• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licenced under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "hw/sysbus.h"
14 #include "qemu/timer.h"
15 #include "hw/arm/arm.h"
16 
17 /* 32 internal lines (16 used for system exceptions) plus 64 external
18    interrupt lines.  */
19 #define GIC_NIRQ 96
20 #define NCPU 1
21 #define NVIC 1
22 
23 /* Only a single "CPU" interface is present.  */
24 static inline int
gic_get_current_cpu(void)25 gic_get_current_cpu(void)
26 {
27     return 0;
28 }
29 
30 static uint32_t nvic_readl(void *opaque, uint32_t offset);
31 static void nvic_writel(void *opaque, uint32_t offset, uint32_t value);
32 
33 #include "arm_gic.c"
34 
35 typedef struct {
36     gic_state gic;
37     struct {
38         uint32_t control;
39         uint32_t reload;
40         int64_t tick;
41         QEMUTimer *timer;
42     } systick;
43 } nvic_state;
44 
45 /* qemu timers run at 1GHz.   We want something closer to 1MHz.  */
46 #define SYSTICK_SCALE 1000ULL
47 
48 #define SYSTICK_ENABLE    (1 << 0)
49 #define SYSTICK_TICKINT   (1 << 1)
50 #define SYSTICK_CLKSOURCE (1 << 2)
51 #define SYSTICK_COUNTFLAG (1 << 16)
52 
53 int system_clock_scale;
54 
55 /* Conversion factor from qemu timer to SysTick frequencies.  */
systick_scale(nvic_state * s)56 static inline int64_t systick_scale(nvic_state *s)
57 {
58     if (s->systick.control & SYSTICK_CLKSOURCE)
59         return system_clock_scale;
60     else
61         return 1000;
62 }
63 
systick_reload(nvic_state * s,int reset)64 static void systick_reload(nvic_state *s, int reset)
65 {
66     if (reset)
67         s->systick.tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
68     s->systick.tick += (s->systick.reload + 1) * systick_scale(s);
69     timer_mod(s->systick.timer, s->systick.tick);
70 }
71 
systick_timer_tick(void * opaque)72 static void systick_timer_tick(void * opaque)
73 {
74     nvic_state *s = (nvic_state *)opaque;
75     s->systick.control |= SYSTICK_COUNTFLAG;
76     if (s->systick.control & SYSTICK_TICKINT) {
77         /* Trigger the interrupt.  */
78         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
79     }
80     if (s->systick.reload == 0) {
81         s->systick.control &= ~SYSTICK_ENABLE;
82     } else {
83         systick_reload(s, 0);
84     }
85 }
86 
87 /* The external routines use the hardware vector numbering, ie. the first
88    IRQ is #16.  The internal GIC routines use #32 as the first IRQ.  */
armv7m_nvic_set_pending(void * opaque,int irq)89 void armv7m_nvic_set_pending(void *opaque, int irq)
90 {
91     nvic_state *s = (nvic_state *)opaque;
92     if (irq >= 16)
93         irq += 16;
94     gic_set_pending_private(&s->gic, 0, irq);
95 }
96 
97 /* Make pending IRQ active.  */
armv7m_nvic_acknowledge_irq(void * opaque)98 int armv7m_nvic_acknowledge_irq(void *opaque)
99 {
100     nvic_state *s = (nvic_state *)opaque;
101     uint32_t irq;
102 
103     irq = gic_acknowledge_irq(&s->gic, 0);
104     if (irq == 1023)
105         hw_error("Interrupt but no vector\n");
106     if (irq >= 32)
107         irq -= 16;
108     return irq;
109 }
110 
armv7m_nvic_complete_irq(void * opaque,int irq)111 void armv7m_nvic_complete_irq(void *opaque, int irq)
112 {
113     nvic_state *s = (nvic_state *)opaque;
114     if (irq >= 16)
115         irq += 16;
116     gic_complete_irq(&s->gic, 0, irq);
117 }
118 
nvic_readl(void * opaque,uint32_t offset)119 static uint32_t nvic_readl(void *opaque, uint32_t offset)
120 {
121     nvic_state *s = (nvic_state *)opaque;
122     uint32_t val;
123     int irq;
124 
125     switch (offset) {
126     case 4: /* Interrupt Control Type.  */
127         return (GIC_NIRQ / 32) - 1;
128     case 0x10: /* SysTick Control and Status.  */
129         val = s->systick.control;
130         s->systick.control &= ~SYSTICK_COUNTFLAG;
131         return val;
132     case 0x14: /* SysTick Reload Value.  */
133         return s->systick.reload;
134     case 0x18: /* SysTick Current Value.  */
135         {
136             int64_t t;
137             if ((s->systick.control & SYSTICK_ENABLE) == 0)
138                 return 0;
139             t = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
140             if (t >= s->systick.tick)
141                 return 0;
142             val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1;
143             /* The interrupt in triggered when the timer reaches zero.
144                However the counter is not reloaded until the next clock
145                tick.  This is a hack to return zero during the first tick.  */
146             if (val > s->systick.reload)
147                 val = 0;
148             return val;
149         }
150     case 0x1c: /* SysTick Calibration Value.  */
151         return 10000;
152     case 0xd00: /* CPUID Base.  */
153         return cpu_single_env->cp15.c0_cpuid;
154     case 0xd04: /* Interrypt Control State.  */
155         /* VECTACTIVE */
156         val = s->gic.running_irq[0];
157         if (val == 1023) {
158             val = 0;
159         } else if (val >= 32) {
160             val -= 16;
161         }
162         /* RETTOBASE */
163         if (s->gic.running_irq[0] == 1023
164                 || s->gic.last_active[s->gic.running_irq[0]][0] == 1023) {
165             val |= (1 << 11);
166         }
167         /* VECTPENDING */
168         if (s->gic.current_pending[0] != 1023)
169             val |= (s->gic.current_pending[0] << 12);
170         /* ISRPENDING */
171         for (irq = 32; irq < GIC_NIRQ; irq++) {
172             if (s->gic.irq_state[irq].pending) {
173                 val |= (1 << 22);
174                 break;
175             }
176         }
177         /* PENDSTSET */
178         if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending)
179             val |= (1 << 26);
180         /* PENDSVSET */
181         if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending)
182             val |= (1 << 28);
183         /* NMIPENDSET */
184         if (s->gic.irq_state[ARMV7M_EXCP_NMI].pending)
185             val |= (1 << 31);
186         return val;
187     case 0xd08: /* Vector Table Offset.  */
188         return cpu_single_env->v7m.vecbase;
189     case 0xd0c: /* Application Interrupt/Reset Control.  */
190         return 0xfa05000;
191     case 0xd10: /* System Control.  */
192         /* TODO: Implement SLEEPONEXIT.  */
193         return 0;
194     case 0xd14: /* Configuration Control.  */
195         /* TODO: Implement Configuration Control bits.  */
196         return 0;
197     case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority.  */
198         irq = offset - 0xd14;
199         val = 0;
200         val = s->gic.priority1[irq++][0];
201         val = s->gic.priority1[irq++][0] << 8;
202         val = s->gic.priority1[irq++][0] << 16;
203         val = s->gic.priority1[irq][0] << 24;
204         return val;
205     case 0xd24: /* System Handler Status.  */
206         val = 0;
207         if (s->gic.irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0);
208         if (s->gic.irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1);
209         if (s->gic.irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3);
210         if (s->gic.irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7);
211         if (s->gic.irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8);
212         if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10);
213         if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11);
214         if (s->gic.irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12);
215         if (s->gic.irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13);
216         if (s->gic.irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14);
217         if (s->gic.irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15);
218         if (s->gic.irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16);
219         if (s->gic.irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17);
220         if (s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18);
221         return val;
222     case 0xd28: /* Configurable Fault Status.  */
223         /* TODO: Implement Fault Status.  */
224         hw_error("Not implemented: Configurable Fault Status.");
225         return 0;
226     case 0xd2c: /* Hard Fault Status.  */
227     case 0xd30: /* Debug Fault Status.  */
228     case 0xd34: /* Mem Manage Address.  */
229     case 0xd38: /* Bus Fault Address.  */
230     case 0xd3c: /* Aux Fault Status.  */
231         /* TODO: Implement fault status registers.  */
232         goto bad_reg;
233     case 0xd40: /* PFR0.  */
234         return 0x00000030;
235     case 0xd44: /* PRF1.  */
236         return 0x00000200;
237     case 0xd48: /* DFR0.  */
238         return 0x00100000;
239     case 0xd4c: /* AFR0.  */
240         return 0x00000000;
241     case 0xd50: /* MMFR0.  */
242         return 0x00000030;
243     case 0xd54: /* MMFR1.  */
244         return 0x00000000;
245     case 0xd58: /* MMFR2.  */
246         return 0x00000000;
247     case 0xd5c: /* MMFR3.  */
248         return 0x00000000;
249     case 0xd60: /* ISAR0.  */
250         return 0x01141110;
251     case 0xd64: /* ISAR1.  */
252         return 0x02111000;
253     case 0xd68: /* ISAR2.  */
254         return 0x21112231;
255     case 0xd6c: /* ISAR3.  */
256         return 0x01111110;
257     case 0xd70: /* ISAR4.  */
258         return 0x01310102;
259     /* TODO: Implement debug registers.  */
260     default:
261     bad_reg:
262         hw_error("NVIC: Bad read offset 0x%x\n", offset);
263     }
264 }
265 
nvic_writel(void * opaque,uint32_t offset,uint32_t value)266 static void nvic_writel(void *opaque, uint32_t offset, uint32_t value)
267 {
268     nvic_state *s = (nvic_state *)opaque;
269     uint32_t oldval;
270     switch (offset) {
271     case 0x10: /* SysTick Control and Status.  */
272         oldval = s->systick.control;
273         s->systick.control &= 0xfffffff8;
274         s->systick.control |= value & 7;
275         if ((oldval ^ value) & SYSTICK_ENABLE) {
276             int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
277             if (value & SYSTICK_ENABLE) {
278                 if (s->systick.tick) {
279                     s->systick.tick += now;
280                     timer_mod(s->systick.timer, s->systick.tick);
281                 } else {
282                     systick_reload(s, 1);
283                 }
284             } else {
285                 timer_del(s->systick.timer);
286                 s->systick.tick -= now;
287                 if (s->systick.tick < 0)
288                   s->systick.tick = 0;
289             }
290         } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
291             /* This is a hack. Force the timer to be reloaded
292                when the reference clock is changed.  */
293             systick_reload(s, 1);
294         }
295         break;
296     case 0x14: /* SysTick Reload Value.  */
297         s->systick.reload = value;
298         break;
299     case 0x18: /* SysTick Current Value.  Writes reload the timer.  */
300         systick_reload(s, 1);
301         s->systick.control &= ~SYSTICK_COUNTFLAG;
302         break;
303     case 0xd04: /* Interrupt Control State.  */
304         if (value & (1 << 31)) {
305             armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
306         }
307         if (value & (1 << 28)) {
308             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
309         } else if (value & (1 << 27)) {
310             s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending = 0;
311             gic_update(&s->gic);
312         }
313         if (value & (1 << 26)) {
314             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
315         } else if (value & (1 << 25)) {
316             s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending = 0;
317             gic_update(&s->gic);
318         }
319         break;
320     case 0xd08: /* Vector Table Offset.  */
321         cpu_single_env->v7m.vecbase = value & 0xffffff80;
322         break;
323     case 0xd0c: /* Application Interrupt/Reset Control.  */
324         if ((value >> 16) == 0x05fa) {
325             if (value & 2) {
326                 hw_error("VECTCLRACTIVE not implemented");
327             }
328             if (value & 5) {
329                 hw_error("System reset");
330             }
331         }
332         break;
333     case 0xd10: /* System Control.  */
334     case 0xd14: /* Configuration Control.  */
335         /* TODO: Implement control registers.  */
336         goto bad_reg;
337     case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority.  */
338         {
339             int irq;
340             irq = offset - 0xd14;
341             s->gic.priority1[irq++][0] = value & 0xff;
342             s->gic.priority1[irq++][0] = (value >> 8) & 0xff;
343             s->gic.priority1[irq++][0] = (value >> 16) & 0xff;
344             s->gic.priority1[irq][0] = (value >> 24) & 0xff;
345             gic_update(&s->gic);
346         }
347         break;
348     case 0xd24: /* System Handler Control.  */
349         /* TODO: Real hardware allows you to set/clear the active bits
350            under some circumstances.  We don't implement this.  */
351         s->gic.irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
352         s->gic.irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
353         s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
354         break;
355     case 0xd28: /* Configurable Fault Status.  */
356     case 0xd2c: /* Hard Fault Status.  */
357     case 0xd30: /* Debug Fault Status.  */
358     case 0xd34: /* Mem Manage Address.  */
359     case 0xd38: /* Bus Fault Address.  */
360     case 0xd3c: /* Aux Fault Status.  */
361         goto bad_reg;
362     default:
363     bad_reg:
364         hw_error("NVIC: Bad write offset 0x%x\n", offset);
365     }
366 }
367 
nvic_save(QEMUFile * f,void * opaque)368 static void nvic_save(QEMUFile *f, void *opaque)
369 {
370     nvic_state *s = (nvic_state *)opaque;
371 
372     qemu_put_be32(f, s->systick.control);
373     qemu_put_be32(f, s->systick.reload);
374     qemu_put_be64(f, s->systick.tick);
375     timer_put(f, s->systick.timer);
376 }
377 
nvic_load(QEMUFile * f,void * opaque,int version_id)378 static int nvic_load(QEMUFile *f, void *opaque, int version_id)
379 {
380     nvic_state *s = (nvic_state *)opaque;
381 
382     if (version_id != 1)
383         return -EINVAL;
384 
385     s->systick.control = qemu_get_be32(f);
386     s->systick.reload = qemu_get_be32(f);
387     s->systick.tick = qemu_get_be64(f);
388     timer_get(f, s->systick.timer);
389 
390     return 0;
391 }
392 
armv7m_nvic_init(SysBusDevice * dev)393 static void armv7m_nvic_init(SysBusDevice *dev)
394 {
395     nvic_state *s= FROM_SYSBUSGIC(nvic_state, dev);
396 
397     gic_init(&s->gic);
398     cpu_register_physical_memory(0xe000e000, 0x1000, s->gic.iomemtype);
399     s->systick.timer = timer_new(QEMU_CLOCK_VIRTUAL, SCALE_NS, systick_timer_tick, s);
400     register_savevm(NULL, "armv7m_nvic", -1, 1, nvic_save, nvic_load, s);
401 }
402 
armv7m_nvic_register_devices(void)403 static void armv7m_nvic_register_devices(void)
404 {
405     sysbus_register_dev("armv7m_nvic", sizeof(nvic_state), armv7m_nvic_init);
406 }
407 
408 device_init(armv7m_nvic_register_devices)
409