• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- asan_allocator2.cc ------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 //
12 // Implementation of ASan's memory allocator, 2-nd version.
13 // This variant uses the allocator from sanitizer_common, i.e. the one shared
14 // with ThreadSanitizer and MemorySanitizer.
15 //
16 //===----------------------------------------------------------------------===//
17 #include "asan_allocator.h"
18 
19 #include "asan_mapping.h"
20 #include "asan_poisoning.h"
21 #include "asan_report.h"
22 #include "asan_stack.h"
23 #include "asan_thread.h"
24 #include "sanitizer_common/sanitizer_allocator_interface.h"
25 #include "sanitizer_common/sanitizer_flags.h"
26 #include "sanitizer_common/sanitizer_internal_defs.h"
27 #include "sanitizer_common/sanitizer_list.h"
28 #include "sanitizer_common/sanitizer_stackdepot.h"
29 #include "sanitizer_common/sanitizer_quarantine.h"
30 #include "lsan/lsan_common.h"
31 
32 namespace __asan {
33 
OnMap(uptr p,uptr size) const34 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
35   PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
36   // Statistics.
37   AsanStats &thread_stats = GetCurrentThreadStats();
38   thread_stats.mmaps++;
39   thread_stats.mmaped += size;
40 }
OnUnmap(uptr p,uptr size) const41 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
42   PoisonShadow(p, size, 0);
43   // We are about to unmap a chunk of user memory.
44   // Mark the corresponding shadow memory as not needed.
45   FlushUnneededASanShadowMemory(p, size);
46   // Statistics.
47   AsanStats &thread_stats = GetCurrentThreadStats();
48   thread_stats.munmaps++;
49   thread_stats.munmaped += size;
50 }
51 
52 // We can not use THREADLOCAL because it is not supported on some of the
53 // platforms we care about (OSX 10.6, Android).
54 // static THREADLOCAL AllocatorCache cache;
GetAllocatorCache(AsanThreadLocalMallocStorage * ms)55 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
56   CHECK(ms);
57   return &ms->allocator2_cache;
58 }
59 
60 static Allocator allocator;
61 
62 static const uptr kMaxAllowedMallocSize =
63   FIRST_32_SECOND_64(3UL << 30, 64UL << 30);
64 
65 static const uptr kMaxThreadLocalQuarantine =
66   FIRST_32_SECOND_64(1 << 18, 1 << 20);
67 
68 // Every chunk of memory allocated by this allocator can be in one of 3 states:
69 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
70 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
71 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
72 enum {
73   CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
74   CHUNK_ALLOCATED  = 2,
75   CHUNK_QUARANTINE = 3
76 };
77 
78 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
79 // We use adaptive redzones: for larger allocation larger redzones are used.
RZLog2Size(u32 rz_log)80 static u32 RZLog2Size(u32 rz_log) {
81   CHECK_LT(rz_log, 8);
82   return 16 << rz_log;
83 }
84 
RZSize2Log(u32 rz_size)85 static u32 RZSize2Log(u32 rz_size) {
86   CHECK_GE(rz_size, 16);
87   CHECK_LE(rz_size, 2048);
88   CHECK(IsPowerOfTwo(rz_size));
89   u32 res = Log2(rz_size) - 4;
90   CHECK_EQ(rz_size, RZLog2Size(res));
91   return res;
92 }
93 
ComputeRZLog(uptr user_requested_size)94 static uptr ComputeRZLog(uptr user_requested_size) {
95   u32 rz_log =
96     user_requested_size <= 64        - 16   ? 0 :
97     user_requested_size <= 128       - 32   ? 1 :
98     user_requested_size <= 512       - 64   ? 2 :
99     user_requested_size <= 4096      - 128  ? 3 :
100     user_requested_size <= (1 << 14) - 256  ? 4 :
101     user_requested_size <= (1 << 15) - 512  ? 5 :
102     user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
103   return Min(Max(rz_log, RZSize2Log(flags()->redzone)),
104              RZSize2Log(flags()->max_redzone));
105 }
106 
107 // The memory chunk allocated from the underlying allocator looks like this:
108 // L L L L L L H H U U U U U U R R
109 //   L -- left redzone words (0 or more bytes)
110 //   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
111 //   U -- user memory.
112 //   R -- right redzone (0 or more bytes)
113 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
114 // memory.
115 
116 // If the left redzone is greater than the ChunkHeader size we store a magic
117 // value in the first uptr word of the memory block and store the address of
118 // ChunkBase in the next uptr.
119 // M B L L L L L L L L L  H H U U U U U U
120 //   |                    ^
121 //   ---------------------|
122 //   M -- magic value kAllocBegMagic
123 //   B -- address of ChunkHeader pointing to the first 'H'
124 static const uptr kAllocBegMagic = 0xCC6E96B9;
125 
126 struct ChunkHeader {
127   // 1-st 8 bytes.
128   u32 chunk_state       : 8;  // Must be first.
129   u32 alloc_tid         : 24;
130 
131   u32 free_tid          : 24;
132   u32 from_memalign     : 1;
133   u32 alloc_type        : 2;
134   u32 rz_log            : 3;
135   u32 lsan_tag          : 2;
136   // 2-nd 8 bytes
137   // This field is used for small sizes. For large sizes it is equal to
138   // SizeClassMap::kMaxSize and the actual size is stored in the
139   // SecondaryAllocator's metadata.
140   u32 user_requested_size;
141   u32 alloc_context_id;
142 };
143 
144 struct ChunkBase : ChunkHeader {
145   // Header2, intersects with user memory.
146   u32 free_context_id;
147 };
148 
149 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
150 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
151 COMPILER_CHECK(kChunkHeaderSize == 16);
152 COMPILER_CHECK(kChunkHeader2Size <= 16);
153 
154 struct AsanChunk: ChunkBase {
Beg__asan::AsanChunk155   uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
UsedSize__asan::AsanChunk156   uptr UsedSize(bool locked_version = false) {
157     if (user_requested_size != SizeClassMap::kMaxSize)
158       return user_requested_size;
159     return *reinterpret_cast<uptr *>(
160                 allocator.GetMetaData(AllocBeg(locked_version)));
161   }
AllocBeg__asan::AsanChunk162   void *AllocBeg(bool locked_version = false) {
163     if (from_memalign) {
164       if (locked_version)
165         return allocator.GetBlockBeginFastLocked(
166             reinterpret_cast<void *>(this));
167       return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
168     }
169     return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
170   }
171   // If we don't use stack depot, we store the alloc/free stack traces
172   // in the chunk itself.
AllocStackBeg__asan::AsanChunk173   u32 *AllocStackBeg() {
174     return (u32*)(Beg() - RZLog2Size(rz_log));
175   }
AllocStackSize__asan::AsanChunk176   uptr AllocStackSize() {
177     CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
178     return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
179   }
FreeStackBeg__asan::AsanChunk180   u32 *FreeStackBeg() {
181     return (u32*)(Beg() + kChunkHeader2Size);
182   }
FreeStackSize__asan::AsanChunk183   uptr FreeStackSize() {
184     if (user_requested_size < kChunkHeader2Size) return 0;
185     uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
186     return (available - kChunkHeader2Size) / sizeof(u32);
187   }
AddrIsInside__asan::AsanChunk188   bool AddrIsInside(uptr addr, bool locked_version = false) {
189     return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version));
190   }
191 };
192 
IsValid()193 bool AsanChunkView::IsValid() {
194   return chunk_ != 0 && chunk_->chunk_state != CHUNK_AVAILABLE;
195 }
Beg()196 uptr AsanChunkView::Beg() { return chunk_->Beg(); }
End()197 uptr AsanChunkView::End() { return Beg() + UsedSize(); }
UsedSize()198 uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
AllocTid()199 uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
FreeTid()200 uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
201 
GetStackTraceFromId(u32 id,StackTrace * stack)202 static void GetStackTraceFromId(u32 id, StackTrace *stack) {
203   CHECK(id);
204   uptr size = 0;
205   const uptr *trace = StackDepotGet(id, &size);
206   CHECK(trace);
207   stack->CopyFrom(trace, size);
208 }
209 
GetAllocStack(StackTrace * stack)210 void AsanChunkView::GetAllocStack(StackTrace *stack) {
211   GetStackTraceFromId(chunk_->alloc_context_id, stack);
212 }
213 
GetFreeStack(StackTrace * stack)214 void AsanChunkView::GetFreeStack(StackTrace *stack) {
215   GetStackTraceFromId(chunk_->free_context_id, stack);
216 }
217 
218 struct QuarantineCallback;
219 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
220 typedef AsanQuarantine::Cache QuarantineCache;
221 static AsanQuarantine quarantine(LINKER_INITIALIZED);
222 static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
223 static AllocatorCache fallback_allocator_cache;
224 static SpinMutex fallback_mutex;
225 
GetQuarantineCache(AsanThreadLocalMallocStorage * ms)226 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
227   CHECK(ms);
228   CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
229   return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
230 }
231 
232 struct QuarantineCallback {
QuarantineCallback__asan::QuarantineCallback233   explicit QuarantineCallback(AllocatorCache *cache)
234       : cache_(cache) {
235   }
236 
Recycle__asan::QuarantineCallback237   void Recycle(AsanChunk *m) {
238     CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
239     atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed);
240     CHECK_NE(m->alloc_tid, kInvalidTid);
241     CHECK_NE(m->free_tid, kInvalidTid);
242     PoisonShadow(m->Beg(),
243                  RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
244                  kAsanHeapLeftRedzoneMagic);
245     void *p = reinterpret_cast<void *>(m->AllocBeg());
246     if (p != m) {
247       uptr *alloc_magic = reinterpret_cast<uptr *>(p);
248       CHECK_EQ(alloc_magic[0], kAllocBegMagic);
249       // Clear the magic value, as allocator internals may overwrite the
250       // contents of deallocated chunk, confusing GetAsanChunk lookup.
251       alloc_magic[0] = 0;
252       CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
253     }
254 
255     // Statistics.
256     AsanStats &thread_stats = GetCurrentThreadStats();
257     thread_stats.real_frees++;
258     thread_stats.really_freed += m->UsedSize();
259 
260     allocator.Deallocate(cache_, p);
261   }
262 
Allocate__asan::QuarantineCallback263   void *Allocate(uptr size) {
264     return allocator.Allocate(cache_, size, 1, false);
265   }
266 
Deallocate__asan::QuarantineCallback267   void Deallocate(void *p) {
268     allocator.Deallocate(cache_, p);
269   }
270 
271   AllocatorCache *cache_;
272 };
273 
InitializeAllocator()274 void InitializeAllocator() {
275   allocator.Init();
276   quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
277 }
278 
ReInitializeAllocator()279 void ReInitializeAllocator() {
280   quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
281 }
282 
Allocate(uptr size,uptr alignment,StackTrace * stack,AllocType alloc_type,bool can_fill)283 static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
284                       AllocType alloc_type, bool can_fill) {
285   if (UNLIKELY(!asan_inited))
286     AsanInitFromRtl();
287   Flags &fl = *flags();
288   CHECK(stack);
289   const uptr min_alignment = SHADOW_GRANULARITY;
290   if (alignment < min_alignment)
291     alignment = min_alignment;
292   if (size == 0) {
293     // We'd be happy to avoid allocating memory for zero-size requests, but
294     // some programs/tests depend on this behavior and assume that malloc would
295     // not return NULL even for zero-size allocations. Moreover, it looks like
296     // operator new should never return NULL, and results of consecutive "new"
297     // calls must be different even if the allocated size is zero.
298     size = 1;
299   }
300   CHECK(IsPowerOfTwo(alignment));
301   uptr rz_log = ComputeRZLog(size);
302   uptr rz_size = RZLog2Size(rz_log);
303   uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
304   uptr needed_size = rounded_size + rz_size;
305   if (alignment > min_alignment)
306     needed_size += alignment;
307   bool using_primary_allocator = true;
308   // If we are allocating from the secondary allocator, there will be no
309   // automatic right redzone, so add the right redzone manually.
310   if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
311     needed_size += rz_size;
312     using_primary_allocator = false;
313   }
314   CHECK(IsAligned(needed_size, min_alignment));
315   if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
316     Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
317            (void*)size);
318     return AllocatorReturnNull();
319   }
320 
321   AsanThread *t = GetCurrentThread();
322   void *allocated;
323   if (t) {
324     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
325     allocated = allocator.Allocate(cache, needed_size, 8, false);
326   } else {
327     SpinMutexLock l(&fallback_mutex);
328     AllocatorCache *cache = &fallback_allocator_cache;
329     allocated = allocator.Allocate(cache, needed_size, 8, false);
330   }
331 
332   if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && flags()->poison_heap) {
333     // Heap poisoning is enabled, but the allocator provides an unpoisoned
334     // chunk. This is possible if flags()->poison_heap was disabled for some
335     // time, for example, due to flags()->start_disabled.
336     // Anyway, poison the block before using it for anything else.
337     uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
338     PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
339   }
340 
341   uptr alloc_beg = reinterpret_cast<uptr>(allocated);
342   uptr alloc_end = alloc_beg + needed_size;
343   uptr beg_plus_redzone = alloc_beg + rz_size;
344   uptr user_beg = beg_plus_redzone;
345   if (!IsAligned(user_beg, alignment))
346     user_beg = RoundUpTo(user_beg, alignment);
347   uptr user_end = user_beg + size;
348   CHECK_LE(user_end, alloc_end);
349   uptr chunk_beg = user_beg - kChunkHeaderSize;
350   AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
351   m->alloc_type = alloc_type;
352   m->rz_log = rz_log;
353   u32 alloc_tid = t ? t->tid() : 0;
354   m->alloc_tid = alloc_tid;
355   CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
356   m->free_tid = kInvalidTid;
357   m->from_memalign = user_beg != beg_plus_redzone;
358   if (alloc_beg != chunk_beg) {
359     CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
360     reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
361     reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
362   }
363   if (using_primary_allocator) {
364     CHECK(size);
365     m->user_requested_size = size;
366     CHECK(allocator.FromPrimary(allocated));
367   } else {
368     CHECK(!allocator.FromPrimary(allocated));
369     m->user_requested_size = SizeClassMap::kMaxSize;
370     uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
371     meta[0] = size;
372     meta[1] = chunk_beg;
373   }
374 
375   m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
376 
377   uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
378   // Unpoison the bulk of the memory region.
379   if (size_rounded_down_to_granularity)
380     PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
381   // Deal with the end of the region if size is not aligned to granularity.
382   if (size != size_rounded_down_to_granularity && fl.poison_heap) {
383     u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
384     *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
385   }
386 
387   AsanStats &thread_stats = GetCurrentThreadStats();
388   thread_stats.mallocs++;
389   thread_stats.malloced += size;
390   thread_stats.malloced_redzones += needed_size - size;
391   uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
392   thread_stats.malloced_by_size[class_id]++;
393   if (needed_size > SizeClassMap::kMaxSize)
394     thread_stats.malloc_large++;
395 
396   void *res = reinterpret_cast<void *>(user_beg);
397   if (can_fill && fl.max_malloc_fill_size) {
398     uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
399     REAL(memset)(res, fl.malloc_fill_byte, fill_size);
400   }
401 #if CAN_SANITIZE_LEAKS
402   m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
403                                                : __lsan::kDirectlyLeaked;
404 #endif
405   // Must be the last mutation of metadata in this function.
406   atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
407   ASAN_MALLOC_HOOK(res, size);
408   return res;
409 }
410 
ReportInvalidFree(void * ptr,u8 chunk_state,StackTrace * stack)411 static void ReportInvalidFree(void *ptr, u8 chunk_state, StackTrace *stack) {
412   if (chunk_state == CHUNK_QUARANTINE)
413     ReportDoubleFree((uptr)ptr, stack);
414   else
415     ReportFreeNotMalloced((uptr)ptr, stack);
416 }
417 
AtomicallySetQuarantineFlag(AsanChunk * m,void * ptr,StackTrace * stack)418 static void AtomicallySetQuarantineFlag(AsanChunk *m,
419                                         void *ptr, StackTrace *stack) {
420   u8 old_chunk_state = CHUNK_ALLOCATED;
421   // Flip the chunk_state atomically to avoid race on double-free.
422   if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
423                                       CHUNK_QUARANTINE, memory_order_acquire))
424     ReportInvalidFree(ptr, old_chunk_state, stack);
425   CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
426 }
427 
428 // Expects the chunk to already be marked as quarantined by using
429 // AtomicallySetQuarantineFlag.
QuarantineChunk(AsanChunk * m,void * ptr,StackTrace * stack,AllocType alloc_type)430 static void QuarantineChunk(AsanChunk *m, void *ptr,
431                             StackTrace *stack, AllocType alloc_type) {
432   CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
433 
434   if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
435     ReportAllocTypeMismatch((uptr)ptr, stack,
436                             (AllocType)m->alloc_type, (AllocType)alloc_type);
437 
438   CHECK_GE(m->alloc_tid, 0);
439   if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
440     CHECK_EQ(m->free_tid, kInvalidTid);
441   AsanThread *t = GetCurrentThread();
442   m->free_tid = t ? t->tid() : 0;
443   m->free_context_id = StackDepotPut(stack->trace, stack->size);
444   // Poison the region.
445   PoisonShadow(m->Beg(),
446                RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
447                kAsanHeapFreeMagic);
448 
449   AsanStats &thread_stats = GetCurrentThreadStats();
450   thread_stats.frees++;
451   thread_stats.freed += m->UsedSize();
452 
453   // Push into quarantine.
454   if (t) {
455     AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
456     AllocatorCache *ac = GetAllocatorCache(ms);
457     quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
458                    m, m->UsedSize());
459   } else {
460     SpinMutexLock l(&fallback_mutex);
461     AllocatorCache *ac = &fallback_allocator_cache;
462     quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
463                    m, m->UsedSize());
464   }
465 }
466 
Deallocate(void * ptr,StackTrace * stack,AllocType alloc_type)467 static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
468   uptr p = reinterpret_cast<uptr>(ptr);
469   if (p == 0) return;
470 
471   uptr chunk_beg = p - kChunkHeaderSize;
472   AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
473   ASAN_FREE_HOOK(ptr);
474   // Must mark the chunk as quarantined before any changes to its metadata.
475   AtomicallySetQuarantineFlag(m, ptr, stack);
476   QuarantineChunk(m, ptr, stack, alloc_type);
477 }
478 
Reallocate(void * old_ptr,uptr new_size,StackTrace * stack)479 static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
480   CHECK(old_ptr && new_size);
481   uptr p = reinterpret_cast<uptr>(old_ptr);
482   uptr chunk_beg = p - kChunkHeaderSize;
483   AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
484 
485   AsanStats &thread_stats = GetCurrentThreadStats();
486   thread_stats.reallocs++;
487   thread_stats.realloced += new_size;
488 
489   void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
490   if (new_ptr) {
491     u8 chunk_state = m->chunk_state;
492     if (chunk_state != CHUNK_ALLOCATED)
493       ReportInvalidFree(old_ptr, chunk_state, stack);
494     CHECK_NE(REAL(memcpy), (void*)0);
495     uptr memcpy_size = Min(new_size, m->UsedSize());
496     // If realloc() races with free(), we may start copying freed memory.
497     // However, we will report racy double-free later anyway.
498     REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
499     Deallocate(old_ptr, stack, FROM_MALLOC);
500   }
501   return new_ptr;
502 }
503 
504 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
GetAsanChunk(void * alloc_beg)505 static AsanChunk *GetAsanChunk(void *alloc_beg) {
506   if (!alloc_beg) return 0;
507   if (!allocator.FromPrimary(alloc_beg)) {
508     uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
509     AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
510     return m;
511   }
512   uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
513   if (alloc_magic[0] == kAllocBegMagic)
514     return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
515   return reinterpret_cast<AsanChunk *>(alloc_beg);
516 }
517 
GetAsanChunkByAddr(uptr p)518 static AsanChunk *GetAsanChunkByAddr(uptr p) {
519   void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
520   return GetAsanChunk(alloc_beg);
521 }
522 
523 // Allocator must be locked when this function is called.
GetAsanChunkByAddrFastLocked(uptr p)524 static AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
525   void *alloc_beg =
526       allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
527   return GetAsanChunk(alloc_beg);
528 }
529 
AllocationSize(uptr p)530 static uptr AllocationSize(uptr p) {
531   AsanChunk *m = GetAsanChunkByAddr(p);
532   if (!m) return 0;
533   if (m->chunk_state != CHUNK_ALLOCATED) return 0;
534   if (m->Beg() != p) return 0;
535   return m->UsedSize();
536 }
537 
538 // We have an address between two chunks, and we want to report just one.
ChooseChunk(uptr addr,AsanChunk * left_chunk,AsanChunk * right_chunk)539 AsanChunk *ChooseChunk(uptr addr,
540                        AsanChunk *left_chunk, AsanChunk *right_chunk) {
541   // Prefer an allocated chunk over freed chunk and freed chunk
542   // over available chunk.
543   if (left_chunk->chunk_state != right_chunk->chunk_state) {
544     if (left_chunk->chunk_state == CHUNK_ALLOCATED)
545       return left_chunk;
546     if (right_chunk->chunk_state == CHUNK_ALLOCATED)
547       return right_chunk;
548     if (left_chunk->chunk_state == CHUNK_QUARANTINE)
549       return left_chunk;
550     if (right_chunk->chunk_state == CHUNK_QUARANTINE)
551       return right_chunk;
552   }
553   // Same chunk_state: choose based on offset.
554   sptr l_offset = 0, r_offset = 0;
555   CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
556   CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
557   if (l_offset < r_offset)
558     return left_chunk;
559   return right_chunk;
560 }
561 
FindHeapChunkByAddress(uptr addr)562 AsanChunkView FindHeapChunkByAddress(uptr addr) {
563   AsanChunk *m1 = GetAsanChunkByAddr(addr);
564   if (!m1) return AsanChunkView(m1);
565   sptr offset = 0;
566   if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
567     // The address is in the chunk's left redzone, so maybe it is actually
568     // a right buffer overflow from the other chunk to the left.
569     // Search a bit to the left to see if there is another chunk.
570     AsanChunk *m2 = 0;
571     for (uptr l = 1; l < GetPageSizeCached(); l++) {
572       m2 = GetAsanChunkByAddr(addr - l);
573       if (m2 == m1) continue;  // Still the same chunk.
574       break;
575     }
576     if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
577       m1 = ChooseChunk(addr, m2, m1);
578   }
579   return AsanChunkView(m1);
580 }
581 
CommitBack()582 void AsanThreadLocalMallocStorage::CommitBack() {
583   AllocatorCache *ac = GetAllocatorCache(this);
584   quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
585   allocator.SwallowCache(GetAllocatorCache(this));
586 }
587 
PrintInternalAllocatorStats()588 void PrintInternalAllocatorStats() {
589   allocator.PrintStats();
590 }
591 
asan_memalign(uptr alignment,uptr size,StackTrace * stack,AllocType alloc_type)592 void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
593                     AllocType alloc_type) {
594   return Allocate(size, alignment, stack, alloc_type, true);
595 }
596 
asan_free(void * ptr,StackTrace * stack,AllocType alloc_type)597 void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
598   Deallocate(ptr, stack, alloc_type);
599 }
600 
asan_malloc(uptr size,StackTrace * stack)601 void *asan_malloc(uptr size, StackTrace *stack) {
602   return Allocate(size, 8, stack, FROM_MALLOC, true);
603 }
604 
asan_calloc(uptr nmemb,uptr size,StackTrace * stack)605 void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
606   if (CallocShouldReturnNullDueToOverflow(size, nmemb))
607     return AllocatorReturnNull();
608   void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
609   // If the memory comes from the secondary allocator no need to clear it
610   // as it comes directly from mmap.
611   if (ptr && allocator.FromPrimary(ptr))
612     REAL(memset)(ptr, 0, nmemb * size);
613   return ptr;
614 }
615 
asan_realloc(void * p,uptr size,StackTrace * stack)616 void *asan_realloc(void *p, uptr size, StackTrace *stack) {
617   if (p == 0)
618     return Allocate(size, 8, stack, FROM_MALLOC, true);
619   if (size == 0) {
620     Deallocate(p, stack, FROM_MALLOC);
621     return 0;
622   }
623   return Reallocate(p, size, stack);
624 }
625 
asan_valloc(uptr size,StackTrace * stack)626 void *asan_valloc(uptr size, StackTrace *stack) {
627   return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true);
628 }
629 
asan_pvalloc(uptr size,StackTrace * stack)630 void *asan_pvalloc(uptr size, StackTrace *stack) {
631   uptr PageSize = GetPageSizeCached();
632   size = RoundUpTo(size, PageSize);
633   if (size == 0) {
634     // pvalloc(0) should allocate one page.
635     size = PageSize;
636   }
637   return Allocate(size, PageSize, stack, FROM_MALLOC, true);
638 }
639 
asan_posix_memalign(void ** memptr,uptr alignment,uptr size,StackTrace * stack)640 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
641                         StackTrace *stack) {
642   void *ptr = Allocate(size, alignment, stack, FROM_MALLOC, true);
643   CHECK(IsAligned((uptr)ptr, alignment));
644   *memptr = ptr;
645   return 0;
646 }
647 
asan_malloc_usable_size(void * ptr,uptr pc,uptr bp)648 uptr asan_malloc_usable_size(void *ptr, uptr pc, uptr bp) {
649   if (ptr == 0) return 0;
650   uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
651   if (flags()->check_malloc_usable_size && (usable_size == 0)) {
652     GET_STACK_TRACE_FATAL(pc, bp);
653     ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
654   }
655   return usable_size;
656 }
657 
asan_mz_size(const void * ptr)658 uptr asan_mz_size(const void *ptr) {
659   return AllocationSize(reinterpret_cast<uptr>(ptr));
660 }
661 
asan_mz_force_lock()662 void asan_mz_force_lock() {
663   allocator.ForceLock();
664   fallback_mutex.Lock();
665 }
666 
asan_mz_force_unlock()667 void asan_mz_force_unlock() {
668   fallback_mutex.Unlock();
669   allocator.ForceUnlock();
670 }
671 
672 }  // namespace __asan
673 
674 // --- Implementation of LSan-specific functions --- {{{1
675 namespace __lsan {
LockAllocator()676 void LockAllocator() {
677   __asan::allocator.ForceLock();
678 }
679 
UnlockAllocator()680 void UnlockAllocator() {
681   __asan::allocator.ForceUnlock();
682 }
683 
GetAllocatorGlobalRange(uptr * begin,uptr * end)684 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
685   *begin = (uptr)&__asan::allocator;
686   *end = *begin + sizeof(__asan::allocator);
687 }
688 
PointsIntoChunk(void * p)689 uptr PointsIntoChunk(void* p) {
690   uptr addr = reinterpret_cast<uptr>(p);
691   __asan::AsanChunk *m = __asan::GetAsanChunkByAddrFastLocked(addr);
692   if (!m) return 0;
693   uptr chunk = m->Beg();
694   if (m->chunk_state != __asan::CHUNK_ALLOCATED)
695     return 0;
696   if (m->AddrIsInside(addr, /*locked_version=*/true))
697     return chunk;
698   if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true),
699                                   addr))
700     return chunk;
701   return 0;
702 }
703 
GetUserBegin(uptr chunk)704 uptr GetUserBegin(uptr chunk) {
705   __asan::AsanChunk *m =
706       __asan::GetAsanChunkByAddrFastLocked(chunk);
707   CHECK(m);
708   return m->Beg();
709 }
710 
LsanMetadata(uptr chunk)711 LsanMetadata::LsanMetadata(uptr chunk) {
712   metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
713 }
714 
allocated() const715 bool LsanMetadata::allocated() const {
716   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
717   return m->chunk_state == __asan::CHUNK_ALLOCATED;
718 }
719 
tag() const720 ChunkTag LsanMetadata::tag() const {
721   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
722   return static_cast<ChunkTag>(m->lsan_tag);
723 }
724 
set_tag(ChunkTag value)725 void LsanMetadata::set_tag(ChunkTag value) {
726   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
727   m->lsan_tag = value;
728 }
729 
requested_size() const730 uptr LsanMetadata::requested_size() const {
731   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
732   return m->UsedSize(/*locked_version=*/true);
733 }
734 
stack_trace_id() const735 u32 LsanMetadata::stack_trace_id() const {
736   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
737   return m->alloc_context_id;
738 }
739 
ForEachChunk(ForEachChunkCallback callback,void * arg)740 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
741   __asan::allocator.ForEachChunk(callback, arg);
742 }
743 
IgnoreObjectLocked(const void * p)744 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
745   uptr addr = reinterpret_cast<uptr>(p);
746   __asan::AsanChunk *m = __asan::GetAsanChunkByAddr(addr);
747   if (!m) return kIgnoreObjectInvalid;
748   if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
749     if (m->lsan_tag == kIgnored)
750       return kIgnoreObjectAlreadyIgnored;
751     m->lsan_tag = __lsan::kIgnored;
752     return kIgnoreObjectSuccess;
753   } else {
754     return kIgnoreObjectInvalid;
755   }
756 }
757 }  // namespace __lsan
758 
759 // ---------------------- Interface ---------------- {{{1
760 using namespace __asan;  // NOLINT
761 
762 // ASan allocator doesn't reserve extra bytes, so normally we would
763 // just return "size". We don't want to expose our redzone sizes, etc here.
__sanitizer_get_estimated_allocated_size(uptr size)764 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
765   return size;
766 }
__asan_get_estimated_allocated_size(uptr size)767 uptr __asan_get_estimated_allocated_size(uptr size) {
768   return __sanitizer_get_estimated_allocated_size(size);
769 }
770 
__sanitizer_get_ownership(const void * p)771 int __sanitizer_get_ownership(const void *p) {
772   uptr ptr = reinterpret_cast<uptr>(p);
773   return (AllocationSize(ptr) > 0);
774 }
__asan_get_ownership(const void * p)775 int __asan_get_ownership(const void *p) {
776   return __sanitizer_get_ownership(p);
777 }
778 
__sanitizer_get_allocated_size(const void * p)779 uptr __sanitizer_get_allocated_size(const void *p) {
780   if (p == 0) return 0;
781   uptr ptr = reinterpret_cast<uptr>(p);
782   uptr allocated_size = AllocationSize(ptr);
783   // Die if p is not malloced or if it is already freed.
784   if (allocated_size == 0) {
785     GET_STACK_TRACE_FATAL_HERE;
786     ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
787   }
788   return allocated_size;
789 }
__asan_get_allocated_size(const void * p)790 uptr __asan_get_allocated_size(const void *p) {
791   return __sanitizer_get_allocated_size(p);
792 }
793 
794 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
795 // Provide default (no-op) implementation of malloc hooks.
796 extern "C" {
797 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__asan_malloc_hook(void * ptr,uptr size)798 void __asan_malloc_hook(void *ptr, uptr size) {
799   (void)ptr;
800   (void)size;
801 }
802 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__asan_free_hook(void * ptr)803 void __asan_free_hook(void *ptr) {
804   (void)ptr;
805 }
806 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__sanitizer_malloc_hook(void * ptr,uptr size)807 void __sanitizer_malloc_hook(void *ptr, uptr size) {
808   (void)ptr;
809   (void)size;
810 }
811 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__sanitizer_free_hook(void * ptr)812 void __sanitizer_free_hook(void *ptr) {
813   (void)ptr;
814 }
815 }  // extern "C"
816 #endif
817