1 //===-- asan_allocator2.cc ------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 //
12 // Implementation of ASan's memory allocator, 2-nd version.
13 // This variant uses the allocator from sanitizer_common, i.e. the one shared
14 // with ThreadSanitizer and MemorySanitizer.
15 //
16 //===----------------------------------------------------------------------===//
17 #include "asan_allocator.h"
18
19 #include "asan_mapping.h"
20 #include "asan_poisoning.h"
21 #include "asan_report.h"
22 #include "asan_stack.h"
23 #include "asan_thread.h"
24 #include "sanitizer_common/sanitizer_allocator_interface.h"
25 #include "sanitizer_common/sanitizer_flags.h"
26 #include "sanitizer_common/sanitizer_internal_defs.h"
27 #include "sanitizer_common/sanitizer_list.h"
28 #include "sanitizer_common/sanitizer_stackdepot.h"
29 #include "sanitizer_common/sanitizer_quarantine.h"
30 #include "lsan/lsan_common.h"
31
32 namespace __asan {
33
OnMap(uptr p,uptr size) const34 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
35 PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
36 // Statistics.
37 AsanStats &thread_stats = GetCurrentThreadStats();
38 thread_stats.mmaps++;
39 thread_stats.mmaped += size;
40 }
OnUnmap(uptr p,uptr size) const41 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
42 PoisonShadow(p, size, 0);
43 // We are about to unmap a chunk of user memory.
44 // Mark the corresponding shadow memory as not needed.
45 FlushUnneededASanShadowMemory(p, size);
46 // Statistics.
47 AsanStats &thread_stats = GetCurrentThreadStats();
48 thread_stats.munmaps++;
49 thread_stats.munmaped += size;
50 }
51
52 // We can not use THREADLOCAL because it is not supported on some of the
53 // platforms we care about (OSX 10.6, Android).
54 // static THREADLOCAL AllocatorCache cache;
GetAllocatorCache(AsanThreadLocalMallocStorage * ms)55 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
56 CHECK(ms);
57 return &ms->allocator2_cache;
58 }
59
60 static Allocator allocator;
61
62 static const uptr kMaxAllowedMallocSize =
63 FIRST_32_SECOND_64(3UL << 30, 64UL << 30);
64
65 static const uptr kMaxThreadLocalQuarantine =
66 FIRST_32_SECOND_64(1 << 18, 1 << 20);
67
68 // Every chunk of memory allocated by this allocator can be in one of 3 states:
69 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
70 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
71 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
72 enum {
73 CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it.
74 CHUNK_ALLOCATED = 2,
75 CHUNK_QUARANTINE = 3
76 };
77
78 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
79 // We use adaptive redzones: for larger allocation larger redzones are used.
RZLog2Size(u32 rz_log)80 static u32 RZLog2Size(u32 rz_log) {
81 CHECK_LT(rz_log, 8);
82 return 16 << rz_log;
83 }
84
RZSize2Log(u32 rz_size)85 static u32 RZSize2Log(u32 rz_size) {
86 CHECK_GE(rz_size, 16);
87 CHECK_LE(rz_size, 2048);
88 CHECK(IsPowerOfTwo(rz_size));
89 u32 res = Log2(rz_size) - 4;
90 CHECK_EQ(rz_size, RZLog2Size(res));
91 return res;
92 }
93
ComputeRZLog(uptr user_requested_size)94 static uptr ComputeRZLog(uptr user_requested_size) {
95 u32 rz_log =
96 user_requested_size <= 64 - 16 ? 0 :
97 user_requested_size <= 128 - 32 ? 1 :
98 user_requested_size <= 512 - 64 ? 2 :
99 user_requested_size <= 4096 - 128 ? 3 :
100 user_requested_size <= (1 << 14) - 256 ? 4 :
101 user_requested_size <= (1 << 15) - 512 ? 5 :
102 user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
103 return Min(Max(rz_log, RZSize2Log(flags()->redzone)),
104 RZSize2Log(flags()->max_redzone));
105 }
106
107 // The memory chunk allocated from the underlying allocator looks like this:
108 // L L L L L L H H U U U U U U R R
109 // L -- left redzone words (0 or more bytes)
110 // H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
111 // U -- user memory.
112 // R -- right redzone (0 or more bytes)
113 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
114 // memory.
115
116 // If the left redzone is greater than the ChunkHeader size we store a magic
117 // value in the first uptr word of the memory block and store the address of
118 // ChunkBase in the next uptr.
119 // M B L L L L L L L L L H H U U U U U U
120 // | ^
121 // ---------------------|
122 // M -- magic value kAllocBegMagic
123 // B -- address of ChunkHeader pointing to the first 'H'
124 static const uptr kAllocBegMagic = 0xCC6E96B9;
125
126 struct ChunkHeader {
127 // 1-st 8 bytes.
128 u32 chunk_state : 8; // Must be first.
129 u32 alloc_tid : 24;
130
131 u32 free_tid : 24;
132 u32 from_memalign : 1;
133 u32 alloc_type : 2;
134 u32 rz_log : 3;
135 u32 lsan_tag : 2;
136 // 2-nd 8 bytes
137 // This field is used for small sizes. For large sizes it is equal to
138 // SizeClassMap::kMaxSize and the actual size is stored in the
139 // SecondaryAllocator's metadata.
140 u32 user_requested_size;
141 u32 alloc_context_id;
142 };
143
144 struct ChunkBase : ChunkHeader {
145 // Header2, intersects with user memory.
146 u32 free_context_id;
147 };
148
149 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
150 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
151 COMPILER_CHECK(kChunkHeaderSize == 16);
152 COMPILER_CHECK(kChunkHeader2Size <= 16);
153
154 struct AsanChunk: ChunkBase {
Beg__asan::AsanChunk155 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
UsedSize__asan::AsanChunk156 uptr UsedSize(bool locked_version = false) {
157 if (user_requested_size != SizeClassMap::kMaxSize)
158 return user_requested_size;
159 return *reinterpret_cast<uptr *>(
160 allocator.GetMetaData(AllocBeg(locked_version)));
161 }
AllocBeg__asan::AsanChunk162 void *AllocBeg(bool locked_version = false) {
163 if (from_memalign) {
164 if (locked_version)
165 return allocator.GetBlockBeginFastLocked(
166 reinterpret_cast<void *>(this));
167 return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
168 }
169 return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
170 }
171 // If we don't use stack depot, we store the alloc/free stack traces
172 // in the chunk itself.
AllocStackBeg__asan::AsanChunk173 u32 *AllocStackBeg() {
174 return (u32*)(Beg() - RZLog2Size(rz_log));
175 }
AllocStackSize__asan::AsanChunk176 uptr AllocStackSize() {
177 CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
178 return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
179 }
FreeStackBeg__asan::AsanChunk180 u32 *FreeStackBeg() {
181 return (u32*)(Beg() + kChunkHeader2Size);
182 }
FreeStackSize__asan::AsanChunk183 uptr FreeStackSize() {
184 if (user_requested_size < kChunkHeader2Size) return 0;
185 uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
186 return (available - kChunkHeader2Size) / sizeof(u32);
187 }
AddrIsInside__asan::AsanChunk188 bool AddrIsInside(uptr addr, bool locked_version = false) {
189 return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version));
190 }
191 };
192
IsValid()193 bool AsanChunkView::IsValid() {
194 return chunk_ != 0 && chunk_->chunk_state != CHUNK_AVAILABLE;
195 }
Beg()196 uptr AsanChunkView::Beg() { return chunk_->Beg(); }
End()197 uptr AsanChunkView::End() { return Beg() + UsedSize(); }
UsedSize()198 uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
AllocTid()199 uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
FreeTid()200 uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
201
GetStackTraceFromId(u32 id,StackTrace * stack)202 static void GetStackTraceFromId(u32 id, StackTrace *stack) {
203 CHECK(id);
204 uptr size = 0;
205 const uptr *trace = StackDepotGet(id, &size);
206 CHECK(trace);
207 stack->CopyFrom(trace, size);
208 }
209
GetAllocStack(StackTrace * stack)210 void AsanChunkView::GetAllocStack(StackTrace *stack) {
211 GetStackTraceFromId(chunk_->alloc_context_id, stack);
212 }
213
GetFreeStack(StackTrace * stack)214 void AsanChunkView::GetFreeStack(StackTrace *stack) {
215 GetStackTraceFromId(chunk_->free_context_id, stack);
216 }
217
218 struct QuarantineCallback;
219 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
220 typedef AsanQuarantine::Cache QuarantineCache;
221 static AsanQuarantine quarantine(LINKER_INITIALIZED);
222 static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
223 static AllocatorCache fallback_allocator_cache;
224 static SpinMutex fallback_mutex;
225
GetQuarantineCache(AsanThreadLocalMallocStorage * ms)226 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
227 CHECK(ms);
228 CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
229 return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
230 }
231
232 struct QuarantineCallback {
QuarantineCallback__asan::QuarantineCallback233 explicit QuarantineCallback(AllocatorCache *cache)
234 : cache_(cache) {
235 }
236
Recycle__asan::QuarantineCallback237 void Recycle(AsanChunk *m) {
238 CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
239 atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed);
240 CHECK_NE(m->alloc_tid, kInvalidTid);
241 CHECK_NE(m->free_tid, kInvalidTid);
242 PoisonShadow(m->Beg(),
243 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
244 kAsanHeapLeftRedzoneMagic);
245 void *p = reinterpret_cast<void *>(m->AllocBeg());
246 if (p != m) {
247 uptr *alloc_magic = reinterpret_cast<uptr *>(p);
248 CHECK_EQ(alloc_magic[0], kAllocBegMagic);
249 // Clear the magic value, as allocator internals may overwrite the
250 // contents of deallocated chunk, confusing GetAsanChunk lookup.
251 alloc_magic[0] = 0;
252 CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
253 }
254
255 // Statistics.
256 AsanStats &thread_stats = GetCurrentThreadStats();
257 thread_stats.real_frees++;
258 thread_stats.really_freed += m->UsedSize();
259
260 allocator.Deallocate(cache_, p);
261 }
262
Allocate__asan::QuarantineCallback263 void *Allocate(uptr size) {
264 return allocator.Allocate(cache_, size, 1, false);
265 }
266
Deallocate__asan::QuarantineCallback267 void Deallocate(void *p) {
268 allocator.Deallocate(cache_, p);
269 }
270
271 AllocatorCache *cache_;
272 };
273
InitializeAllocator()274 void InitializeAllocator() {
275 allocator.Init();
276 quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
277 }
278
ReInitializeAllocator()279 void ReInitializeAllocator() {
280 quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
281 }
282
Allocate(uptr size,uptr alignment,StackTrace * stack,AllocType alloc_type,bool can_fill)283 static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
284 AllocType alloc_type, bool can_fill) {
285 if (UNLIKELY(!asan_inited))
286 AsanInitFromRtl();
287 Flags &fl = *flags();
288 CHECK(stack);
289 const uptr min_alignment = SHADOW_GRANULARITY;
290 if (alignment < min_alignment)
291 alignment = min_alignment;
292 if (size == 0) {
293 // We'd be happy to avoid allocating memory for zero-size requests, but
294 // some programs/tests depend on this behavior and assume that malloc would
295 // not return NULL even for zero-size allocations. Moreover, it looks like
296 // operator new should never return NULL, and results of consecutive "new"
297 // calls must be different even if the allocated size is zero.
298 size = 1;
299 }
300 CHECK(IsPowerOfTwo(alignment));
301 uptr rz_log = ComputeRZLog(size);
302 uptr rz_size = RZLog2Size(rz_log);
303 uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
304 uptr needed_size = rounded_size + rz_size;
305 if (alignment > min_alignment)
306 needed_size += alignment;
307 bool using_primary_allocator = true;
308 // If we are allocating from the secondary allocator, there will be no
309 // automatic right redzone, so add the right redzone manually.
310 if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
311 needed_size += rz_size;
312 using_primary_allocator = false;
313 }
314 CHECK(IsAligned(needed_size, min_alignment));
315 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
316 Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
317 (void*)size);
318 return AllocatorReturnNull();
319 }
320
321 AsanThread *t = GetCurrentThread();
322 void *allocated;
323 if (t) {
324 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
325 allocated = allocator.Allocate(cache, needed_size, 8, false);
326 } else {
327 SpinMutexLock l(&fallback_mutex);
328 AllocatorCache *cache = &fallback_allocator_cache;
329 allocated = allocator.Allocate(cache, needed_size, 8, false);
330 }
331
332 if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && flags()->poison_heap) {
333 // Heap poisoning is enabled, but the allocator provides an unpoisoned
334 // chunk. This is possible if flags()->poison_heap was disabled for some
335 // time, for example, due to flags()->start_disabled.
336 // Anyway, poison the block before using it for anything else.
337 uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
338 PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
339 }
340
341 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
342 uptr alloc_end = alloc_beg + needed_size;
343 uptr beg_plus_redzone = alloc_beg + rz_size;
344 uptr user_beg = beg_plus_redzone;
345 if (!IsAligned(user_beg, alignment))
346 user_beg = RoundUpTo(user_beg, alignment);
347 uptr user_end = user_beg + size;
348 CHECK_LE(user_end, alloc_end);
349 uptr chunk_beg = user_beg - kChunkHeaderSize;
350 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
351 m->alloc_type = alloc_type;
352 m->rz_log = rz_log;
353 u32 alloc_tid = t ? t->tid() : 0;
354 m->alloc_tid = alloc_tid;
355 CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield?
356 m->free_tid = kInvalidTid;
357 m->from_memalign = user_beg != beg_plus_redzone;
358 if (alloc_beg != chunk_beg) {
359 CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
360 reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
361 reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
362 }
363 if (using_primary_allocator) {
364 CHECK(size);
365 m->user_requested_size = size;
366 CHECK(allocator.FromPrimary(allocated));
367 } else {
368 CHECK(!allocator.FromPrimary(allocated));
369 m->user_requested_size = SizeClassMap::kMaxSize;
370 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
371 meta[0] = size;
372 meta[1] = chunk_beg;
373 }
374
375 m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
376
377 uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
378 // Unpoison the bulk of the memory region.
379 if (size_rounded_down_to_granularity)
380 PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
381 // Deal with the end of the region if size is not aligned to granularity.
382 if (size != size_rounded_down_to_granularity && fl.poison_heap) {
383 u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
384 *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
385 }
386
387 AsanStats &thread_stats = GetCurrentThreadStats();
388 thread_stats.mallocs++;
389 thread_stats.malloced += size;
390 thread_stats.malloced_redzones += needed_size - size;
391 uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
392 thread_stats.malloced_by_size[class_id]++;
393 if (needed_size > SizeClassMap::kMaxSize)
394 thread_stats.malloc_large++;
395
396 void *res = reinterpret_cast<void *>(user_beg);
397 if (can_fill && fl.max_malloc_fill_size) {
398 uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
399 REAL(memset)(res, fl.malloc_fill_byte, fill_size);
400 }
401 #if CAN_SANITIZE_LEAKS
402 m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
403 : __lsan::kDirectlyLeaked;
404 #endif
405 // Must be the last mutation of metadata in this function.
406 atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
407 ASAN_MALLOC_HOOK(res, size);
408 return res;
409 }
410
ReportInvalidFree(void * ptr,u8 chunk_state,StackTrace * stack)411 static void ReportInvalidFree(void *ptr, u8 chunk_state, StackTrace *stack) {
412 if (chunk_state == CHUNK_QUARANTINE)
413 ReportDoubleFree((uptr)ptr, stack);
414 else
415 ReportFreeNotMalloced((uptr)ptr, stack);
416 }
417
AtomicallySetQuarantineFlag(AsanChunk * m,void * ptr,StackTrace * stack)418 static void AtomicallySetQuarantineFlag(AsanChunk *m,
419 void *ptr, StackTrace *stack) {
420 u8 old_chunk_state = CHUNK_ALLOCATED;
421 // Flip the chunk_state atomically to avoid race on double-free.
422 if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
423 CHUNK_QUARANTINE, memory_order_acquire))
424 ReportInvalidFree(ptr, old_chunk_state, stack);
425 CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
426 }
427
428 // Expects the chunk to already be marked as quarantined by using
429 // AtomicallySetQuarantineFlag.
QuarantineChunk(AsanChunk * m,void * ptr,StackTrace * stack,AllocType alloc_type)430 static void QuarantineChunk(AsanChunk *m, void *ptr,
431 StackTrace *stack, AllocType alloc_type) {
432 CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
433
434 if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
435 ReportAllocTypeMismatch((uptr)ptr, stack,
436 (AllocType)m->alloc_type, (AllocType)alloc_type);
437
438 CHECK_GE(m->alloc_tid, 0);
439 if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area.
440 CHECK_EQ(m->free_tid, kInvalidTid);
441 AsanThread *t = GetCurrentThread();
442 m->free_tid = t ? t->tid() : 0;
443 m->free_context_id = StackDepotPut(stack->trace, stack->size);
444 // Poison the region.
445 PoisonShadow(m->Beg(),
446 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
447 kAsanHeapFreeMagic);
448
449 AsanStats &thread_stats = GetCurrentThreadStats();
450 thread_stats.frees++;
451 thread_stats.freed += m->UsedSize();
452
453 // Push into quarantine.
454 if (t) {
455 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
456 AllocatorCache *ac = GetAllocatorCache(ms);
457 quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
458 m, m->UsedSize());
459 } else {
460 SpinMutexLock l(&fallback_mutex);
461 AllocatorCache *ac = &fallback_allocator_cache;
462 quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
463 m, m->UsedSize());
464 }
465 }
466
Deallocate(void * ptr,StackTrace * stack,AllocType alloc_type)467 static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
468 uptr p = reinterpret_cast<uptr>(ptr);
469 if (p == 0) return;
470
471 uptr chunk_beg = p - kChunkHeaderSize;
472 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
473 ASAN_FREE_HOOK(ptr);
474 // Must mark the chunk as quarantined before any changes to its metadata.
475 AtomicallySetQuarantineFlag(m, ptr, stack);
476 QuarantineChunk(m, ptr, stack, alloc_type);
477 }
478
Reallocate(void * old_ptr,uptr new_size,StackTrace * stack)479 static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
480 CHECK(old_ptr && new_size);
481 uptr p = reinterpret_cast<uptr>(old_ptr);
482 uptr chunk_beg = p - kChunkHeaderSize;
483 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
484
485 AsanStats &thread_stats = GetCurrentThreadStats();
486 thread_stats.reallocs++;
487 thread_stats.realloced += new_size;
488
489 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
490 if (new_ptr) {
491 u8 chunk_state = m->chunk_state;
492 if (chunk_state != CHUNK_ALLOCATED)
493 ReportInvalidFree(old_ptr, chunk_state, stack);
494 CHECK_NE(REAL(memcpy), (void*)0);
495 uptr memcpy_size = Min(new_size, m->UsedSize());
496 // If realloc() races with free(), we may start copying freed memory.
497 // However, we will report racy double-free later anyway.
498 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
499 Deallocate(old_ptr, stack, FROM_MALLOC);
500 }
501 return new_ptr;
502 }
503
504 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
GetAsanChunk(void * alloc_beg)505 static AsanChunk *GetAsanChunk(void *alloc_beg) {
506 if (!alloc_beg) return 0;
507 if (!allocator.FromPrimary(alloc_beg)) {
508 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
509 AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
510 return m;
511 }
512 uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
513 if (alloc_magic[0] == kAllocBegMagic)
514 return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
515 return reinterpret_cast<AsanChunk *>(alloc_beg);
516 }
517
GetAsanChunkByAddr(uptr p)518 static AsanChunk *GetAsanChunkByAddr(uptr p) {
519 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
520 return GetAsanChunk(alloc_beg);
521 }
522
523 // Allocator must be locked when this function is called.
GetAsanChunkByAddrFastLocked(uptr p)524 static AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
525 void *alloc_beg =
526 allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
527 return GetAsanChunk(alloc_beg);
528 }
529
AllocationSize(uptr p)530 static uptr AllocationSize(uptr p) {
531 AsanChunk *m = GetAsanChunkByAddr(p);
532 if (!m) return 0;
533 if (m->chunk_state != CHUNK_ALLOCATED) return 0;
534 if (m->Beg() != p) return 0;
535 return m->UsedSize();
536 }
537
538 // We have an address between two chunks, and we want to report just one.
ChooseChunk(uptr addr,AsanChunk * left_chunk,AsanChunk * right_chunk)539 AsanChunk *ChooseChunk(uptr addr,
540 AsanChunk *left_chunk, AsanChunk *right_chunk) {
541 // Prefer an allocated chunk over freed chunk and freed chunk
542 // over available chunk.
543 if (left_chunk->chunk_state != right_chunk->chunk_state) {
544 if (left_chunk->chunk_state == CHUNK_ALLOCATED)
545 return left_chunk;
546 if (right_chunk->chunk_state == CHUNK_ALLOCATED)
547 return right_chunk;
548 if (left_chunk->chunk_state == CHUNK_QUARANTINE)
549 return left_chunk;
550 if (right_chunk->chunk_state == CHUNK_QUARANTINE)
551 return right_chunk;
552 }
553 // Same chunk_state: choose based on offset.
554 sptr l_offset = 0, r_offset = 0;
555 CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
556 CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
557 if (l_offset < r_offset)
558 return left_chunk;
559 return right_chunk;
560 }
561
FindHeapChunkByAddress(uptr addr)562 AsanChunkView FindHeapChunkByAddress(uptr addr) {
563 AsanChunk *m1 = GetAsanChunkByAddr(addr);
564 if (!m1) return AsanChunkView(m1);
565 sptr offset = 0;
566 if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
567 // The address is in the chunk's left redzone, so maybe it is actually
568 // a right buffer overflow from the other chunk to the left.
569 // Search a bit to the left to see if there is another chunk.
570 AsanChunk *m2 = 0;
571 for (uptr l = 1; l < GetPageSizeCached(); l++) {
572 m2 = GetAsanChunkByAddr(addr - l);
573 if (m2 == m1) continue; // Still the same chunk.
574 break;
575 }
576 if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
577 m1 = ChooseChunk(addr, m2, m1);
578 }
579 return AsanChunkView(m1);
580 }
581
CommitBack()582 void AsanThreadLocalMallocStorage::CommitBack() {
583 AllocatorCache *ac = GetAllocatorCache(this);
584 quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
585 allocator.SwallowCache(GetAllocatorCache(this));
586 }
587
PrintInternalAllocatorStats()588 void PrintInternalAllocatorStats() {
589 allocator.PrintStats();
590 }
591
asan_memalign(uptr alignment,uptr size,StackTrace * stack,AllocType alloc_type)592 void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
593 AllocType alloc_type) {
594 return Allocate(size, alignment, stack, alloc_type, true);
595 }
596
asan_free(void * ptr,StackTrace * stack,AllocType alloc_type)597 void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
598 Deallocate(ptr, stack, alloc_type);
599 }
600
asan_malloc(uptr size,StackTrace * stack)601 void *asan_malloc(uptr size, StackTrace *stack) {
602 return Allocate(size, 8, stack, FROM_MALLOC, true);
603 }
604
asan_calloc(uptr nmemb,uptr size,StackTrace * stack)605 void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
606 if (CallocShouldReturnNullDueToOverflow(size, nmemb))
607 return AllocatorReturnNull();
608 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
609 // If the memory comes from the secondary allocator no need to clear it
610 // as it comes directly from mmap.
611 if (ptr && allocator.FromPrimary(ptr))
612 REAL(memset)(ptr, 0, nmemb * size);
613 return ptr;
614 }
615
asan_realloc(void * p,uptr size,StackTrace * stack)616 void *asan_realloc(void *p, uptr size, StackTrace *stack) {
617 if (p == 0)
618 return Allocate(size, 8, stack, FROM_MALLOC, true);
619 if (size == 0) {
620 Deallocate(p, stack, FROM_MALLOC);
621 return 0;
622 }
623 return Reallocate(p, size, stack);
624 }
625
asan_valloc(uptr size,StackTrace * stack)626 void *asan_valloc(uptr size, StackTrace *stack) {
627 return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true);
628 }
629
asan_pvalloc(uptr size,StackTrace * stack)630 void *asan_pvalloc(uptr size, StackTrace *stack) {
631 uptr PageSize = GetPageSizeCached();
632 size = RoundUpTo(size, PageSize);
633 if (size == 0) {
634 // pvalloc(0) should allocate one page.
635 size = PageSize;
636 }
637 return Allocate(size, PageSize, stack, FROM_MALLOC, true);
638 }
639
asan_posix_memalign(void ** memptr,uptr alignment,uptr size,StackTrace * stack)640 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
641 StackTrace *stack) {
642 void *ptr = Allocate(size, alignment, stack, FROM_MALLOC, true);
643 CHECK(IsAligned((uptr)ptr, alignment));
644 *memptr = ptr;
645 return 0;
646 }
647
asan_malloc_usable_size(void * ptr,uptr pc,uptr bp)648 uptr asan_malloc_usable_size(void *ptr, uptr pc, uptr bp) {
649 if (ptr == 0) return 0;
650 uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
651 if (flags()->check_malloc_usable_size && (usable_size == 0)) {
652 GET_STACK_TRACE_FATAL(pc, bp);
653 ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
654 }
655 return usable_size;
656 }
657
asan_mz_size(const void * ptr)658 uptr asan_mz_size(const void *ptr) {
659 return AllocationSize(reinterpret_cast<uptr>(ptr));
660 }
661
asan_mz_force_lock()662 void asan_mz_force_lock() {
663 allocator.ForceLock();
664 fallback_mutex.Lock();
665 }
666
asan_mz_force_unlock()667 void asan_mz_force_unlock() {
668 fallback_mutex.Unlock();
669 allocator.ForceUnlock();
670 }
671
672 } // namespace __asan
673
674 // --- Implementation of LSan-specific functions --- {{{1
675 namespace __lsan {
LockAllocator()676 void LockAllocator() {
677 __asan::allocator.ForceLock();
678 }
679
UnlockAllocator()680 void UnlockAllocator() {
681 __asan::allocator.ForceUnlock();
682 }
683
GetAllocatorGlobalRange(uptr * begin,uptr * end)684 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
685 *begin = (uptr)&__asan::allocator;
686 *end = *begin + sizeof(__asan::allocator);
687 }
688
PointsIntoChunk(void * p)689 uptr PointsIntoChunk(void* p) {
690 uptr addr = reinterpret_cast<uptr>(p);
691 __asan::AsanChunk *m = __asan::GetAsanChunkByAddrFastLocked(addr);
692 if (!m) return 0;
693 uptr chunk = m->Beg();
694 if (m->chunk_state != __asan::CHUNK_ALLOCATED)
695 return 0;
696 if (m->AddrIsInside(addr, /*locked_version=*/true))
697 return chunk;
698 if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true),
699 addr))
700 return chunk;
701 return 0;
702 }
703
GetUserBegin(uptr chunk)704 uptr GetUserBegin(uptr chunk) {
705 __asan::AsanChunk *m =
706 __asan::GetAsanChunkByAddrFastLocked(chunk);
707 CHECK(m);
708 return m->Beg();
709 }
710
LsanMetadata(uptr chunk)711 LsanMetadata::LsanMetadata(uptr chunk) {
712 metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
713 }
714
allocated() const715 bool LsanMetadata::allocated() const {
716 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
717 return m->chunk_state == __asan::CHUNK_ALLOCATED;
718 }
719
tag() const720 ChunkTag LsanMetadata::tag() const {
721 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
722 return static_cast<ChunkTag>(m->lsan_tag);
723 }
724
set_tag(ChunkTag value)725 void LsanMetadata::set_tag(ChunkTag value) {
726 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
727 m->lsan_tag = value;
728 }
729
requested_size() const730 uptr LsanMetadata::requested_size() const {
731 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
732 return m->UsedSize(/*locked_version=*/true);
733 }
734
stack_trace_id() const735 u32 LsanMetadata::stack_trace_id() const {
736 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
737 return m->alloc_context_id;
738 }
739
ForEachChunk(ForEachChunkCallback callback,void * arg)740 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
741 __asan::allocator.ForEachChunk(callback, arg);
742 }
743
IgnoreObjectLocked(const void * p)744 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
745 uptr addr = reinterpret_cast<uptr>(p);
746 __asan::AsanChunk *m = __asan::GetAsanChunkByAddr(addr);
747 if (!m) return kIgnoreObjectInvalid;
748 if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
749 if (m->lsan_tag == kIgnored)
750 return kIgnoreObjectAlreadyIgnored;
751 m->lsan_tag = __lsan::kIgnored;
752 return kIgnoreObjectSuccess;
753 } else {
754 return kIgnoreObjectInvalid;
755 }
756 }
757 } // namespace __lsan
758
759 // ---------------------- Interface ---------------- {{{1
760 using namespace __asan; // NOLINT
761
762 // ASan allocator doesn't reserve extra bytes, so normally we would
763 // just return "size". We don't want to expose our redzone sizes, etc here.
__sanitizer_get_estimated_allocated_size(uptr size)764 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
765 return size;
766 }
__asan_get_estimated_allocated_size(uptr size)767 uptr __asan_get_estimated_allocated_size(uptr size) {
768 return __sanitizer_get_estimated_allocated_size(size);
769 }
770
__sanitizer_get_ownership(const void * p)771 int __sanitizer_get_ownership(const void *p) {
772 uptr ptr = reinterpret_cast<uptr>(p);
773 return (AllocationSize(ptr) > 0);
774 }
__asan_get_ownership(const void * p)775 int __asan_get_ownership(const void *p) {
776 return __sanitizer_get_ownership(p);
777 }
778
__sanitizer_get_allocated_size(const void * p)779 uptr __sanitizer_get_allocated_size(const void *p) {
780 if (p == 0) return 0;
781 uptr ptr = reinterpret_cast<uptr>(p);
782 uptr allocated_size = AllocationSize(ptr);
783 // Die if p is not malloced or if it is already freed.
784 if (allocated_size == 0) {
785 GET_STACK_TRACE_FATAL_HERE;
786 ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
787 }
788 return allocated_size;
789 }
__asan_get_allocated_size(const void * p)790 uptr __asan_get_allocated_size(const void *p) {
791 return __sanitizer_get_allocated_size(p);
792 }
793
794 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
795 // Provide default (no-op) implementation of malloc hooks.
796 extern "C" {
797 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__asan_malloc_hook(void * ptr,uptr size)798 void __asan_malloc_hook(void *ptr, uptr size) {
799 (void)ptr;
800 (void)size;
801 }
802 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__asan_free_hook(void * ptr)803 void __asan_free_hook(void *ptr) {
804 (void)ptr;
805 }
806 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__sanitizer_malloc_hook(void * ptr,uptr size)807 void __sanitizer_malloc_hook(void *ptr, uptr size) {
808 (void)ptr;
809 (void)size;
810 }
811 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__sanitizer_free_hook(void * ptr)812 void __sanitizer_free_hook(void *ptr) {
813 (void)ptr;
814 }
815 } // extern "C"
816 #endif
817