisterType(inst->VRegA_21c(),
1715                                   res_type.IsConflict() ? res_type
1716                                                         : reg_types_.JavaLangClass(true));
1717       break;
1718     }
1719     case Instruction::MONITOR_ENTER:
1720       work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1721       break;
1722     case Instruction::MONITOR_EXIT:
1723       /*
1724        * monitor-exit instructions are odd. They can throw exceptions,
1725        * but when they do they act as if they succeeded and the PC is
1726        * pointing to the following instruction. (This behavior goes back
1727        * to the need to handle asynchronous exceptions, a now-deprecated
1728        * feature that Dalvik doesn't support.)
1729        *
1730        * In practice we don't need to worry about this. The only
1731        * exceptions that can be thrown from monitor-exit are for a
1732        * null reference and -exit without a matching -enter. If the
1733        * structured locking checks are working, the former would have
1734        * failed on the -enter instruction, and the latter is impossible.
1735        *
1736        * This is fortunate, because issue 3221411 prevents us from
1737        * chasing the "can throw" path when monitor verification is
1738        * enabled. If we can fully verify the locking we can ignore
1739        * some catch blocks (which will show up as "dead" code when
1740        * we skip them here); if we can't, then the code path could be
1741        * "live" so we still need to check it.
1742        */
1743       opcode_flags &= ~Instruction::kThrow;
1744       work_line_->PopMonitor(inst->VRegA_11x());
1745       break;
1746 
1747     case Instruction::CHECK_CAST:
1748     case Instruction::INSTANCE_OF: {
1749       /*
1750        * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1751        * could be a "upcast" -- not expected, so we don't try to address it.)
1752        *
1753        * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1754        * dec_insn.vA when branching to a handler.
1755        */
1756       const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1757       const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1758       RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1759       if (res_type.IsConflict()) {
1760         // If this is a primitive type, fail HARD.
1761         mirror::Class* klass = (*dex_cache_)->GetResolvedType(type_idx);
1762         if (klass != nullptr && klass->IsPrimitive()) {
1763           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1764               << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1765               << GetDeclaringClass();
1766           break;
1767         }
1768 
1769         DCHECK_NE(failures_.size(), 0U);
1770         if (!is_checkcast) {
1771           work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1772         }
1773         break;  // bad class
1774       }
1775       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1776       uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1777       RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1778       if (!res_type.IsNonZeroReferenceTypes()) {
1779         if (is_checkcast) {
1780           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1781         } else {
1782           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1783         }
1784       } else if (!orig_type.IsReferenceTypes()) {
1785         if (is_checkcast) {
1786           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1787         } else {
1788           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1789         }
1790       } else {
1791         if (is_checkcast) {
1792           work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1793         } else {
1794           work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1795         }
1796       }
1797       break;
1798     }
1799     case Instruction::ARRAY_LENGTH: {
1800       RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1801       if (res_type.IsReferenceTypes()) {
1802         if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1803           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1804         } else {
1805           work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1806         }
1807       } else {
1808         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1809       }
1810       break;
1811     }
1812     case Instruction::NEW_INSTANCE: {
1813       RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1814       if (res_type.IsConflict()) {
1815         DCHECK_NE(failures_.size(), 0U);
1816         break;  // bad class
1817       }
1818       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1819       // can't create an instance of an interface or abstract class */
1820       if (!res_type.IsInstantiableTypes()) {
1821         Fail(VERIFY_ERROR_INSTANTIATION)
1822             << "new-instance on primitive, interface or abstract class" << res_type;
1823         // Soft failure so carry on to set register type.
1824       }
1825       RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1826       // Any registers holding previous allocations from this address that have not yet been
1827       // initialized must be marked invalid.
1828       work_line_->MarkUninitRefsAsInvalid(uninit_type);
1829       // add the new uninitialized reference to the register state
1830       work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1831       break;
1832     }
1833     case Instruction::NEW_ARRAY:
1834       VerifyNewArray(inst, false, false);
1835       break;
1836     case Instruction::FILLED_NEW_ARRAY:
1837       VerifyNewArray(inst, true, false);
1838       just_set_result = true;  // Filled new array sets result register
1839       break;
1840     case Instruction::FILLED_NEW_ARRAY_RANGE:
1841       VerifyNewArray(inst, true, true);
1842       just_set_result = true;  // Filled new array range sets result register
1843       break;
1844     case Instruction::CMPL_FLOAT:
1845     case Instruction::CMPG_FLOAT:
1846       if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1847         break;
1848       }
1849       if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1850         break;
1851       }
1852       work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1853       break;
1854     case Instruction::CMPL_DOUBLE:
1855     case Instruction::CMPG_DOUBLE:
1856       if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1857                                               reg_types_.DoubleHi())) {
1858         break;
1859       }
1860       if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1861                                               reg_types_.DoubleHi())) {
1862         break;
1863       }
1864       work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1865       break;
1866     case Instruction::CMP_LONG:
1867       if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1868                                               reg_types_.LongHi())) {
1869         break;
1870       }
1871       if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1872                                               reg_types_.LongHi())) {
1873         break;
1874       }
1875       work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1876       break;
1877     case Instruction::THROW: {
1878       RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1879       if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1880         Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1881             << "thrown class " << res_type << " not instanceof Throwable";
1882       }
1883       break;
1884     }
1885     case Instruction::GOTO:
1886     case Instruction::GOTO_16:
1887     case Instruction::GOTO_32:
1888       /* no effect on or use of registers */
1889       break;
1890 
1891     case Instruction::PACKED_SWITCH:
1892     case Instruction::SPARSE_SWITCH:
1893       /* verify that vAA is an integer, or can be converted to one */
1894       work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1895       break;
1896 
1897     case Instruction::FILL_ARRAY_DATA: {
1898       /* Similar to the verification done for APUT */
1899       RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1900       /* array_type can be null if the reg type is Zero */
1901       if (!array_type.IsZero()) {
1902         if (!array_type.IsArrayTypes()) {
1903           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1904                                             << array_type;
1905         } else {
1906           RegType& component_type = reg_types_.GetComponentType(array_type,
1907                                                                       class_loader_->Get());
1908           DCHECK(!component_type.IsConflict());
1909           if (component_type.IsNonZeroReferenceTypes()) {
1910             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1911                                               << component_type;
1912           } else {
1913             // Now verify if the element width in the table matches the element width declared in
1914             // the array
1915             const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1916             if (array_data[0] != Instruction::kArrayDataSignature) {
1917               Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1918             } else {
1919               size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1920               // Since we don't compress the data in Dex, expect to see equal width of data stored
1921               // in the table and expected from the array class.
1922               if (array_data[1] != elem_width) {
1923                 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1924                                                   << " vs " << elem_width << ")";
1925               }
1926             }
1927           }
1928         }
1929       }
1930       break;
1931     }
1932     case Instruction::IF_EQ:
1933     case Instruction::IF_NE: {
1934       RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1935       RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1936       bool mismatch = false;
1937       if (reg_type1.IsZero()) {  // zero then integral or reference expected
1938         mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1939       } else if (reg_type1.IsReferenceTypes()) {  // both references?
1940         mismatch = !reg_type2.IsReferenceTypes();
1941       } else {  // both integral?
1942         mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1943       }
1944       if (mismatch) {
1945         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1946                                           << reg_type2 << ") must both be references or integral";
1947       }
1948       break;
1949     }
1950     case Instruction::IF_LT:
1951     case Instruction::IF_GE:
1952     case Instruction::IF_GT:
1953     case Instruction::IF_LE: {
1954       RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1955       RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1956       if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1957         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1958                                           << reg_type2 << ") must be integral";
1959       }
1960       break;
1961     }
1962     case Instruction::IF_EQZ:
1963     case Instruction::IF_NEZ: {
1964       RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1965       if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1966         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1967                                           << " unexpected as arg to if-eqz/if-nez";
1968       }
1969 
1970       // Find previous instruction - its existence is a precondition to peephole optimization.
1971       uint32_t instance_of_idx = 0;
1972       if (0 != work_insn_idx_) {
1973         instance_of_idx = work_insn_idx_ - 1;
1974         while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1975           instance_of_idx--;
1976         }
1977         if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
1978                         "Unable to get previous instruction of if-eqz/if-nez for work index ",
1979                         work_insn_idx_)) {
1980           break;
1981         }
1982       } else {
1983         break;
1984       }
1985 
1986       const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1987 
1988       /* Check for peep-hole pattern of:
1989        *    ...;
1990        *    instance-of vX, vY, T;
1991        *    ifXXX vX, label ;
1992        *    ...;
1993        * label:
1994        *    ...;
1995        * and sharpen the type of vY to be type T.
1996        * Note, this pattern can't be if:
1997        *  - if there are other branches to this branch,
1998        *  - when vX == vY.
1999        */
2000       if (!CurrentInsnFlags()->IsBranchTarget() &&
2001           (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2002           (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2003           (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2004         // Check the type of the instance-of is different than that of registers type, as if they
2005         // are the same there is no work to be done here. Check that the conversion is not to or
2006         // from an unresolved type as type information is imprecise. If the instance-of is to an
2007         // interface then ignore the type information as interfaces can only be treated as Objects
2008         // and we don't want to disallow field and other operations on the object. If the value
2009         // being instance-of checked against is known null (zero) then allow the optimization as
2010         // we didn't have type information. If the merge of the instance-of type with the original
2011         // type is assignable to the original then allow optimization. This check is performed to
2012         // ensure that subsequent merges don't lose type information - such as becoming an
2013         // interface from a class that would lose information relevant to field checks.
2014         RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
2015         RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2016 
2017         if (!orig_type.Equals(cast_type) &&
2018             !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2019             cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2020             !cast_type.GetClass()->IsInterface() &&
2021             (orig_type.IsZero() ||
2022                 orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2023           RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2024           if (inst->Opcode() == Instruction::IF_EQZ) {
2025             fallthrough_line.reset(update_line);
2026           } else {
2027             branch_line.reset(update_line);
2028           }
2029           update_line->CopyFromLine(work_line_.get());
2030           update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
2031           if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2032             // See if instance-of was preceded by a move-object operation, common due to the small
2033             // register encoding space of instance-of, and propagate type information to the source
2034             // of the move-object.
2035             uint32_t move_idx = instance_of_idx - 1;
2036             while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2037               move_idx--;
2038             }
2039             if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2040                             "Unable to get previous instruction of if-eqz/if-nez for work index ",
2041                             work_insn_idx_)) {
2042               break;
2043             }
2044             const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2045             switch (move_inst->Opcode()) {
2046               case Instruction::MOVE_OBJECT:
2047                 if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2048                   update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
2049                 }
2050                 break;
2051               case Instruction::MOVE_OBJECT_FROM16:
2052                 if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2053                   update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
2054                 }
2055                 break;
2056               case Instruction::MOVE_OBJECT_16:
2057                 if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2058                   update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
2059                 }
2060                 break;
2061               default:
2062                 break;
2063             }
2064           }
2065         }
2066       }
2067 
2068       break;
2069     }
2070     case Instruction::IF_LTZ:
2071     case Instruction::IF_GEZ:
2072     case Instruction::IF_GTZ:
2073     case Instruction::IF_LEZ: {
2074       RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
2075       if (!reg_type.IsIntegralTypes()) {
2076         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2077                                           << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2078       }
2079       break;
2080     }
2081     case Instruction::AGET_BOOLEAN:
2082       VerifyAGet(inst, reg_types_.Boolean(), true);
2083       break;
2084     case Instruction::AGET_BYTE:
2085       VerifyAGet(inst, reg_types_.Byte(), true);
2086       break;
2087     case Instruction::AGET_CHAR:
2088       VerifyAGet(inst, reg_types_.Char(), true);
2089       break;
2090     case Instruction::AGET_SHORT:
2091       VerifyAGet(inst, reg_types_.Short(), true);
2092       break;
2093     case Instruction::AGET:
2094       VerifyAGet(inst, reg_types_.Integer(), true);
2095       break;
2096     case Instruction::AGET_WIDE:
2097       VerifyAGet(inst, reg_types_.LongLo(), true);
2098       break;
2099     case Instruction::AGET_OBJECT:
2100       VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2101       break;
2102 
2103     case Instruction::APUT_BOOLEAN:
2104       VerifyAPut(inst, reg_types_.Boolean(), true);
2105       break;
2106     case Instruction::APUT_BYTE:
2107       VerifyAPut(inst, reg_types_.Byte(), true);
2108       break;
2109     case Instruction::APUT_CHAR:
2110       VerifyAPut(inst, reg_types_.Char(), true);
2111       break;
2112     case Instruction::APUT_SHORT:
2113       VerifyAPut(inst, reg_types_.Short(), true);
2114       break;
2115     case Instruction::APUT:
2116       VerifyAPut(inst, reg_types_.Integer(), true);
2117       break;
2118     case Instruction::APUT_WIDE:
2119       VerifyAPut(inst, reg_types_.LongLo(), true);
2120       break;
2121     case Instruction::APUT_OBJECT:
2122       VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2123       break;
2124 
2125     case Instruction::IGET_BOOLEAN:
2126       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2127       break;
2128     case Instruction::IGET_BYTE:
2129       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2130       break;
2131     case Instruction::IGET_CHAR:
2132       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2133       break;
2134     case Instruction::IGET_SHORT:
2135       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2136       break;
2137     case Instruction::IGET:
2138       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2139       break;
2140     case Instruction::IGET_WIDE:
2141       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2142       break;
2143     case Instruction::IGET_OBJECT:
2144       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2145                                                     false);
2146       break;
2147 
2148     case Instruction::IPUT_BOOLEAN:
2149       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2150       break;
2151     case Instruction::IPUT_BYTE:
2152       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2153       break;
2154     case Instruction::IPUT_CHAR:
2155       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2156       break;
2157     case Instruction::IPUT_SHORT:
2158       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2159       break;
2160     case Instruction::IPUT:
2161       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2162       break;
2163     case Instruction::IPUT_WIDE:
2164       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2165       break;
2166     case Instruction::IPUT_OBJECT:
2167       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2168                                                     false);
2169       break;
2170 
2171     case Instruction::SGET_BOOLEAN:
2172       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2173       break;
2174     case Instruction::SGET_BYTE:
2175       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2176       break;
2177     case Instruction::SGET_CHAR:
2178       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2179       break;
2180     case Instruction::SGET_SHORT:
2181       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2182       break;
2183     case Instruction::SGET:
2184       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2185       break;
2186     case Instruction::SGET_WIDE:
2187       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2188       break;
2189     case Instruction::SGET_OBJECT:
2190       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2191                                                     true);
2192       break;
2193 
2194     case Instruction::SPUT_BOOLEAN:
2195       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2196       break;
2197     case Instruction::SPUT_BYTE:
2198       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2199       break;
2200     case Instruction::SPUT_CHAR:
2201       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2202       break;
2203     case Instruction::SPUT_SHORT:
2204       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2205       break;
2206     case Instruction::SPUT:
2207       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2208       break;
2209     case Instruction::SPUT_WIDE:
2210       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2211       break;
2212     case Instruction::SPUT_OBJECT:
2213       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2214                                                     true);
2215       break;
2216 
2217     case Instruction::INVOKE_VIRTUAL:
2218     case Instruction::INVOKE_VIRTUAL_RANGE:
2219     case Instruction::INVOKE_SUPER:
2220     case Instruction::INVOKE_SUPER_RANGE: {
2221       bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2222                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2223       bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2224                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2225       mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2226                                                               is_super);
2227       RegType* return_type = nullptr;
2228       if (called_method != nullptr) {
2229         Thread* self = Thread::Current();
2230         StackHandleScope<1> hs(self);
2231         Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2232         MethodHelper mh(h_called_method);
2233         mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2234         if (return_type_class != nullptr) {
2235           return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2236                                               return_type_class,
2237                                               return_type_class->CannotBeAssignedFromOtherTypes());
2238         } else {
2239           DCHECK(!can_load_classes_ || self->IsExceptionPending());
2240           self->ClearException();
2241         }
2242       }
2243       if (return_type == nullptr) {
2244         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2245         const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2246         uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2247         const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2248         return_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2249       }
2250       if (!return_type->IsLowHalf()) {
2251         work_line_->SetResultRegisterType(*return_type);
2252       } else {
2253         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2254       }
2255       just_set_result = true;
2256       break;
2257     }
2258     case Instruction::INVOKE_DIRECT:
2259     case Instruction::INVOKE_DIRECT_RANGE: {
2260       bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2261       mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2262                                                                    is_range, false);
2263       const char* return_type_descriptor;
2264       bool is_constructor;
2265       RegType* return_type = nullptr;
2266       if (called_method == nullptr) {
2267         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2268         const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2269         is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2270         uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2271         return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2272       } else {
2273         is_constructor = called_method->IsConstructor();
2274         return_type_descriptor = called_method->GetReturnTypeDescriptor();
2275         Thread* self = Thread::Current();
2276         StackHandleScope<1> hs(self);
2277         Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2278         MethodHelper mh(h_called_method);
2279         mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2280         if (return_type_class != nullptr) {
2281           return_type = &reg_types_.FromClass(return_type_descriptor,
2282                                               return_type_class,
2283                                               return_type_class->CannotBeAssignedFromOtherTypes());
2284         } else {
2285           DCHECK(!can_load_classes_ || self->IsExceptionPending());
2286           self->ClearException();
2287         }
2288       }
2289       if (is_constructor) {
2290         /*
2291          * Some additional checks when calling a constructor. We know from the invocation arg check
2292          * that the "this" argument is an instance of called_method->klass. Now we further restrict
2293          * that to require that called_method->klass is the same as this->klass or this->super,
2294          * allowing the latter only if the "this" argument is the same as the "this" argument to
2295          * this method (which implies that we're in a constructor ourselves).
2296          */
2297         RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2298         if (this_type.IsConflict())  // failure.
2299           break;
2300 
2301         /* no null refs allowed (?) */
2302         if (this_type.IsZero()) {
2303           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2304           break;
2305         }
2306 
2307         /* must be in same class or in superclass */
2308         // RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2309         // TODO: re-enable constructor type verification
2310         // if (this_super_klass.IsConflict()) {
2311           // Unknown super class, fail so we re-check at runtime.
2312           // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2313           // break;
2314         // }
2315 
2316         /* arg must be an uninitialized reference */
2317         if (!this_type.IsUninitializedTypes()) {
2318           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2319               << this_type;
2320           break;
2321         }
2322 
2323         /*
2324          * Replace the uninitialized reference with an initialized one. We need to do this for all
2325          * registers that have the same object instance in them, not just the "this" register.
2326          */
2327         work_line_->MarkRefsAsInitialized(this_type);
2328       }
2329       if (return_type == nullptr) {
2330         return_type = &reg_types_.FromDescriptor(class_loader_->Get(),
2331                                                  return_type_descriptor, false);
2332       }
2333       if (!return_type->IsLowHalf()) {
2334         work_line_->SetResultRegisterType(*return_type);
2335       } else {
2336         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2337       }
2338       just_set_result = true;
2339       break;
2340     }
2341     case Instruction::INVOKE_STATIC:
2342     case Instruction::INVOKE_STATIC_RANGE: {
2343         bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2344         mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2345                                                                      METHOD_STATIC,
2346                                                                      is_range,
2347                                                                      false);
2348         const char* descriptor;
2349         if (called_method == nullptr) {
2350           uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2351           const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2352           uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2353           descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2354         } else {
2355           descriptor = called_method->GetReturnTypeDescriptor();
2356         }
2357         RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2358                                                                false);
2359         if (!return_type.IsLowHalf()) {
2360           work_line_->SetResultRegisterType(return_type);
2361         } else {
2362           work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2363         }
2364         just_set_result = true;
2365       }
2366       break;
2367     case Instruction::INVOKE_INTERFACE:
2368     case Instruction::INVOKE_INTERFACE_RANGE: {
2369       bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2370       mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2371                                                                 METHOD_INTERFACE,
2372                                                                 is_range,
2373                                                                 false);
2374       if (abs_method != nullptr) {
2375         mirror::Class* called_interface = abs_method->GetDeclaringClass();
2376         if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2377           Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2378               << PrettyMethod(abs_method) << "'";
2379           break;
2380         }
2381       }
2382       /* Get the type of the "this" arg, which should either be a sub-interface of called
2383        * interface or Object (see comments in RegType::JoinClass).
2384        */
2385       RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2386       if (this_type.IsZero()) {
2387         /* null pointer always passes (and always fails at runtime) */
2388       } else {
2389         if (this_type.IsUninitializedTypes()) {
2390           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2391               << this_type;
2392           break;
2393         }
2394         // In the past we have tried to assert that "called_interface" is assignable
2395         // from "this_type.GetClass()", however, as we do an imprecise Join
2396         // (RegType::JoinClass) we don't have full information on what interfaces are
2397         // implemented by "this_type". For example, two classes may implement the same
2398         // interfaces and have a common parent that doesn't implement the interface. The
2399         // join will set "this_type" to the parent class and a test that this implements
2400         // the interface will incorrectly fail.
2401       }
2402       /*
2403        * We don't have an object instance, so we can't find the concrete method. However, all of
2404        * the type information is in the abstract method, so we're good.
2405        */
2406       const char* descriptor;
2407       if (abs_method == nullptr) {
2408         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2409         const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2410         uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2411         descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2412       } else {
2413         descriptor = abs_method->GetReturnTypeDescriptor();
2414       }
2415       RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2416                                                              false);
2417       if (!return_type.IsLowHalf()) {
2418         work_line_->SetResultRegisterType(return_type);
2419       } else {
2420         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2421       }
2422       just_set_result = true;
2423       break;
2424     }
2425     case Instruction::NEG_INT:
2426     case Instruction::NOT_INT:
2427       work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2428       break;
2429     case Instruction::NEG_LONG:
2430     case Instruction::NOT_LONG:
2431       work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2432                                    reg_types_.LongLo(), reg_types_.LongHi());
2433       break;
2434     case Instruction::NEG_FLOAT:
2435       work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2436       break;
2437     case Instruction::NEG_DOUBLE:
2438       work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2439                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2440       break;
2441     case Instruction::INT_TO_LONG:
2442       work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2443                                      reg_types_.Integer());
2444       break;
2445     case Instruction::INT_TO_FLOAT:
2446       work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2447       break;
2448     case Instruction::INT_TO_DOUBLE:
2449       work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2450                                      reg_types_.Integer());
2451       break;
2452     case Instruction::LONG_TO_INT:
2453       work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2454                                        reg_types_.LongLo(), reg_types_.LongHi());
2455       break;
2456     case Instruction::LONG_TO_FLOAT:
2457       work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2458                                        reg_types_.LongLo(), reg_types_.LongHi());
2459       break;
2460     case Instruction::LONG_TO_DOUBLE:
2461       work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2462                                    reg_types_.LongLo(), reg_types_.LongHi());
2463       break;
2464     case Instruction::FLOAT_TO_INT:
2465       work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2466       break;
2467     case Instruction::FLOAT_TO_LONG:
2468       work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2469                                      reg_types_.Float());
2470       break;
2471     case Instruction::FLOAT_TO_DOUBLE:
2472       work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2473                                      reg_types_.Float());
2474       break;
2475     case Instruction::DOUBLE_TO_INT:
2476       work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2477                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
2478       break;
2479     case Instruction::DOUBLE_TO_LONG:
2480       work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2481                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2482       break;
2483     case Instruction::DOUBLE_TO_FLOAT:
2484       work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2485                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
2486       break;
2487     case Instruction::INT_TO_BYTE:
2488       work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2489       break;
2490     case Instruction::INT_TO_CHAR:
2491       work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2492       break;
2493     case Instruction::INT_TO_SHORT:
2494       work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2495       break;
2496 
2497     case Instruction::ADD_INT:
2498     case Instruction::SUB_INT:
2499     case Instruction::MUL_INT:
2500     case Instruction::REM_INT:
2501     case Instruction::DIV_INT:
2502     case Instruction::SHL_INT:
2503     case Instruction::SHR_INT:
2504     case Instruction::USHR_INT:
2505       work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2506                                 reg_types_.Integer(), false);
2507       break;
2508     case Instruction::AND_INT:
2509     case Instruction::OR_INT:
2510     case Instruction::XOR_INT:
2511       work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2512                                 reg_types_.Integer(), true);
2513       break;
2514     case Instruction::ADD_LONG:
2515     case Instruction::SUB_LONG:
2516     case Instruction::MUL_LONG:
2517     case Instruction::DIV_LONG:
2518     case Instruction::REM_LONG:
2519     case Instruction::AND_LONG:
2520     case Instruction::OR_LONG:
2521     case Instruction::XOR_LONG:
2522       work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2523                                     reg_types_.LongLo(), reg_types_.LongHi(),
2524                                     reg_types_.LongLo(), reg_types_.LongHi());
2525       break;
2526     case Instruction::SHL_LONG:
2527     case Instruction::SHR_LONG:
2528     case Instruction::USHR_LONG:
2529       /* shift distance is Int, making these different from other binary operations */
2530       work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2531                                          reg_types_.Integer());
2532       break;
2533     case Instruction::ADD_FLOAT:
2534     case Instruction::SUB_FLOAT:
2535     case Instruction::MUL_FLOAT:
2536     case Instruction::DIV_FLOAT:
2537     case Instruction::REM_FLOAT:
2538       work_line_->CheckBinaryOp(inst,
2539                                 reg_types_.Float(),
2540                                 reg_types_.Float(),
2541                                 reg_types_.Float(),
2542                                 false);
2543       break;
2544     case Instruction::ADD_DOUBLE:
2545     case Instruction::SUB_DOUBLE:
2546     case Instruction::MUL_DOUBLE:
2547     case Instruction::DIV_DOUBLE:
2548     case Instruction::REM_DOUBLE:
2549       work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2550                                     reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2551                                     reg_types_.DoubleLo(), reg_types_.DoubleHi());
2552       break;
2553     case Instruction::ADD_INT_2ADDR:
2554     case Instruction::SUB_INT_2ADDR:
2555     case Instruction::MUL_INT_2ADDR:
2556     case Instruction::REM_INT_2ADDR:
2557     case Instruction::SHL_INT_2ADDR:
2558     case Instruction::SHR_INT_2ADDR:
2559     case Instruction::USHR_INT_2ADDR:
2560       work_line_->CheckBinaryOp2addr(inst,
2561                                      reg_types_.Integer(),
2562                                      reg_types_.Integer(),
2563                                      reg_types_.Integer(),
2564                                      false);
2565       break;
2566     case Instruction::AND_INT_2ADDR:
2567     case Instruction::OR_INT_2ADDR:
2568     case Instruction::XOR_INT_2ADDR:
2569       work_line_->CheckBinaryOp2addr(inst,
2570                                      reg_types_.Integer(),
2571                                      reg_types_.Integer(),
2572                                      reg_types_.Integer(),
2573                                      true);
2574       break;
2575     case Instruction::DIV_INT_2ADDR:
2576       work_line_->CheckBinaryOp2addr(inst,
2577                                      reg_types_.Integer(),
2578                                      reg_types_.Integer(),
2579                                      reg_types_.Integer(),
2580                                      false);
2581       break;
2582     case Instruction::ADD_LONG_2ADDR:
2583     case Instruction::SUB_LONG_2ADDR:
2584     case Instruction::MUL_LONG_2ADDR:
2585     case Instruction::DIV_LONG_2ADDR:
2586     case Instruction::REM_LONG_2ADDR:
2587     case Instruction::AND_LONG_2ADDR:
2588     case Instruction::OR_LONG_2ADDR:
2589     case Instruction::XOR_LONG_2ADDR:
2590       work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2591                                          reg_types_.LongLo(), reg_types_.LongHi(),
2592                                          reg_types_.LongLo(), reg_types_.LongHi());
2593       break;
2594     case Instruction::SHL_LONG_2ADDR:
2595     case Instruction::SHR_LONG_2ADDR:
2596     case Instruction::USHR_LONG_2ADDR:
2597       work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2598                                               reg_types_.Integer());
2599       break;
2600     case Instruction::ADD_FLOAT_2ADDR:
2601     case Instruction::SUB_FLOAT_2ADDR:
2602     case Instruction::MUL_FLOAT_2ADDR:
2603     case Instruction::DIV_FLOAT_2ADDR:
2604     case Instruction::REM_FLOAT_2ADDR:
2605       work_line_->CheckBinaryOp2addr(inst,
2606                                      reg_types_.Float(),
2607                                      reg_types_.Float(),
2608                                      reg_types_.Float(),
2609                                      false);
2610       break;
2611     case Instruction::ADD_DOUBLE_2ADDR:
2612     case Instruction::SUB_DOUBLE_2ADDR:
2613     case Instruction::MUL_DOUBLE_2ADDR:
2614     case Instruction::DIV_DOUBLE_2ADDR:
2615     case Instruction::REM_DOUBLE_2ADDR:
2616       work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2617                                          reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2618                                          reg_types_.DoubleLo(), reg_types_.DoubleHi());
2619       break;
2620     case Instruction::ADD_INT_LIT16:
2621     case Instruction::RSUB_INT:
2622     case Instruction::MUL_INT_LIT16:
2623     case Instruction::DIV_INT_LIT16:
2624     case Instruction::REM_INT_LIT16:
2625       work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2626       break;
2627     case Instruction::AND_INT_LIT16:
2628     case Instruction::OR_INT_LIT16:
2629     case Instruction::XOR_INT_LIT16:
2630       work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2631       break;
2632     case Instruction::ADD_INT_LIT8:
2633     case Instruction::RSUB_INT_LIT8:
2634     case Instruction::MUL_INT_LIT8:
2635     case Instruction::DIV_INT_LIT8:
2636     case Instruction::REM_INT_LIT8:
2637     case Instruction::SHL_INT_LIT8:
2638     case Instruction::SHR_INT_LIT8:
2639     case Instruction::USHR_INT_LIT8:
2640       work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2641       break;
2642     case Instruction::AND_INT_LIT8:
2643     case Instruction::OR_INT_LIT8:
2644     case Instruction::XOR_INT_LIT8:
2645       work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2646       break;
2647 
2648     // Special instructions.
2649     case Instruction::RETURN_VOID_BARRIER:
2650       if (!IsConstructor() || IsStatic()) {
2651           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2652       }
2653       break;
2654     // Note: the following instructions encode offsets derived from class linking.
2655     // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2656     // meaning if the class linking and resolution were successful.
2657     case Instruction::IGET_QUICK:
2658       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2659       break;
2660     case Instruction::IGET_WIDE_QUICK:
2661       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2662       break;
2663     case Instruction::IGET_OBJECT_QUICK:
2664       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2665       break;
2666     case Instruction::IPUT_QUICK:
2667       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2668       break;
2669     case Instruction::IPUT_WIDE_QUICK:
2670       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2671       break;
2672     case Instruction::IPUT_OBJECT_QUICK:
2673       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2674       break;
2675     case Instruction::INVOKE_VIRTUAL_QUICK:
2676     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2677       bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2678       mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2679       if (called_method != nullptr) {
2680         const char* descriptor = called_method->GetReturnTypeDescriptor();
2681         RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2682                                                                false);
2683         if (!return_type.IsLowHalf()) {
2684           work_line_->SetResultRegisterType(return_type);
2685         } else {
2686           work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2687         }
2688         just_set_result = true;
2689       }
2690       break;
2691     }
2692 
2693     /* These should never appear during verification. */
2694     case Instruction::UNUSED_3E:
2695     case Instruction::UNUSED_3F:
2696     case Instruction::UNUSED_40:
2697     case Instruction::UNUSED_41:
2698     case Instruction::UNUSED_42:
2699     case Instruction::UNUSED_43:
2700     case Instruction::UNUSED_79:
2701     case Instruction::UNUSED_7A:
2702     case Instruction::UNUSED_EB:
2703     case Instruction::UNUSED_EC:
2704     case Instruction::UNUSED_ED:
2705     case Instruction::UNUSED_EE:
2706     case Instruction::UNUSED_EF:
2707     case Instruction::UNUSED_F0:
2708     case Instruction::UNUSED_F1:
2709     case Instruction::UNUSED_F2:
2710     case Instruction::UNUSED_F3:
2711     case Instruction::UNUSED_F4:
2712     case Instruction::UNUSED_F5:
2713     case Instruction::UNUSED_F6:
2714     case Instruction::UNUSED_F7:
2715     case Instruction::UNUSED_F8:
2716     case Instruction::UNUSED_F9:
2717     case Instruction::UNUSED_FA:
2718     case Instruction::UNUSED_FB:
2719     case Instruction::UNUSED_FC:
2720     case Instruction::UNUSED_FD:
2721     case Instruction::UNUSED_FE:
2722     case Instruction::UNUSED_FF:
2723       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2724       break;
2725 
2726     /*
2727      * DO NOT add a "default" clause here. Without it the compiler will
2728      * complain if an instruction is missing (which is desirable).
2729      */
2730   }  // end - switch (dec_insn.opcode)
2731 
2732   if (have_pending_hard_failure_) {
2733     if (Runtime::Current()->IsCompiler()) {
2734       /* When compiling, check that the last failure is a hard failure */
2735       CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2736     }
2737     /* immediate failure, reject class */
2738     info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2739     return false;
2740   } else if (have_pending_runtime_throw_failure_) {
2741     /* checking interpreter will throw, mark following code as unreachable */
2742     opcode_flags = Instruction::kThrow;
2743   }
2744   /*
2745    * If we didn't just set the result register, clear it out. This ensures that you can only use
2746    * "move-result" immediately after the result is set. (We could check this statically, but it's
2747    * not expensive and it makes our debugging output cleaner.)
2748    */
2749   if (!just_set_result) {
2750     work_line_->SetResultTypeToUnknown();
2751   }
2752 
2753 
2754 
2755   /*
2756    * Handle "branch". Tag the branch target.
2757    *
2758    * NOTE: instructions like Instruction::EQZ provide information about the
2759    * state of the register when the branch is taken or not taken. For example,
2760    * somebody could get a reference field, check it for zero, and if the
2761    * branch is taken immediately store that register in a boolean field
2762    * since the value is known to be zero. We do not currently account for
2763    * that, and will reject the code.
2764    *
2765    * TODO: avoid re-fetching the branch target
2766    */
2767   if ((opcode_flags & Instruction::kBranch) != 0) {
2768     bool isConditional, selfOkay;
2769     if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2770       /* should never happen after static verification */
2771       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2772       return false;
2773     }
2774     DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2775     if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2776       return false;
2777     }
2778     /* update branch target, set "changed" if appropriate */
2779     if (nullptr != branch_line.get()) {
2780       if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2781         return false;
2782       }
2783     } else {
2784       if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2785         return false;
2786       }
2787     }
2788   }
2789 
2790   /*
2791    * Handle "switch". Tag all possible branch targets.
2792    *
2793    * We've already verified that the table is structurally sound, so we
2794    * just need to walk through and tag the targets.
2795    */
2796   if ((opcode_flags & Instruction::kSwitch) != 0) {
2797     int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2798     const uint16_t* switch_insns = insns + offset_to_switch;
2799     int switch_count = switch_insns[1];
2800     int offset_to_targets, targ;
2801 
2802     if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2803       /* 0 = sig, 1 = count, 2/3 = first key */
2804       offset_to_targets = 4;
2805     } else {
2806       /* 0 = sig, 1 = count, 2..count * 2 = keys */
2807       DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2808       offset_to_targets = 2 + 2 * switch_count;
2809     }
2810 
2811     /* verify each switch target */
2812     for (targ = 0; targ < switch_count; targ++) {
2813       int offset;
2814       uint32_t abs_offset;
2815 
2816       /* offsets are 32-bit, and only partly endian-swapped */
2817       offset = switch_insns[offset_to_targets + targ * 2] |
2818          (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2819       abs_offset = work_insn_idx_ + offset;
2820       DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2821       if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2822         return false;
2823       }
2824       if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2825         return false;
2826       }
2827     }
2828   }
2829 
2830   /*
2831    * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2832    * "try" block when they throw, control transfers out of the method.)
2833    */
2834   if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2835     bool has_catch_all_handler = false;
2836     CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2837 
2838     // Need the linker to try and resolve the handled class to check if it's Throwable.
2839     ClassLinker* linker = Runtime::Current()->GetClassLinker();
2840 
2841     for (; iterator.HasNext(); iterator.Next()) {
2842       uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2843       if (handler_type_idx == DexFile::kDexNoIndex16) {
2844         has_catch_all_handler = true;
2845       } else {
2846         // It is also a catch-all if it is java.lang.Throwable.
2847         mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, *dex_cache_,
2848                                                    *class_loader_);
2849         if (klass != nullptr) {
2850           if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2851             has_catch_all_handler = true;
2852           }
2853         } else {
2854           // Clear exception.
2855           Thread* self = Thread::Current();
2856           DCHECK(self->IsExceptionPending());
2857           self->ClearException();
2858         }
2859       }
2860       /*
2861        * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2862        * "work_regs", because at runtime the exception will be thrown before the instruction
2863        * modifies any registers.
2864        */
2865       if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2866         return false;
2867       }
2868     }
2869 
2870     /*
2871      * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2872      * instruction. This does apply to monitor-exit because of async exception handling.
2873      */
2874     if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2875       /*
2876        * The state in work_line reflects the post-execution state. If the current instruction is a
2877        * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2878        * it will do so before grabbing the lock).
2879        */
2880       if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2881         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2882             << "expected to be within a catch-all for an instruction where a monitor is held";
2883         return false;
2884       }
2885     }
2886   }
2887 
2888   /* Handle "continue". Tag the next consecutive instruction.
2889    *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2890    *        because it changes work_line_ when performing peephole optimization
2891    *        and this change should not be used in those cases.
2892    */
2893   if ((opcode_flags & Instruction::kContinue) != 0) {
2894     uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2895     if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2896       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2897       return false;
2898     }
2899     // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2900     // next instruction isn't one.
2901     if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2902       return false;
2903     }
2904     if (nullptr != fallthrough_line.get()) {
2905       // Make workline consistent with fallthrough computed from peephole optimization.
2906       work_line_->CopyFromLine(fallthrough_line.get());
2907     }
2908     if (insn_flags_[next_insn_idx].IsReturn()) {
2909       // For returns we only care about the operand to the return, all other registers are dead.
2910       const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2911       Instruction::Code opcode = ret_inst->Opcode();
2912       if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2913         work_line_->MarkAllRegistersAsConflicts();
2914       } else {
2915         if (opcode == Instruction::RETURN_WIDE) {
2916           work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2917         } else {
2918           work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2919         }
2920       }
2921     }
2922     RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2923     if (next_line != nullptr) {
2924       // Merge registers into what we have for the next instruction, and set the "changed" flag if
2925       // needed. If the merge changes the state of the registers then the work line will be
2926       // updated.
2927       if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
2928         return false;
2929       }
2930     } else {
2931       /*
2932        * We're not recording register data for the next instruction, so we don't know what the
2933        * prior state was. We have to assume that something has changed and re-evaluate it.
2934        */
2935       insn_flags_[next_insn_idx].SetChanged();
2936     }
2937   }
2938 
2939   /* If we're returning from the method, make sure monitor stack is empty. */
2940   if ((opcode_flags & Instruction::kReturn) != 0) {
2941     if (!work_line_->VerifyMonitorStackEmpty()) {
2942       return false;
2943     }
2944   }
2945 
2946   /*
2947    * Update start_guess. Advance to the next instruction of that's
2948    * possible, otherwise use the branch target if one was found. If
2949    * neither of those exists we're in a return or throw; leave start_guess
2950    * alone and let the caller sort it out.
2951    */
2952   if ((opcode_flags & Instruction::kContinue) != 0) {
2953     *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2954   } else if ((opcode_flags & Instruction::kBranch) != 0) {
2955     /* we're still okay if branch_target is zero */
2956     *start_guess = work_insn_idx_ + branch_target;
2957   }
2958 
2959   DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2960   DCHECK(insn_flags_[*start_guess].IsOpcode());
2961 
2962   return true;
2963 }  // NOLINT(readability/fn_size)
2964 
ResolveClassAndCheckAccess(uint32_t class_idx)2965 RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2966   const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2967   RegType& referrer = GetDeclaringClass();
2968   mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2969   RegType& result =
2970       klass != nullptr ? reg_types_.FromClass(descriptor, klass,
2971                                            klass->CannotBeAssignedFromOtherTypes())
2972                     : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2973   if (result.IsConflict()) {
2974     Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2975         << "' in " << referrer;
2976     return result;
2977   }
2978   if (klass == nullptr && !result.IsUnresolvedTypes()) {
2979     (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2980   }
2981   // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2982   // check at runtime if access is allowed and so pass here. If result is
2983   // primitive, skip the access check.
2984   if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2985       !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2986     Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2987                                     << referrer << "' -> '" << result << "'";
2988   }
2989   return result;
2990 }
2991 
GetCaughtExceptionType()2992 RegType& MethodVerifier::GetCaughtExceptionType() {
2993   RegType* common_super = nullptr;
2994   if (code_item_->tries_size_ != 0) {
2995     const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2996     uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2997     for (uint32_t i = 0; i < handlers_size; i++) {
2998       CatchHandlerIterator iterator(handlers_ptr);
2999       for (; iterator.HasNext(); iterator.Next()) {
3000         if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3001           if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3002             common_super = &reg_types_.JavaLangThrowable(false);
3003           } else {
3004             RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3005             if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3006               if (exception.IsUnresolvedTypes()) {
3007                 // We don't know enough about the type. Fail here and let runtime handle it.
3008                 Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3009                 return exception;
3010               } else {
3011                 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3012                 return reg_types_.Conflict();
3013               }
3014             } else if (common_super == nullptr) {
3015               common_super = &exception;
3016             } else if (common_super->Equals(exception)) {
3017               // odd case, but nothing to do
3018             } else {
3019               common_super = &common_super->Merge(exception, &reg_types_);
3020               if (FailOrAbort(this,
3021                               reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3022                               "java.lang.Throwable is not assignable-from common_super at ",
3023                               work_insn_idx_)) {
3024                 break;
3025               }
3026             }
3027           }
3028         }
3029       }
3030       handlers_ptr = iterator.EndDataPointer();
3031     }
3032   }
3033   if (common_super == nullptr) {
3034     /* no catch blocks, or no catches with classes we can find */
3035     Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3036     return reg_types_.Conflict();
3037   }
3038   return *common_super;
3039 }
3040 
ResolveMethodAndCheckAccess(uint32_t dex_method_idx,MethodType method_type)3041 mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3042                                                                MethodType method_type) {
3043   const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3044   RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3045   if (klass_type.IsConflict()) {
3046     std::string append(" in attempt to access method ");
3047     append += dex_file_->GetMethodName(method_id);
3048     AppendToLastFailMessage(append);
3049     return nullptr;
3050   }
3051   if (klass_type.IsUnresolvedTypes()) {
3052     return nullptr;  // Can't resolve Class so no more to do here
3053   }
3054   mirror::Class* klass = klass_type.GetClass();
3055   RegType& referrer = GetDeclaringClass();
3056   mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
3057   if (res_method == nullptr) {
3058     const char* name = dex_file_->GetMethodName(method_id);
3059     const Signature signature = dex_file_->GetMethodSignature(method_id);
3060 
3061     if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3062       res_method = klass->FindDirectMethod(name, signature);
3063     } else if (method_type == METHOD_INTERFACE) {
3064       res_method = klass->FindInterfaceMethod(name, signature);
3065     } else {
3066       res_method = klass->FindVirtualMethod(name, signature);
3067     }
3068     if (res_method != nullptr) {
3069       (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
3070     } else {
3071       // If a virtual or interface method wasn't found with the expected type, look in
3072       // the direct methods. This can happen when the wrong invoke type is used or when
3073       // a class has changed, and will be flagged as an error in later checks.
3074       if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3075         res_method = klass->FindDirectMethod(name, signature);
3076       }
3077       if (res_method == nullptr) {
3078         Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3079                                      << PrettyDescriptor(klass) << "." << name
3080                                      << " " << signature;
3081         return nullptr;
3082       }
3083     }
3084   }
3085   // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3086   // enforce them here.
3087   if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3088     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3089                                       << PrettyMethod(res_method);
3090     return nullptr;
3091   }
3092   // Disallow any calls to class initializers.
3093   if (res_method->IsClassInitializer()) {
3094     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3095                                       << PrettyMethod(res_method);
3096     return nullptr;
3097   }
3098   // Check if access is allowed.
3099   if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3100     Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3101                                      << " from " << referrer << ")";
3102     return res_method;
3103   }
3104   // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3105   if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3106     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3107                                       << PrettyMethod(res_method);
3108     return nullptr;
3109   }
3110   // Check that interface methods match interface classes.
3111   if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3112     Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3113                                     << " is in an interface class " << PrettyClass(klass);
3114     return nullptr;
3115   } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3116     Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3117                                     << " is in a non-interface class " << PrettyClass(klass);
3118     return nullptr;
3119   }
3120   // See if the method type implied by the invoke instruction matches the access flags for the
3121   // target method.
3122   if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3123       (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3124       ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3125       ) {
3126     Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3127                                        " type of " << PrettyMethod(res_method);
3128     return nullptr;
3129   }
3130   return res_method;
3131 }
3132 
3133 template <class T>
VerifyInvocationArgsFromIterator(T * it,const Instruction * inst,MethodType method_type,bool is_range,mirror::ArtMethod * res_method)3134 mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3135                                                                     MethodType method_type,
3136                                                                     bool is_range,
3137                                                                     mirror::ArtMethod* res_method) {
3138   // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3139   // match the call to the signature. Also, we might be calling through an abstract method
3140   // definition (which doesn't have register count values).
3141   const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3142   /* caught by static verifier */
3143   DCHECK(is_range || expected_args <= 5);
3144   if (expected_args > code_item_->outs_size_) {
3145     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3146         << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3147     return nullptr;
3148   }
3149 
3150   uint32_t arg[5];
3151   if (!is_range) {
3152     inst->GetVarArgs(arg);
3153   }
3154   uint32_t sig_registers = 0;
3155 
3156   /*
3157    * Check the "this" argument, which must be an instance of the class that declared the method.
3158    * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3159    * rigorous check here (which is okay since we have to do it at runtime).
3160    */
3161   if (method_type != METHOD_STATIC) {
3162     RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3163     if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3164       CHECK(have_pending_hard_failure_);
3165       return nullptr;
3166     }
3167     if (actual_arg_type.IsUninitializedReference()) {
3168       if (res_method) {
3169         if (!res_method->IsConstructor()) {
3170           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3171           return nullptr;
3172         }
3173       } else {
3174         // Check whether the name of the called method is "<init>"
3175         const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3176         if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3177           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3178           return nullptr;
3179         }
3180       }
3181     }
3182     if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3183       RegType* res_method_class;
3184       if (res_method != nullptr) {
3185         mirror::Class* klass = res_method->GetDeclaringClass();
3186         std::string temp;
3187         res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3188                                                  klass->CannotBeAssignedFromOtherTypes());
3189       } else {
3190         const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3191         const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3192         res_method_class = &reg_types_.FromDescriptor(class_loader_->Get(),
3193                                                       dex_file_->StringByTypeIdx(class_idx),
3194                                                       false);
3195       }
3196       if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3197         Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3198             VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3199                 << "' not instance of '" << *res_method_class << "'";
3200         // Continue on soft failures. We need to find possible hard failures to avoid problems in
3201         // the compiler.
3202         if (have_pending_hard_failure_) {
3203           return nullptr;
3204         }
3205       }
3206     }
3207     sig_registers = 1;
3208   }
3209 
3210   for ( ; it->HasNext(); it->Next()) {
3211     if (sig_registers >= expected_args) {
3212       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3213           " arguments, found " << sig_registers << " or more.";
3214       return nullptr;
3215     }
3216 
3217     const char* param_descriptor = it->GetDescriptor();
3218 
3219     if (param_descriptor == nullptr) {
3220       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3221           "component";
3222       return nullptr;
3223     }
3224 
3225     RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), param_descriptor,
3226                                                         false);
3227     uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3228         arg[sig_registers];
3229     if (reg_type.IsIntegralTypes()) {
3230       RegType& src_type = work_line_->GetRegisterType(get_reg);
3231       if (!src_type.IsIntegralTypes()) {
3232         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3233             << " but expected " << reg_type;
3234         return res_method;
3235       }
3236     } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3237       // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3238       // compiler.
3239       if (have_pending_hard_failure_) {
3240         return res_method;
3241       }
3242     }
3243     sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3244   }
3245   if (expected_args != sig_registers) {
3246     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3247         " arguments, found " << sig_registers;
3248     return nullptr;
3249   }
3250   return res_method;
3251 }
3252 
VerifyInvocationArgsUnresolvedMethod(const Instruction * inst,MethodType method_type,bool is_range)3253 void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3254                                                           MethodType method_type,
3255                                                           bool is_range) {
3256   // As the method may not have been resolved, make this static check against what we expect.
3257   // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3258   // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3259   const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3260   DexFileParameterIterator it(*dex_file_,
3261                               dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3262   VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3263                                                              nullptr);
3264 }
3265 
3266 class MethodParamListDescriptorIterator {
3267  public:
MethodParamListDescriptorIterator(mirror::ArtMethod * res_method)3268   explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3269       res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3270       params_size_(params_ == nullptr ? 0 : params_->Size()) {
3271   }
3272 
HasNext()3273   bool HasNext() {
3274     return pos_ < params_size_;
3275   }
3276 
Next()3277   void Next() {
3278     ++pos_;
3279   }
3280 
GetDescriptor()3281   const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3282     return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3283   }
3284 
3285  private:
3286   mirror::ArtMethod* res_method_;
3287   size_t pos_;
3288   const DexFile::TypeList* params_;
3289   const size_t params_size_;
3290 };
3291 
VerifyInvocationArgs(const Instruction * inst,MethodType method_type,bool is_range,bool is_super)3292 mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3293                                                              MethodType method_type,
3294                                                              bool is_range,
3295                                                              bool is_super) {
3296   // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3297   // we're making.
3298   const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3299 
3300   mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3301   if (res_method == nullptr) {  // error or class is unresolved
3302     // Check what we can statically.
3303     if (!have_pending_hard_failure_) {
3304       VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3305     }
3306     return nullptr;
3307   }
3308 
3309   // If we're using invoke-super(method), make sure that the executing method's class' superclass
3310   // has a vtable entry for the target method.
3311   if (is_super) {
3312     DCHECK(method_type == METHOD_VIRTUAL);
3313     RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3314     if (super.IsUnresolvedTypes()) {
3315       Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3316                                    << PrettyMethod(dex_method_idx_, *dex_file_)
3317                                    << " to super " << PrettyMethod(res_method);
3318       return nullptr;
3319     }
3320     mirror::Class* super_klass = super.GetClass();
3321     if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3322       Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3323                                    << PrettyMethod(dex_method_idx_, *dex_file_)
3324                                    << " to super " << super
3325                                    << "." << res_method->GetName()
3326                                    << res_method->GetSignature();
3327       return nullptr;
3328     }
3329   }
3330 
3331   // Process the target method's signature. This signature may or may not
3332   MethodParamListDescriptorIterator it(res_method);
3333   return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3334                                                                              is_range, res_method);
3335 }
3336 
GetQuickInvokedMethod(const Instruction * inst,RegisterLine * reg_line,bool is_range)3337 mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3338                                                          RegisterLine* reg_line, bool is_range) {
3339   DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3340          inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3341   RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3342   if (!actual_arg_type.HasClass()) {
3343     VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3344     return nullptr;
3345   }
3346   mirror::Class* klass = actual_arg_type.GetClass();
3347   mirror::Class* dispatch_class;
3348   if (klass->IsInterface()) {
3349     // Derive Object.class from Class.class.getSuperclass().
3350     mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3351     if (FailOrAbort(this, object_klass->IsObjectClass(),
3352                     "Failed to find Object class in quickened invoke receiver",
3353                     work_insn_idx_)) {
3354       return nullptr;
3355     }
3356     dispatch_class = object_klass;
3357   } else {
3358     dispatch_class = klass;
3359   }
3360   if (FailOrAbort(this, dispatch_class->HasVTable(),
3361                   "Receiver class has no vtable for quickened invoke at ",
3362                   work_insn_idx_)) {
3363     return nullptr;
3364   }
3365   uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3366   if (FailOrAbort(this, static_cast<int32_t>(vtable_index) < dispatch_class->GetVTableLength(),
3367                   "Receiver class has not enough vtable slots for quickened invoke at ",
3368                   work_insn_idx_)) {
3369     return nullptr;
3370   }
3371   mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3372   if (FailOrAbort(this, !Thread::Current()->IsExceptionPending(),
3373                   "Unexpected exception pending for quickened invoke at ",
3374                   work_insn_idx_)) {
3375     return nullptr;
3376   }
3377   return res_method;
3378 }
3379 
VerifyInvokeVirtualQuickArgs(const Instruction * inst,bool is_range)3380 mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3381                                                                 bool is_range) {
3382   DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3383   mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3384                                                              is_range);
3385   if (res_method == nullptr) {
3386     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3387     return nullptr;
3388   }
3389   if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3390                   work_insn_idx_)) {
3391     return nullptr;
3392   }
3393   if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3394                   work_insn_idx_)) {
3395     return nullptr;
3396   }
3397 
3398   // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3399   // match the call to the signature. Also, we might be calling through an abstract method
3400   // definition (which doesn't have register count values).
3401   RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3402   if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3403     return nullptr;
3404   }
3405   const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3406   /* caught by static verifier */
3407   DCHECK(is_range || expected_args <= 5);
3408   if (expected_args > code_item_->outs_size_) {
3409     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3410         << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3411     return nullptr;
3412   }
3413 
3414   /*
3415    * Check the "this" argument, which must be an instance of the class that declared the method.
3416    * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3417    * rigorous check here (which is okay since we have to do it at runtime).
3418    */
3419   if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3420     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3421     return nullptr;
3422   }
3423   if (!actual_arg_type.IsZero()) {
3424     mirror::Class* klass = res_method->GetDeclaringClass();
3425     std::string temp;
3426     RegType& res_method_class =
3427         reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3428                              klass->CannotBeAssignedFromOtherTypes());
3429     if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3430       Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3431           VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3432           << "' not instance of '" << res_method_class << "'";
3433       return nullptr;
3434     }
3435   }
3436   /*
3437    * Process the target method's signature. This signature may or may not
3438    * have been verified, so we can't assume it's properly formed.
3439    */
3440   const DexFile::TypeList* params = res_method->GetParameterTypeList();
3441   size_t params_size = params == nullptr ? 0 : params->Size();
3442   uint32_t arg[5];
3443   if (!is_range) {
3444     inst->GetVarArgs(arg);
3445   }
3446   size_t actual_args = 1;
3447   for (size_t param_index = 0; param_index < params_size; param_index++) {
3448     if (actual_args >= expected_args) {
3449       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3450                                         << "'. Expected " << expected_args
3451                                          << " arguments, processing argument " << actual_args
3452                                         << " (where longs/doubles count twice).";
3453       return nullptr;
3454     }
3455     const char* descriptor =
3456         res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3457     if (descriptor == nullptr) {
3458       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3459                                         << " missing signature component";
3460       return nullptr;
3461     }
3462     RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3463     uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3464     if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3465       return res_method;
3466     }
3467     actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3468   }
3469   if (actual_args != expected_args) {
3470     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3471               << " expected " << expected_args << " arguments, found " << actual_args;
3472     return nullptr;
3473   } else {
3474     return res_method;
3475   }
3476 }
3477 
VerifyNewArray(const Instruction * inst,bool is_filled,bool is_range)3478 void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3479   uint32_t type_idx;
3480   if (!is_filled) {
3481     DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3482     type_idx = inst->VRegC_22c();
3483   } else if (!is_range) {
3484     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3485     type_idx = inst->VRegB_35c();
3486   } else {
3487     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3488     type_idx = inst->VRegB_3rc();
3489   }
3490   RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3491   if (res_type.IsConflict()) {  // bad class
3492     DCHECK_NE(failures_.size(), 0U);
3493   } else {
3494     // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3495     if (!res_type.IsArrayTypes()) {
3496       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3497     } else if (!is_filled) {
3498       /* make sure "size" register is valid type */
3499       work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3500       /* set register type to array class */
3501       RegType& precise_type = reg_types_.FromUninitialized(res_type);
3502       work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3503     } else {
3504       // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3505       // the list and fail. It's legal, if silly, for arg_count to be zero.
3506       RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get());
3507       uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3508       uint32_t arg[5];
3509       if (!is_range) {
3510         inst->GetVarArgs(arg);
3511       }
3512       for (size_t ui = 0; ui < arg_count; ui++) {
3513         uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3514         if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3515           work_line_->SetResultRegisterType(reg_types_.Conflict());
3516           return;
3517         }
3518       }
3519       // filled-array result goes into "result" register
3520       RegType& precise_type = reg_types_.FromUninitialized(res_type);
3521       work_line_->SetResultRegisterType(precise_type);
3522     }
3523   }
3524 }
3525 
VerifyAGet(const Instruction * inst,RegType & insn_type,bool is_primitive)3526 void MethodVerifier::VerifyAGet(const Instruction* inst,
3527                                 RegType& insn_type, bool is_primitive) {
3528   RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3529   if (!index_type.IsArrayIndexTypes()) {
3530     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3531   } else {
3532     RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3533     if (array_type.IsZero()) {
3534       // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3535       // instruction type. TODO: have a proper notion of bottom here.
3536       if (!is_primitive || insn_type.IsCategory1Types()) {
3537         // Reference or category 1
3538         work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3539       } else {
3540         // Category 2
3541         work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3542                                         reg_types_.FromCat2ConstHi(0, false));
3543       }
3544     } else if (!array_type.IsArrayTypes()) {
3545       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3546     } else {
3547       /* verify the class */
3548       RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3549       if (!component_type.IsReferenceTypes() && !is_primitive) {
3550         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3551             << " source for aget-object";
3552       } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3553         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3554             << " source for category 1 aget";
3555       } else if (is_primitive && !insn_type.Equals(component_type) &&
3556                  !((insn_type.IsInteger() && component_type.IsFloat()) ||
3557                  (insn_type.IsLong() && component_type.IsDouble()))) {
3558         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3559             << " incompatible with aget of type " << insn_type;
3560       } else {
3561         // Use knowledge of the field type which is stronger than the type inferred from the
3562         // instruction, which can't differentiate object types and ints from floats, longs from
3563         // doubles.
3564         if (!component_type.IsLowHalf()) {
3565           work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3566         } else {
3567           work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3568                                           component_type.HighHalf(&reg_types_));
3569         }
3570       }
3571     }
3572   }
3573 }
3574 
VerifyPrimitivePut(RegType & target_type,RegType & insn_type,const uint32_t vregA)3575 void MethodVerifier::VerifyPrimitivePut(RegType& target_type, RegType& insn_type,
3576                                         const uint32_t vregA) {
3577   // Primitive assignability rules are weaker than regular assignability rules.
3578   bool instruction_compatible;
3579   bool value_compatible;
3580   RegType& value_type = work_line_->GetRegisterType(vregA);
3581   if (target_type.IsIntegralTypes()) {
3582     instruction_compatible = target_type.Equals(insn_type);
3583     value_compatible = value_type.IsIntegralTypes();
3584   } else if (target_type.IsFloat()) {
3585     instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3586     value_compatible = value_type.IsFloatTypes();
3587   } else if (target_type.IsLong()) {
3588     instruction_compatible = insn_type.IsLong();
3589     // Additional register check: this is not checked statically (as part of VerifyInstructions),
3590     // as target_type depends on the resolved type of the field.
3591     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3592       RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3593       value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3594     } else {
3595       value_compatible = false;
3596     }
3597   } else if (target_type.IsDouble()) {
3598     instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3599     // Additional register check: this is not checked statically (as part of VerifyInstructions),
3600     // as target_type depends on the resolved type of the field.
3601     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3602       RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3603       value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3604     } else {
3605       value_compatible = false;
3606     }
3607   } else {
3608     instruction_compatible = false;  // reference with primitive store
3609     value_compatible = false;  // unused
3610   }
3611   if (!instruction_compatible) {
3612     // This is a global failure rather than a class change failure as the instructions and
3613     // the descriptors for the type should have been consistent within the same file at
3614     // compile time.
3615     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3616         << "' but expected type '" << target_type << "'";
3617     return;
3618   }
3619   if (!value_compatible) {
3620     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3621         << " of type " << value_type << " but expected " << target_type << " for put";
3622     return;
3623   }
3624 }
3625 
VerifyAPut(const Instruction * inst,RegType & insn_type,bool is_primitive)3626 void MethodVerifier::VerifyAPut(const Instruction* inst,
3627                                 RegType& insn_type, bool is_primitive) {
3628   RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3629   if (!index_type.IsArrayIndexTypes()) {
3630     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3631   } else {
3632     RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3633     if (array_type.IsZero()) {
3634       // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3635       // instruction type.
3636     } else if (!array_type.IsArrayTypes()) {
3637       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3638     } else {
3639       RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3640       const uint32_t vregA = inst->VRegA_23x();
3641       if (is_primitive) {
3642         VerifyPrimitivePut(component_type, insn_type, vregA);
3643       } else {
3644         if (!component_type.IsReferenceTypes()) {
3645           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3646               << " source for aput-object";
3647         } else {
3648           // The instruction agrees with the type of array, confirm the value to be stored does too
3649           // Note: we use the instruction type (rather than the component type) for aput-object as
3650           // incompatible classes will be caught at runtime as an array store exception
3651           work_line_->VerifyRegisterType(vregA, insn_type);
3652         }
3653       }
3654     }
3655   }
3656 }
3657 
GetStaticField(int field_idx)3658 mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3659   const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3660   // Check access to class
3661   RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3662   if (klass_type.IsConflict()) {  // bad class
3663     AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3664                                          field_idx, dex_file_->GetFieldName(field_id),
3665                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3666     return nullptr;
3667   }
3668   if (klass_type.IsUnresolvedTypes()) {
3669     return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3670   }
3671   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3672   mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3673                                                           *class_loader_);
3674   if (field == nullptr) {
3675     VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3676               << dex_file_->GetFieldName(field_id) << ") in "
3677               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3678     DCHECK(Thread::Current()->IsExceptionPending());
3679     Thread::Current()->ClearException();
3680     return nullptr;
3681   } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3682                                                   field->GetAccessFlags())) {
3683     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3684                                     << " from " << GetDeclaringClass();
3685     return nullptr;
3686   } else if (!field->IsStatic()) {
3687     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3688     return nullptr;
3689   }
3690   return field;
3691 }
3692 
GetInstanceField(RegType & obj_type,int field_idx)3693 mirror::ArtField* MethodVerifier::GetInstanceField(RegType& obj_type, int field_idx) {
3694   const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3695   // Check access to class
3696   RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3697   if (klass_type.IsConflict()) {
3698     AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3699                                          field_idx, dex_file_->GetFieldName(field_id),
3700                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3701     return nullptr;
3702   }
3703   if (klass_type.IsUnresolvedTypes()) {
3704     return nullptr;  // Can't resolve Class so no more to do here
3705   }
3706   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3707   mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3708                                                           *class_loader_);
3709   if (field == nullptr) {
3710     VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3711               << dex_file_->GetFieldName(field_id) << ") in "
3712               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3713     DCHECK(Thread::Current()->IsExceptionPending());
3714     Thread::Current()->ClearException();
3715     return nullptr;
3716   } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3717                                                   field->GetAccessFlags())) {
3718     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3719                                     << " from " << GetDeclaringClass();
3720     return nullptr;
3721   } else if (field->IsStatic()) {
3722     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3723                                     << " to not be static";
3724     return nullptr;
3725   } else if (obj_type.IsZero()) {
3726     // Cannot infer and check type, however, access will cause null pointer exception
3727     return field;
3728   } else if (!obj_type.IsReferenceTypes()) {
3729     // Trying to read a field from something that isn't a reference
3730     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3731                                       << "non-reference type " << obj_type;
3732     return nullptr;
3733   } else {
3734     mirror::Class* klass = field->GetDeclaringClass();
3735     RegType& field_klass =
3736         reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3737                              klass, klass->CannotBeAssignedFromOtherTypes());
3738     if (obj_type.IsUninitializedTypes() &&
3739         (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3740             !field_klass.Equals(GetDeclaringClass()))) {
3741       // Field accesses through uninitialized references are only allowable for constructors where
3742       // the field is declared in this class
3743       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3744                                         << " of a not fully initialized object within the context"
3745                                         << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3746       return nullptr;
3747     } else if (!field_klass.IsAssignableFrom(obj_type)) {
3748       // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3749       // of C1. For resolution to occur the declared class of the field must be compatible with
3750       // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3751       Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3752                                   << " from object of type " << obj_type;
3753       return nullptr;
3754     } else {
3755       return field;
3756     }
3757   }
3758 }
3759 
3760 template <MethodVerifier::FieldAccessType kAccType>
VerifyISFieldAccess(const Instruction * inst,RegType & insn_type,bool is_primitive,bool is_static)3761 void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, RegType& insn_type,
3762                                          bool is_primitive, bool is_static) {
3763   uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3764   mirror::ArtField* field;
3765   if (is_static) {
3766     field = GetStaticField(field_idx);
3767   } else {
3768     RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3769     field = GetInstanceField(object_type, field_idx);
3770     if (UNLIKELY(have_pending_hard_failure_)) {
3771       return;
3772     }
3773   }
3774   RegType* field_type = nullptr;
3775   if (field != nullptr) {
3776     if (kAccType == FieldAccessType::kAccPut) {
3777       if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3778         Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3779                                         << " from other class " << GetDeclaringClass();
3780         return;
3781       }
3782     }
3783 
3784     Thread* self = Thread::Current();
3785     mirror::Class* field_type_class;
3786     {
3787       StackHandleScope<1> hs(self);
3788       HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3789       field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3790     }
3791     if (field_type_class != nullptr) {
3792       field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3793                                          field_type_class->CannotBeAssignedFromOtherTypes());
3794     } else {
3795       DCHECK(!can_load_classes_ || self->IsExceptionPending());
3796       self->ClearException();
3797     }
3798   }
3799   if (field_type == nullptr) {
3800     const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3801     const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3802     field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3803   }
3804   DCHECK(field_type != nullptr);
3805   const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3806   static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
3807                 "Unexpected third access type");
3808   if (kAccType == FieldAccessType::kAccPut) {
3809     // sput or iput.
3810     if (is_primitive) {
3811       VerifyPrimitivePut(*field_type, insn_type, vregA);
3812     } else {
3813       if (!insn_type.IsAssignableFrom(*field_type)) {
3814         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3815                                                 << " to be compatible with type '" << insn_type
3816                                                 << "' but found type '" << *field_type
3817                                                 << "' in put-object";
3818         return;
3819       }
3820       work_line_->VerifyRegisterType(vregA, *field_type);
3821     }
3822   } else if (kAccType == FieldAccessType::kAccGet) {
3823     // sget or iget.
3824     if (is_primitive) {
3825       if (field_type->Equals(insn_type) ||
3826           (field_type->IsFloat() && insn_type.IsInteger()) ||
3827           (field_type->IsDouble() && insn_type.IsLong())) {
3828         // expected that read is of the correct primitive type or that int reads are reading
3829         // floats or long reads are reading doubles
3830       } else {
3831         // This is a global failure rather than a class change failure as the instructions and
3832         // the descriptors for the type should have been consistent within the same file at
3833         // compile time
3834         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3835                                           << " to be of type '" << insn_type
3836                                           << "' but found type '" << *field_type << "' in get";
3837         return;
3838       }
3839     } else {
3840       if (!insn_type.IsAssignableFrom(*field_type)) {
3841         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3842                                           << " to be compatible with type '" << insn_type
3843                                           << "' but found type '" << *field_type
3844                                           << "' in get-object";
3845         work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3846         return;
3847       }
3848     }
3849     if (!field_type->IsLowHalf()) {
3850       work_line_->SetRegisterType(vregA, *field_type);
3851     } else {
3852       work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3853     }
3854   } else {
3855     LOG(FATAL) << "Unexpected case.";
3856   }
3857 }
3858 
GetQuickFieldAccess(const Instruction * inst,RegisterLine * reg_line)3859 mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3860                                                       RegisterLine* reg_line) {
3861   DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3862          inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3863          inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3864          inst->Opcode() == Instruction::IPUT_QUICK ||
3865          inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3866          inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3867   RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3868   if (!object_type.HasClass()) {
3869     VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3870     return nullptr;
3871   }
3872   uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3873   mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3874                                                                       field_offset);
3875   if (f == nullptr) {
3876     VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3877                    << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3878   }
3879   return f;
3880 }
3881 
3882 template <MethodVerifier::FieldAccessType kAccType>
VerifyQuickFieldAccess(const Instruction * inst,RegType & insn_type,bool is_primitive)3883 void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, RegType& insn_type,
3884                                             bool is_primitive) {
3885   DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3886 
3887   mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3888   if (field == nullptr) {
3889     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3890     return;
3891   }
3892 
3893   // For an IPUT_QUICK, we now test for final flag of the field.
3894   if (kAccType == FieldAccessType::kAccPut) {
3895     if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3896       Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3897                                       << " from other class " << GetDeclaringClass();
3898       return;
3899     }
3900   }
3901 
3902   // Get the field type.
3903   RegType* field_type;
3904   {
3905     mirror::Class* field_type_class;
3906     {
3907       StackHandleScope<1> hs(Thread::Current());
3908       HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3909       field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3910     }
3911 
3912     if (field_type_class != nullptr) {
3913       field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3914                                          field_type_class->CannotBeAssignedFromOtherTypes());
3915     } else {
3916       Thread* self = Thread::Current();
3917       DCHECK(!can_load_classes_ || self->IsExceptionPending());
3918       self->ClearException();
3919       field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3920                                               field->GetTypeDescriptor(), false);
3921     }
3922     if (field_type == nullptr) {
3923       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
3924       return;
3925     }
3926   }
3927 
3928   const uint32_t vregA = inst->VRegA_22c();
3929   static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
3930                 "Unexpected third access type");
3931   if (kAccType == FieldAccessType::kAccPut) {
3932     if (is_primitive) {
3933       // Primitive field assignability rules are weaker than regular assignability rules
3934       bool instruction_compatible;
3935       bool value_compatible;
3936       RegType& value_type = work_line_->GetRegisterType(vregA);
3937       if (field_type->IsIntegralTypes()) {
3938         instruction_compatible = insn_type.IsIntegralTypes();
3939         value_compatible = value_type.IsIntegralTypes();
3940       } else if (field_type->IsFloat()) {
3941         instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3942         value_compatible = value_type.IsFloatTypes();
3943       } else if (field_type->IsLong()) {
3944         instruction_compatible = insn_type.IsLong();
3945         value_compatible = value_type.IsLongTypes();
3946       } else if (field_type->IsDouble()) {
3947         instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3948         value_compatible = value_type.IsDoubleTypes();
3949       } else {
3950         instruction_compatible = false;  // reference field with primitive store
3951         value_compatible = false;  // unused
3952       }
3953       if (!instruction_compatible) {
3954         // This is a global failure rather than a class change failure as the instructions and
3955         // the descriptors for the type should have been consistent within the same file at
3956         // compile time
3957         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3958                                           << " to be of type '" << insn_type
3959                                           << "' but found type '" << *field_type
3960                                           << "' in put";
3961         return;
3962       }
3963       if (!value_compatible) {
3964         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3965             << " of type " << value_type
3966             << " but expected " << *field_type
3967             << " for store to " << PrettyField(field) << " in put";
3968         return;
3969       }
3970     } else {
3971       if (!insn_type.IsAssignableFrom(*field_type)) {
3972         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3973                                           << " to be compatible with type '" << insn_type
3974                                           << "' but found type '" << *field_type
3975                                           << "' in put-object";
3976         return;
3977       }
3978       work_line_->VerifyRegisterType(vregA, *field_type);
3979     }
3980   } else if (kAccType == FieldAccessType::kAccGet) {
3981     if (is_primitive) {
3982       if (field_type->Equals(insn_type) ||
3983           (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3984           (field_type->IsDouble() && insn_type.IsLongTypes())) {
3985         // expected that read is of the correct primitive type or that int reads are reading
3986         // floats or long reads are reading doubles
3987       } else {
3988         // This is a global failure rather than a class change failure as the instructions and
3989         // the descriptors for the type should have been consistent within the same file at
3990         // compile time
3991         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3992                                           << " to be of type '" << insn_type
3993                                           << "' but found type '" << *field_type << "' in Get";
3994         return;
3995       }
3996     } else {
3997       if (!insn_type.IsAssignableFrom(*field_type)) {
3998         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3999                                           << " to be compatible with type '" << insn_type
4000                                           << "' but found type '" << *field_type
4001                                           << "' in get-object";
4002         work_line_->SetRegisterType(vregA, reg_types_.Conflict());
4003         return;
4004       }
4005     }
4006     if (!field_type->IsLowHalf()) {
4007       work_line_->SetRegisterType(vregA, *field_type);
4008     } else {
4009       work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
4010     }
4011   } else {
4012     LOG(FATAL) << "Unexpected case.";
4013   }
4014 }
4015 
CheckNotMoveException(const uint16_t * insns,int insn_idx)4016 bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4017   if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4018     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4019     return false;
4020   }
4021   return true;
4022 }
4023 
UpdateRegisters(uint32_t next_insn,RegisterLine * merge_line,bool update_merge_line)4024 bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4025                                      bool update_merge_line) {
4026   bool changed = true;
4027   RegisterLine* target_line = reg_table_.GetLine(next_insn);
4028   if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4029     /*
4030      * We haven't processed this instruction before, and we haven't touched the registers here, so
4031      * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4032      * only way a register can transition out of "unknown", so this is not just an optimization.)
4033      */
4034     if (!insn_flags_[next_insn].IsReturn()) {
4035       target_line->CopyFromLine(merge_line);
4036     } else {
4037       // Verify that the monitor stack is empty on return.
4038       if (!merge_line->VerifyMonitorStackEmpty()) {
4039         return false;
4040       }
4041       // For returns we only care about the operand to the return, all other registers are dead.
4042       // Initialize them as conflicts so they don't add to GC and deoptimization information.
4043       const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4044       Instruction::Code opcode = ret_inst->Opcode();
4045       if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
4046         target_line->MarkAllRegistersAsConflicts();
4047       } else {
4048         target_line->CopyFromLine(merge_line);
4049         if (opcode == Instruction::RETURN_WIDE) {
4050           target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
4051         } else {
4052           target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
4053         }
4054       }
4055     }
4056   } else {
4057     std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4058                                            RegisterLine::Create(target_line->NumRegs(), this) :
4059                                            nullptr);
4060     if (gDebugVerify) {
4061       copy->CopyFromLine(target_line);
4062     }
4063     changed = target_line->MergeRegisters(merge_line);
4064     if (have_pending_hard_failure_) {
4065       return false;
4066     }
4067     if (gDebugVerify && changed) {
4068       LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4069                       << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4070                       << *copy.get() << "  MERGE\n"
4071                       << *merge_line << "  ==\n"
4072                       << *target_line << "\n";
4073     }
4074     if (update_merge_line && changed) {
4075       merge_line->CopyFromLine(target_line);
4076     }
4077   }
4078   if (changed) {
4079     insn_flags_[next_insn].SetChanged();
4080   }
4081   return true;
4082 }
4083 
CurrentInsnFlags()4084 InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4085   return &insn_flags_[work_insn_idx_];
4086 }
4087 
GetMethodReturnType()4088 RegType& MethodVerifier::GetMethodReturnType() {
4089   if (return_type_ == nullptr) {
4090     if (mirror_method_ != nullptr) {
4091       Thread* self = Thread::Current();
4092       StackHandleScope<1> hs(self);
4093       mirror::Class* return_type_class;
4094       {
4095         HandleWrapper<mirror::ArtMethod> h_mirror_method(hs.NewHandleWrapper(&mirror_method_));
4096         return_type_class = MethodHelper(h_mirror_method).GetReturnType(can_load_classes_);
4097       }
4098       if (return_type_class != nullptr) {
4099         return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4100                                              return_type_class,
4101                                              return_type_class->CannotBeAssignedFromOtherTypes());
4102       } else {
4103         DCHECK(!can_load_classes_ || self->IsExceptionPending());
4104         self->ClearException();
4105       }
4106     }
4107     if (return_type_ == nullptr) {
4108       const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4109       const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4110       uint16_t return_type_idx = proto_id.return_type_idx_;
4111       const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4112       return_type_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4113     }
4114   }
4115   return *return_type_;
4116 }
4117 
GetDeclaringClass()4118 RegType& MethodVerifier::GetDeclaringClass() {
4119   if (declaring_class_ == nullptr) {
4120     const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4121     const char* descriptor
4122         = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4123     if (mirror_method_ != nullptr) {
4124       mirror::Class* klass = mirror_method_->GetDeclaringClass();
4125       declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4126                                                klass->CannotBeAssignedFromOtherTypes());
4127     } else {
4128       declaring_class_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4129     }
4130   }
4131   return *declaring_class_;
4132 }
4133 
DescribeVRegs(uint32_t dex_pc)4134 std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4135   RegisterLine* line = reg_table_.GetLine(dex_pc);
4136   DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4137   std::vector<int32_t> result;
4138   for (size_t i = 0; i < line->NumRegs(); ++i) {
4139     RegType& type = line->GetRegisterType(i);
4140     if (type.IsConstant()) {
4141       result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4142       result.push_back(type.ConstantValue());
4143     } else if (type.IsConstantLo()) {
4144       result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4145       result.push_back(type.ConstantValueLo());
4146     } else if (type.IsConstantHi()) {
4147       result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4148       result.push_back(type.ConstantValueHi());
4149     } else if (type.IsIntegralTypes()) {
4150       result.push_back(kIntVReg);
4151       result.push_back(0);
4152     } else if (type.IsFloat()) {
4153       result.push_back(kFloatVReg);
4154       result.push_back(0);
4155     } else if (type.IsLong()) {
4156       result.push_back(kLongLoVReg);
4157       result.push_back(0);
4158       result.push_back(kLongHiVReg);
4159       result.push_back(0);
4160       ++i;
4161     } else if (type.IsDouble()) {
4162       result.push_back(kDoubleLoVReg);
4163       result.push_back(0);
4164       result.push_back(kDoubleHiVReg);
4165       result.push_back(0);
4166       ++i;
4167     } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4168       result.push_back(kUndefined);
4169       result.push_back(0);
4170     } else {
4171       CHECK(type.IsNonZeroReferenceTypes());
4172       result.push_back(kReferenceVReg);
4173       result.push_back(0);
4174     }
4175   }
4176   return result;
4177 }
4178 
DetermineCat1Constant(int32_t value,bool precise)4179 RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4180   if (precise) {
4181     // Precise constant type.
4182     return reg_types_.FromCat1Const(value, true);
4183   } else {
4184     // Imprecise constant type.
4185     if (value < -32768) {
4186       return reg_types_.IntConstant();
4187     } else if (value < -128) {
4188       return reg_types_.ShortConstant();
4189     } else if (value < 0) {
4190       return reg_types_.ByteConstant();
4191     } else if (value == 0) {
4192       return reg_types_.Zero();
4193     } else if (value == 1) {
4194       return reg_types_.One();
4195     } else if (value < 128) {
4196       return reg_types_.PosByteConstant();
4197     } else if (value < 32768) {
4198       return reg_types_.PosShortConstant();
4199     } else if (value < 65536) {
4200       return reg_types_.CharConstant();
4201     } else {
4202       return reg_types_.IntConstant();
4203     }
4204   }
4205 }
4206 
Init()4207 void MethodVerifier::Init() {
4208   art::verifier::RegTypeCache::Init();
4209 }
4210 
Shutdown()4211 void MethodVerifier::Shutdown() {
4212   verifier::RegTypeCache::ShutDown();
4213 }
4214 
VisitStaticRoots(RootCallback * callback,void * arg)4215 void MethodVerifier::VisitStaticRoots(RootCallback* callback, void* arg) {
4216   RegTypeCache::VisitStaticRoots(callback, arg);
4217 }
4218 
VisitRoots(RootCallback * callback,void * arg)4219 void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4220   reg_types_.VisitRoots(callback, arg);
4221 }
4222 
4223 }  // namespace verifier
4224 }  // namespace art
4225