1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "LiveRangeCalc.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/BlockFrequency.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include <algorithm>
40 #include <cmath>
41 #include <limits>
42 using namespace llvm;
43
44 #define DEBUG_TYPE "regalloc"
45
46 char LiveIntervals::ID = 0;
47 char &llvm::LiveIntervalsID = LiveIntervals::ID;
48 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
49 "Live Interval Analysis", false, false)
50 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
51 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
52 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
53 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
54 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
55 "Live Interval Analysis", false, false)
56
57 #ifndef NDEBUG
58 static cl::opt<bool> EnablePrecomputePhysRegs(
59 "precompute-phys-liveness", cl::Hidden,
60 cl::desc("Eagerly compute live intervals for all physreg units."));
61 #else
62 static bool EnablePrecomputePhysRegs = false;
63 #endif // NDEBUG
64
getAnalysisUsage(AnalysisUsage & AU) const65 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
66 AU.setPreservesCFG();
67 AU.addRequired<AliasAnalysis>();
68 AU.addPreserved<AliasAnalysis>();
69 // LiveVariables isn't really required by this analysis, it is only required
70 // here to make sure it is live during TwoAddressInstructionPass and
71 // PHIElimination. This is temporary.
72 AU.addRequired<LiveVariables>();
73 AU.addPreserved<LiveVariables>();
74 AU.addPreservedID(MachineLoopInfoID);
75 AU.addRequiredTransitiveID(MachineDominatorsID);
76 AU.addPreservedID(MachineDominatorsID);
77 AU.addPreserved<SlotIndexes>();
78 AU.addRequiredTransitive<SlotIndexes>();
79 MachineFunctionPass::getAnalysisUsage(AU);
80 }
81
LiveIntervals()82 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
83 DomTree(nullptr), LRCalc(nullptr) {
84 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
85 }
86
~LiveIntervals()87 LiveIntervals::~LiveIntervals() {
88 delete LRCalc;
89 }
90
releaseMemory()91 void LiveIntervals::releaseMemory() {
92 // Free the live intervals themselves.
93 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
94 delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
95 VirtRegIntervals.clear();
96 RegMaskSlots.clear();
97 RegMaskBits.clear();
98 RegMaskBlocks.clear();
99
100 for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
101 delete RegUnitRanges[i];
102 RegUnitRanges.clear();
103
104 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
105 VNInfoAllocator.Reset();
106 }
107
108 /// runOnMachineFunction - calculates LiveIntervals
109 ///
runOnMachineFunction(MachineFunction & fn)110 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
111 MF = &fn;
112 MRI = &MF->getRegInfo();
113 TM = &fn.getTarget();
114 TRI = TM->getRegisterInfo();
115 TII = TM->getInstrInfo();
116 AA = &getAnalysis<AliasAnalysis>();
117 Indexes = &getAnalysis<SlotIndexes>();
118 DomTree = &getAnalysis<MachineDominatorTree>();
119 if (!LRCalc)
120 LRCalc = new LiveRangeCalc();
121
122 // Allocate space for all virtual registers.
123 VirtRegIntervals.resize(MRI->getNumVirtRegs());
124
125 computeVirtRegs();
126 computeRegMasks();
127 computeLiveInRegUnits();
128
129 if (EnablePrecomputePhysRegs) {
130 // For stress testing, precompute live ranges of all physical register
131 // units, including reserved registers.
132 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
133 getRegUnit(i);
134 }
135 DEBUG(dump());
136 return true;
137 }
138
139 /// print - Implement the dump method.
print(raw_ostream & OS,const Module *) const140 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
141 OS << "********** INTERVALS **********\n";
142
143 // Dump the regunits.
144 for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
145 if (LiveRange *LR = RegUnitRanges[i])
146 OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
147
148 // Dump the virtregs.
149 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
150 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
151 if (hasInterval(Reg))
152 OS << getInterval(Reg) << '\n';
153 }
154
155 OS << "RegMasks:";
156 for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
157 OS << ' ' << RegMaskSlots[i];
158 OS << '\n';
159
160 printInstrs(OS);
161 }
162
printInstrs(raw_ostream & OS) const163 void LiveIntervals::printInstrs(raw_ostream &OS) const {
164 OS << "********** MACHINEINSTRS **********\n";
165 MF->print(OS, Indexes);
166 }
167
168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpInstrs() const169 void LiveIntervals::dumpInstrs() const {
170 printInstrs(dbgs());
171 }
172 #endif
173
createInterval(unsigned reg)174 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
175 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
176 llvm::huge_valf : 0.0F;
177 return new LiveInterval(reg, Weight);
178 }
179
180
181 /// computeVirtRegInterval - Compute the live interval of a virtual register,
182 /// based on defs and uses.
computeVirtRegInterval(LiveInterval & LI)183 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
184 assert(LRCalc && "LRCalc not initialized.");
185 assert(LI.empty() && "Should only compute empty intervals.");
186 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
187 LRCalc->createDeadDefs(LI);
188 LRCalc->extendToUses(LI);
189 computeDeadValues(&LI, LI, nullptr, nullptr);
190 }
191
computeVirtRegs()192 void LiveIntervals::computeVirtRegs() {
193 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
194 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
195 if (MRI->reg_nodbg_empty(Reg))
196 continue;
197 createAndComputeVirtRegInterval(Reg);
198 }
199 }
200
computeRegMasks()201 void LiveIntervals::computeRegMasks() {
202 RegMaskBlocks.resize(MF->getNumBlockIDs());
203
204 // Find all instructions with regmask operands.
205 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
206 MBBI != E; ++MBBI) {
207 MachineBasicBlock *MBB = MBBI;
208 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
209 RMB.first = RegMaskSlots.size();
210 for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
211 MI != ME; ++MI)
212 for (MIOperands MO(MI); MO.isValid(); ++MO) {
213 if (!MO->isRegMask())
214 continue;
215 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
216 RegMaskBits.push_back(MO->getRegMask());
217 }
218 // Compute the number of register mask instructions in this block.
219 RMB.second = RegMaskSlots.size() - RMB.first;
220 }
221 }
222
223 //===----------------------------------------------------------------------===//
224 // Register Unit Liveness
225 //===----------------------------------------------------------------------===//
226 //
227 // Fixed interference typically comes from ABI boundaries: Function arguments
228 // and return values are passed in fixed registers, and so are exception
229 // pointers entering landing pads. Certain instructions require values to be
230 // present in specific registers. That is also represented through fixed
231 // interference.
232 //
233
234 /// computeRegUnitInterval - Compute the live range of a register unit, based
235 /// on the uses and defs of aliasing registers. The range should be empty,
236 /// or contain only dead phi-defs from ABI blocks.
computeRegUnitRange(LiveRange & LR,unsigned Unit)237 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
238 assert(LRCalc && "LRCalc not initialized.");
239 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
240
241 // The physregs aliasing Unit are the roots and their super-registers.
242 // Create all values as dead defs before extending to uses. Note that roots
243 // may share super-registers. That's OK because createDeadDefs() is
244 // idempotent. It is very rare for a register unit to have multiple roots, so
245 // uniquing super-registers is probably not worthwhile.
246 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
247 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
248 Supers.isValid(); ++Supers) {
249 if (!MRI->reg_empty(*Supers))
250 LRCalc->createDeadDefs(LR, *Supers);
251 }
252 }
253
254 // Now extend LR to reach all uses.
255 // Ignore uses of reserved registers. We only track defs of those.
256 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
257 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
258 Supers.isValid(); ++Supers) {
259 unsigned Reg = *Supers;
260 if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
261 LRCalc->extendToUses(LR, Reg);
262 }
263 }
264 }
265
266
267 /// computeLiveInRegUnits - Precompute the live ranges of any register units
268 /// that are live-in to an ABI block somewhere. Register values can appear
269 /// without a corresponding def when entering the entry block or a landing pad.
270 ///
computeLiveInRegUnits()271 void LiveIntervals::computeLiveInRegUnits() {
272 RegUnitRanges.resize(TRI->getNumRegUnits());
273 DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
274
275 // Keep track of the live range sets allocated.
276 SmallVector<unsigned, 8> NewRanges;
277
278 // Check all basic blocks for live-ins.
279 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
280 MFI != MFE; ++MFI) {
281 const MachineBasicBlock *MBB = MFI;
282
283 // We only care about ABI blocks: Entry + landing pads.
284 if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
285 continue;
286
287 // Create phi-defs at Begin for all live-in registers.
288 SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
289 DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
290 for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
291 LIE = MBB->livein_end(); LII != LIE; ++LII) {
292 for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
293 unsigned Unit = *Units;
294 LiveRange *LR = RegUnitRanges[Unit];
295 if (!LR) {
296 LR = RegUnitRanges[Unit] = new LiveRange();
297 NewRanges.push_back(Unit);
298 }
299 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
300 (void)VNI;
301 DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
302 }
303 }
304 DEBUG(dbgs() << '\n');
305 }
306 DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
307
308 // Compute the 'normal' part of the ranges.
309 for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
310 unsigned Unit = NewRanges[i];
311 computeRegUnitRange(*RegUnitRanges[Unit], Unit);
312 }
313 }
314
315
316 /// shrinkToUses - After removing some uses of a register, shrink its live
317 /// range to just the remaining uses. This method does not compute reaching
318 /// defs for new uses, and it doesn't remove dead defs.
shrinkToUses(LiveInterval * li,SmallVectorImpl<MachineInstr * > * dead)319 bool LiveIntervals::shrinkToUses(LiveInterval *li,
320 SmallVectorImpl<MachineInstr*> *dead) {
321 DEBUG(dbgs() << "Shrink: " << *li << '\n');
322 assert(TargetRegisterInfo::isVirtualRegister(li->reg)
323 && "Can only shrink virtual registers");
324 // Find all the values used, including PHI kills.
325 SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
326
327 // Blocks that have already been added to WorkList as live-out.
328 SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
329
330 // Visit all instructions reading li->reg.
331 for (MachineRegisterInfo::reg_instr_iterator
332 I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
333 I != E; ) {
334 MachineInstr *UseMI = &*(I++);
335 if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
336 continue;
337 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
338 LiveQueryResult LRQ = li->Query(Idx);
339 VNInfo *VNI = LRQ.valueIn();
340 if (!VNI) {
341 // This shouldn't happen: readsVirtualRegister returns true, but there is
342 // no live value. It is likely caused by a target getting <undef> flags
343 // wrong.
344 DEBUG(dbgs() << Idx << '\t' << *UseMI
345 << "Warning: Instr claims to read non-existent value in "
346 << *li << '\n');
347 continue;
348 }
349 // Special case: An early-clobber tied operand reads and writes the
350 // register one slot early.
351 if (VNInfo *DefVNI = LRQ.valueDefined())
352 Idx = DefVNI->def;
353
354 WorkList.push_back(std::make_pair(Idx, VNI));
355 }
356
357 // Create new live ranges with only minimal live segments per def.
358 LiveRange NewLR;
359 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
360 I != E; ++I) {
361 VNInfo *VNI = *I;
362 if (VNI->isUnused())
363 continue;
364 NewLR.addSegment(LiveRange::Segment(VNI->def, VNI->def.getDeadSlot(), VNI));
365 }
366
367 // Keep track of the PHIs that are in use.
368 SmallPtrSet<VNInfo*, 8> UsedPHIs;
369
370 // Extend intervals to reach all uses in WorkList.
371 while (!WorkList.empty()) {
372 SlotIndex Idx = WorkList.back().first;
373 VNInfo *VNI = WorkList.back().second;
374 WorkList.pop_back();
375 const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
376 SlotIndex BlockStart = getMBBStartIdx(MBB);
377
378 // Extend the live range for VNI to be live at Idx.
379 if (VNInfo *ExtVNI = NewLR.extendInBlock(BlockStart, Idx)) {
380 (void)ExtVNI;
381 assert(ExtVNI == VNI && "Unexpected existing value number");
382 // Is this a PHIDef we haven't seen before?
383 if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
384 continue;
385 // The PHI is live, make sure the predecessors are live-out.
386 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
387 PE = MBB->pred_end(); PI != PE; ++PI) {
388 if (!LiveOut.insert(*PI))
389 continue;
390 SlotIndex Stop = getMBBEndIdx(*PI);
391 // A predecessor is not required to have a live-out value for a PHI.
392 if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
393 WorkList.push_back(std::make_pair(Stop, PVNI));
394 }
395 continue;
396 }
397
398 // VNI is live-in to MBB.
399 DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
400 NewLR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
401
402 // Make sure VNI is live-out from the predecessors.
403 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
404 PE = MBB->pred_end(); PI != PE; ++PI) {
405 if (!LiveOut.insert(*PI))
406 continue;
407 SlotIndex Stop = getMBBEndIdx(*PI);
408 assert(li->getVNInfoBefore(Stop) == VNI &&
409 "Wrong value out of predecessor");
410 WorkList.push_back(std::make_pair(Stop, VNI));
411 }
412 }
413
414 // Handle dead values.
415 bool CanSeparate = false;
416 computeDeadValues(li, NewLR, &CanSeparate, dead);
417
418 // Move the trimmed segments back.
419 li->segments.swap(NewLR.segments);
420 DEBUG(dbgs() << "Shrunk: " << *li << '\n');
421 return CanSeparate;
422 }
423
computeDeadValues(LiveInterval * li,LiveRange & LR,bool * CanSeparate,SmallVectorImpl<MachineInstr * > * dead)424 void LiveIntervals::computeDeadValues(LiveInterval *li,
425 LiveRange &LR,
426 bool *CanSeparate,
427 SmallVectorImpl<MachineInstr*> *dead) {
428 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
429 I != E; ++I) {
430 VNInfo *VNI = *I;
431 if (VNI->isUnused())
432 continue;
433 LiveRange::iterator LRI = LR.FindSegmentContaining(VNI->def);
434 assert(LRI != LR.end() && "Missing segment for PHI");
435 if (LRI->end != VNI->def.getDeadSlot())
436 continue;
437 if (VNI->isPHIDef()) {
438 // This is a dead PHI. Remove it.
439 VNI->markUnused();
440 LR.removeSegment(LRI->start, LRI->end);
441 DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
442 if (CanSeparate)
443 *CanSeparate = true;
444 } else {
445 // This is a dead def. Make sure the instruction knows.
446 MachineInstr *MI = getInstructionFromIndex(VNI->def);
447 assert(MI && "No instruction defining live value");
448 MI->addRegisterDead(li->reg, TRI);
449 if (dead && MI->allDefsAreDead()) {
450 DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
451 dead->push_back(MI);
452 }
453 }
454 }
455 }
456
extendToIndices(LiveRange & LR,ArrayRef<SlotIndex> Indices)457 void LiveIntervals::extendToIndices(LiveRange &LR,
458 ArrayRef<SlotIndex> Indices) {
459 assert(LRCalc && "LRCalc not initialized.");
460 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
461 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
462 LRCalc->extend(LR, Indices[i]);
463 }
464
pruneValue(LiveInterval * LI,SlotIndex Kill,SmallVectorImpl<SlotIndex> * EndPoints)465 void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
466 SmallVectorImpl<SlotIndex> *EndPoints) {
467 LiveQueryResult LRQ = LI->Query(Kill);
468 VNInfo *VNI = LRQ.valueOut();
469 if (!VNI)
470 return;
471
472 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
473 SlotIndex MBBStart, MBBEnd;
474 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
475
476 // If VNI isn't live out from KillMBB, the value is trivially pruned.
477 if (LRQ.endPoint() < MBBEnd) {
478 LI->removeSegment(Kill, LRQ.endPoint());
479 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
480 return;
481 }
482
483 // VNI is live out of KillMBB.
484 LI->removeSegment(Kill, MBBEnd);
485 if (EndPoints) EndPoints->push_back(MBBEnd);
486
487 // Find all blocks that are reachable from KillMBB without leaving VNI's live
488 // range. It is possible that KillMBB itself is reachable, so start a DFS
489 // from each successor.
490 typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
491 VisitedTy Visited;
492 for (MachineBasicBlock::succ_iterator
493 SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
494 SuccI != SuccE; ++SuccI) {
495 for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
496 I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
497 I != E;) {
498 MachineBasicBlock *MBB = *I;
499
500 // Check if VNI is live in to MBB.
501 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
502 LiveQueryResult LRQ = LI->Query(MBBStart);
503 if (LRQ.valueIn() != VNI) {
504 // This block isn't part of the VNI segment. Prune the search.
505 I.skipChildren();
506 continue;
507 }
508
509 // Prune the search if VNI is killed in MBB.
510 if (LRQ.endPoint() < MBBEnd) {
511 LI->removeSegment(MBBStart, LRQ.endPoint());
512 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
513 I.skipChildren();
514 continue;
515 }
516
517 // VNI is live through MBB.
518 LI->removeSegment(MBBStart, MBBEnd);
519 if (EndPoints) EndPoints->push_back(MBBEnd);
520 ++I;
521 }
522 }
523 }
524
525 //===----------------------------------------------------------------------===//
526 // Register allocator hooks.
527 //
528
addKillFlags(const VirtRegMap * VRM)529 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
530 // Keep track of regunit ranges.
531 SmallVector<std::pair<LiveRange*, LiveRange::iterator>, 8> RU;
532
533 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
534 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
535 if (MRI->reg_nodbg_empty(Reg))
536 continue;
537 LiveInterval *LI = &getInterval(Reg);
538 if (LI->empty())
539 continue;
540
541 // Find the regunit intervals for the assigned register. They may overlap
542 // the virtual register live range, cancelling any kills.
543 RU.clear();
544 for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
545 ++Units) {
546 LiveRange &RURanges = getRegUnit(*Units);
547 if (RURanges.empty())
548 continue;
549 RU.push_back(std::make_pair(&RURanges, RURanges.find(LI->begin()->end)));
550 }
551
552 // Every instruction that kills Reg corresponds to a segment range end
553 // point.
554 for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
555 ++RI) {
556 // A block index indicates an MBB edge.
557 if (RI->end.isBlock())
558 continue;
559 MachineInstr *MI = getInstructionFromIndex(RI->end);
560 if (!MI)
561 continue;
562
563 // Check if any of the regunits are live beyond the end of RI. That could
564 // happen when a physreg is defined as a copy of a virtreg:
565 //
566 // %EAX = COPY %vreg5
567 // FOO %vreg5 <--- MI, cancel kill because %EAX is live.
568 // BAR %EAX<kill>
569 //
570 // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
571 bool CancelKill = false;
572 for (unsigned u = 0, e = RU.size(); u != e; ++u) {
573 LiveRange &RRanges = *RU[u].first;
574 LiveRange::iterator &I = RU[u].second;
575 if (I == RRanges.end())
576 continue;
577 I = RRanges.advanceTo(I, RI->end);
578 if (I == RRanges.end() || I->start >= RI->end)
579 continue;
580 // I is overlapping RI.
581 CancelKill = true;
582 break;
583 }
584 if (CancelKill)
585 MI->clearRegisterKills(Reg, nullptr);
586 else
587 MI->addRegisterKilled(Reg, nullptr);
588 }
589 }
590 }
591
592 MachineBasicBlock*
intervalIsInOneMBB(const LiveInterval & LI) const593 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
594 // A local live range must be fully contained inside the block, meaning it is
595 // defined and killed at instructions, not at block boundaries. It is not
596 // live in or or out of any block.
597 //
598 // It is technically possible to have a PHI-defined live range identical to a
599 // single block, but we are going to return false in that case.
600
601 SlotIndex Start = LI.beginIndex();
602 if (Start.isBlock())
603 return nullptr;
604
605 SlotIndex Stop = LI.endIndex();
606 if (Stop.isBlock())
607 return nullptr;
608
609 // getMBBFromIndex doesn't need to search the MBB table when both indexes
610 // belong to proper instructions.
611 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
612 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
613 return MBB1 == MBB2 ? MBB1 : nullptr;
614 }
615
616 bool
hasPHIKill(const LiveInterval & LI,const VNInfo * VNI) const617 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
618 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
619 I != E; ++I) {
620 const VNInfo *PHI = *I;
621 if (PHI->isUnused() || !PHI->isPHIDef())
622 continue;
623 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
624 // Conservatively return true instead of scanning huge predecessor lists.
625 if (PHIMBB->pred_size() > 100)
626 return true;
627 for (MachineBasicBlock::const_pred_iterator
628 PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
629 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
630 return true;
631 }
632 return false;
633 }
634
635 float
getSpillWeight(bool isDef,bool isUse,const MachineBlockFrequencyInfo * MBFI,const MachineInstr * MI)636 LiveIntervals::getSpillWeight(bool isDef, bool isUse,
637 const MachineBlockFrequencyInfo *MBFI,
638 const MachineInstr *MI) {
639 BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
640 const float Scale = 1.0f / MBFI->getEntryFreq();
641 return (isDef + isUse) * (Freq.getFrequency() * Scale);
642 }
643
644 LiveRange::Segment
addSegmentToEndOfBlock(unsigned reg,MachineInstr * startInst)645 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
646 LiveInterval& Interval = createEmptyInterval(reg);
647 VNInfo* VN = Interval.getNextValue(
648 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
649 getVNInfoAllocator());
650 LiveRange::Segment S(
651 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
652 getMBBEndIdx(startInst->getParent()), VN);
653 Interval.addSegment(S);
654
655 return S;
656 }
657
658
659 //===----------------------------------------------------------------------===//
660 // Register mask functions
661 //===----------------------------------------------------------------------===//
662
checkRegMaskInterference(LiveInterval & LI,BitVector & UsableRegs)663 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
664 BitVector &UsableRegs) {
665 if (LI.empty())
666 return false;
667 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
668
669 // Use a smaller arrays for local live ranges.
670 ArrayRef<SlotIndex> Slots;
671 ArrayRef<const uint32_t*> Bits;
672 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
673 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
674 Bits = getRegMaskBitsInBlock(MBB->getNumber());
675 } else {
676 Slots = getRegMaskSlots();
677 Bits = getRegMaskBits();
678 }
679
680 // We are going to enumerate all the register mask slots contained in LI.
681 // Start with a binary search of RegMaskSlots to find a starting point.
682 ArrayRef<SlotIndex>::iterator SlotI =
683 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
684 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
685
686 // No slots in range, LI begins after the last call.
687 if (SlotI == SlotE)
688 return false;
689
690 bool Found = false;
691 for (;;) {
692 assert(*SlotI >= LiveI->start);
693 // Loop over all slots overlapping this segment.
694 while (*SlotI < LiveI->end) {
695 // *SlotI overlaps LI. Collect mask bits.
696 if (!Found) {
697 // This is the first overlap. Initialize UsableRegs to all ones.
698 UsableRegs.clear();
699 UsableRegs.resize(TRI->getNumRegs(), true);
700 Found = true;
701 }
702 // Remove usable registers clobbered by this mask.
703 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
704 if (++SlotI == SlotE)
705 return Found;
706 }
707 // *SlotI is beyond the current LI segment.
708 LiveI = LI.advanceTo(LiveI, *SlotI);
709 if (LiveI == LiveE)
710 return Found;
711 // Advance SlotI until it overlaps.
712 while (*SlotI < LiveI->start)
713 if (++SlotI == SlotE)
714 return Found;
715 }
716 }
717
718 //===----------------------------------------------------------------------===//
719 // IntervalUpdate class.
720 //===----------------------------------------------------------------------===//
721
722 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
723 class LiveIntervals::HMEditor {
724 private:
725 LiveIntervals& LIS;
726 const MachineRegisterInfo& MRI;
727 const TargetRegisterInfo& TRI;
728 SlotIndex OldIdx;
729 SlotIndex NewIdx;
730 SmallPtrSet<LiveRange*, 8> Updated;
731 bool UpdateFlags;
732
733 public:
HMEditor(LiveIntervals & LIS,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,SlotIndex OldIdx,SlotIndex NewIdx,bool UpdateFlags)734 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
735 const TargetRegisterInfo& TRI,
736 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
737 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
738 UpdateFlags(UpdateFlags) {}
739
740 // FIXME: UpdateFlags is a workaround that creates live intervals for all
741 // physregs, even those that aren't needed for regalloc, in order to update
742 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
743 // flags, and postRA passes will use a live register utility instead.
getRegUnitLI(unsigned Unit)744 LiveRange *getRegUnitLI(unsigned Unit) {
745 if (UpdateFlags)
746 return &LIS.getRegUnit(Unit);
747 return LIS.getCachedRegUnit(Unit);
748 }
749
750 /// Update all live ranges touched by MI, assuming a move from OldIdx to
751 /// NewIdx.
updateAllRanges(MachineInstr * MI)752 void updateAllRanges(MachineInstr *MI) {
753 DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
754 bool hasRegMask = false;
755 for (MIOperands MO(MI); MO.isValid(); ++MO) {
756 if (MO->isRegMask())
757 hasRegMask = true;
758 if (!MO->isReg())
759 continue;
760 // Aggressively clear all kill flags.
761 // They are reinserted by VirtRegRewriter.
762 if (MO->isUse())
763 MO->setIsKill(false);
764
765 unsigned Reg = MO->getReg();
766 if (!Reg)
767 continue;
768 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
769 LiveInterval &LI = LIS.getInterval(Reg);
770 updateRange(LI, Reg);
771 continue;
772 }
773
774 // For physregs, only update the regunits that actually have a
775 // precomputed live range.
776 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
777 if (LiveRange *LR = getRegUnitLI(*Units))
778 updateRange(*LR, *Units);
779 }
780 if (hasRegMask)
781 updateRegMaskSlots();
782 }
783
784 private:
785 /// Update a single live range, assuming an instruction has been moved from
786 /// OldIdx to NewIdx.
updateRange(LiveRange & LR,unsigned Reg)787 void updateRange(LiveRange &LR, unsigned Reg) {
788 if (!Updated.insert(&LR))
789 return;
790 DEBUG({
791 dbgs() << " ";
792 if (TargetRegisterInfo::isVirtualRegister(Reg))
793 dbgs() << PrintReg(Reg);
794 else
795 dbgs() << PrintRegUnit(Reg, &TRI);
796 dbgs() << ":\t" << LR << '\n';
797 });
798 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
799 handleMoveDown(LR);
800 else
801 handleMoveUp(LR, Reg);
802 DEBUG(dbgs() << " -->\t" << LR << '\n');
803 LR.verify();
804 }
805
806 /// Update LR to reflect an instruction has been moved downwards from OldIdx
807 /// to NewIdx.
808 ///
809 /// 1. Live def at OldIdx:
810 /// Move def to NewIdx, assert endpoint after NewIdx.
811 ///
812 /// 2. Live def at OldIdx, killed at NewIdx:
813 /// Change to dead def at NewIdx.
814 /// (Happens when bundling def+kill together).
815 ///
816 /// 3. Dead def at OldIdx:
817 /// Move def to NewIdx, possibly across another live value.
818 ///
819 /// 4. Def at OldIdx AND at NewIdx:
820 /// Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
821 /// (Happens when bundling multiple defs together).
822 ///
823 /// 5. Value read at OldIdx, killed before NewIdx:
824 /// Extend kill to NewIdx.
825 ///
handleMoveDown(LiveRange & LR)826 void handleMoveDown(LiveRange &LR) {
827 // First look for a kill at OldIdx.
828 LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
829 LiveRange::iterator E = LR.end();
830 // Is LR even live at OldIdx?
831 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
832 return;
833
834 // Handle a live-in value.
835 if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
836 bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
837 // If the live-in value already extends to NewIdx, there is nothing to do.
838 if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
839 return;
840 // Aggressively remove all kill flags from the old kill point.
841 // Kill flags shouldn't be used while live intervals exist, they will be
842 // reinserted by VirtRegRewriter.
843 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
844 for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
845 if (MO->isReg() && MO->isUse())
846 MO->setIsKill(false);
847 // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
848 // overlapping ranges. Case 5 above.
849 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
850 // If this was a kill, there may also be a def. Otherwise we're done.
851 if (!isKill)
852 return;
853 ++I;
854 }
855
856 // Check for a def at OldIdx.
857 if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
858 return;
859 // We have a def at OldIdx.
860 VNInfo *DefVNI = I->valno;
861 assert(DefVNI->def == I->start && "Inconsistent def");
862 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
863 // If the defined value extends beyond NewIdx, just move the def down.
864 // This is case 1 above.
865 if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
866 I->start = DefVNI->def;
867 return;
868 }
869 // The remaining possibilities are now:
870 // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
871 // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
872 // In either case, it is possible that there is an existing def at NewIdx.
873 assert((I->end == OldIdx.getDeadSlot() ||
874 SlotIndex::isSameInstr(I->end, NewIdx)) &&
875 "Cannot move def below kill");
876 LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
877 if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
878 // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
879 // coalesced into that value.
880 assert(NewI->valno != DefVNI && "Multiple defs of value?");
881 LR.removeValNo(DefVNI);
882 return;
883 }
884 // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
885 // If the def at OldIdx was dead, we allow it to be moved across other LR
886 // values. The new range should be placed immediately before NewI, move any
887 // intermediate ranges up.
888 assert(NewI != I && "Inconsistent iterators");
889 std::copy(std::next(I), NewI, I);
890 *std::prev(NewI)
891 = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
892 }
893
894 /// Update LR to reflect an instruction has been moved upwards from OldIdx
895 /// to NewIdx.
896 ///
897 /// 1. Live def at OldIdx:
898 /// Hoist def to NewIdx.
899 ///
900 /// 2. Dead def at OldIdx:
901 /// Hoist def+end to NewIdx, possibly move across other values.
902 ///
903 /// 3. Dead def at OldIdx AND existing def at NewIdx:
904 /// Remove value defined at OldIdx, coalescing it with existing value.
905 ///
906 /// 4. Live def at OldIdx AND existing def at NewIdx:
907 /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
908 /// (Happens when bundling multiple defs together).
909 ///
910 /// 5. Value killed at OldIdx:
911 /// Hoist kill to NewIdx, then scan for last kill between NewIdx and
912 /// OldIdx.
913 ///
handleMoveUp(LiveRange & LR,unsigned Reg)914 void handleMoveUp(LiveRange &LR, unsigned Reg) {
915 // First look for a kill at OldIdx.
916 LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
917 LiveRange::iterator E = LR.end();
918 // Is LR even live at OldIdx?
919 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
920 return;
921
922 // Handle a live-in value.
923 if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
924 // If the live-in value isn't killed here, there is nothing to do.
925 if (!SlotIndex::isSameInstr(OldIdx, I->end))
926 return;
927 // Adjust I->end to end at NewIdx. If we are hoisting a kill above
928 // another use, we need to search for that use. Case 5 above.
929 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
930 ++I;
931 // If OldIdx also defines a value, there couldn't have been another use.
932 if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
933 // No def, search for the new kill.
934 // This can never be an early clobber kill since there is no def.
935 std::prev(I)->end = findLastUseBefore(Reg).getRegSlot();
936 return;
937 }
938 }
939
940 // Now deal with the def at OldIdx.
941 assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
942 VNInfo *DefVNI = I->valno;
943 assert(DefVNI->def == I->start && "Inconsistent def");
944 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
945
946 // Check for an existing def at NewIdx.
947 LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
948 if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
949 assert(NewI->valno != DefVNI && "Same value defined more than once?");
950 // There is an existing def at NewIdx.
951 if (I->end.isDead()) {
952 // Case 3: Remove the dead def at OldIdx.
953 LR.removeValNo(DefVNI);
954 return;
955 }
956 // Case 4: Replace def at NewIdx with live def at OldIdx.
957 I->start = DefVNI->def;
958 LR.removeValNo(NewI->valno);
959 return;
960 }
961
962 // There is no existing def at NewIdx. Hoist DefVNI.
963 if (!I->end.isDead()) {
964 // Leave the end point of a live def.
965 I->start = DefVNI->def;
966 return;
967 }
968
969 // DefVNI is a dead def. It may have been moved across other values in LR,
970 // so move I up to NewI. Slide [NewI;I) down one position.
971 std::copy_backward(NewI, I, std::next(I));
972 *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
973 }
974
updateRegMaskSlots()975 void updateRegMaskSlots() {
976 SmallVectorImpl<SlotIndex>::iterator RI =
977 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
978 OldIdx);
979 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
980 "No RegMask at OldIdx.");
981 *RI = NewIdx.getRegSlot();
982 assert((RI == LIS.RegMaskSlots.begin() ||
983 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
984 "Cannot move regmask instruction above another call");
985 assert((std::next(RI) == LIS.RegMaskSlots.end() ||
986 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
987 "Cannot move regmask instruction below another call");
988 }
989
990 // Return the last use of reg between NewIdx and OldIdx.
findLastUseBefore(unsigned Reg)991 SlotIndex findLastUseBefore(unsigned Reg) {
992
993 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
994 SlotIndex LastUse = NewIdx;
995 for (MachineRegisterInfo::use_instr_nodbg_iterator
996 UI = MRI.use_instr_nodbg_begin(Reg),
997 UE = MRI.use_instr_nodbg_end();
998 UI != UE; ++UI) {
999 const MachineInstr* MI = &*UI;
1000 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1001 if (InstSlot > LastUse && InstSlot < OldIdx)
1002 LastUse = InstSlot;
1003 }
1004 return LastUse;
1005 }
1006
1007 // This is a regunit interval, so scanning the use list could be very
1008 // expensive. Scan upwards from OldIdx instead.
1009 assert(NewIdx < OldIdx && "Expected upwards move");
1010 SlotIndexes *Indexes = LIS.getSlotIndexes();
1011 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
1012
1013 // OldIdx may not correspond to an instruction any longer, so set MII to
1014 // point to the next instruction after OldIdx, or MBB->end().
1015 MachineBasicBlock::iterator MII = MBB->end();
1016 if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1017 Indexes->getNextNonNullIndex(OldIdx)))
1018 if (MI->getParent() == MBB)
1019 MII = MI;
1020
1021 MachineBasicBlock::iterator Begin = MBB->begin();
1022 while (MII != Begin) {
1023 if ((--MII)->isDebugValue())
1024 continue;
1025 SlotIndex Idx = Indexes->getInstructionIndex(MII);
1026
1027 // Stop searching when NewIdx is reached.
1028 if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
1029 return NewIdx;
1030
1031 // Check if MII uses Reg.
1032 for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
1033 if (MO->isReg() &&
1034 TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1035 TRI.hasRegUnit(MO->getReg(), Reg))
1036 return Idx;
1037 }
1038 // Didn't reach NewIdx. It must be the first instruction in the block.
1039 return NewIdx;
1040 }
1041 };
1042
handleMove(MachineInstr * MI,bool UpdateFlags)1043 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1044 assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1045 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1046 Indexes->removeMachineInstrFromMaps(MI);
1047 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1048 assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1049 OldIndex < getMBBEndIdx(MI->getParent()) &&
1050 "Cannot handle moves across basic block boundaries.");
1051
1052 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1053 HME.updateAllRanges(MI);
1054 }
1055
handleMoveIntoBundle(MachineInstr * MI,MachineInstr * BundleStart,bool UpdateFlags)1056 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1057 MachineInstr* BundleStart,
1058 bool UpdateFlags) {
1059 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1060 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1061 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1062 HME.updateAllRanges(MI);
1063 }
1064
1065 void
repairIntervalsInRange(MachineBasicBlock * MBB,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,ArrayRef<unsigned> OrigRegs)1066 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1067 MachineBasicBlock::iterator Begin,
1068 MachineBasicBlock::iterator End,
1069 ArrayRef<unsigned> OrigRegs) {
1070 // Find anchor points, which are at the beginning/end of blocks or at
1071 // instructions that already have indexes.
1072 while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
1073 --Begin;
1074 while (End != MBB->end() && !Indexes->hasIndex(End))
1075 ++End;
1076
1077 SlotIndex endIdx;
1078 if (End == MBB->end())
1079 endIdx = getMBBEndIdx(MBB).getPrevSlot();
1080 else
1081 endIdx = getInstructionIndex(End);
1082
1083 Indexes->repairIndexesInRange(MBB, Begin, End);
1084
1085 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1086 --I;
1087 MachineInstr *MI = I;
1088 if (MI->isDebugValue())
1089 continue;
1090 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1091 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1092 if (MOI->isReg() &&
1093 TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1094 !hasInterval(MOI->getReg())) {
1095 createAndComputeVirtRegInterval(MOI->getReg());
1096 }
1097 }
1098 }
1099
1100 for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1101 unsigned Reg = OrigRegs[i];
1102 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1103 continue;
1104
1105 LiveInterval &LI = getInterval(Reg);
1106 // FIXME: Should we support undefs that gain defs?
1107 if (!LI.hasAtLeastOneValue())
1108 continue;
1109
1110 LiveInterval::iterator LII = LI.find(endIdx);
1111 SlotIndex lastUseIdx;
1112 if (LII != LI.end() && LII->start < endIdx)
1113 lastUseIdx = LII->end;
1114 else
1115 --LII;
1116
1117 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1118 --I;
1119 MachineInstr *MI = I;
1120 if (MI->isDebugValue())
1121 continue;
1122
1123 SlotIndex instrIdx = getInstructionIndex(MI);
1124 bool isStartValid = getInstructionFromIndex(LII->start);
1125 bool isEndValid = getInstructionFromIndex(LII->end);
1126
1127 // FIXME: This doesn't currently handle early-clobber or multiple removed
1128 // defs inside of the region to repair.
1129 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1130 OE = MI->operands_end(); OI != OE; ++OI) {
1131 const MachineOperand &MO = *OI;
1132 if (!MO.isReg() || MO.getReg() != Reg)
1133 continue;
1134
1135 if (MO.isDef()) {
1136 if (!isStartValid) {
1137 if (LII->end.isDead()) {
1138 SlotIndex prevStart;
1139 if (LII != LI.begin())
1140 prevStart = std::prev(LII)->start;
1141
1142 // FIXME: This could be more efficient if there was a
1143 // removeSegment method that returned an iterator.
1144 LI.removeSegment(*LII, true);
1145 if (prevStart.isValid())
1146 LII = LI.find(prevStart);
1147 else
1148 LII = LI.begin();
1149 } else {
1150 LII->start = instrIdx.getRegSlot();
1151 LII->valno->def = instrIdx.getRegSlot();
1152 if (MO.getSubReg() && !MO.isUndef())
1153 lastUseIdx = instrIdx.getRegSlot();
1154 else
1155 lastUseIdx = SlotIndex();
1156 continue;
1157 }
1158 }
1159
1160 if (!lastUseIdx.isValid()) {
1161 VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1162 VNInfoAllocator);
1163 LiveRange::Segment S(instrIdx.getRegSlot(),
1164 instrIdx.getDeadSlot(), VNI);
1165 LII = LI.addSegment(S);
1166 } else if (LII->start != instrIdx.getRegSlot()) {
1167 VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1168 VNInfoAllocator);
1169 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1170 LII = LI.addSegment(S);
1171 }
1172
1173 if (MO.getSubReg() && !MO.isUndef())
1174 lastUseIdx = instrIdx.getRegSlot();
1175 else
1176 lastUseIdx = SlotIndex();
1177 } else if (MO.isUse()) {
1178 // FIXME: This should probably be handled outside of this branch,
1179 // either as part of the def case (for defs inside of the region) or
1180 // after the loop over the region.
1181 if (!isEndValid && !LII->end.isBlock())
1182 LII->end = instrIdx.getRegSlot();
1183 if (!lastUseIdx.isValid())
1184 lastUseIdx = instrIdx.getRegSlot();
1185 }
1186 }
1187 }
1188 }
1189 }
1190