1 /*
2 * Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
3 * Copyright (C) 2009 Google Inc. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
15 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include "config.h"
28 #include "platform/Timer.h"
29
30 #include "platform/PlatformThreadData.h"
31 #include "platform/ThreadTimers.h"
32 #include "wtf/CurrentTime.h"
33 #include "wtf/HashSet.h"
34 #include <limits.h>
35 #include <math.h>
36 #include <limits>
37
38 namespace blink {
39
40 class TimerHeapReference;
41
42 // Timers are stored in a heap data structure, used to implement a priority queue.
43 // This allows us to efficiently determine which timer needs to fire the soonest.
44 // Then we set a single shared system timer to fire at that time.
45 //
46 // When a timer's "next fire time" changes, we need to move it around in the priority queue.
threadGlobalTimerHeap()47 static Vector<TimerBase*>& threadGlobalTimerHeap()
48 {
49 return PlatformThreadData::current().threadTimers().timerHeap();
50 }
51 // ----------------
52
53 class TimerHeapPointer {
54 public:
TimerHeapPointer(TimerBase ** pointer)55 TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { }
56 TimerHeapReference operator*() const;
operator ->() const57 TimerBase* operator->() const { return *m_pointer; }
58 private:
59 TimerBase** m_pointer;
60 };
61
62 class TimerHeapReference {
63 public:
TimerHeapReference(TimerBase * & reference)64 TimerHeapReference(TimerBase*& reference) : m_reference(reference) { }
operator TimerBase*() const65 operator TimerBase*() const { return m_reference; }
operator &() const66 TimerHeapPointer operator&() const { return &m_reference; }
67 TimerHeapReference& operator=(TimerBase*);
68 TimerHeapReference& operator=(TimerHeapReference);
69 private:
70 TimerBase*& m_reference;
71 };
72
operator *() const73 inline TimerHeapReference TimerHeapPointer::operator*() const
74 {
75 return *m_pointer;
76 }
77
operator =(TimerBase * timer)78 inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer)
79 {
80 m_reference = timer;
81 Vector<TimerBase*>& heap = timer->timerHeap();
82 if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size())
83 timer->m_heapIndex = &m_reference - heap.data();
84 return *this;
85 }
86
operator =(TimerHeapReference b)87 inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b)
88 {
89 TimerBase* timer = b;
90 return *this = timer;
91 }
92
swap(TimerHeapReference a,TimerHeapReference b)93 inline void swap(TimerHeapReference a, TimerHeapReference b)
94 {
95 TimerBase* timerA = a;
96 TimerBase* timerB = b;
97
98 // Invoke the assignment operator, since that takes care of updating m_heapIndex.
99 a = timerB;
100 b = timerA;
101 }
102
103 // ----------------
104
105 // Class to represent iterators in the heap when calling the standard library heap algorithms.
106 // Uses a custom pointer and reference type that update indices for pointers in the heap.
107 class TimerHeapIterator : public std::iterator<std::random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> {
108 public:
TimerHeapIterator(TimerBase ** pointer)109 explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); }
110
operator ++()111 TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; }
operator ++(int)112 TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); }
113
operator --()114 TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; }
operator --(int)115 TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); }
116
operator +=(ptrdiff_t i)117 TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; }
operator -=(ptrdiff_t i)118 TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; }
119
operator *() const120 TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); }
operator [](ptrdiff_t i) const121 TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); }
operator ->() const122 TimerBase* operator->() const { return *m_pointer; }
123
124 private:
checkConsistency(ptrdiff_t offset=0) const125 void checkConsistency(ptrdiff_t offset = 0) const
126 {
127 ASSERT(m_pointer >= threadGlobalTimerHeap().data());
128 ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
129 ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data());
130 ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
131 }
132
133 friend bool operator==(TimerHeapIterator, TimerHeapIterator);
134 friend bool operator!=(TimerHeapIterator, TimerHeapIterator);
135 friend bool operator<(TimerHeapIterator, TimerHeapIterator);
136 friend bool operator>(TimerHeapIterator, TimerHeapIterator);
137 friend bool operator<=(TimerHeapIterator, TimerHeapIterator);
138 friend bool operator>=(TimerHeapIterator, TimerHeapIterator);
139
140 friend TimerHeapIterator operator+(TimerHeapIterator, size_t);
141 friend TimerHeapIterator operator+(size_t, TimerHeapIterator);
142
143 friend TimerHeapIterator operator-(TimerHeapIterator, size_t);
144 friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator);
145
146 TimerBase** m_pointer;
147 };
148
operator ==(TimerHeapIterator a,TimerHeapIterator b)149 inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; }
operator !=(TimerHeapIterator a,TimerHeapIterator b)150 inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; }
operator <(TimerHeapIterator a,TimerHeapIterator b)151 inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; }
operator >(TimerHeapIterator a,TimerHeapIterator b)152 inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; }
operator <=(TimerHeapIterator a,TimerHeapIterator b)153 inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; }
operator >=(TimerHeapIterator a,TimerHeapIterator b)154 inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; }
155
operator +(TimerHeapIterator a,size_t b)156 inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); }
operator +(size_t a,TimerHeapIterator b)157 inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); }
158
operator -(TimerHeapIterator a,size_t b)159 inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); }
operator -(TimerHeapIterator a,TimerHeapIterator b)160 inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; }
161
162 // ----------------
163
164 class TimerHeapLessThanFunction {
165 public:
166 bool operator()(const TimerBase*, const TimerBase*) const;
167 };
168
operator ()(const TimerBase * a,const TimerBase * b) const169 inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const
170 {
171 // The comparisons below are "backwards" because the heap puts the largest
172 // element first and we want the lowest time to be the first one in the heap.
173 double aFireTime = a->m_nextFireTime;
174 double bFireTime = b->m_nextFireTime;
175 if (bFireTime != aFireTime)
176 return bFireTime < aFireTime;
177
178 // We need to look at the difference of the insertion orders instead of comparing the two
179 // outright in case of overflow.
180 unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder;
181 return difference < std::numeric_limits<unsigned>::max() / 2;
182 }
183
184 // ----------------
185
TimerBase()186 TimerBase::TimerBase()
187 : m_nextFireTime(0)
188 , m_unalignedNextFireTime(0)
189 , m_repeatInterval(0)
190 , m_heapIndex(-1)
191 , m_cachedThreadGlobalTimerHeap(0)
192 #if ENABLE(ASSERT)
193 , m_thread(currentThread())
194 #endif
195 {
196 }
197
~TimerBase()198 TimerBase::~TimerBase()
199 {
200 stop();
201 ASSERT(!inHeap());
202 }
203
start(double nextFireInterval,double repeatInterval,const TraceLocation & caller)204 void TimerBase::start(double nextFireInterval, double repeatInterval, const TraceLocation& caller)
205 {
206 ASSERT(m_thread == currentThread());
207
208 m_location = caller;
209 m_repeatInterval = repeatInterval;
210 setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval);
211 }
212
stop()213 void TimerBase::stop()
214 {
215 ASSERT(m_thread == currentThread());
216
217 m_repeatInterval = 0;
218 setNextFireTime(0);
219
220 ASSERT(m_nextFireTime == 0);
221 ASSERT(m_repeatInterval == 0);
222 ASSERT(!inHeap());
223 }
224
nextFireInterval() const225 double TimerBase::nextFireInterval() const
226 {
227 ASSERT(isActive());
228 double current = monotonicallyIncreasingTime();
229 if (m_nextFireTime < current)
230 return 0;
231 return m_nextFireTime - current;
232 }
233
checkHeapIndex() const234 inline void TimerBase::checkHeapIndex() const
235 {
236 ASSERT(timerHeap() == threadGlobalTimerHeap());
237 ASSERT(!timerHeap().isEmpty());
238 ASSERT(m_heapIndex >= 0);
239 ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
240 ASSERT(timerHeap()[m_heapIndex] == this);
241 }
242
checkConsistency() const243 inline void TimerBase::checkConsistency() const
244 {
245 // Timers should be in the heap if and only if they have a non-zero next fire time.
246 ASSERT(inHeap() == (m_nextFireTime != 0));
247 if (inHeap())
248 checkHeapIndex();
249 }
250
heapDecreaseKey()251 void TimerBase::heapDecreaseKey()
252 {
253 ASSERT(m_nextFireTime != 0);
254 checkHeapIndex();
255 TimerBase** heapData = timerHeap().data();
256 push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction());
257 checkHeapIndex();
258 }
259
heapDelete()260 inline void TimerBase::heapDelete()
261 {
262 ASSERT(m_nextFireTime == 0);
263 heapPop();
264 timerHeap().removeLast();
265 m_heapIndex = -1;
266 }
267
heapDeleteMin()268 void TimerBase::heapDeleteMin()
269 {
270 ASSERT(m_nextFireTime == 0);
271 heapPopMin();
272 timerHeap().removeLast();
273 m_heapIndex = -1;
274 }
275
heapIncreaseKey()276 inline void TimerBase::heapIncreaseKey()
277 {
278 ASSERT(m_nextFireTime != 0);
279 heapPop();
280 heapDecreaseKey();
281 }
282
heapInsert()283 inline void TimerBase::heapInsert()
284 {
285 ASSERT(!inHeap());
286 timerHeap().append(this);
287 m_heapIndex = timerHeap().size() - 1;
288 heapDecreaseKey();
289 }
290
heapPop()291 inline void TimerBase::heapPop()
292 {
293 // Temporarily force this timer to have the minimum key so we can pop it.
294 double fireTime = m_nextFireTime;
295 m_nextFireTime = -std::numeric_limits<double>::infinity();
296 heapDecreaseKey();
297 heapPopMin();
298 m_nextFireTime = fireTime;
299 }
300
heapPopMin()301 void TimerBase::heapPopMin()
302 {
303 ASSERT(this == timerHeap().first());
304 checkHeapIndex();
305 Vector<TimerBase*>& heap = timerHeap();
306 TimerBase** heapData = heap.data();
307 pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction());
308 checkHeapIndex();
309 ASSERT(this == timerHeap().last());
310 }
311
parentHeapPropertyHolds(const TimerBase * current,const Vector<TimerBase * > & heap,unsigned currentIndex)312 static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex)
313 {
314 if (!currentIndex)
315 return true;
316 unsigned parentIndex = (currentIndex - 1) / 2;
317 TimerHeapLessThanFunction compareHeapPosition;
318 return compareHeapPosition(current, heap[parentIndex]);
319 }
320
childHeapPropertyHolds(const TimerBase * current,const Vector<TimerBase * > & heap,unsigned childIndex)321 static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex)
322 {
323 if (childIndex >= heap.size())
324 return true;
325 TimerHeapLessThanFunction compareHeapPosition;
326 return compareHeapPosition(heap[childIndex], current);
327 }
328
hasValidHeapPosition() const329 bool TimerBase::hasValidHeapPosition() const
330 {
331 ASSERT(m_nextFireTime);
332 if (!inHeap())
333 return false;
334 // Check if the heap property still holds with the new fire time. If it does we don't need to do anything.
335 // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions
336 // in updateHeapIfNeeded() will get hit.
337 const Vector<TimerBase*>& heap = timerHeap();
338 if (!parentHeapPropertyHolds(this, heap, m_heapIndex))
339 return false;
340 unsigned childIndex1 = 2 * m_heapIndex + 1;
341 unsigned childIndex2 = childIndex1 + 1;
342 return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2);
343 }
344
updateHeapIfNeeded(double oldTime)345 void TimerBase::updateHeapIfNeeded(double oldTime)
346 {
347 if (m_nextFireTime && hasValidHeapPosition())
348 return;
349 #if ENABLE(ASSERT)
350 int oldHeapIndex = m_heapIndex;
351 #endif
352 if (!oldTime)
353 heapInsert();
354 else if (!m_nextFireTime)
355 heapDelete();
356 else if (m_nextFireTime < oldTime)
357 heapDecreaseKey();
358 else
359 heapIncreaseKey();
360 ASSERT(m_heapIndex != oldHeapIndex);
361 ASSERT(!inHeap() || hasValidHeapPosition());
362 }
363
setNextFireTime(double newUnalignedTime)364 void TimerBase::setNextFireTime(double newUnalignedTime)
365 {
366 ASSERT(m_thread == currentThread());
367
368 if (m_unalignedNextFireTime != newUnalignedTime)
369 m_unalignedNextFireTime = newUnalignedTime;
370
371 // Accessing thread global data is slow. Cache the heap pointer.
372 if (!m_cachedThreadGlobalTimerHeap)
373 m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap();
374
375 // Keep heap valid while changing the next-fire time.
376 double oldTime = m_nextFireTime;
377 double newTime = alignedFireTime(newUnalignedTime);
378 if (oldTime != newTime) {
379 m_nextFireTime = newTime;
380 static unsigned currentHeapInsertionOrder;
381 m_heapInsertionOrder = currentHeapInsertionOrder++;
382
383 bool wasFirstTimerInHeap = m_heapIndex == 0;
384
385 updateHeapIfNeeded(oldTime);
386
387 bool isFirstTimerInHeap = m_heapIndex == 0;
388
389 if (wasFirstTimerInHeap || isFirstTimerInHeap)
390 PlatformThreadData::current().threadTimers().updateSharedTimer();
391 }
392
393 checkConsistency();
394 }
395
fireTimersInNestedEventLoop()396 void TimerBase::fireTimersInNestedEventLoop()
397 {
398 // Redirect to ThreadTimers.
399 PlatformThreadData::current().threadTimers().fireTimersInNestedEventLoop();
400 }
401
didChangeAlignmentInterval()402 void TimerBase::didChangeAlignmentInterval()
403 {
404 setNextFireTime(m_unalignedNextFireTime);
405 }
406
nextUnalignedFireInterval() const407 double TimerBase::nextUnalignedFireInterval() const
408 {
409 ASSERT(isActive());
410 return std::max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0);
411 }
412
413 } // namespace blink
414
415