1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/ConstantRange.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 // CallSite Class
31 //===----------------------------------------------------------------------===//
32
getCallee() const33 User::op_iterator CallSite::getCallee() const {
34 Instruction *II(getInstruction());
35 return isCall()
36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38 }
39
40 //===----------------------------------------------------------------------===//
41 // TerminatorInst Class
42 //===----------------------------------------------------------------------===//
43
44 // Out of line virtual method, so the vtable, etc has a home.
~TerminatorInst()45 TerminatorInst::~TerminatorInst() {
46 }
47
48 //===----------------------------------------------------------------------===//
49 // UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
51
52 // Out of line virtual method, so the vtable, etc has a home.
~UnaryInstruction()53 UnaryInstruction::~UnaryInstruction() {
54 }
55
56 //===----------------------------------------------------------------------===//
57 // SelectInst Class
58 //===----------------------------------------------------------------------===//
59
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
areInvalidOperands(Value * Op0,Value * Op1,Value * Op2)62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63 if (Op1->getType() != Op2->getType())
64 return "both values to select must have same type";
65
66 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67 // Vector select.
68 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69 return "vector select condition element type must be i1";
70 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71 if (!ET)
72 return "selected values for vector select must be vectors";
73 if (ET->getNumElements() != VT->getNumElements())
74 return "vector select requires selected vectors to have "
75 "the same vector length as select condition";
76 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77 return "select condition must be i1 or <n x i1>";
78 }
79 return nullptr;
80 }
81
82
83 //===----------------------------------------------------------------------===//
84 // PHINode Class
85 //===----------------------------------------------------------------------===//
86
PHINode(const PHINode & PN)87 PHINode::PHINode(const PHINode &PN)
88 : Instruction(PN.getType(), Instruction::PHI,
89 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90 ReservedSpace(PN.getNumOperands()) {
91 std::copy(PN.op_begin(), PN.op_end(), op_begin());
92 std::copy(PN.block_begin(), PN.block_end(), block_begin());
93 SubclassOptionalData = PN.SubclassOptionalData;
94 }
95
~PHINode()96 PHINode::~PHINode() {
97 dropHungoffUses();
98 }
99
allocHungoffUses(unsigned N) const100 Use *PHINode::allocHungoffUses(unsigned N) const {
101 // Allocate the array of Uses of the incoming values, followed by a pointer
102 // (with bottom bit set) to the User, followed by the array of pointers to
103 // the incoming basic blocks.
104 size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
105 + N * sizeof(BasicBlock*);
106 Use *Begin = static_cast<Use*>(::operator new(size));
107 Use *End = Begin + N;
108 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
109 return Use::initTags(Begin, End);
110 }
111
112 // removeIncomingValue - Remove an incoming value. This is useful if a
113 // predecessor basic block is deleted.
removeIncomingValue(unsigned Idx,bool DeletePHIIfEmpty)114 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
115 Value *Removed = getIncomingValue(Idx);
116
117 // Move everything after this operand down.
118 //
119 // FIXME: we could just swap with the end of the list, then erase. However,
120 // clients might not expect this to happen. The code as it is thrashes the
121 // use/def lists, which is kinda lame.
122 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
123 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124
125 // Nuke the last value.
126 Op<-1>().set(nullptr);
127 --NumOperands;
128
129 // If the PHI node is dead, because it has zero entries, nuke it now.
130 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
131 // If anyone is using this PHI, make them use a dummy value instead...
132 replaceAllUsesWith(UndefValue::get(getType()));
133 eraseFromParent();
134 }
135 return Removed;
136 }
137
138 /// growOperands - grow operands - This grows the operand list in response
139 /// to a push_back style of operation. This grows the number of ops by 1.5
140 /// times.
141 ///
growOperands()142 void PHINode::growOperands() {
143 unsigned e = getNumOperands();
144 unsigned NumOps = e + e / 2;
145 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
146
147 Use *OldOps = op_begin();
148 BasicBlock **OldBlocks = block_begin();
149
150 ReservedSpace = NumOps;
151 OperandList = allocHungoffUses(ReservedSpace);
152
153 std::copy(OldOps, OldOps + e, op_begin());
154 std::copy(OldBlocks, OldBlocks + e, block_begin());
155
156 Use::zap(OldOps, OldOps + e, true);
157 }
158
159 /// hasConstantValue - If the specified PHI node always merges together the same
160 /// value, return the value, otherwise return null.
hasConstantValue() const161 Value *PHINode::hasConstantValue() const {
162 // Exploit the fact that phi nodes always have at least one entry.
163 Value *ConstantValue = getIncomingValue(0);
164 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166 if (ConstantValue != this)
167 return nullptr; // Incoming values not all the same.
168 // The case where the first value is this PHI.
169 ConstantValue = getIncomingValue(i);
170 }
171 if (ConstantValue == this)
172 return UndefValue::get(getType());
173 return ConstantValue;
174 }
175
176 //===----------------------------------------------------------------------===//
177 // LandingPadInst Implementation
178 //===----------------------------------------------------------------------===//
179
LandingPadInst(Type * RetTy,Value * PersonalityFn,unsigned NumReservedValues,const Twine & NameStr,Instruction * InsertBefore)180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181 unsigned NumReservedValues, const Twine &NameStr,
182 Instruction *InsertBefore)
183 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
184 init(PersonalityFn, 1 + NumReservedValues, NameStr);
185 }
186
LandingPadInst(Type * RetTy,Value * PersonalityFn,unsigned NumReservedValues,const Twine & NameStr,BasicBlock * InsertAtEnd)187 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
188 unsigned NumReservedValues, const Twine &NameStr,
189 BasicBlock *InsertAtEnd)
190 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
191 init(PersonalityFn, 1 + NumReservedValues, NameStr);
192 }
193
LandingPadInst(const LandingPadInst & LP)194 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
195 : Instruction(LP.getType(), Instruction::LandingPad,
196 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
197 ReservedSpace(LP.getNumOperands()) {
198 Use *OL = OperandList, *InOL = LP.OperandList;
199 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
200 OL[I] = InOL[I];
201
202 setCleanup(LP.isCleanup());
203 }
204
~LandingPadInst()205 LandingPadInst::~LandingPadInst() {
206 dropHungoffUses();
207 }
208
Create(Type * RetTy,Value * PersonalityFn,unsigned NumReservedClauses,const Twine & NameStr,Instruction * InsertBefore)209 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
210 unsigned NumReservedClauses,
211 const Twine &NameStr,
212 Instruction *InsertBefore) {
213 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
214 InsertBefore);
215 }
216
Create(Type * RetTy,Value * PersonalityFn,unsigned NumReservedClauses,const Twine & NameStr,BasicBlock * InsertAtEnd)217 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
218 unsigned NumReservedClauses,
219 const Twine &NameStr,
220 BasicBlock *InsertAtEnd) {
221 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
222 InsertAtEnd);
223 }
224
init(Value * PersFn,unsigned NumReservedValues,const Twine & NameStr)225 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
226 const Twine &NameStr) {
227 ReservedSpace = NumReservedValues;
228 NumOperands = 1;
229 OperandList = allocHungoffUses(ReservedSpace);
230 OperandList[0] = PersFn;
231 setName(NameStr);
232 setCleanup(false);
233 }
234
235 /// growOperands - grow operands - This grows the operand list in response to a
236 /// push_back style of operation. This grows the number of ops by 2 times.
growOperands(unsigned Size)237 void LandingPadInst::growOperands(unsigned Size) {
238 unsigned e = getNumOperands();
239 if (ReservedSpace >= e + Size) return;
240 ReservedSpace = (e + Size / 2) * 2;
241
242 Use *NewOps = allocHungoffUses(ReservedSpace);
243 Use *OldOps = OperandList;
244 for (unsigned i = 0; i != e; ++i)
245 NewOps[i] = OldOps[i];
246
247 OperandList = NewOps;
248 Use::zap(OldOps, OldOps + e, true);
249 }
250
addClause(Constant * Val)251 void LandingPadInst::addClause(Constant *Val) {
252 unsigned OpNo = getNumOperands();
253 growOperands(1);
254 assert(OpNo < ReservedSpace && "Growing didn't work!");
255 ++NumOperands;
256 OperandList[OpNo] = Val;
257 }
258
259 //===----------------------------------------------------------------------===//
260 // CallInst Implementation
261 //===----------------------------------------------------------------------===//
262
~CallInst()263 CallInst::~CallInst() {
264 }
265
init(Value * Func,ArrayRef<Value * > Args,const Twine & NameStr)266 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
267 assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
268 Op<-1>() = Func;
269
270 #ifndef NDEBUG
271 FunctionType *FTy =
272 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
273
274 assert((Args.size() == FTy->getNumParams() ||
275 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
276 "Calling a function with bad signature!");
277
278 for (unsigned i = 0; i != Args.size(); ++i)
279 assert((i >= FTy->getNumParams() ||
280 FTy->getParamType(i) == Args[i]->getType()) &&
281 "Calling a function with a bad signature!");
282 #endif
283
284 std::copy(Args.begin(), Args.end(), op_begin());
285 setName(NameStr);
286 }
287
init(Value * Func,const Twine & NameStr)288 void CallInst::init(Value *Func, const Twine &NameStr) {
289 assert(NumOperands == 1 && "NumOperands not set up?");
290 Op<-1>() = Func;
291
292 #ifndef NDEBUG
293 FunctionType *FTy =
294 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
295
296 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
297 #endif
298
299 setName(NameStr);
300 }
301
CallInst(Value * Func,const Twine & Name,Instruction * InsertBefore)302 CallInst::CallInst(Value *Func, const Twine &Name,
303 Instruction *InsertBefore)
304 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
305 ->getElementType())->getReturnType(),
306 Instruction::Call,
307 OperandTraits<CallInst>::op_end(this) - 1,
308 1, InsertBefore) {
309 init(Func, Name);
310 }
311
CallInst(Value * Func,const Twine & Name,BasicBlock * InsertAtEnd)312 CallInst::CallInst(Value *Func, const Twine &Name,
313 BasicBlock *InsertAtEnd)
314 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
315 ->getElementType())->getReturnType(),
316 Instruction::Call,
317 OperandTraits<CallInst>::op_end(this) - 1,
318 1, InsertAtEnd) {
319 init(Func, Name);
320 }
321
CallInst(const CallInst & CI)322 CallInst::CallInst(const CallInst &CI)
323 : Instruction(CI.getType(), Instruction::Call,
324 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
325 CI.getNumOperands()) {
326 setAttributes(CI.getAttributes());
327 setTailCallKind(CI.getTailCallKind());
328 setCallingConv(CI.getCallingConv());
329
330 std::copy(CI.op_begin(), CI.op_end(), op_begin());
331 SubclassOptionalData = CI.SubclassOptionalData;
332 }
333
addAttribute(unsigned i,Attribute::AttrKind attr)334 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
335 AttributeSet PAL = getAttributes();
336 PAL = PAL.addAttribute(getContext(), i, attr);
337 setAttributes(PAL);
338 }
339
removeAttribute(unsigned i,Attribute attr)340 void CallInst::removeAttribute(unsigned i, Attribute attr) {
341 AttributeSet PAL = getAttributes();
342 AttrBuilder B(attr);
343 LLVMContext &Context = getContext();
344 PAL = PAL.removeAttributes(Context, i,
345 AttributeSet::get(Context, i, B));
346 setAttributes(PAL);
347 }
348
hasFnAttrImpl(Attribute::AttrKind A) const349 bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
350 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
351 return true;
352 if (const Function *F = getCalledFunction())
353 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
354 return false;
355 }
356
paramHasAttr(unsigned i,Attribute::AttrKind A) const357 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
358 if (AttributeList.hasAttribute(i, A))
359 return true;
360 if (const Function *F = getCalledFunction())
361 return F->getAttributes().hasAttribute(i, A);
362 return false;
363 }
364
365 /// IsConstantOne - Return true only if val is constant int 1
IsConstantOne(Value * val)366 static bool IsConstantOne(Value *val) {
367 assert(val && "IsConstantOne does not work with NULL val");
368 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
369 }
370
createMalloc(Instruction * InsertBefore,BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)371 static Instruction *createMalloc(Instruction *InsertBefore,
372 BasicBlock *InsertAtEnd, Type *IntPtrTy,
373 Type *AllocTy, Value *AllocSize,
374 Value *ArraySize, Function *MallocF,
375 const Twine &Name) {
376 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
377 "createMalloc needs either InsertBefore or InsertAtEnd");
378
379 // malloc(type) becomes:
380 // bitcast (i8* malloc(typeSize)) to type*
381 // malloc(type, arraySize) becomes:
382 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
383 if (!ArraySize)
384 ArraySize = ConstantInt::get(IntPtrTy, 1);
385 else if (ArraySize->getType() != IntPtrTy) {
386 if (InsertBefore)
387 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
388 "", InsertBefore);
389 else
390 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
391 "", InsertAtEnd);
392 }
393
394 if (!IsConstantOne(ArraySize)) {
395 if (IsConstantOne(AllocSize)) {
396 AllocSize = ArraySize; // Operand * 1 = Operand
397 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
398 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
399 false /*ZExt*/);
400 // Malloc arg is constant product of type size and array size
401 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
402 } else {
403 // Multiply type size by the array size...
404 if (InsertBefore)
405 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
406 "mallocsize", InsertBefore);
407 else
408 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
409 "mallocsize", InsertAtEnd);
410 }
411 }
412
413 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
414 // Create the call to Malloc.
415 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
416 Module* M = BB->getParent()->getParent();
417 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
418 Value *MallocFunc = MallocF;
419 if (!MallocFunc)
420 // prototype malloc as "void *malloc(size_t)"
421 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
422 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
423 CallInst *MCall = nullptr;
424 Instruction *Result = nullptr;
425 if (InsertBefore) {
426 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
427 Result = MCall;
428 if (Result->getType() != AllocPtrType)
429 // Create a cast instruction to convert to the right type...
430 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
431 } else {
432 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
433 Result = MCall;
434 if (Result->getType() != AllocPtrType) {
435 InsertAtEnd->getInstList().push_back(MCall);
436 // Create a cast instruction to convert to the right type...
437 Result = new BitCastInst(MCall, AllocPtrType, Name);
438 }
439 }
440 MCall->setTailCall();
441 if (Function *F = dyn_cast<Function>(MallocFunc)) {
442 MCall->setCallingConv(F->getCallingConv());
443 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
444 }
445 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
446
447 return Result;
448 }
449
450 /// CreateMalloc - Generate the IR for a call to malloc:
451 /// 1. Compute the malloc call's argument as the specified type's size,
452 /// possibly multiplied by the array size if the array size is not
453 /// constant 1.
454 /// 2. Call malloc with that argument.
455 /// 3. Bitcast the result of the malloc call to the specified type.
CreateMalloc(Instruction * InsertBefore,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)456 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
457 Type *IntPtrTy, Type *AllocTy,
458 Value *AllocSize, Value *ArraySize,
459 Function * MallocF,
460 const Twine &Name) {
461 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
462 ArraySize, MallocF, Name);
463 }
464
465 /// CreateMalloc - Generate the IR for a call to malloc:
466 /// 1. Compute the malloc call's argument as the specified type's size,
467 /// possibly multiplied by the array size if the array size is not
468 /// constant 1.
469 /// 2. Call malloc with that argument.
470 /// 3. Bitcast the result of the malloc call to the specified type.
471 /// Note: This function does not add the bitcast to the basic block, that is the
472 /// responsibility of the caller.
CreateMalloc(BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)473 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
474 Type *IntPtrTy, Type *AllocTy,
475 Value *AllocSize, Value *ArraySize,
476 Function *MallocF, const Twine &Name) {
477 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
478 ArraySize, MallocF, Name);
479 }
480
createFree(Value * Source,Instruction * InsertBefore,BasicBlock * InsertAtEnd)481 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
482 BasicBlock *InsertAtEnd) {
483 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
484 "createFree needs either InsertBefore or InsertAtEnd");
485 assert(Source->getType()->isPointerTy() &&
486 "Can not free something of nonpointer type!");
487
488 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
489 Module* M = BB->getParent()->getParent();
490
491 Type *VoidTy = Type::getVoidTy(M->getContext());
492 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
493 // prototype free as "void free(void*)"
494 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
495 CallInst* Result = nullptr;
496 Value *PtrCast = Source;
497 if (InsertBefore) {
498 if (Source->getType() != IntPtrTy)
499 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
500 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
501 } else {
502 if (Source->getType() != IntPtrTy)
503 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
504 Result = CallInst::Create(FreeFunc, PtrCast, "");
505 }
506 Result->setTailCall();
507 if (Function *F = dyn_cast<Function>(FreeFunc))
508 Result->setCallingConv(F->getCallingConv());
509
510 return Result;
511 }
512
513 /// CreateFree - Generate the IR for a call to the builtin free function.
CreateFree(Value * Source,Instruction * InsertBefore)514 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
515 return createFree(Source, InsertBefore, nullptr);
516 }
517
518 /// CreateFree - Generate the IR for a call to the builtin free function.
519 /// Note: This function does not add the call to the basic block, that is the
520 /// responsibility of the caller.
CreateFree(Value * Source,BasicBlock * InsertAtEnd)521 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
522 Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd);
523 assert(FreeCall && "CreateFree did not create a CallInst");
524 return FreeCall;
525 }
526
527 //===----------------------------------------------------------------------===//
528 // InvokeInst Implementation
529 //===----------------------------------------------------------------------===//
530
init(Value * Fn,BasicBlock * IfNormal,BasicBlock * IfException,ArrayRef<Value * > Args,const Twine & NameStr)531 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
532 ArrayRef<Value *> Args, const Twine &NameStr) {
533 assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
534 Op<-3>() = Fn;
535 Op<-2>() = IfNormal;
536 Op<-1>() = IfException;
537
538 #ifndef NDEBUG
539 FunctionType *FTy =
540 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
541
542 assert(((Args.size() == FTy->getNumParams()) ||
543 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
544 "Invoking a function with bad signature");
545
546 for (unsigned i = 0, e = Args.size(); i != e; i++)
547 assert((i >= FTy->getNumParams() ||
548 FTy->getParamType(i) == Args[i]->getType()) &&
549 "Invoking a function with a bad signature!");
550 #endif
551
552 std::copy(Args.begin(), Args.end(), op_begin());
553 setName(NameStr);
554 }
555
InvokeInst(const InvokeInst & II)556 InvokeInst::InvokeInst(const InvokeInst &II)
557 : TerminatorInst(II.getType(), Instruction::Invoke,
558 OperandTraits<InvokeInst>::op_end(this)
559 - II.getNumOperands(),
560 II.getNumOperands()) {
561 setAttributes(II.getAttributes());
562 setCallingConv(II.getCallingConv());
563 std::copy(II.op_begin(), II.op_end(), op_begin());
564 SubclassOptionalData = II.SubclassOptionalData;
565 }
566
getSuccessorV(unsigned idx) const567 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
568 return getSuccessor(idx);
569 }
getNumSuccessorsV() const570 unsigned InvokeInst::getNumSuccessorsV() const {
571 return getNumSuccessors();
572 }
setSuccessorV(unsigned idx,BasicBlock * B)573 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
574 return setSuccessor(idx, B);
575 }
576
hasFnAttrImpl(Attribute::AttrKind A) const577 bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
578 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
579 return true;
580 if (const Function *F = getCalledFunction())
581 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
582 return false;
583 }
584
paramHasAttr(unsigned i,Attribute::AttrKind A) const585 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
586 if (AttributeList.hasAttribute(i, A))
587 return true;
588 if (const Function *F = getCalledFunction())
589 return F->getAttributes().hasAttribute(i, A);
590 return false;
591 }
592
addAttribute(unsigned i,Attribute::AttrKind attr)593 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
594 AttributeSet PAL = getAttributes();
595 PAL = PAL.addAttribute(getContext(), i, attr);
596 setAttributes(PAL);
597 }
598
removeAttribute(unsigned i,Attribute attr)599 void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
600 AttributeSet PAL = getAttributes();
601 AttrBuilder B(attr);
602 PAL = PAL.removeAttributes(getContext(), i,
603 AttributeSet::get(getContext(), i, B));
604 setAttributes(PAL);
605 }
606
getLandingPadInst() const607 LandingPadInst *InvokeInst::getLandingPadInst() const {
608 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
609 }
610
611 //===----------------------------------------------------------------------===//
612 // ReturnInst Implementation
613 //===----------------------------------------------------------------------===//
614
ReturnInst(const ReturnInst & RI)615 ReturnInst::ReturnInst(const ReturnInst &RI)
616 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
617 OperandTraits<ReturnInst>::op_end(this) -
618 RI.getNumOperands(),
619 RI.getNumOperands()) {
620 if (RI.getNumOperands())
621 Op<0>() = RI.Op<0>();
622 SubclassOptionalData = RI.SubclassOptionalData;
623 }
624
ReturnInst(LLVMContext & C,Value * retVal,Instruction * InsertBefore)625 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
626 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
627 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
628 InsertBefore) {
629 if (retVal)
630 Op<0>() = retVal;
631 }
ReturnInst(LLVMContext & C,Value * retVal,BasicBlock * InsertAtEnd)632 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
633 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
634 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
635 InsertAtEnd) {
636 if (retVal)
637 Op<0>() = retVal;
638 }
ReturnInst(LLVMContext & Context,BasicBlock * InsertAtEnd)639 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
640 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
641 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
642 }
643
getNumSuccessorsV() const644 unsigned ReturnInst::getNumSuccessorsV() const {
645 return getNumSuccessors();
646 }
647
648 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
649 /// emit the vtable for the class in this translation unit.
setSuccessorV(unsigned idx,BasicBlock * NewSucc)650 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
651 llvm_unreachable("ReturnInst has no successors!");
652 }
653
getSuccessorV(unsigned idx) const654 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
655 llvm_unreachable("ReturnInst has no successors!");
656 }
657
~ReturnInst()658 ReturnInst::~ReturnInst() {
659 }
660
661 //===----------------------------------------------------------------------===//
662 // ResumeInst Implementation
663 //===----------------------------------------------------------------------===//
664
ResumeInst(const ResumeInst & RI)665 ResumeInst::ResumeInst(const ResumeInst &RI)
666 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
667 OperandTraits<ResumeInst>::op_begin(this), 1) {
668 Op<0>() = RI.Op<0>();
669 }
670
ResumeInst(Value * Exn,Instruction * InsertBefore)671 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
672 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
673 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
674 Op<0>() = Exn;
675 }
676
ResumeInst(Value * Exn,BasicBlock * InsertAtEnd)677 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
678 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
679 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
680 Op<0>() = Exn;
681 }
682
getNumSuccessorsV() const683 unsigned ResumeInst::getNumSuccessorsV() const {
684 return getNumSuccessors();
685 }
686
setSuccessorV(unsigned idx,BasicBlock * NewSucc)687 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
688 llvm_unreachable("ResumeInst has no successors!");
689 }
690
getSuccessorV(unsigned idx) const691 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
692 llvm_unreachable("ResumeInst has no successors!");
693 }
694
695 //===----------------------------------------------------------------------===//
696 // UnreachableInst Implementation
697 //===----------------------------------------------------------------------===//
698
UnreachableInst(LLVMContext & Context,Instruction * InsertBefore)699 UnreachableInst::UnreachableInst(LLVMContext &Context,
700 Instruction *InsertBefore)
701 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
702 nullptr, 0, InsertBefore) {
703 }
UnreachableInst(LLVMContext & Context,BasicBlock * InsertAtEnd)704 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
705 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
706 nullptr, 0, InsertAtEnd) {
707 }
708
getNumSuccessorsV() const709 unsigned UnreachableInst::getNumSuccessorsV() const {
710 return getNumSuccessors();
711 }
712
setSuccessorV(unsigned idx,BasicBlock * NewSucc)713 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
714 llvm_unreachable("UnreachableInst has no successors!");
715 }
716
getSuccessorV(unsigned idx) const717 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
718 llvm_unreachable("UnreachableInst has no successors!");
719 }
720
721 //===----------------------------------------------------------------------===//
722 // BranchInst Implementation
723 //===----------------------------------------------------------------------===//
724
AssertOK()725 void BranchInst::AssertOK() {
726 if (isConditional())
727 assert(getCondition()->getType()->isIntegerTy(1) &&
728 "May only branch on boolean predicates!");
729 }
730
BranchInst(BasicBlock * IfTrue,Instruction * InsertBefore)731 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
732 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
733 OperandTraits<BranchInst>::op_end(this) - 1,
734 1, InsertBefore) {
735 assert(IfTrue && "Branch destination may not be null!");
736 Op<-1>() = IfTrue;
737 }
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,Instruction * InsertBefore)738 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
739 Instruction *InsertBefore)
740 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
741 OperandTraits<BranchInst>::op_end(this) - 3,
742 3, InsertBefore) {
743 Op<-1>() = IfTrue;
744 Op<-2>() = IfFalse;
745 Op<-3>() = Cond;
746 #ifndef NDEBUG
747 AssertOK();
748 #endif
749 }
750
BranchInst(BasicBlock * IfTrue,BasicBlock * InsertAtEnd)751 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
752 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
753 OperandTraits<BranchInst>::op_end(this) - 1,
754 1, InsertAtEnd) {
755 assert(IfTrue && "Branch destination may not be null!");
756 Op<-1>() = IfTrue;
757 }
758
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,BasicBlock * InsertAtEnd)759 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
760 BasicBlock *InsertAtEnd)
761 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
762 OperandTraits<BranchInst>::op_end(this) - 3,
763 3, InsertAtEnd) {
764 Op<-1>() = IfTrue;
765 Op<-2>() = IfFalse;
766 Op<-3>() = Cond;
767 #ifndef NDEBUG
768 AssertOK();
769 #endif
770 }
771
772
BranchInst(const BranchInst & BI)773 BranchInst::BranchInst(const BranchInst &BI) :
774 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
775 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
776 BI.getNumOperands()) {
777 Op<-1>() = BI.Op<-1>();
778 if (BI.getNumOperands() != 1) {
779 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
780 Op<-3>() = BI.Op<-3>();
781 Op<-2>() = BI.Op<-2>();
782 }
783 SubclassOptionalData = BI.SubclassOptionalData;
784 }
785
swapSuccessors()786 void BranchInst::swapSuccessors() {
787 assert(isConditional() &&
788 "Cannot swap successors of an unconditional branch");
789 Op<-1>().swap(Op<-2>());
790
791 // Update profile metadata if present and it matches our structural
792 // expectations.
793 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
794 if (!ProfileData || ProfileData->getNumOperands() != 3)
795 return;
796
797 // The first operand is the name. Fetch them backwards and build a new one.
798 Value *Ops[] = {
799 ProfileData->getOperand(0),
800 ProfileData->getOperand(2),
801 ProfileData->getOperand(1)
802 };
803 setMetadata(LLVMContext::MD_prof,
804 MDNode::get(ProfileData->getContext(), Ops));
805 }
806
getSuccessorV(unsigned idx) const807 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
808 return getSuccessor(idx);
809 }
getNumSuccessorsV() const810 unsigned BranchInst::getNumSuccessorsV() const {
811 return getNumSuccessors();
812 }
setSuccessorV(unsigned idx,BasicBlock * B)813 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
814 setSuccessor(idx, B);
815 }
816
817
818 //===----------------------------------------------------------------------===//
819 // AllocaInst Implementation
820 //===----------------------------------------------------------------------===//
821
getAISize(LLVMContext & Context,Value * Amt)822 static Value *getAISize(LLVMContext &Context, Value *Amt) {
823 if (!Amt)
824 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
825 else {
826 assert(!isa<BasicBlock>(Amt) &&
827 "Passed basic block into allocation size parameter! Use other ctor");
828 assert(Amt->getType()->isIntegerTy() &&
829 "Allocation array size is not an integer!");
830 }
831 return Amt;
832 }
833
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,Instruction * InsertBefore)834 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
835 const Twine &Name, Instruction *InsertBefore)
836 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
837 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
838 setAlignment(0);
839 assert(!Ty->isVoidTy() && "Cannot allocate void!");
840 setName(Name);
841 }
842
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,BasicBlock * InsertAtEnd)843 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
844 const Twine &Name, BasicBlock *InsertAtEnd)
845 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
846 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
847 setAlignment(0);
848 assert(!Ty->isVoidTy() && "Cannot allocate void!");
849 setName(Name);
850 }
851
AllocaInst(Type * Ty,const Twine & Name,Instruction * InsertBefore)852 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
853 Instruction *InsertBefore)
854 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
855 getAISize(Ty->getContext(), nullptr), InsertBefore) {
856 setAlignment(0);
857 assert(!Ty->isVoidTy() && "Cannot allocate void!");
858 setName(Name);
859 }
860
AllocaInst(Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)861 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
862 BasicBlock *InsertAtEnd)
863 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
864 getAISize(Ty->getContext(), nullptr), InsertAtEnd) {
865 setAlignment(0);
866 assert(!Ty->isVoidTy() && "Cannot allocate void!");
867 setName(Name);
868 }
869
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,Instruction * InsertBefore)870 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
871 const Twine &Name, Instruction *InsertBefore)
872 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
873 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
874 setAlignment(Align);
875 assert(!Ty->isVoidTy() && "Cannot allocate void!");
876 setName(Name);
877 }
878
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,BasicBlock * InsertAtEnd)879 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
880 const Twine &Name, BasicBlock *InsertAtEnd)
881 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
882 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
883 setAlignment(Align);
884 assert(!Ty->isVoidTy() && "Cannot allocate void!");
885 setName(Name);
886 }
887
888 // Out of line virtual method, so the vtable, etc has a home.
~AllocaInst()889 AllocaInst::~AllocaInst() {
890 }
891
setAlignment(unsigned Align)892 void AllocaInst::setAlignment(unsigned Align) {
893 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
894 assert(Align <= MaximumAlignment &&
895 "Alignment is greater than MaximumAlignment!");
896 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
897 (Log2_32(Align) + 1));
898 assert(getAlignment() == Align && "Alignment representation error!");
899 }
900
isArrayAllocation() const901 bool AllocaInst::isArrayAllocation() const {
902 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
903 return !CI->isOne();
904 return true;
905 }
906
getAllocatedType() const907 Type *AllocaInst::getAllocatedType() const {
908 return getType()->getElementType();
909 }
910
911 /// isStaticAlloca - Return true if this alloca is in the entry block of the
912 /// function and is a constant size. If so, the code generator will fold it
913 /// into the prolog/epilog code, so it is basically free.
isStaticAlloca() const914 bool AllocaInst::isStaticAlloca() const {
915 // Must be constant size.
916 if (!isa<ConstantInt>(getArraySize())) return false;
917
918 // Must be in the entry block.
919 const BasicBlock *Parent = getParent();
920 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
921 }
922
923 //===----------------------------------------------------------------------===//
924 // LoadInst Implementation
925 //===----------------------------------------------------------------------===//
926
AssertOK()927 void LoadInst::AssertOK() {
928 assert(getOperand(0)->getType()->isPointerTy() &&
929 "Ptr must have pointer type.");
930 assert(!(isAtomic() && getAlignment() == 0) &&
931 "Alignment required for atomic load");
932 }
933
LoadInst(Value * Ptr,const Twine & Name,Instruction * InsertBef)934 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
935 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
936 Load, Ptr, InsertBef) {
937 setVolatile(false);
938 setAlignment(0);
939 setAtomic(NotAtomic);
940 AssertOK();
941 setName(Name);
942 }
943
LoadInst(Value * Ptr,const Twine & Name,BasicBlock * InsertAE)944 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
945 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
946 Load, Ptr, InsertAE) {
947 setVolatile(false);
948 setAlignment(0);
949 setAtomic(NotAtomic);
950 AssertOK();
951 setName(Name);
952 }
953
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,Instruction * InsertBef)954 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
955 Instruction *InsertBef)
956 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
957 Load, Ptr, InsertBef) {
958 setVolatile(isVolatile);
959 setAlignment(0);
960 setAtomic(NotAtomic);
961 AssertOK();
962 setName(Name);
963 }
964
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,BasicBlock * InsertAE)965 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
966 BasicBlock *InsertAE)
967 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
968 Load, Ptr, InsertAE) {
969 setVolatile(isVolatile);
970 setAlignment(0);
971 setAtomic(NotAtomic);
972 AssertOK();
973 setName(Name);
974 }
975
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,Instruction * InsertBef)976 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
977 unsigned Align, Instruction *InsertBef)
978 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
979 Load, Ptr, InsertBef) {
980 setVolatile(isVolatile);
981 setAlignment(Align);
982 setAtomic(NotAtomic);
983 AssertOK();
984 setName(Name);
985 }
986
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,BasicBlock * InsertAE)987 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
988 unsigned Align, BasicBlock *InsertAE)
989 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
990 Load, Ptr, InsertAE) {
991 setVolatile(isVolatile);
992 setAlignment(Align);
993 setAtomic(NotAtomic);
994 AssertOK();
995 setName(Name);
996 }
997
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBef)998 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
999 unsigned Align, AtomicOrdering Order,
1000 SynchronizationScope SynchScope,
1001 Instruction *InsertBef)
1002 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1003 Load, Ptr, InsertBef) {
1004 setVolatile(isVolatile);
1005 setAlignment(Align);
1006 setAtomic(Order, SynchScope);
1007 AssertOK();
1008 setName(Name);
1009 }
1010
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAE)1011 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1012 unsigned Align, AtomicOrdering Order,
1013 SynchronizationScope SynchScope,
1014 BasicBlock *InsertAE)
1015 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1016 Load, Ptr, InsertAE) {
1017 setVolatile(isVolatile);
1018 setAlignment(Align);
1019 setAtomic(Order, SynchScope);
1020 AssertOK();
1021 setName(Name);
1022 }
1023
LoadInst(Value * Ptr,const char * Name,Instruction * InsertBef)1024 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1025 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1026 Load, Ptr, InsertBef) {
1027 setVolatile(false);
1028 setAlignment(0);
1029 setAtomic(NotAtomic);
1030 AssertOK();
1031 if (Name && Name[0]) setName(Name);
1032 }
1033
LoadInst(Value * Ptr,const char * Name,BasicBlock * InsertAE)1034 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1035 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1036 Load, Ptr, InsertAE) {
1037 setVolatile(false);
1038 setAlignment(0);
1039 setAtomic(NotAtomic);
1040 AssertOK();
1041 if (Name && Name[0]) setName(Name);
1042 }
1043
LoadInst(Value * Ptr,const char * Name,bool isVolatile,Instruction * InsertBef)1044 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1045 Instruction *InsertBef)
1046 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1047 Load, Ptr, InsertBef) {
1048 setVolatile(isVolatile);
1049 setAlignment(0);
1050 setAtomic(NotAtomic);
1051 AssertOK();
1052 if (Name && Name[0]) setName(Name);
1053 }
1054
LoadInst(Value * Ptr,const char * Name,bool isVolatile,BasicBlock * InsertAE)1055 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1056 BasicBlock *InsertAE)
1057 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1058 Load, Ptr, InsertAE) {
1059 setVolatile(isVolatile);
1060 setAlignment(0);
1061 setAtomic(NotAtomic);
1062 AssertOK();
1063 if (Name && Name[0]) setName(Name);
1064 }
1065
setAlignment(unsigned Align)1066 void LoadInst::setAlignment(unsigned Align) {
1067 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1068 assert(Align <= MaximumAlignment &&
1069 "Alignment is greater than MaximumAlignment!");
1070 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1071 ((Log2_32(Align)+1)<<1));
1072 assert(getAlignment() == Align && "Alignment representation error!");
1073 }
1074
1075 //===----------------------------------------------------------------------===//
1076 // StoreInst Implementation
1077 //===----------------------------------------------------------------------===//
1078
AssertOK()1079 void StoreInst::AssertOK() {
1080 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1081 assert(getOperand(1)->getType()->isPointerTy() &&
1082 "Ptr must have pointer type!");
1083 assert(getOperand(0)->getType() ==
1084 cast<PointerType>(getOperand(1)->getType())->getElementType()
1085 && "Ptr must be a pointer to Val type!");
1086 assert(!(isAtomic() && getAlignment() == 0) &&
1087 "Alignment required for atomic store");
1088 }
1089
1090
StoreInst(Value * val,Value * addr,Instruction * InsertBefore)1091 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1092 : Instruction(Type::getVoidTy(val->getContext()), Store,
1093 OperandTraits<StoreInst>::op_begin(this),
1094 OperandTraits<StoreInst>::operands(this),
1095 InsertBefore) {
1096 Op<0>() = val;
1097 Op<1>() = addr;
1098 setVolatile(false);
1099 setAlignment(0);
1100 setAtomic(NotAtomic);
1101 AssertOK();
1102 }
1103
StoreInst(Value * val,Value * addr,BasicBlock * InsertAtEnd)1104 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1105 : Instruction(Type::getVoidTy(val->getContext()), Store,
1106 OperandTraits<StoreInst>::op_begin(this),
1107 OperandTraits<StoreInst>::operands(this),
1108 InsertAtEnd) {
1109 Op<0>() = val;
1110 Op<1>() = addr;
1111 setVolatile(false);
1112 setAlignment(0);
1113 setAtomic(NotAtomic);
1114 AssertOK();
1115 }
1116
StoreInst(Value * val,Value * addr,bool isVolatile,Instruction * InsertBefore)1117 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1118 Instruction *InsertBefore)
1119 : Instruction(Type::getVoidTy(val->getContext()), Store,
1120 OperandTraits<StoreInst>::op_begin(this),
1121 OperandTraits<StoreInst>::operands(this),
1122 InsertBefore) {
1123 Op<0>() = val;
1124 Op<1>() = addr;
1125 setVolatile(isVolatile);
1126 setAlignment(0);
1127 setAtomic(NotAtomic);
1128 AssertOK();
1129 }
1130
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,Instruction * InsertBefore)1131 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1132 unsigned Align, Instruction *InsertBefore)
1133 : Instruction(Type::getVoidTy(val->getContext()), Store,
1134 OperandTraits<StoreInst>::op_begin(this),
1135 OperandTraits<StoreInst>::operands(this),
1136 InsertBefore) {
1137 Op<0>() = val;
1138 Op<1>() = addr;
1139 setVolatile(isVolatile);
1140 setAlignment(Align);
1141 setAtomic(NotAtomic);
1142 AssertOK();
1143 }
1144
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBefore)1145 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1146 unsigned Align, AtomicOrdering Order,
1147 SynchronizationScope SynchScope,
1148 Instruction *InsertBefore)
1149 : Instruction(Type::getVoidTy(val->getContext()), Store,
1150 OperandTraits<StoreInst>::op_begin(this),
1151 OperandTraits<StoreInst>::operands(this),
1152 InsertBefore) {
1153 Op<0>() = val;
1154 Op<1>() = addr;
1155 setVolatile(isVolatile);
1156 setAlignment(Align);
1157 setAtomic(Order, SynchScope);
1158 AssertOK();
1159 }
1160
StoreInst(Value * val,Value * addr,bool isVolatile,BasicBlock * InsertAtEnd)1161 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1162 BasicBlock *InsertAtEnd)
1163 : Instruction(Type::getVoidTy(val->getContext()), Store,
1164 OperandTraits<StoreInst>::op_begin(this),
1165 OperandTraits<StoreInst>::operands(this),
1166 InsertAtEnd) {
1167 Op<0>() = val;
1168 Op<1>() = addr;
1169 setVolatile(isVolatile);
1170 setAlignment(0);
1171 setAtomic(NotAtomic);
1172 AssertOK();
1173 }
1174
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,BasicBlock * InsertAtEnd)1175 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1176 unsigned Align, BasicBlock *InsertAtEnd)
1177 : Instruction(Type::getVoidTy(val->getContext()), Store,
1178 OperandTraits<StoreInst>::op_begin(this),
1179 OperandTraits<StoreInst>::operands(this),
1180 InsertAtEnd) {
1181 Op<0>() = val;
1182 Op<1>() = addr;
1183 setVolatile(isVolatile);
1184 setAlignment(Align);
1185 setAtomic(NotAtomic);
1186 AssertOK();
1187 }
1188
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1189 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1190 unsigned Align, AtomicOrdering Order,
1191 SynchronizationScope SynchScope,
1192 BasicBlock *InsertAtEnd)
1193 : Instruction(Type::getVoidTy(val->getContext()), Store,
1194 OperandTraits<StoreInst>::op_begin(this),
1195 OperandTraits<StoreInst>::operands(this),
1196 InsertAtEnd) {
1197 Op<0>() = val;
1198 Op<1>() = addr;
1199 setVolatile(isVolatile);
1200 setAlignment(Align);
1201 setAtomic(Order, SynchScope);
1202 AssertOK();
1203 }
1204
setAlignment(unsigned Align)1205 void StoreInst::setAlignment(unsigned Align) {
1206 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1207 assert(Align <= MaximumAlignment &&
1208 "Alignment is greater than MaximumAlignment!");
1209 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1210 ((Log2_32(Align)+1) << 1));
1211 assert(getAlignment() == Align && "Alignment representation error!");
1212 }
1213
1214 //===----------------------------------------------------------------------===//
1215 // AtomicCmpXchgInst Implementation
1216 //===----------------------------------------------------------------------===//
1217
Init(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope)1218 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1219 AtomicOrdering SuccessOrdering,
1220 AtomicOrdering FailureOrdering,
1221 SynchronizationScope SynchScope) {
1222 Op<0>() = Ptr;
1223 Op<1>() = Cmp;
1224 Op<2>() = NewVal;
1225 setSuccessOrdering(SuccessOrdering);
1226 setFailureOrdering(FailureOrdering);
1227 setSynchScope(SynchScope);
1228
1229 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1230 "All operands must be non-null!");
1231 assert(getOperand(0)->getType()->isPointerTy() &&
1232 "Ptr must have pointer type!");
1233 assert(getOperand(1)->getType() ==
1234 cast<PointerType>(getOperand(0)->getType())->getElementType()
1235 && "Ptr must be a pointer to Cmp type!");
1236 assert(getOperand(2)->getType() ==
1237 cast<PointerType>(getOperand(0)->getType())->getElementType()
1238 && "Ptr must be a pointer to NewVal type!");
1239 assert(SuccessOrdering != NotAtomic &&
1240 "AtomicCmpXchg instructions must be atomic!");
1241 assert(FailureOrdering != NotAtomic &&
1242 "AtomicCmpXchg instructions must be atomic!");
1243 assert(SuccessOrdering >= FailureOrdering &&
1244 "AtomicCmpXchg success ordering must be at least as strong as fail");
1245 assert(FailureOrdering != Release && FailureOrdering != AcquireRelease &&
1246 "AtomicCmpXchg failure ordering cannot include release semantics");
1247 }
1248
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope,Instruction * InsertBefore)1249 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1250 AtomicOrdering SuccessOrdering,
1251 AtomicOrdering FailureOrdering,
1252 SynchronizationScope SynchScope,
1253 Instruction *InsertBefore)
1254 : Instruction(
1255 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1256 nullptr),
1257 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1258 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1259 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1260 }
1261
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1262 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1263 AtomicOrdering SuccessOrdering,
1264 AtomicOrdering FailureOrdering,
1265 SynchronizationScope SynchScope,
1266 BasicBlock *InsertAtEnd)
1267 : Instruction(
1268 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1269 nullptr),
1270 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1271 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1272 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1273 }
1274
1275 //===----------------------------------------------------------------------===//
1276 // AtomicRMWInst Implementation
1277 //===----------------------------------------------------------------------===//
1278
Init(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope)1279 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1280 AtomicOrdering Ordering,
1281 SynchronizationScope SynchScope) {
1282 Op<0>() = Ptr;
1283 Op<1>() = Val;
1284 setOperation(Operation);
1285 setOrdering(Ordering);
1286 setSynchScope(SynchScope);
1287
1288 assert(getOperand(0) && getOperand(1) &&
1289 "All operands must be non-null!");
1290 assert(getOperand(0)->getType()->isPointerTy() &&
1291 "Ptr must have pointer type!");
1292 assert(getOperand(1)->getType() ==
1293 cast<PointerType>(getOperand(0)->getType())->getElementType()
1294 && "Ptr must be a pointer to Val type!");
1295 assert(Ordering != NotAtomic &&
1296 "AtomicRMW instructions must be atomic!");
1297 }
1298
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1299 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1300 AtomicOrdering Ordering,
1301 SynchronizationScope SynchScope,
1302 Instruction *InsertBefore)
1303 : Instruction(Val->getType(), AtomicRMW,
1304 OperandTraits<AtomicRMWInst>::op_begin(this),
1305 OperandTraits<AtomicRMWInst>::operands(this),
1306 InsertBefore) {
1307 Init(Operation, Ptr, Val, Ordering, SynchScope);
1308 }
1309
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1310 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1311 AtomicOrdering Ordering,
1312 SynchronizationScope SynchScope,
1313 BasicBlock *InsertAtEnd)
1314 : Instruction(Val->getType(), AtomicRMW,
1315 OperandTraits<AtomicRMWInst>::op_begin(this),
1316 OperandTraits<AtomicRMWInst>::operands(this),
1317 InsertAtEnd) {
1318 Init(Operation, Ptr, Val, Ordering, SynchScope);
1319 }
1320
1321 //===----------------------------------------------------------------------===//
1322 // FenceInst Implementation
1323 //===----------------------------------------------------------------------===//
1324
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1325 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1326 SynchronizationScope SynchScope,
1327 Instruction *InsertBefore)
1328 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1329 setOrdering(Ordering);
1330 setSynchScope(SynchScope);
1331 }
1332
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1333 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1334 SynchronizationScope SynchScope,
1335 BasicBlock *InsertAtEnd)
1336 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1337 setOrdering(Ordering);
1338 setSynchScope(SynchScope);
1339 }
1340
1341 //===----------------------------------------------------------------------===//
1342 // GetElementPtrInst Implementation
1343 //===----------------------------------------------------------------------===//
1344
init(Value * Ptr,ArrayRef<Value * > IdxList,const Twine & Name)1345 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1346 const Twine &Name) {
1347 assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1348 OperandList[0] = Ptr;
1349 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1350 setName(Name);
1351 }
1352
GetElementPtrInst(const GetElementPtrInst & GEPI)1353 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1354 : Instruction(GEPI.getType(), GetElementPtr,
1355 OperandTraits<GetElementPtrInst>::op_end(this)
1356 - GEPI.getNumOperands(),
1357 GEPI.getNumOperands()) {
1358 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1359 SubclassOptionalData = GEPI.SubclassOptionalData;
1360 }
1361
1362 /// getIndexedType - Returns the type of the element that would be accessed with
1363 /// a gep instruction with the specified parameters.
1364 ///
1365 /// The Idxs pointer should point to a continuous piece of memory containing the
1366 /// indices, either as Value* or uint64_t.
1367 ///
1368 /// A null type is returned if the indices are invalid for the specified
1369 /// pointer type.
1370 ///
1371 template <typename IndexTy>
getIndexedTypeInternal(Type * Ptr,ArrayRef<IndexTy> IdxList)1372 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1373 PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
1374 if (!PTy) return nullptr; // Type isn't a pointer type!
1375 Type *Agg = PTy->getElementType();
1376
1377 // Handle the special case of the empty set index set, which is always valid.
1378 if (IdxList.empty())
1379 return Agg;
1380
1381 // If there is at least one index, the top level type must be sized, otherwise
1382 // it cannot be 'stepped over'.
1383 if (!Agg->isSized())
1384 return nullptr;
1385
1386 unsigned CurIdx = 1;
1387 for (; CurIdx != IdxList.size(); ++CurIdx) {
1388 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1389 if (!CT || CT->isPointerTy()) return nullptr;
1390 IndexTy Index = IdxList[CurIdx];
1391 if (!CT->indexValid(Index)) return nullptr;
1392 Agg = CT->getTypeAtIndex(Index);
1393 }
1394 return CurIdx == IdxList.size() ? Agg : nullptr;
1395 }
1396
getIndexedType(Type * Ptr,ArrayRef<Value * > IdxList)1397 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1398 return getIndexedTypeInternal(Ptr, IdxList);
1399 }
1400
getIndexedType(Type * Ptr,ArrayRef<Constant * > IdxList)1401 Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1402 ArrayRef<Constant *> IdxList) {
1403 return getIndexedTypeInternal(Ptr, IdxList);
1404 }
1405
getIndexedType(Type * Ptr,ArrayRef<uint64_t> IdxList)1406 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1407 return getIndexedTypeInternal(Ptr, IdxList);
1408 }
1409
1410 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1411 /// zeros. If so, the result pointer and the first operand have the same
1412 /// value, just potentially different types.
hasAllZeroIndices() const1413 bool GetElementPtrInst::hasAllZeroIndices() const {
1414 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1415 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1416 if (!CI->isZero()) return false;
1417 } else {
1418 return false;
1419 }
1420 }
1421 return true;
1422 }
1423
1424 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1425 /// constant integers. If so, the result pointer and the first operand have
1426 /// a constant offset between them.
hasAllConstantIndices() const1427 bool GetElementPtrInst::hasAllConstantIndices() const {
1428 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1429 if (!isa<ConstantInt>(getOperand(i)))
1430 return false;
1431 }
1432 return true;
1433 }
1434
setIsInBounds(bool B)1435 void GetElementPtrInst::setIsInBounds(bool B) {
1436 cast<GEPOperator>(this)->setIsInBounds(B);
1437 }
1438
isInBounds() const1439 bool GetElementPtrInst::isInBounds() const {
1440 return cast<GEPOperator>(this)->isInBounds();
1441 }
1442
accumulateConstantOffset(const DataLayout & DL,APInt & Offset) const1443 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1444 APInt &Offset) const {
1445 // Delegate to the generic GEPOperator implementation.
1446 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1447 }
1448
1449 //===----------------------------------------------------------------------===//
1450 // ExtractElementInst Implementation
1451 //===----------------------------------------------------------------------===//
1452
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,Instruction * InsertBef)1453 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1454 const Twine &Name,
1455 Instruction *InsertBef)
1456 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1457 ExtractElement,
1458 OperandTraits<ExtractElementInst>::op_begin(this),
1459 2, InsertBef) {
1460 assert(isValidOperands(Val, Index) &&
1461 "Invalid extractelement instruction operands!");
1462 Op<0>() = Val;
1463 Op<1>() = Index;
1464 setName(Name);
1465 }
1466
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,BasicBlock * InsertAE)1467 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1468 const Twine &Name,
1469 BasicBlock *InsertAE)
1470 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1471 ExtractElement,
1472 OperandTraits<ExtractElementInst>::op_begin(this),
1473 2, InsertAE) {
1474 assert(isValidOperands(Val, Index) &&
1475 "Invalid extractelement instruction operands!");
1476
1477 Op<0>() = Val;
1478 Op<1>() = Index;
1479 setName(Name);
1480 }
1481
1482
isValidOperands(const Value * Val,const Value * Index)1483 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1484 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1485 return false;
1486 return true;
1487 }
1488
1489
1490 //===----------------------------------------------------------------------===//
1491 // InsertElementInst Implementation
1492 //===----------------------------------------------------------------------===//
1493
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,Instruction * InsertBef)1494 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1495 const Twine &Name,
1496 Instruction *InsertBef)
1497 : Instruction(Vec->getType(), InsertElement,
1498 OperandTraits<InsertElementInst>::op_begin(this),
1499 3, InsertBef) {
1500 assert(isValidOperands(Vec, Elt, Index) &&
1501 "Invalid insertelement instruction operands!");
1502 Op<0>() = Vec;
1503 Op<1>() = Elt;
1504 Op<2>() = Index;
1505 setName(Name);
1506 }
1507
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,BasicBlock * InsertAE)1508 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1509 const Twine &Name,
1510 BasicBlock *InsertAE)
1511 : Instruction(Vec->getType(), InsertElement,
1512 OperandTraits<InsertElementInst>::op_begin(this),
1513 3, InsertAE) {
1514 assert(isValidOperands(Vec, Elt, Index) &&
1515 "Invalid insertelement instruction operands!");
1516
1517 Op<0>() = Vec;
1518 Op<1>() = Elt;
1519 Op<2>() = Index;
1520 setName(Name);
1521 }
1522
isValidOperands(const Value * Vec,const Value * Elt,const Value * Index)1523 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1524 const Value *Index) {
1525 if (!Vec->getType()->isVectorTy())
1526 return false; // First operand of insertelement must be vector type.
1527
1528 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1529 return false;// Second operand of insertelement must be vector element type.
1530
1531 if (!Index->getType()->isIntegerTy())
1532 return false; // Third operand of insertelement must be i32.
1533 return true;
1534 }
1535
1536
1537 //===----------------------------------------------------------------------===//
1538 // ShuffleVectorInst Implementation
1539 //===----------------------------------------------------------------------===//
1540
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,Instruction * InsertBefore)1541 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1542 const Twine &Name,
1543 Instruction *InsertBefore)
1544 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1545 cast<VectorType>(Mask->getType())->getNumElements()),
1546 ShuffleVector,
1547 OperandTraits<ShuffleVectorInst>::op_begin(this),
1548 OperandTraits<ShuffleVectorInst>::operands(this),
1549 InsertBefore) {
1550 assert(isValidOperands(V1, V2, Mask) &&
1551 "Invalid shuffle vector instruction operands!");
1552 Op<0>() = V1;
1553 Op<1>() = V2;
1554 Op<2>() = Mask;
1555 setName(Name);
1556 }
1557
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,BasicBlock * InsertAtEnd)1558 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1559 const Twine &Name,
1560 BasicBlock *InsertAtEnd)
1561 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1562 cast<VectorType>(Mask->getType())->getNumElements()),
1563 ShuffleVector,
1564 OperandTraits<ShuffleVectorInst>::op_begin(this),
1565 OperandTraits<ShuffleVectorInst>::operands(this),
1566 InsertAtEnd) {
1567 assert(isValidOperands(V1, V2, Mask) &&
1568 "Invalid shuffle vector instruction operands!");
1569
1570 Op<0>() = V1;
1571 Op<1>() = V2;
1572 Op<2>() = Mask;
1573 setName(Name);
1574 }
1575
isValidOperands(const Value * V1,const Value * V2,const Value * Mask)1576 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1577 const Value *Mask) {
1578 // V1 and V2 must be vectors of the same type.
1579 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1580 return false;
1581
1582 // Mask must be vector of i32.
1583 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1584 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1585 return false;
1586
1587 // Check to see if Mask is valid.
1588 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1589 return true;
1590
1591 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1592 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1593 for (Value *Op : MV->operands()) {
1594 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1595 if (CI->uge(V1Size*2))
1596 return false;
1597 } else if (!isa<UndefValue>(Op)) {
1598 return false;
1599 }
1600 }
1601 return true;
1602 }
1603
1604 if (const ConstantDataSequential *CDS =
1605 dyn_cast<ConstantDataSequential>(Mask)) {
1606 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1607 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1608 if (CDS->getElementAsInteger(i) >= V1Size*2)
1609 return false;
1610 return true;
1611 }
1612
1613 // The bitcode reader can create a place holder for a forward reference
1614 // used as the shuffle mask. When this occurs, the shuffle mask will
1615 // fall into this case and fail. To avoid this error, do this bit of
1616 // ugliness to allow such a mask pass.
1617 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1618 if (CE->getOpcode() == Instruction::UserOp1)
1619 return true;
1620
1621 return false;
1622 }
1623
1624 /// getMaskValue - Return the index from the shuffle mask for the specified
1625 /// output result. This is either -1 if the element is undef or a number less
1626 /// than 2*numelements.
getMaskValue(Constant * Mask,unsigned i)1627 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1628 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1629 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1630 return CDS->getElementAsInteger(i);
1631 Constant *C = Mask->getAggregateElement(i);
1632 if (isa<UndefValue>(C))
1633 return -1;
1634 return cast<ConstantInt>(C)->getZExtValue();
1635 }
1636
1637 /// getShuffleMask - Return the full mask for this instruction, where each
1638 /// element is the element number and undef's are returned as -1.
getShuffleMask(Constant * Mask,SmallVectorImpl<int> & Result)1639 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1640 SmallVectorImpl<int> &Result) {
1641 unsigned NumElts = Mask->getType()->getVectorNumElements();
1642
1643 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1644 for (unsigned i = 0; i != NumElts; ++i)
1645 Result.push_back(CDS->getElementAsInteger(i));
1646 return;
1647 }
1648 for (unsigned i = 0; i != NumElts; ++i) {
1649 Constant *C = Mask->getAggregateElement(i);
1650 Result.push_back(isa<UndefValue>(C) ? -1 :
1651 cast<ConstantInt>(C)->getZExtValue());
1652 }
1653 }
1654
1655
1656 //===----------------------------------------------------------------------===//
1657 // InsertValueInst Class
1658 //===----------------------------------------------------------------------===//
1659
init(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const Twine & Name)1660 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1661 const Twine &Name) {
1662 assert(NumOperands == 2 && "NumOperands not initialized?");
1663
1664 // There's no fundamental reason why we require at least one index
1665 // (other than weirdness with &*IdxBegin being invalid; see
1666 // getelementptr's init routine for example). But there's no
1667 // present need to support it.
1668 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1669
1670 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1671 Val->getType() && "Inserted value must match indexed type!");
1672 Op<0>() = Agg;
1673 Op<1>() = Val;
1674
1675 Indices.append(Idxs.begin(), Idxs.end());
1676 setName(Name);
1677 }
1678
InsertValueInst(const InsertValueInst & IVI)1679 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1680 : Instruction(IVI.getType(), InsertValue,
1681 OperandTraits<InsertValueInst>::op_begin(this), 2),
1682 Indices(IVI.Indices) {
1683 Op<0>() = IVI.getOperand(0);
1684 Op<1>() = IVI.getOperand(1);
1685 SubclassOptionalData = IVI.SubclassOptionalData;
1686 }
1687
1688 //===----------------------------------------------------------------------===//
1689 // ExtractValueInst Class
1690 //===----------------------------------------------------------------------===//
1691
init(ArrayRef<unsigned> Idxs,const Twine & Name)1692 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1693 assert(NumOperands == 1 && "NumOperands not initialized?");
1694
1695 // There's no fundamental reason why we require at least one index.
1696 // But there's no present need to support it.
1697 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1698
1699 Indices.append(Idxs.begin(), Idxs.end());
1700 setName(Name);
1701 }
1702
ExtractValueInst(const ExtractValueInst & EVI)1703 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1704 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1705 Indices(EVI.Indices) {
1706 SubclassOptionalData = EVI.SubclassOptionalData;
1707 }
1708
1709 // getIndexedType - Returns the type of the element that would be extracted
1710 // with an extractvalue instruction with the specified parameters.
1711 //
1712 // A null type is returned if the indices are invalid for the specified
1713 // pointer type.
1714 //
getIndexedType(Type * Agg,ArrayRef<unsigned> Idxs)1715 Type *ExtractValueInst::getIndexedType(Type *Agg,
1716 ArrayRef<unsigned> Idxs) {
1717 for (unsigned Index : Idxs) {
1718 // We can't use CompositeType::indexValid(Index) here.
1719 // indexValid() always returns true for arrays because getelementptr allows
1720 // out-of-bounds indices. Since we don't allow those for extractvalue and
1721 // insertvalue we need to check array indexing manually.
1722 // Since the only other types we can index into are struct types it's just
1723 // as easy to check those manually as well.
1724 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1725 if (Index >= AT->getNumElements())
1726 return nullptr;
1727 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1728 if (Index >= ST->getNumElements())
1729 return nullptr;
1730 } else {
1731 // Not a valid type to index into.
1732 return nullptr;
1733 }
1734
1735 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1736 }
1737 return const_cast<Type*>(Agg);
1738 }
1739
1740 //===----------------------------------------------------------------------===//
1741 // BinaryOperator Class
1742 //===----------------------------------------------------------------------===//
1743
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,Instruction * InsertBefore)1744 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1745 Type *Ty, const Twine &Name,
1746 Instruction *InsertBefore)
1747 : Instruction(Ty, iType,
1748 OperandTraits<BinaryOperator>::op_begin(this),
1749 OperandTraits<BinaryOperator>::operands(this),
1750 InsertBefore) {
1751 Op<0>() = S1;
1752 Op<1>() = S2;
1753 init(iType);
1754 setName(Name);
1755 }
1756
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)1757 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1758 Type *Ty, const Twine &Name,
1759 BasicBlock *InsertAtEnd)
1760 : Instruction(Ty, iType,
1761 OperandTraits<BinaryOperator>::op_begin(this),
1762 OperandTraits<BinaryOperator>::operands(this),
1763 InsertAtEnd) {
1764 Op<0>() = S1;
1765 Op<1>() = S2;
1766 init(iType);
1767 setName(Name);
1768 }
1769
1770
init(BinaryOps iType)1771 void BinaryOperator::init(BinaryOps iType) {
1772 Value *LHS = getOperand(0), *RHS = getOperand(1);
1773 (void)LHS; (void)RHS; // Silence warnings.
1774 assert(LHS->getType() == RHS->getType() &&
1775 "Binary operator operand types must match!");
1776 #ifndef NDEBUG
1777 switch (iType) {
1778 case Add: case Sub:
1779 case Mul:
1780 assert(getType() == LHS->getType() &&
1781 "Arithmetic operation should return same type as operands!");
1782 assert(getType()->isIntOrIntVectorTy() &&
1783 "Tried to create an integer operation on a non-integer type!");
1784 break;
1785 case FAdd: case FSub:
1786 case FMul:
1787 assert(getType() == LHS->getType() &&
1788 "Arithmetic operation should return same type as operands!");
1789 assert(getType()->isFPOrFPVectorTy() &&
1790 "Tried to create a floating-point operation on a "
1791 "non-floating-point type!");
1792 break;
1793 case UDiv:
1794 case SDiv:
1795 assert(getType() == LHS->getType() &&
1796 "Arithmetic operation should return same type as operands!");
1797 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1798 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1799 "Incorrect operand type (not integer) for S/UDIV");
1800 break;
1801 case FDiv:
1802 assert(getType() == LHS->getType() &&
1803 "Arithmetic operation should return same type as operands!");
1804 assert(getType()->isFPOrFPVectorTy() &&
1805 "Incorrect operand type (not floating point) for FDIV");
1806 break;
1807 case URem:
1808 case SRem:
1809 assert(getType() == LHS->getType() &&
1810 "Arithmetic operation should return same type as operands!");
1811 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1812 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1813 "Incorrect operand type (not integer) for S/UREM");
1814 break;
1815 case FRem:
1816 assert(getType() == LHS->getType() &&
1817 "Arithmetic operation should return same type as operands!");
1818 assert(getType()->isFPOrFPVectorTy() &&
1819 "Incorrect operand type (not floating point) for FREM");
1820 break;
1821 case Shl:
1822 case LShr:
1823 case AShr:
1824 assert(getType() == LHS->getType() &&
1825 "Shift operation should return same type as operands!");
1826 assert((getType()->isIntegerTy() ||
1827 (getType()->isVectorTy() &&
1828 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1829 "Tried to create a shift operation on a non-integral type!");
1830 break;
1831 case And: case Or:
1832 case Xor:
1833 assert(getType() == LHS->getType() &&
1834 "Logical operation should return same type as operands!");
1835 assert((getType()->isIntegerTy() ||
1836 (getType()->isVectorTy() &&
1837 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1838 "Tried to create a logical operation on a non-integral type!");
1839 break;
1840 default:
1841 break;
1842 }
1843 #endif
1844 }
1845
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)1846 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1847 const Twine &Name,
1848 Instruction *InsertBefore) {
1849 assert(S1->getType() == S2->getType() &&
1850 "Cannot create binary operator with two operands of differing type!");
1851 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1852 }
1853
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)1854 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1855 const Twine &Name,
1856 BasicBlock *InsertAtEnd) {
1857 BinaryOperator *Res = Create(Op, S1, S2, Name);
1858 InsertAtEnd->getInstList().push_back(Res);
1859 return Res;
1860 }
1861
CreateNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1862 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1863 Instruction *InsertBefore) {
1864 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1865 return new BinaryOperator(Instruction::Sub,
1866 zero, Op,
1867 Op->getType(), Name, InsertBefore);
1868 }
1869
CreateNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1870 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1871 BasicBlock *InsertAtEnd) {
1872 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1873 return new BinaryOperator(Instruction::Sub,
1874 zero, Op,
1875 Op->getType(), Name, InsertAtEnd);
1876 }
1877
CreateNSWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1878 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1879 Instruction *InsertBefore) {
1880 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1881 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1882 }
1883
CreateNSWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1884 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1885 BasicBlock *InsertAtEnd) {
1886 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1887 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1888 }
1889
CreateNUWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1890 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1891 Instruction *InsertBefore) {
1892 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1893 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1894 }
1895
CreateNUWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1896 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1897 BasicBlock *InsertAtEnd) {
1898 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1899 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1900 }
1901
CreateFNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1902 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1903 Instruction *InsertBefore) {
1904 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1905 return new BinaryOperator(Instruction::FSub, zero, Op,
1906 Op->getType(), Name, InsertBefore);
1907 }
1908
CreateFNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1909 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1910 BasicBlock *InsertAtEnd) {
1911 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1912 return new BinaryOperator(Instruction::FSub, zero, Op,
1913 Op->getType(), Name, InsertAtEnd);
1914 }
1915
CreateNot(Value * Op,const Twine & Name,Instruction * InsertBefore)1916 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1917 Instruction *InsertBefore) {
1918 Constant *C = Constant::getAllOnesValue(Op->getType());
1919 return new BinaryOperator(Instruction::Xor, Op, C,
1920 Op->getType(), Name, InsertBefore);
1921 }
1922
CreateNot(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1923 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1924 BasicBlock *InsertAtEnd) {
1925 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1926 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1927 Op->getType(), Name, InsertAtEnd);
1928 }
1929
1930
1931 // isConstantAllOnes - Helper function for several functions below
isConstantAllOnes(const Value * V)1932 static inline bool isConstantAllOnes(const Value *V) {
1933 if (const Constant *C = dyn_cast<Constant>(V))
1934 return C->isAllOnesValue();
1935 return false;
1936 }
1937
isNeg(const Value * V)1938 bool BinaryOperator::isNeg(const Value *V) {
1939 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1940 if (Bop->getOpcode() == Instruction::Sub)
1941 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1942 return C->isNegativeZeroValue();
1943 return false;
1944 }
1945
isFNeg(const Value * V,bool IgnoreZeroSign)1946 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
1947 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1948 if (Bop->getOpcode() == Instruction::FSub)
1949 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
1950 if (!IgnoreZeroSign)
1951 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
1952 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
1953 }
1954 return false;
1955 }
1956
isNot(const Value * V)1957 bool BinaryOperator::isNot(const Value *V) {
1958 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1959 return (Bop->getOpcode() == Instruction::Xor &&
1960 (isConstantAllOnes(Bop->getOperand(1)) ||
1961 isConstantAllOnes(Bop->getOperand(0))));
1962 return false;
1963 }
1964
getNegArgument(Value * BinOp)1965 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1966 return cast<BinaryOperator>(BinOp)->getOperand(1);
1967 }
1968
getNegArgument(const Value * BinOp)1969 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1970 return getNegArgument(const_cast<Value*>(BinOp));
1971 }
1972
getFNegArgument(Value * BinOp)1973 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1974 return cast<BinaryOperator>(BinOp)->getOperand(1);
1975 }
1976
getFNegArgument(const Value * BinOp)1977 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1978 return getFNegArgument(const_cast<Value*>(BinOp));
1979 }
1980
getNotArgument(Value * BinOp)1981 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1982 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1983 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1984 Value *Op0 = BO->getOperand(0);
1985 Value *Op1 = BO->getOperand(1);
1986 if (isConstantAllOnes(Op0)) return Op1;
1987
1988 assert(isConstantAllOnes(Op1));
1989 return Op0;
1990 }
1991
getNotArgument(const Value * BinOp)1992 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1993 return getNotArgument(const_cast<Value*>(BinOp));
1994 }
1995
1996
1997 // swapOperands - Exchange the two operands to this instruction. This
1998 // instruction is safe to use on any binary instruction and does not
1999 // modify the semantics of the instruction. If the instruction is
2000 // order dependent (SetLT f.e.) the opcode is changed.
2001 //
swapOperands()2002 bool BinaryOperator::swapOperands() {
2003 if (!isCommutative())
2004 return true; // Can't commute operands
2005 Op<0>().swap(Op<1>());
2006 return false;
2007 }
2008
setHasNoUnsignedWrap(bool b)2009 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
2010 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
2011 }
2012
setHasNoSignedWrap(bool b)2013 void BinaryOperator::setHasNoSignedWrap(bool b) {
2014 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
2015 }
2016
setIsExact(bool b)2017 void BinaryOperator::setIsExact(bool b) {
2018 cast<PossiblyExactOperator>(this)->setIsExact(b);
2019 }
2020
hasNoUnsignedWrap() const2021 bool BinaryOperator::hasNoUnsignedWrap() const {
2022 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2023 }
2024
hasNoSignedWrap() const2025 bool BinaryOperator::hasNoSignedWrap() const {
2026 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2027 }
2028
isExact() const2029 bool BinaryOperator::isExact() const {
2030 return cast<PossiblyExactOperator>(this)->isExact();
2031 }
2032
2033 //===----------------------------------------------------------------------===//
2034 // FPMathOperator Class
2035 //===----------------------------------------------------------------------===//
2036
2037 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2038 /// An accuracy of 0.0 means that the operation should be performed with the
2039 /// default precision.
getFPAccuracy() const2040 float FPMathOperator::getFPAccuracy() const {
2041 const MDNode *MD =
2042 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2043 if (!MD)
2044 return 0.0;
2045 ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
2046 return Accuracy->getValueAPF().convertToFloat();
2047 }
2048
2049
2050 //===----------------------------------------------------------------------===//
2051 // CastInst Class
2052 //===----------------------------------------------------------------------===//
2053
anchor()2054 void CastInst::anchor() {}
2055
2056 // Just determine if this cast only deals with integral->integral conversion.
isIntegerCast() const2057 bool CastInst::isIntegerCast() const {
2058 switch (getOpcode()) {
2059 default: return false;
2060 case Instruction::ZExt:
2061 case Instruction::SExt:
2062 case Instruction::Trunc:
2063 return true;
2064 case Instruction::BitCast:
2065 return getOperand(0)->getType()->isIntegerTy() &&
2066 getType()->isIntegerTy();
2067 }
2068 }
2069
isLosslessCast() const2070 bool CastInst::isLosslessCast() const {
2071 // Only BitCast can be lossless, exit fast if we're not BitCast
2072 if (getOpcode() != Instruction::BitCast)
2073 return false;
2074
2075 // Identity cast is always lossless
2076 Type* SrcTy = getOperand(0)->getType();
2077 Type* DstTy = getType();
2078 if (SrcTy == DstTy)
2079 return true;
2080
2081 // Pointer to pointer is always lossless.
2082 if (SrcTy->isPointerTy())
2083 return DstTy->isPointerTy();
2084 return false; // Other types have no identity values
2085 }
2086
2087 /// This function determines if the CastInst does not require any bits to be
2088 /// changed in order to effect the cast. Essentially, it identifies cases where
2089 /// no code gen is necessary for the cast, hence the name no-op cast. For
2090 /// example, the following are all no-op casts:
2091 /// # bitcast i32* %x to i8*
2092 /// # bitcast <2 x i32> %x to <4 x i16>
2093 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2094 /// @brief Determine if the described cast is a no-op.
isNoopCast(Instruction::CastOps Opcode,Type * SrcTy,Type * DestTy,Type * IntPtrTy)2095 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2096 Type *SrcTy,
2097 Type *DestTy,
2098 Type *IntPtrTy) {
2099 switch (Opcode) {
2100 default: llvm_unreachable("Invalid CastOp");
2101 case Instruction::Trunc:
2102 case Instruction::ZExt:
2103 case Instruction::SExt:
2104 case Instruction::FPTrunc:
2105 case Instruction::FPExt:
2106 case Instruction::UIToFP:
2107 case Instruction::SIToFP:
2108 case Instruction::FPToUI:
2109 case Instruction::FPToSI:
2110 case Instruction::AddrSpaceCast:
2111 // TODO: Target informations may give a more accurate answer here.
2112 return false;
2113 case Instruction::BitCast:
2114 return true; // BitCast never modifies bits.
2115 case Instruction::PtrToInt:
2116 return IntPtrTy->getScalarSizeInBits() ==
2117 DestTy->getScalarSizeInBits();
2118 case Instruction::IntToPtr:
2119 return IntPtrTy->getScalarSizeInBits() ==
2120 SrcTy->getScalarSizeInBits();
2121 }
2122 }
2123
2124 /// @brief Determine if a cast is a no-op.
isNoopCast(Type * IntPtrTy) const2125 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2126 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2127 }
2128
isNoopCast(const DataLayout * DL) const2129 bool CastInst::isNoopCast(const DataLayout *DL) const {
2130 if (!DL) {
2131 // Assume maximum pointer size.
2132 return isNoopCast(Type::getInt64Ty(getContext()));
2133 }
2134
2135 Type *PtrOpTy = nullptr;
2136 if (getOpcode() == Instruction::PtrToInt)
2137 PtrOpTy = getOperand(0)->getType();
2138 else if (getOpcode() == Instruction::IntToPtr)
2139 PtrOpTy = getType();
2140
2141 Type *IntPtrTy = PtrOpTy
2142 ? DL->getIntPtrType(PtrOpTy)
2143 : DL->getIntPtrType(getContext(), 0);
2144
2145 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2146 }
2147
2148 /// This function determines if a pair of casts can be eliminated and what
2149 /// opcode should be used in the elimination. This assumes that there are two
2150 /// instructions like this:
2151 /// * %F = firstOpcode SrcTy %x to MidTy
2152 /// * %S = secondOpcode MidTy %F to DstTy
2153 /// The function returns a resultOpcode so these two casts can be replaced with:
2154 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2155 /// If no such cast is permited, the function returns 0.
isEliminableCastPair(Instruction::CastOps firstOp,Instruction::CastOps secondOp,Type * SrcTy,Type * MidTy,Type * DstTy,Type * SrcIntPtrTy,Type * MidIntPtrTy,Type * DstIntPtrTy)2156 unsigned CastInst::isEliminableCastPair(
2157 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2158 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2159 Type *DstIntPtrTy) {
2160 // Define the 144 possibilities for these two cast instructions. The values
2161 // in this matrix determine what to do in a given situation and select the
2162 // case in the switch below. The rows correspond to firstOp, the columns
2163 // correspond to secondOp. In looking at the table below, keep in mind
2164 // the following cast properties:
2165 //
2166 // Size Compare Source Destination
2167 // Operator Src ? Size Type Sign Type Sign
2168 // -------- ------------ ------------------- ---------------------
2169 // TRUNC > Integer Any Integral Any
2170 // ZEXT < Integral Unsigned Integer Any
2171 // SEXT < Integral Signed Integer Any
2172 // FPTOUI n/a FloatPt n/a Integral Unsigned
2173 // FPTOSI n/a FloatPt n/a Integral Signed
2174 // UITOFP n/a Integral Unsigned FloatPt n/a
2175 // SITOFP n/a Integral Signed FloatPt n/a
2176 // FPTRUNC > FloatPt n/a FloatPt n/a
2177 // FPEXT < FloatPt n/a FloatPt n/a
2178 // PTRTOINT n/a Pointer n/a Integral Unsigned
2179 // INTTOPTR n/a Integral Unsigned Pointer n/a
2180 // BITCAST = FirstClass n/a FirstClass n/a
2181 // ADDRSPCST n/a Pointer n/a Pointer n/a
2182 //
2183 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2184 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2185 // into "fptoui double to i64", but this loses information about the range
2186 // of the produced value (we no longer know the top-part is all zeros).
2187 // Further this conversion is often much more expensive for typical hardware,
2188 // and causes issues when building libgcc. We disallow fptosi+sext for the
2189 // same reason.
2190 const unsigned numCastOps =
2191 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2192 static const uint8_t CastResults[numCastOps][numCastOps] = {
2193 // T F F U S F F P I B A -+
2194 // R Z S P P I I T P 2 N T S |
2195 // U E E 2 2 2 2 R E I T C C +- secondOp
2196 // N X X U S F F N X N 2 V V |
2197 // C T T I I P P C T T P T T -+
2198 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2199 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3, 0}, // ZExt |
2200 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2201 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2202 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2203 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2204 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2205 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4, 0}, // FPTrunc |
2206 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt |
2207 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2208 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2209 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2210 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2211 };
2212
2213 // If either of the casts are a bitcast from scalar to vector, disallow the
2214 // merging. However, bitcast of A->B->A are allowed.
2215 bool isFirstBitcast = (firstOp == Instruction::BitCast);
2216 bool isSecondBitcast = (secondOp == Instruction::BitCast);
2217 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2218
2219 // Check if any of the bitcasts convert scalars<->vectors.
2220 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2221 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2222 // Unless we are bitcasing to the original type, disallow optimizations.
2223 if (!chainedBitcast) return 0;
2224
2225 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2226 [secondOp-Instruction::CastOpsBegin];
2227 switch (ElimCase) {
2228 case 0:
2229 // Categorically disallowed.
2230 return 0;
2231 case 1:
2232 // Allowed, use first cast's opcode.
2233 return firstOp;
2234 case 2:
2235 // Allowed, use second cast's opcode.
2236 return secondOp;
2237 case 3:
2238 // No-op cast in second op implies firstOp as long as the DestTy
2239 // is integer and we are not converting between a vector and a
2240 // non-vector type.
2241 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2242 return firstOp;
2243 return 0;
2244 case 4:
2245 // No-op cast in second op implies firstOp as long as the DestTy
2246 // is floating point.
2247 if (DstTy->isFloatingPointTy())
2248 return firstOp;
2249 return 0;
2250 case 5:
2251 // No-op cast in first op implies secondOp as long as the SrcTy
2252 // is an integer.
2253 if (SrcTy->isIntegerTy())
2254 return secondOp;
2255 return 0;
2256 case 6:
2257 // No-op cast in first op implies secondOp as long as the SrcTy
2258 // is a floating point.
2259 if (SrcTy->isFloatingPointTy())
2260 return secondOp;
2261 return 0;
2262 case 7: {
2263 // Cannot simplify if address spaces are different!
2264 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2265 return 0;
2266
2267 unsigned MidSize = MidTy->getScalarSizeInBits();
2268 // We can still fold this without knowing the actual sizes as long we
2269 // know that the intermediate pointer is the largest possible
2270 // pointer size.
2271 // FIXME: Is this always true?
2272 if (MidSize == 64)
2273 return Instruction::BitCast;
2274
2275 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2276 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2277 return 0;
2278 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2279 if (MidSize >= PtrSize)
2280 return Instruction::BitCast;
2281 return 0;
2282 }
2283 case 8: {
2284 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2285 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2286 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2287 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2288 unsigned DstSize = DstTy->getScalarSizeInBits();
2289 if (SrcSize == DstSize)
2290 return Instruction::BitCast;
2291 else if (SrcSize < DstSize)
2292 return firstOp;
2293 return secondOp;
2294 }
2295 case 9:
2296 // zext, sext -> zext, because sext can't sign extend after zext
2297 return Instruction::ZExt;
2298 case 10:
2299 // fpext followed by ftrunc is allowed if the bit size returned to is
2300 // the same as the original, in which case its just a bitcast
2301 if (SrcTy == DstTy)
2302 return Instruction::BitCast;
2303 return 0; // If the types are not the same we can't eliminate it.
2304 case 11: {
2305 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2306 if (!MidIntPtrTy)
2307 return 0;
2308 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2309 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2310 unsigned DstSize = DstTy->getScalarSizeInBits();
2311 if (SrcSize <= PtrSize && SrcSize == DstSize)
2312 return Instruction::BitCast;
2313 return 0;
2314 }
2315 case 12: {
2316 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2317 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2318 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2319 return Instruction::AddrSpaceCast;
2320 return Instruction::BitCast;
2321 }
2322 case 13:
2323 // FIXME: this state can be merged with (1), but the following assert
2324 // is useful to check the correcteness of the sequence due to semantic
2325 // change of bitcast.
2326 assert(
2327 SrcTy->isPtrOrPtrVectorTy() &&
2328 MidTy->isPtrOrPtrVectorTy() &&
2329 DstTy->isPtrOrPtrVectorTy() &&
2330 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2331 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2332 "Illegal addrspacecast, bitcast sequence!");
2333 // Allowed, use first cast's opcode
2334 return firstOp;
2335 case 14:
2336 // bitcast, addrspacecast -> addrspacecast if the element type of
2337 // bitcast's source is the same as that of addrspacecast's destination.
2338 if (SrcTy->getPointerElementType() == DstTy->getPointerElementType())
2339 return Instruction::AddrSpaceCast;
2340 return 0;
2341
2342 case 15:
2343 // FIXME: this state can be merged with (1), but the following assert
2344 // is useful to check the correcteness of the sequence due to semantic
2345 // change of bitcast.
2346 assert(
2347 SrcTy->isIntOrIntVectorTy() &&
2348 MidTy->isPtrOrPtrVectorTy() &&
2349 DstTy->isPtrOrPtrVectorTy() &&
2350 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2351 "Illegal inttoptr, bitcast sequence!");
2352 // Allowed, use first cast's opcode
2353 return firstOp;
2354 case 16:
2355 // FIXME: this state can be merged with (2), but the following assert
2356 // is useful to check the correcteness of the sequence due to semantic
2357 // change of bitcast.
2358 assert(
2359 SrcTy->isPtrOrPtrVectorTy() &&
2360 MidTy->isPtrOrPtrVectorTy() &&
2361 DstTy->isIntOrIntVectorTy() &&
2362 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2363 "Illegal bitcast, ptrtoint sequence!");
2364 // Allowed, use second cast's opcode
2365 return secondOp;
2366 case 99:
2367 // Cast combination can't happen (error in input). This is for all cases
2368 // where the MidTy is not the same for the two cast instructions.
2369 llvm_unreachable("Invalid Cast Combination");
2370 default:
2371 llvm_unreachable("Error in CastResults table!!!");
2372 }
2373 }
2374
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2375 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2376 const Twine &Name, Instruction *InsertBefore) {
2377 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2378 // Construct and return the appropriate CastInst subclass
2379 switch (op) {
2380 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2381 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2382 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2383 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2384 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2385 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2386 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2387 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2388 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2389 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2390 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2391 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2392 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2393 default: llvm_unreachable("Invalid opcode provided");
2394 }
2395 }
2396
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2397 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2398 const Twine &Name, BasicBlock *InsertAtEnd) {
2399 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2400 // Construct and return the appropriate CastInst subclass
2401 switch (op) {
2402 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2403 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2404 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2405 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2406 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2407 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2408 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2409 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2410 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2411 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2412 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2413 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2414 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2415 default: llvm_unreachable("Invalid opcode provided");
2416 }
2417 }
2418
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2419 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2420 const Twine &Name,
2421 Instruction *InsertBefore) {
2422 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2423 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2424 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2425 }
2426
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2427 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2428 const Twine &Name,
2429 BasicBlock *InsertAtEnd) {
2430 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2431 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2432 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2433 }
2434
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2435 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2436 const Twine &Name,
2437 Instruction *InsertBefore) {
2438 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2439 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2440 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2441 }
2442
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2443 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2444 const Twine &Name,
2445 BasicBlock *InsertAtEnd) {
2446 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2447 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2448 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2449 }
2450
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2451 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2452 const Twine &Name,
2453 Instruction *InsertBefore) {
2454 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2455 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2456 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2457 }
2458
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2459 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2460 const Twine &Name,
2461 BasicBlock *InsertAtEnd) {
2462 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2463 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2464 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2465 }
2466
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2467 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2468 const Twine &Name,
2469 BasicBlock *InsertAtEnd) {
2470 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2471 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2472 "Invalid cast");
2473 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2474 assert((!Ty->isVectorTy() ||
2475 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2476 "Invalid cast");
2477
2478 if (Ty->isIntOrIntVectorTy())
2479 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2480
2481 Type *STy = S->getType();
2482 if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2483 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2484
2485 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2486 }
2487
2488 /// @brief Create a BitCast or a PtrToInt cast instruction
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2489 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2490 const Twine &Name,
2491 Instruction *InsertBefore) {
2492 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2493 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2494 "Invalid cast");
2495 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2496 assert((!Ty->isVectorTy() ||
2497 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2498 "Invalid cast");
2499
2500 if (Ty->isIntOrIntVectorTy())
2501 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2502
2503 Type *STy = S->getType();
2504 if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2505 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2506
2507 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2508 }
2509
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,Instruction * InsertBefore)2510 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2511 bool isSigned, const Twine &Name,
2512 Instruction *InsertBefore) {
2513 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2514 "Invalid integer cast");
2515 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2516 unsigned DstBits = Ty->getScalarSizeInBits();
2517 Instruction::CastOps opcode =
2518 (SrcBits == DstBits ? Instruction::BitCast :
2519 (SrcBits > DstBits ? Instruction::Trunc :
2520 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2521 return Create(opcode, C, Ty, Name, InsertBefore);
2522 }
2523
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,BasicBlock * InsertAtEnd)2524 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2525 bool isSigned, const Twine &Name,
2526 BasicBlock *InsertAtEnd) {
2527 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2528 "Invalid cast");
2529 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2530 unsigned DstBits = Ty->getScalarSizeInBits();
2531 Instruction::CastOps opcode =
2532 (SrcBits == DstBits ? Instruction::BitCast :
2533 (SrcBits > DstBits ? Instruction::Trunc :
2534 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2535 return Create(opcode, C, Ty, Name, InsertAtEnd);
2536 }
2537
CreateFPCast(Value * C,Type * Ty,const Twine & Name,Instruction * InsertBefore)2538 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2539 const Twine &Name,
2540 Instruction *InsertBefore) {
2541 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2542 "Invalid cast");
2543 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2544 unsigned DstBits = Ty->getScalarSizeInBits();
2545 Instruction::CastOps opcode =
2546 (SrcBits == DstBits ? Instruction::BitCast :
2547 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2548 return Create(opcode, C, Ty, Name, InsertBefore);
2549 }
2550
CreateFPCast(Value * C,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2551 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2552 const Twine &Name,
2553 BasicBlock *InsertAtEnd) {
2554 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2555 "Invalid cast");
2556 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2557 unsigned DstBits = Ty->getScalarSizeInBits();
2558 Instruction::CastOps opcode =
2559 (SrcBits == DstBits ? Instruction::BitCast :
2560 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2561 return Create(opcode, C, Ty, Name, InsertAtEnd);
2562 }
2563
2564 // Check whether it is valid to call getCastOpcode for these types.
2565 // This routine must be kept in sync with getCastOpcode.
isCastable(Type * SrcTy,Type * DestTy)2566 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2567 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2568 return false;
2569
2570 if (SrcTy == DestTy)
2571 return true;
2572
2573 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2574 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2575 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2576 // An element by element cast. Valid if casting the elements is valid.
2577 SrcTy = SrcVecTy->getElementType();
2578 DestTy = DestVecTy->getElementType();
2579 }
2580
2581 // Get the bit sizes, we'll need these
2582 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2583 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2584
2585 // Run through the possibilities ...
2586 if (DestTy->isIntegerTy()) { // Casting to integral
2587 if (SrcTy->isIntegerTy()) { // Casting from integral
2588 return true;
2589 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2590 return true;
2591 } else if (SrcTy->isVectorTy()) { // Casting from vector
2592 return DestBits == SrcBits;
2593 } else { // Casting from something else
2594 return SrcTy->isPointerTy();
2595 }
2596 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2597 if (SrcTy->isIntegerTy()) { // Casting from integral
2598 return true;
2599 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2600 return true;
2601 } else if (SrcTy->isVectorTy()) { // Casting from vector
2602 return DestBits == SrcBits;
2603 } else { // Casting from something else
2604 return false;
2605 }
2606 } else if (DestTy->isVectorTy()) { // Casting to vector
2607 return DestBits == SrcBits;
2608 } else if (DestTy->isPointerTy()) { // Casting to pointer
2609 if (SrcTy->isPointerTy()) { // Casting from pointer
2610 return true;
2611 } else if (SrcTy->isIntegerTy()) { // Casting from integral
2612 return true;
2613 } else { // Casting from something else
2614 return false;
2615 }
2616 } else if (DestTy->isX86_MMXTy()) {
2617 if (SrcTy->isVectorTy()) {
2618 return DestBits == SrcBits; // 64-bit vector to MMX
2619 } else {
2620 return false;
2621 }
2622 } else { // Casting to something else
2623 return false;
2624 }
2625 }
2626
isBitCastable(Type * SrcTy,Type * DestTy)2627 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2628 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2629 return false;
2630
2631 if (SrcTy == DestTy)
2632 return true;
2633
2634 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2635 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2636 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2637 // An element by element cast. Valid if casting the elements is valid.
2638 SrcTy = SrcVecTy->getElementType();
2639 DestTy = DestVecTy->getElementType();
2640 }
2641 }
2642 }
2643
2644 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2645 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2646 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2647 }
2648 }
2649
2650 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2651 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2652
2653 // Could still have vectors of pointers if the number of elements doesn't
2654 // match
2655 if (SrcBits == 0 || DestBits == 0)
2656 return false;
2657
2658 if (SrcBits != DestBits)
2659 return false;
2660
2661 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2662 return false;
2663
2664 return true;
2665 }
2666
2667 // Provide a way to get a "cast" where the cast opcode is inferred from the
2668 // types and size of the operand. This, basically, is a parallel of the
2669 // logic in the castIsValid function below. This axiom should hold:
2670 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2671 // should not assert in castIsValid. In other words, this produces a "correct"
2672 // casting opcode for the arguments passed to it.
2673 // This routine must be kept in sync with isCastable.
2674 Instruction::CastOps
getCastOpcode(const Value * Src,bool SrcIsSigned,Type * DestTy,bool DestIsSigned)2675 CastInst::getCastOpcode(
2676 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2677 Type *SrcTy = Src->getType();
2678
2679 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2680 "Only first class types are castable!");
2681
2682 if (SrcTy == DestTy)
2683 return BitCast;
2684
2685 // FIXME: Check address space sizes here
2686 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2687 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2688 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2689 // An element by element cast. Find the appropriate opcode based on the
2690 // element types.
2691 SrcTy = SrcVecTy->getElementType();
2692 DestTy = DestVecTy->getElementType();
2693 }
2694
2695 // Get the bit sizes, we'll need these
2696 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2697 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2698
2699 // Run through the possibilities ...
2700 if (DestTy->isIntegerTy()) { // Casting to integral
2701 if (SrcTy->isIntegerTy()) { // Casting from integral
2702 if (DestBits < SrcBits)
2703 return Trunc; // int -> smaller int
2704 else if (DestBits > SrcBits) { // its an extension
2705 if (SrcIsSigned)
2706 return SExt; // signed -> SEXT
2707 else
2708 return ZExt; // unsigned -> ZEXT
2709 } else {
2710 return BitCast; // Same size, No-op cast
2711 }
2712 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2713 if (DestIsSigned)
2714 return FPToSI; // FP -> sint
2715 else
2716 return FPToUI; // FP -> uint
2717 } else if (SrcTy->isVectorTy()) {
2718 assert(DestBits == SrcBits &&
2719 "Casting vector to integer of different width");
2720 return BitCast; // Same size, no-op cast
2721 } else {
2722 assert(SrcTy->isPointerTy() &&
2723 "Casting from a value that is not first-class type");
2724 return PtrToInt; // ptr -> int
2725 }
2726 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2727 if (SrcTy->isIntegerTy()) { // Casting from integral
2728 if (SrcIsSigned)
2729 return SIToFP; // sint -> FP
2730 else
2731 return UIToFP; // uint -> FP
2732 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2733 if (DestBits < SrcBits) {
2734 return FPTrunc; // FP -> smaller FP
2735 } else if (DestBits > SrcBits) {
2736 return FPExt; // FP -> larger FP
2737 } else {
2738 return BitCast; // same size, no-op cast
2739 }
2740 } else if (SrcTy->isVectorTy()) {
2741 assert(DestBits == SrcBits &&
2742 "Casting vector to floating point of different width");
2743 return BitCast; // same size, no-op cast
2744 }
2745 llvm_unreachable("Casting pointer or non-first class to float");
2746 } else if (DestTy->isVectorTy()) {
2747 assert(DestBits == SrcBits &&
2748 "Illegal cast to vector (wrong type or size)");
2749 return BitCast;
2750 } else if (DestTy->isPointerTy()) {
2751 if (SrcTy->isPointerTy()) {
2752 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2753 return AddrSpaceCast;
2754 return BitCast; // ptr -> ptr
2755 } else if (SrcTy->isIntegerTy()) {
2756 return IntToPtr; // int -> ptr
2757 }
2758 llvm_unreachable("Casting pointer to other than pointer or int");
2759 } else if (DestTy->isX86_MMXTy()) {
2760 if (SrcTy->isVectorTy()) {
2761 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2762 return BitCast; // 64-bit vector to MMX
2763 }
2764 llvm_unreachable("Illegal cast to X86_MMX");
2765 }
2766 llvm_unreachable("Casting to type that is not first-class");
2767 }
2768
2769 //===----------------------------------------------------------------------===//
2770 // CastInst SubClass Constructors
2771 //===----------------------------------------------------------------------===//
2772
2773 /// Check that the construction parameters for a CastInst are correct. This
2774 /// could be broken out into the separate constructors but it is useful to have
2775 /// it in one place and to eliminate the redundant code for getting the sizes
2776 /// of the types involved.
2777 bool
castIsValid(Instruction::CastOps op,Value * S,Type * DstTy)2778 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2779
2780 // Check for type sanity on the arguments
2781 Type *SrcTy = S->getType();
2782
2783 // If this is a cast to the same type then it's trivially true.
2784 if (SrcTy == DstTy)
2785 return true;
2786
2787 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2788 SrcTy->isAggregateType() || DstTy->isAggregateType())
2789 return false;
2790
2791 // Get the size of the types in bits, we'll need this later
2792 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2793 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2794
2795 // If these are vector types, get the lengths of the vectors (using zero for
2796 // scalar types means that checking that vector lengths match also checks that
2797 // scalars are not being converted to vectors or vectors to scalars).
2798 unsigned SrcLength = SrcTy->isVectorTy() ?
2799 cast<VectorType>(SrcTy)->getNumElements() : 0;
2800 unsigned DstLength = DstTy->isVectorTy() ?
2801 cast<VectorType>(DstTy)->getNumElements() : 0;
2802
2803 // Switch on the opcode provided
2804 switch (op) {
2805 default: return false; // This is an input error
2806 case Instruction::Trunc:
2807 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2808 SrcLength == DstLength && SrcBitSize > DstBitSize;
2809 case Instruction::ZExt:
2810 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2811 SrcLength == DstLength && SrcBitSize < DstBitSize;
2812 case Instruction::SExt:
2813 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2814 SrcLength == DstLength && SrcBitSize < DstBitSize;
2815 case Instruction::FPTrunc:
2816 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2817 SrcLength == DstLength && SrcBitSize > DstBitSize;
2818 case Instruction::FPExt:
2819 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2820 SrcLength == DstLength && SrcBitSize < DstBitSize;
2821 case Instruction::UIToFP:
2822 case Instruction::SIToFP:
2823 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2824 SrcLength == DstLength;
2825 case Instruction::FPToUI:
2826 case Instruction::FPToSI:
2827 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2828 SrcLength == DstLength;
2829 case Instruction::PtrToInt:
2830 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2831 return false;
2832 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2833 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2834 return false;
2835 return SrcTy->getScalarType()->isPointerTy() &&
2836 DstTy->getScalarType()->isIntegerTy();
2837 case Instruction::IntToPtr:
2838 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2839 return false;
2840 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2841 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2842 return false;
2843 return SrcTy->getScalarType()->isIntegerTy() &&
2844 DstTy->getScalarType()->isPointerTy();
2845 case Instruction::BitCast: {
2846 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2847 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2848
2849 // BitCast implies a no-op cast of type only. No bits change.
2850 // However, you can't cast pointers to anything but pointers.
2851 if (!SrcPtrTy != !DstPtrTy)
2852 return false;
2853
2854 // For non-pointer cases, the cast is okay if the source and destination bit
2855 // widths are identical.
2856 if (!SrcPtrTy)
2857 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2858
2859 // If both are pointers then the address spaces must match.
2860 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
2861 return false;
2862
2863 // A vector of pointers must have the same number of elements.
2864 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2865 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2866 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2867
2868 return false;
2869 }
2870
2871 return true;
2872 }
2873 case Instruction::AddrSpaceCast: {
2874 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2875 if (!SrcPtrTy)
2876 return false;
2877
2878 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2879 if (!DstPtrTy)
2880 return false;
2881
2882 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2883 return false;
2884
2885 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2886 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2887 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2888
2889 return false;
2890 }
2891
2892 return true;
2893 }
2894 }
2895 }
2896
TruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2897 TruncInst::TruncInst(
2898 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2899 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2900 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2901 }
2902
TruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2903 TruncInst::TruncInst(
2904 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2905 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2906 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2907 }
2908
ZExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2909 ZExtInst::ZExtInst(
2910 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2911 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2912 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2913 }
2914
ZExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2915 ZExtInst::ZExtInst(
2916 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2917 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2918 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2919 }
SExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2920 SExtInst::SExtInst(
2921 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2922 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2923 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2924 }
2925
SExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2926 SExtInst::SExtInst(
2927 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2928 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2929 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2930 }
2931
FPTruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2932 FPTruncInst::FPTruncInst(
2933 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2934 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2935 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2936 }
2937
FPTruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2938 FPTruncInst::FPTruncInst(
2939 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2940 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2941 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2942 }
2943
FPExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2944 FPExtInst::FPExtInst(
2945 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2946 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2947 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2948 }
2949
FPExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2950 FPExtInst::FPExtInst(
2951 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2952 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2953 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2954 }
2955
UIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2956 UIToFPInst::UIToFPInst(
2957 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2958 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2959 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2960 }
2961
UIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2962 UIToFPInst::UIToFPInst(
2963 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2964 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2965 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2966 }
2967
SIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2968 SIToFPInst::SIToFPInst(
2969 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2970 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2971 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2972 }
2973
SIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2974 SIToFPInst::SIToFPInst(
2975 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2976 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2977 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2978 }
2979
FPToUIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2980 FPToUIInst::FPToUIInst(
2981 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2982 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2983 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2984 }
2985
FPToUIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2986 FPToUIInst::FPToUIInst(
2987 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2988 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2989 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2990 }
2991
FPToSIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2992 FPToSIInst::FPToSIInst(
2993 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2994 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2995 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2996 }
2997
FPToSIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2998 FPToSIInst::FPToSIInst(
2999 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3000 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3001 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3002 }
3003
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3004 PtrToIntInst::PtrToIntInst(
3005 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3006 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3007 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3008 }
3009
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3010 PtrToIntInst::PtrToIntInst(
3011 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3012 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3013 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3014 }
3015
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3016 IntToPtrInst::IntToPtrInst(
3017 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3018 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3019 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3020 }
3021
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3022 IntToPtrInst::IntToPtrInst(
3023 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3024 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3025 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3026 }
3027
BitCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3028 BitCastInst::BitCastInst(
3029 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3030 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3031 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3032 }
3033
BitCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3034 BitCastInst::BitCastInst(
3035 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3036 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3037 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3038 }
3039
AddrSpaceCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3040 AddrSpaceCastInst::AddrSpaceCastInst(
3041 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3042 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3043 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3044 }
3045
AddrSpaceCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3046 AddrSpaceCastInst::AddrSpaceCastInst(
3047 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3048 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3049 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3050 }
3051
3052 //===----------------------------------------------------------------------===//
3053 // CmpInst Classes
3054 //===----------------------------------------------------------------------===//
3055
anchor()3056 void CmpInst::anchor() {}
3057
CmpInst(Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,Instruction * InsertBefore)3058 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3059 Value *LHS, Value *RHS, const Twine &Name,
3060 Instruction *InsertBefore)
3061 : Instruction(ty, op,
3062 OperandTraits<CmpInst>::op_begin(this),
3063 OperandTraits<CmpInst>::operands(this),
3064 InsertBefore) {
3065 Op<0>() = LHS;
3066 Op<1>() = RHS;
3067 setPredicate((Predicate)predicate);
3068 setName(Name);
3069 }
3070
CmpInst(Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,BasicBlock * InsertAtEnd)3071 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3072 Value *LHS, Value *RHS, const Twine &Name,
3073 BasicBlock *InsertAtEnd)
3074 : Instruction(ty, op,
3075 OperandTraits<CmpInst>::op_begin(this),
3076 OperandTraits<CmpInst>::operands(this),
3077 InsertAtEnd) {
3078 Op<0>() = LHS;
3079 Op<1>() = RHS;
3080 setPredicate((Predicate)predicate);
3081 setName(Name);
3082 }
3083
3084 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)3085 CmpInst::Create(OtherOps Op, unsigned short predicate,
3086 Value *S1, Value *S2,
3087 const Twine &Name, Instruction *InsertBefore) {
3088 if (Op == Instruction::ICmp) {
3089 if (InsertBefore)
3090 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3091 S1, S2, Name);
3092 else
3093 return new ICmpInst(CmpInst::Predicate(predicate),
3094 S1, S2, Name);
3095 }
3096
3097 if (InsertBefore)
3098 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3099 S1, S2, Name);
3100 else
3101 return new FCmpInst(CmpInst::Predicate(predicate),
3102 S1, S2, Name);
3103 }
3104
3105 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)3106 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
3107 const Twine &Name, BasicBlock *InsertAtEnd) {
3108 if (Op == Instruction::ICmp) {
3109 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3110 S1, S2, Name);
3111 }
3112 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3113 S1, S2, Name);
3114 }
3115
swapOperands()3116 void CmpInst::swapOperands() {
3117 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3118 IC->swapOperands();
3119 else
3120 cast<FCmpInst>(this)->swapOperands();
3121 }
3122
isCommutative() const3123 bool CmpInst::isCommutative() const {
3124 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3125 return IC->isCommutative();
3126 return cast<FCmpInst>(this)->isCommutative();
3127 }
3128
isEquality() const3129 bool CmpInst::isEquality() const {
3130 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3131 return IC->isEquality();
3132 return cast<FCmpInst>(this)->isEquality();
3133 }
3134
3135
getInversePredicate(Predicate pred)3136 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3137 switch (pred) {
3138 default: llvm_unreachable("Unknown cmp predicate!");
3139 case ICMP_EQ: return ICMP_NE;
3140 case ICMP_NE: return ICMP_EQ;
3141 case ICMP_UGT: return ICMP_ULE;
3142 case ICMP_ULT: return ICMP_UGE;
3143 case ICMP_UGE: return ICMP_ULT;
3144 case ICMP_ULE: return ICMP_UGT;
3145 case ICMP_SGT: return ICMP_SLE;
3146 case ICMP_SLT: return ICMP_SGE;
3147 case ICMP_SGE: return ICMP_SLT;
3148 case ICMP_SLE: return ICMP_SGT;
3149
3150 case FCMP_OEQ: return FCMP_UNE;
3151 case FCMP_ONE: return FCMP_UEQ;
3152 case FCMP_OGT: return FCMP_ULE;
3153 case FCMP_OLT: return FCMP_UGE;
3154 case FCMP_OGE: return FCMP_ULT;
3155 case FCMP_OLE: return FCMP_UGT;
3156 case FCMP_UEQ: return FCMP_ONE;
3157 case FCMP_UNE: return FCMP_OEQ;
3158 case FCMP_UGT: return FCMP_OLE;
3159 case FCMP_ULT: return FCMP_OGE;
3160 case FCMP_UGE: return FCMP_OLT;
3161 case FCMP_ULE: return FCMP_OGT;
3162 case FCMP_ORD: return FCMP_UNO;
3163 case FCMP_UNO: return FCMP_ORD;
3164 case FCMP_TRUE: return FCMP_FALSE;
3165 case FCMP_FALSE: return FCMP_TRUE;
3166 }
3167 }
3168
getSignedPredicate(Predicate pred)3169 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3170 switch (pred) {
3171 default: llvm_unreachable("Unknown icmp predicate!");
3172 case ICMP_EQ: case ICMP_NE:
3173 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3174 return pred;
3175 case ICMP_UGT: return ICMP_SGT;
3176 case ICMP_ULT: return ICMP_SLT;
3177 case ICMP_UGE: return ICMP_SGE;
3178 case ICMP_ULE: return ICMP_SLE;
3179 }
3180 }
3181
getUnsignedPredicate(Predicate pred)3182 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3183 switch (pred) {
3184 default: llvm_unreachable("Unknown icmp predicate!");
3185 case ICMP_EQ: case ICMP_NE:
3186 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3187 return pred;
3188 case ICMP_SGT: return ICMP_UGT;
3189 case ICMP_SLT: return ICMP_ULT;
3190 case ICMP_SGE: return ICMP_UGE;
3191 case ICMP_SLE: return ICMP_ULE;
3192 }
3193 }
3194
3195 /// Initialize a set of values that all satisfy the condition with C.
3196 ///
3197 ConstantRange
makeConstantRange(Predicate pred,const APInt & C)3198 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3199 APInt Lower(C);
3200 APInt Upper(C);
3201 uint32_t BitWidth = C.getBitWidth();
3202 switch (pred) {
3203 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3204 case ICmpInst::ICMP_EQ: ++Upper; break;
3205 case ICmpInst::ICMP_NE: ++Lower; break;
3206 case ICmpInst::ICMP_ULT:
3207 Lower = APInt::getMinValue(BitWidth);
3208 // Check for an empty-set condition.
3209 if (Lower == Upper)
3210 return ConstantRange(BitWidth, /*isFullSet=*/false);
3211 break;
3212 case ICmpInst::ICMP_SLT:
3213 Lower = APInt::getSignedMinValue(BitWidth);
3214 // Check for an empty-set condition.
3215 if (Lower == Upper)
3216 return ConstantRange(BitWidth, /*isFullSet=*/false);
3217 break;
3218 case ICmpInst::ICMP_UGT:
3219 ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3220 // Check for an empty-set condition.
3221 if (Lower == Upper)
3222 return ConstantRange(BitWidth, /*isFullSet=*/false);
3223 break;
3224 case ICmpInst::ICMP_SGT:
3225 ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3226 // Check for an empty-set condition.
3227 if (Lower == Upper)
3228 return ConstantRange(BitWidth, /*isFullSet=*/false);
3229 break;
3230 case ICmpInst::ICMP_ULE:
3231 Lower = APInt::getMinValue(BitWidth); ++Upper;
3232 // Check for a full-set condition.
3233 if (Lower == Upper)
3234 return ConstantRange(BitWidth, /*isFullSet=*/true);
3235 break;
3236 case ICmpInst::ICMP_SLE:
3237 Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3238 // Check for a full-set condition.
3239 if (Lower == Upper)
3240 return ConstantRange(BitWidth, /*isFullSet=*/true);
3241 break;
3242 case ICmpInst::ICMP_UGE:
3243 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3244 // Check for a full-set condition.
3245 if (Lower == Upper)
3246 return ConstantRange(BitWidth, /*isFullSet=*/true);
3247 break;
3248 case ICmpInst::ICMP_SGE:
3249 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3250 // Check for a full-set condition.
3251 if (Lower == Upper)
3252 return ConstantRange(BitWidth, /*isFullSet=*/true);
3253 break;
3254 }
3255 return ConstantRange(Lower, Upper);
3256 }
3257
getSwappedPredicate(Predicate pred)3258 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3259 switch (pred) {
3260 default: llvm_unreachable("Unknown cmp predicate!");
3261 case ICMP_EQ: case ICMP_NE:
3262 return pred;
3263 case ICMP_SGT: return ICMP_SLT;
3264 case ICMP_SLT: return ICMP_SGT;
3265 case ICMP_SGE: return ICMP_SLE;
3266 case ICMP_SLE: return ICMP_SGE;
3267 case ICMP_UGT: return ICMP_ULT;
3268 case ICMP_ULT: return ICMP_UGT;
3269 case ICMP_UGE: return ICMP_ULE;
3270 case ICMP_ULE: return ICMP_UGE;
3271
3272 case FCMP_FALSE: case FCMP_TRUE:
3273 case FCMP_OEQ: case FCMP_ONE:
3274 case FCMP_UEQ: case FCMP_UNE:
3275 case FCMP_ORD: case FCMP_UNO:
3276 return pred;
3277 case FCMP_OGT: return FCMP_OLT;
3278 case FCMP_OLT: return FCMP_OGT;
3279 case FCMP_OGE: return FCMP_OLE;
3280 case FCMP_OLE: return FCMP_OGE;
3281 case FCMP_UGT: return FCMP_ULT;
3282 case FCMP_ULT: return FCMP_UGT;
3283 case FCMP_UGE: return FCMP_ULE;
3284 case FCMP_ULE: return FCMP_UGE;
3285 }
3286 }
3287
isUnsigned(unsigned short predicate)3288 bool CmpInst::isUnsigned(unsigned short predicate) {
3289 switch (predicate) {
3290 default: return false;
3291 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3292 case ICmpInst::ICMP_UGE: return true;
3293 }
3294 }
3295
isSigned(unsigned short predicate)3296 bool CmpInst::isSigned(unsigned short predicate) {
3297 switch (predicate) {
3298 default: return false;
3299 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3300 case ICmpInst::ICMP_SGE: return true;
3301 }
3302 }
3303
isOrdered(unsigned short predicate)3304 bool CmpInst::isOrdered(unsigned short predicate) {
3305 switch (predicate) {
3306 default: return false;
3307 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3308 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3309 case FCmpInst::FCMP_ORD: return true;
3310 }
3311 }
3312
isUnordered(unsigned short predicate)3313 bool CmpInst::isUnordered(unsigned short predicate) {
3314 switch (predicate) {
3315 default: return false;
3316 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3317 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3318 case FCmpInst::FCMP_UNO: return true;
3319 }
3320 }
3321
isTrueWhenEqual(unsigned short predicate)3322 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3323 switch(predicate) {
3324 default: return false;
3325 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3326 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3327 }
3328 }
3329
isFalseWhenEqual(unsigned short predicate)3330 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3331 switch(predicate) {
3332 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3333 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3334 default: return false;
3335 }
3336 }
3337
3338
3339 //===----------------------------------------------------------------------===//
3340 // SwitchInst Implementation
3341 //===----------------------------------------------------------------------===//
3342
init(Value * Value,BasicBlock * Default,unsigned NumReserved)3343 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3344 assert(Value && Default && NumReserved);
3345 ReservedSpace = NumReserved;
3346 NumOperands = 2;
3347 OperandList = allocHungoffUses(ReservedSpace);
3348
3349 OperandList[0] = Value;
3350 OperandList[1] = Default;
3351 }
3352
3353 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3354 /// switch on and a default destination. The number of additional cases can
3355 /// be specified here to make memory allocation more efficient. This
3356 /// constructor can also autoinsert before another instruction.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,Instruction * InsertBefore)3357 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3358 Instruction *InsertBefore)
3359 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3360 nullptr, 0, InsertBefore) {
3361 init(Value, Default, 2+NumCases*2);
3362 }
3363
3364 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3365 /// switch on and a default destination. The number of additional cases can
3366 /// be specified here to make memory allocation more efficient. This
3367 /// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,BasicBlock * InsertAtEnd)3368 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3369 BasicBlock *InsertAtEnd)
3370 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3371 nullptr, 0, InsertAtEnd) {
3372 init(Value, Default, 2+NumCases*2);
3373 }
3374
SwitchInst(const SwitchInst & SI)3375 SwitchInst::SwitchInst(const SwitchInst &SI)
3376 : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3377 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3378 NumOperands = SI.getNumOperands();
3379 Use *OL = OperandList, *InOL = SI.OperandList;
3380 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3381 OL[i] = InOL[i];
3382 OL[i+1] = InOL[i+1];
3383 }
3384 SubclassOptionalData = SI.SubclassOptionalData;
3385 }
3386
~SwitchInst()3387 SwitchInst::~SwitchInst() {
3388 dropHungoffUses();
3389 }
3390
3391
3392 /// addCase - Add an entry to the switch instruction...
3393 ///
addCase(ConstantInt * OnVal,BasicBlock * Dest)3394 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3395 unsigned NewCaseIdx = getNumCases();
3396 unsigned OpNo = NumOperands;
3397 if (OpNo+2 > ReservedSpace)
3398 growOperands(); // Get more space!
3399 // Initialize some new operands.
3400 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3401 NumOperands = OpNo+2;
3402 CaseIt Case(this, NewCaseIdx);
3403 Case.setValue(OnVal);
3404 Case.setSuccessor(Dest);
3405 }
3406
3407 /// removeCase - This method removes the specified case and its successor
3408 /// from the switch instruction.
removeCase(CaseIt i)3409 void SwitchInst::removeCase(CaseIt i) {
3410 unsigned idx = i.getCaseIndex();
3411
3412 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3413
3414 unsigned NumOps = getNumOperands();
3415 Use *OL = OperandList;
3416
3417 // Overwrite this case with the end of the list.
3418 if (2 + (idx + 1) * 2 != NumOps) {
3419 OL[2 + idx * 2] = OL[NumOps - 2];
3420 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3421 }
3422
3423 // Nuke the last value.
3424 OL[NumOps-2].set(nullptr);
3425 OL[NumOps-2+1].set(nullptr);
3426 NumOperands = NumOps-2;
3427 }
3428
3429 /// growOperands - grow operands - This grows the operand list in response
3430 /// to a push_back style of operation. This grows the number of ops by 3 times.
3431 ///
growOperands()3432 void SwitchInst::growOperands() {
3433 unsigned e = getNumOperands();
3434 unsigned NumOps = e*3;
3435
3436 ReservedSpace = NumOps;
3437 Use *NewOps = allocHungoffUses(NumOps);
3438 Use *OldOps = OperandList;
3439 for (unsigned i = 0; i != e; ++i) {
3440 NewOps[i] = OldOps[i];
3441 }
3442 OperandList = NewOps;
3443 Use::zap(OldOps, OldOps + e, true);
3444 }
3445
3446
getSuccessorV(unsigned idx) const3447 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3448 return getSuccessor(idx);
3449 }
getNumSuccessorsV() const3450 unsigned SwitchInst::getNumSuccessorsV() const {
3451 return getNumSuccessors();
3452 }
setSuccessorV(unsigned idx,BasicBlock * B)3453 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3454 setSuccessor(idx, B);
3455 }
3456
3457 //===----------------------------------------------------------------------===//
3458 // IndirectBrInst Implementation
3459 //===----------------------------------------------------------------------===//
3460
init(Value * Address,unsigned NumDests)3461 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3462 assert(Address && Address->getType()->isPointerTy() &&
3463 "Address of indirectbr must be a pointer");
3464 ReservedSpace = 1+NumDests;
3465 NumOperands = 1;
3466 OperandList = allocHungoffUses(ReservedSpace);
3467
3468 OperandList[0] = Address;
3469 }
3470
3471
3472 /// growOperands - grow operands - This grows the operand list in response
3473 /// to a push_back style of operation. This grows the number of ops by 2 times.
3474 ///
growOperands()3475 void IndirectBrInst::growOperands() {
3476 unsigned e = getNumOperands();
3477 unsigned NumOps = e*2;
3478
3479 ReservedSpace = NumOps;
3480 Use *NewOps = allocHungoffUses(NumOps);
3481 Use *OldOps = OperandList;
3482 for (unsigned i = 0; i != e; ++i)
3483 NewOps[i] = OldOps[i];
3484 OperandList = NewOps;
3485 Use::zap(OldOps, OldOps + e, true);
3486 }
3487
IndirectBrInst(Value * Address,unsigned NumCases,Instruction * InsertBefore)3488 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3489 Instruction *InsertBefore)
3490 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3491 nullptr, 0, InsertBefore) {
3492 init(Address, NumCases);
3493 }
3494
IndirectBrInst(Value * Address,unsigned NumCases,BasicBlock * InsertAtEnd)3495 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3496 BasicBlock *InsertAtEnd)
3497 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3498 nullptr, 0, InsertAtEnd) {
3499 init(Address, NumCases);
3500 }
3501
IndirectBrInst(const IndirectBrInst & IBI)3502 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3503 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3504 allocHungoffUses(IBI.getNumOperands()),
3505 IBI.getNumOperands()) {
3506 Use *OL = OperandList, *InOL = IBI.OperandList;
3507 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3508 OL[i] = InOL[i];
3509 SubclassOptionalData = IBI.SubclassOptionalData;
3510 }
3511
~IndirectBrInst()3512 IndirectBrInst::~IndirectBrInst() {
3513 dropHungoffUses();
3514 }
3515
3516 /// addDestination - Add a destination.
3517 ///
addDestination(BasicBlock * DestBB)3518 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3519 unsigned OpNo = NumOperands;
3520 if (OpNo+1 > ReservedSpace)
3521 growOperands(); // Get more space!
3522 // Initialize some new operands.
3523 assert(OpNo < ReservedSpace && "Growing didn't work!");
3524 NumOperands = OpNo+1;
3525 OperandList[OpNo] = DestBB;
3526 }
3527
3528 /// removeDestination - This method removes the specified successor from the
3529 /// indirectbr instruction.
removeDestination(unsigned idx)3530 void IndirectBrInst::removeDestination(unsigned idx) {
3531 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3532
3533 unsigned NumOps = getNumOperands();
3534 Use *OL = OperandList;
3535
3536 // Replace this value with the last one.
3537 OL[idx+1] = OL[NumOps-1];
3538
3539 // Nuke the last value.
3540 OL[NumOps-1].set(nullptr);
3541 NumOperands = NumOps-1;
3542 }
3543
getSuccessorV(unsigned idx) const3544 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3545 return getSuccessor(idx);
3546 }
getNumSuccessorsV() const3547 unsigned IndirectBrInst::getNumSuccessorsV() const {
3548 return getNumSuccessors();
3549 }
setSuccessorV(unsigned idx,BasicBlock * B)3550 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3551 setSuccessor(idx, B);
3552 }
3553
3554 //===----------------------------------------------------------------------===//
3555 // clone_impl() implementations
3556 //===----------------------------------------------------------------------===//
3557
3558 // Define these methods here so vtables don't get emitted into every translation
3559 // unit that uses these classes.
3560
clone_impl() const3561 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3562 return new (getNumOperands()) GetElementPtrInst(*this);
3563 }
3564
clone_impl() const3565 BinaryOperator *BinaryOperator::clone_impl() const {
3566 return Create(getOpcode(), Op<0>(), Op<1>());
3567 }
3568
clone_impl() const3569 FCmpInst* FCmpInst::clone_impl() const {
3570 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3571 }
3572
clone_impl() const3573 ICmpInst* ICmpInst::clone_impl() const {
3574 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3575 }
3576
clone_impl() const3577 ExtractValueInst *ExtractValueInst::clone_impl() const {
3578 return new ExtractValueInst(*this);
3579 }
3580
clone_impl() const3581 InsertValueInst *InsertValueInst::clone_impl() const {
3582 return new InsertValueInst(*this);
3583 }
3584
clone_impl() const3585 AllocaInst *AllocaInst::clone_impl() const {
3586 AllocaInst *Result = new AllocaInst(getAllocatedType(),
3587 (Value *)getOperand(0), getAlignment());
3588 Result->setUsedWithInAlloca(isUsedWithInAlloca());
3589 return Result;
3590 }
3591
clone_impl() const3592 LoadInst *LoadInst::clone_impl() const {
3593 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3594 getAlignment(), getOrdering(), getSynchScope());
3595 }
3596
clone_impl() const3597 StoreInst *StoreInst::clone_impl() const {
3598 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3599 getAlignment(), getOrdering(), getSynchScope());
3600
3601 }
3602
clone_impl() const3603 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3604 AtomicCmpXchgInst *Result =
3605 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3606 getSuccessOrdering(), getFailureOrdering(),
3607 getSynchScope());
3608 Result->setVolatile(isVolatile());
3609 Result->setWeak(isWeak());
3610 return Result;
3611 }
3612
clone_impl() const3613 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3614 AtomicRMWInst *Result =
3615 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3616 getOrdering(), getSynchScope());
3617 Result->setVolatile(isVolatile());
3618 return Result;
3619 }
3620
clone_impl() const3621 FenceInst *FenceInst::clone_impl() const {
3622 return new FenceInst(getContext(), getOrdering(), getSynchScope());
3623 }
3624
clone_impl() const3625 TruncInst *TruncInst::clone_impl() const {
3626 return new TruncInst(getOperand(0), getType());
3627 }
3628
clone_impl() const3629 ZExtInst *ZExtInst::clone_impl() const {
3630 return new ZExtInst(getOperand(0), getType());
3631 }
3632
clone_impl() const3633 SExtInst *SExtInst::clone_impl() const {
3634 return new SExtInst(getOperand(0), getType());
3635 }
3636
clone_impl() const3637 FPTruncInst *FPTruncInst::clone_impl() const {
3638 return new FPTruncInst(getOperand(0), getType());
3639 }
3640
clone_impl() const3641 FPExtInst *FPExtInst::clone_impl() const {
3642 return new FPExtInst(getOperand(0), getType());
3643 }
3644
clone_impl() const3645 UIToFPInst *UIToFPInst::clone_impl() const {
3646 return new UIToFPInst(getOperand(0), getType());
3647 }
3648
clone_impl() const3649 SIToFPInst *SIToFPInst::clone_impl() const {
3650 return new SIToFPInst(getOperand(0), getType());
3651 }
3652
clone_impl() const3653 FPToUIInst *FPToUIInst::clone_impl() const {
3654 return new FPToUIInst(getOperand(0), getType());
3655 }
3656
clone_impl() const3657 FPToSIInst *FPToSIInst::clone_impl() const {
3658 return new FPToSIInst(getOperand(0), getType());
3659 }
3660
clone_impl() const3661 PtrToIntInst *PtrToIntInst::clone_impl() const {
3662 return new PtrToIntInst(getOperand(0), getType());
3663 }
3664
clone_impl() const3665 IntToPtrInst *IntToPtrInst::clone_impl() const {
3666 return new IntToPtrInst(getOperand(0), getType());
3667 }
3668
clone_impl() const3669 BitCastInst *BitCastInst::clone_impl() const {
3670 return new BitCastInst(getOperand(0), getType());
3671 }
3672
clone_impl() const3673 AddrSpaceCastInst *AddrSpaceCastInst::clone_impl() const {
3674 return new AddrSpaceCastInst(getOperand(0), getType());
3675 }
3676
clone_impl() const3677 CallInst *CallInst::clone_impl() const {
3678 return new(getNumOperands()) CallInst(*this);
3679 }
3680
clone_impl() const3681 SelectInst *SelectInst::clone_impl() const {
3682 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3683 }
3684
clone_impl() const3685 VAArgInst *VAArgInst::clone_impl() const {
3686 return new VAArgInst(getOperand(0), getType());
3687 }
3688
clone_impl() const3689 ExtractElementInst *ExtractElementInst::clone_impl() const {
3690 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3691 }
3692
clone_impl() const3693 InsertElementInst *InsertElementInst::clone_impl() const {
3694 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3695 }
3696
clone_impl() const3697 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3698 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3699 }
3700
clone_impl() const3701 PHINode *PHINode::clone_impl() const {
3702 return new PHINode(*this);
3703 }
3704
clone_impl() const3705 LandingPadInst *LandingPadInst::clone_impl() const {
3706 return new LandingPadInst(*this);
3707 }
3708
clone_impl() const3709 ReturnInst *ReturnInst::clone_impl() const {
3710 return new(getNumOperands()) ReturnInst(*this);
3711 }
3712
clone_impl() const3713 BranchInst *BranchInst::clone_impl() const {
3714 return new(getNumOperands()) BranchInst(*this);
3715 }
3716
clone_impl() const3717 SwitchInst *SwitchInst::clone_impl() const {
3718 return new SwitchInst(*this);
3719 }
3720
clone_impl() const3721 IndirectBrInst *IndirectBrInst::clone_impl() const {
3722 return new IndirectBrInst(*this);
3723 }
3724
3725
clone_impl() const3726 InvokeInst *InvokeInst::clone_impl() const {
3727 return new(getNumOperands()) InvokeInst(*this);
3728 }
3729
clone_impl() const3730 ResumeInst *ResumeInst::clone_impl() const {
3731 return new(1) ResumeInst(*this);
3732 }
3733
clone_impl() const3734 UnreachableInst *UnreachableInst::clone_impl() const {
3735 LLVMContext &Context = getContext();
3736 return new UnreachableInst(Context);
3737 }
3738