• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions.  It also performs simple dead load elimination.
12 //
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/CFG.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
33 #include "llvm/Analysis/PHITransAddr.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/Support/Allocator.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Target/TargetLibraryInfo.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/SSAUpdater.h"
49 #include <vector>
50 using namespace llvm;
51 using namespace PatternMatch;
52 
53 #define DEBUG_TYPE "gvn"
54 
55 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
56 STATISTIC(NumGVNLoad,   "Number of loads deleted");
57 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
58 STATISTIC(NumGVNBlocks, "Number of blocks merged");
59 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
60 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
61 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
62 
63 static cl::opt<bool> EnablePRE("enable-pre",
64                                cl::init(true), cl::Hidden);
65 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
66 
67 // Maximum allowed recursion depth.
68 static cl::opt<uint32_t>
69 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
70                 cl::desc("Max recurse depth (default = 1000)"));
71 
72 //===----------------------------------------------------------------------===//
73 //                         ValueTable Class
74 //===----------------------------------------------------------------------===//
75 
76 /// This class holds the mapping between values and value numbers.  It is used
77 /// as an efficient mechanism to determine the expression-wise equivalence of
78 /// two values.
79 namespace {
80   struct Expression {
81     uint32_t opcode;
82     Type *type;
83     SmallVector<uint32_t, 4> varargs;
84 
Expression__anon64de0b970111::Expression85     Expression(uint32_t o = ~2U) : opcode(o) { }
86 
operator ==__anon64de0b970111::Expression87     bool operator==(const Expression &other) const {
88       if (opcode != other.opcode)
89         return false;
90       if (opcode == ~0U || opcode == ~1U)
91         return true;
92       if (type != other.type)
93         return false;
94       if (varargs != other.varargs)
95         return false;
96       return true;
97     }
98 
hash_value(const Expression & Value)99     friend hash_code hash_value(const Expression &Value) {
100       return hash_combine(Value.opcode, Value.type,
101                           hash_combine_range(Value.varargs.begin(),
102                                              Value.varargs.end()));
103     }
104   };
105 
106   class ValueTable {
107     DenseMap<Value*, uint32_t> valueNumbering;
108     DenseMap<Expression, uint32_t> expressionNumbering;
109     AliasAnalysis *AA;
110     MemoryDependenceAnalysis *MD;
111     DominatorTree *DT;
112 
113     uint32_t nextValueNumber;
114 
115     Expression create_expression(Instruction* I);
116     Expression create_cmp_expression(unsigned Opcode,
117                                      CmpInst::Predicate Predicate,
118                                      Value *LHS, Value *RHS);
119     Expression create_extractvalue_expression(ExtractValueInst* EI);
120     uint32_t lookup_or_add_call(CallInst* C);
121   public:
ValueTable()122     ValueTable() : nextValueNumber(1) { }
123     uint32_t lookup_or_add(Value *V);
124     uint32_t lookup(Value *V) const;
125     uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
126                                Value *LHS, Value *RHS);
127     void add(Value *V, uint32_t num);
128     void clear();
129     void erase(Value *v);
setAliasAnalysis(AliasAnalysis * A)130     void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
getAliasAnalysis() const131     AliasAnalysis *getAliasAnalysis() const { return AA; }
setMemDep(MemoryDependenceAnalysis * M)132     void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
setDomTree(DominatorTree * D)133     void setDomTree(DominatorTree* D) { DT = D; }
getNextUnusedValueNumber()134     uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
135     void verifyRemoved(const Value *) const;
136   };
137 }
138 
139 namespace llvm {
140 template <> struct DenseMapInfo<Expression> {
getEmptyKeyllvm::DenseMapInfo141   static inline Expression getEmptyKey() {
142     return ~0U;
143   }
144 
getTombstoneKeyllvm::DenseMapInfo145   static inline Expression getTombstoneKey() {
146     return ~1U;
147   }
148 
getHashValuellvm::DenseMapInfo149   static unsigned getHashValue(const Expression e) {
150     using llvm::hash_value;
151     return static_cast<unsigned>(hash_value(e));
152   }
isEqualllvm::DenseMapInfo153   static bool isEqual(const Expression &LHS, const Expression &RHS) {
154     return LHS == RHS;
155   }
156 };
157 
158 }
159 
160 //===----------------------------------------------------------------------===//
161 //                     ValueTable Internal Functions
162 //===----------------------------------------------------------------------===//
163 
create_expression(Instruction * I)164 Expression ValueTable::create_expression(Instruction *I) {
165   Expression e;
166   e.type = I->getType();
167   e.opcode = I->getOpcode();
168   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
169        OI != OE; ++OI)
170     e.varargs.push_back(lookup_or_add(*OI));
171   if (I->isCommutative()) {
172     // Ensure that commutative instructions that only differ by a permutation
173     // of their operands get the same value number by sorting the operand value
174     // numbers.  Since all commutative instructions have two operands it is more
175     // efficient to sort by hand rather than using, say, std::sort.
176     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
177     if (e.varargs[0] > e.varargs[1])
178       std::swap(e.varargs[0], e.varargs[1]);
179   }
180 
181   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
182     // Sort the operand value numbers so x<y and y>x get the same value number.
183     CmpInst::Predicate Predicate = C->getPredicate();
184     if (e.varargs[0] > e.varargs[1]) {
185       std::swap(e.varargs[0], e.varargs[1]);
186       Predicate = CmpInst::getSwappedPredicate(Predicate);
187     }
188     e.opcode = (C->getOpcode() << 8) | Predicate;
189   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
190     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
191          II != IE; ++II)
192       e.varargs.push_back(*II);
193   }
194 
195   return e;
196 }
197 
create_cmp_expression(unsigned Opcode,CmpInst::Predicate Predicate,Value * LHS,Value * RHS)198 Expression ValueTable::create_cmp_expression(unsigned Opcode,
199                                              CmpInst::Predicate Predicate,
200                                              Value *LHS, Value *RHS) {
201   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
202          "Not a comparison!");
203   Expression e;
204   e.type = CmpInst::makeCmpResultType(LHS->getType());
205   e.varargs.push_back(lookup_or_add(LHS));
206   e.varargs.push_back(lookup_or_add(RHS));
207 
208   // Sort the operand value numbers so x<y and y>x get the same value number.
209   if (e.varargs[0] > e.varargs[1]) {
210     std::swap(e.varargs[0], e.varargs[1]);
211     Predicate = CmpInst::getSwappedPredicate(Predicate);
212   }
213   e.opcode = (Opcode << 8) | Predicate;
214   return e;
215 }
216 
create_extractvalue_expression(ExtractValueInst * EI)217 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
218   assert(EI && "Not an ExtractValueInst?");
219   Expression e;
220   e.type = EI->getType();
221   e.opcode = 0;
222 
223   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
224   if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
225     // EI might be an extract from one of our recognised intrinsics. If it
226     // is we'll synthesize a semantically equivalent expression instead on
227     // an extract value expression.
228     switch (I->getIntrinsicID()) {
229       case Intrinsic::sadd_with_overflow:
230       case Intrinsic::uadd_with_overflow:
231         e.opcode = Instruction::Add;
232         break;
233       case Intrinsic::ssub_with_overflow:
234       case Intrinsic::usub_with_overflow:
235         e.opcode = Instruction::Sub;
236         break;
237       case Intrinsic::smul_with_overflow:
238       case Intrinsic::umul_with_overflow:
239         e.opcode = Instruction::Mul;
240         break;
241       default:
242         break;
243     }
244 
245     if (e.opcode != 0) {
246       // Intrinsic recognized. Grab its args to finish building the expression.
247       assert(I->getNumArgOperands() == 2 &&
248              "Expect two args for recognised intrinsics.");
249       e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
250       e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
251       return e;
252     }
253   }
254 
255   // Not a recognised intrinsic. Fall back to producing an extract value
256   // expression.
257   e.opcode = EI->getOpcode();
258   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
259        OI != OE; ++OI)
260     e.varargs.push_back(lookup_or_add(*OI));
261 
262   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
263          II != IE; ++II)
264     e.varargs.push_back(*II);
265 
266   return e;
267 }
268 
269 //===----------------------------------------------------------------------===//
270 //                     ValueTable External Functions
271 //===----------------------------------------------------------------------===//
272 
273 /// add - Insert a value into the table with a specified value number.
add(Value * V,uint32_t num)274 void ValueTable::add(Value *V, uint32_t num) {
275   valueNumbering.insert(std::make_pair(V, num));
276 }
277 
lookup_or_add_call(CallInst * C)278 uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
279   if (AA->doesNotAccessMemory(C)) {
280     Expression exp = create_expression(C);
281     uint32_t &e = expressionNumbering[exp];
282     if (!e) e = nextValueNumber++;
283     valueNumbering[C] = e;
284     return e;
285   } else if (AA->onlyReadsMemory(C)) {
286     Expression exp = create_expression(C);
287     uint32_t &e = expressionNumbering[exp];
288     if (!e) {
289       e = nextValueNumber++;
290       valueNumbering[C] = e;
291       return e;
292     }
293     if (!MD) {
294       e = nextValueNumber++;
295       valueNumbering[C] = e;
296       return e;
297     }
298 
299     MemDepResult local_dep = MD->getDependency(C);
300 
301     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
302       valueNumbering[C] =  nextValueNumber;
303       return nextValueNumber++;
304     }
305 
306     if (local_dep.isDef()) {
307       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
308 
309       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
310         valueNumbering[C] = nextValueNumber;
311         return nextValueNumber++;
312       }
313 
314       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
315         uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
316         uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
317         if (c_vn != cd_vn) {
318           valueNumbering[C] = nextValueNumber;
319           return nextValueNumber++;
320         }
321       }
322 
323       uint32_t v = lookup_or_add(local_cdep);
324       valueNumbering[C] = v;
325       return v;
326     }
327 
328     // Non-local case.
329     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
330       MD->getNonLocalCallDependency(CallSite(C));
331     // FIXME: Move the checking logic to MemDep!
332     CallInst* cdep = nullptr;
333 
334     // Check to see if we have a single dominating call instruction that is
335     // identical to C.
336     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
337       const NonLocalDepEntry *I = &deps[i];
338       if (I->getResult().isNonLocal())
339         continue;
340 
341       // We don't handle non-definitions.  If we already have a call, reject
342       // instruction dependencies.
343       if (!I->getResult().isDef() || cdep != nullptr) {
344         cdep = nullptr;
345         break;
346       }
347 
348       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
349       // FIXME: All duplicated with non-local case.
350       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
351         cdep = NonLocalDepCall;
352         continue;
353       }
354 
355       cdep = nullptr;
356       break;
357     }
358 
359     if (!cdep) {
360       valueNumbering[C] = nextValueNumber;
361       return nextValueNumber++;
362     }
363 
364     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
365       valueNumbering[C] = nextValueNumber;
366       return nextValueNumber++;
367     }
368     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
369       uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
370       uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
371       if (c_vn != cd_vn) {
372         valueNumbering[C] = nextValueNumber;
373         return nextValueNumber++;
374       }
375     }
376 
377     uint32_t v = lookup_or_add(cdep);
378     valueNumbering[C] = v;
379     return v;
380 
381   } else {
382     valueNumbering[C] = nextValueNumber;
383     return nextValueNumber++;
384   }
385 }
386 
387 /// lookup_or_add - Returns the value number for the specified value, assigning
388 /// it a new number if it did not have one before.
lookup_or_add(Value * V)389 uint32_t ValueTable::lookup_or_add(Value *V) {
390   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
391   if (VI != valueNumbering.end())
392     return VI->second;
393 
394   if (!isa<Instruction>(V)) {
395     valueNumbering[V] = nextValueNumber;
396     return nextValueNumber++;
397   }
398 
399   Instruction* I = cast<Instruction>(V);
400   Expression exp;
401   switch (I->getOpcode()) {
402     case Instruction::Call:
403       return lookup_or_add_call(cast<CallInst>(I));
404     case Instruction::Add:
405     case Instruction::FAdd:
406     case Instruction::Sub:
407     case Instruction::FSub:
408     case Instruction::Mul:
409     case Instruction::FMul:
410     case Instruction::UDiv:
411     case Instruction::SDiv:
412     case Instruction::FDiv:
413     case Instruction::URem:
414     case Instruction::SRem:
415     case Instruction::FRem:
416     case Instruction::Shl:
417     case Instruction::LShr:
418     case Instruction::AShr:
419     case Instruction::And:
420     case Instruction::Or:
421     case Instruction::Xor:
422     case Instruction::ICmp:
423     case Instruction::FCmp:
424     case Instruction::Trunc:
425     case Instruction::ZExt:
426     case Instruction::SExt:
427     case Instruction::FPToUI:
428     case Instruction::FPToSI:
429     case Instruction::UIToFP:
430     case Instruction::SIToFP:
431     case Instruction::FPTrunc:
432     case Instruction::FPExt:
433     case Instruction::PtrToInt:
434     case Instruction::IntToPtr:
435     case Instruction::BitCast:
436     case Instruction::Select:
437     case Instruction::ExtractElement:
438     case Instruction::InsertElement:
439     case Instruction::ShuffleVector:
440     case Instruction::InsertValue:
441     case Instruction::GetElementPtr:
442       exp = create_expression(I);
443       break;
444     case Instruction::ExtractValue:
445       exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
446       break;
447     default:
448       valueNumbering[V] = nextValueNumber;
449       return nextValueNumber++;
450   }
451 
452   uint32_t& e = expressionNumbering[exp];
453   if (!e) e = nextValueNumber++;
454   valueNumbering[V] = e;
455   return e;
456 }
457 
458 /// lookup - Returns the value number of the specified value. Fails if
459 /// the value has not yet been numbered.
lookup(Value * V) const460 uint32_t ValueTable::lookup(Value *V) const {
461   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
462   assert(VI != valueNumbering.end() && "Value not numbered?");
463   return VI->second;
464 }
465 
466 /// lookup_or_add_cmp - Returns the value number of the given comparison,
467 /// assigning it a new number if it did not have one before.  Useful when
468 /// we deduced the result of a comparison, but don't immediately have an
469 /// instruction realizing that comparison to hand.
lookup_or_add_cmp(unsigned Opcode,CmpInst::Predicate Predicate,Value * LHS,Value * RHS)470 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
471                                        CmpInst::Predicate Predicate,
472                                        Value *LHS, Value *RHS) {
473   Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
474   uint32_t& e = expressionNumbering[exp];
475   if (!e) e = nextValueNumber++;
476   return e;
477 }
478 
479 /// clear - Remove all entries from the ValueTable.
clear()480 void ValueTable::clear() {
481   valueNumbering.clear();
482   expressionNumbering.clear();
483   nextValueNumber = 1;
484 }
485 
486 /// erase - Remove a value from the value numbering.
erase(Value * V)487 void ValueTable::erase(Value *V) {
488   valueNumbering.erase(V);
489 }
490 
491 /// verifyRemoved - Verify that the value is removed from all internal data
492 /// structures.
verifyRemoved(const Value * V) const493 void ValueTable::verifyRemoved(const Value *V) const {
494   for (DenseMap<Value*, uint32_t>::const_iterator
495          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
496     assert(I->first != V && "Inst still occurs in value numbering map!");
497   }
498 }
499 
500 //===----------------------------------------------------------------------===//
501 //                                GVN Pass
502 //===----------------------------------------------------------------------===//
503 
504 namespace {
505   class GVN;
506   struct AvailableValueInBlock {
507     /// BB - The basic block in question.
508     BasicBlock *BB;
509     enum ValType {
510       SimpleVal,  // A simple offsetted value that is accessed.
511       LoadVal,    // A value produced by a load.
512       MemIntrin,  // A memory intrinsic which is loaded from.
513       UndefVal    // A UndefValue representing a value from dead block (which
514                   // is not yet physically removed from the CFG).
515     };
516 
517     /// V - The value that is live out of the block.
518     PointerIntPair<Value *, 2, ValType> Val;
519 
520     /// Offset - The byte offset in Val that is interesting for the load query.
521     unsigned Offset;
522 
get__anon64de0b970211::AvailableValueInBlock523     static AvailableValueInBlock get(BasicBlock *BB, Value *V,
524                                      unsigned Offset = 0) {
525       AvailableValueInBlock Res;
526       Res.BB = BB;
527       Res.Val.setPointer(V);
528       Res.Val.setInt(SimpleVal);
529       Res.Offset = Offset;
530       return Res;
531     }
532 
getMI__anon64de0b970211::AvailableValueInBlock533     static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
534                                        unsigned Offset = 0) {
535       AvailableValueInBlock Res;
536       Res.BB = BB;
537       Res.Val.setPointer(MI);
538       Res.Val.setInt(MemIntrin);
539       Res.Offset = Offset;
540       return Res;
541     }
542 
getLoad__anon64de0b970211::AvailableValueInBlock543     static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
544                                          unsigned Offset = 0) {
545       AvailableValueInBlock Res;
546       Res.BB = BB;
547       Res.Val.setPointer(LI);
548       Res.Val.setInt(LoadVal);
549       Res.Offset = Offset;
550       return Res;
551     }
552 
getUndef__anon64de0b970211::AvailableValueInBlock553     static AvailableValueInBlock getUndef(BasicBlock *BB) {
554       AvailableValueInBlock Res;
555       Res.BB = BB;
556       Res.Val.setPointer(nullptr);
557       Res.Val.setInt(UndefVal);
558       Res.Offset = 0;
559       return Res;
560     }
561 
isSimpleValue__anon64de0b970211::AvailableValueInBlock562     bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
isCoercedLoadValue__anon64de0b970211::AvailableValueInBlock563     bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
isMemIntrinValue__anon64de0b970211::AvailableValueInBlock564     bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
isUndefValue__anon64de0b970211::AvailableValueInBlock565     bool isUndefValue() const { return Val.getInt() == UndefVal; }
566 
getSimpleValue__anon64de0b970211::AvailableValueInBlock567     Value *getSimpleValue() const {
568       assert(isSimpleValue() && "Wrong accessor");
569       return Val.getPointer();
570     }
571 
getCoercedLoadValue__anon64de0b970211::AvailableValueInBlock572     LoadInst *getCoercedLoadValue() const {
573       assert(isCoercedLoadValue() && "Wrong accessor");
574       return cast<LoadInst>(Val.getPointer());
575     }
576 
getMemIntrinValue__anon64de0b970211::AvailableValueInBlock577     MemIntrinsic *getMemIntrinValue() const {
578       assert(isMemIntrinValue() && "Wrong accessor");
579       return cast<MemIntrinsic>(Val.getPointer());
580     }
581 
582     /// MaterializeAdjustedValue - Emit code into this block to adjust the value
583     /// defined here to the specified type.  This handles various coercion cases.
584     Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
585   };
586 
587   class GVN : public FunctionPass {
588     bool NoLoads;
589     MemoryDependenceAnalysis *MD;
590     DominatorTree *DT;
591     const DataLayout *DL;
592     const TargetLibraryInfo *TLI;
593     SetVector<BasicBlock *> DeadBlocks;
594 
595     ValueTable VN;
596 
597     /// LeaderTable - A mapping from value numbers to lists of Value*'s that
598     /// have that value number.  Use findLeader to query it.
599     struct LeaderTableEntry {
600       Value *Val;
601       const BasicBlock *BB;
602       LeaderTableEntry *Next;
603     };
604     DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
605     BumpPtrAllocator TableAllocator;
606 
607     SmallVector<Instruction*, 8> InstrsToErase;
608 
609     typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
610     typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
611     typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
612 
613   public:
614     static char ID; // Pass identification, replacement for typeid
GVN(bool noloads=false)615     explicit GVN(bool noloads = false)
616         : FunctionPass(ID), NoLoads(noloads), MD(nullptr) {
617       initializeGVNPass(*PassRegistry::getPassRegistry());
618     }
619 
620     bool runOnFunction(Function &F) override;
621 
622     /// markInstructionForDeletion - This removes the specified instruction from
623     /// our various maps and marks it for deletion.
markInstructionForDeletion(Instruction * I)624     void markInstructionForDeletion(Instruction *I) {
625       VN.erase(I);
626       InstrsToErase.push_back(I);
627     }
628 
getDataLayout() const629     const DataLayout *getDataLayout() const { return DL; }
getDominatorTree() const630     DominatorTree &getDominatorTree() const { return *DT; }
getAliasAnalysis() const631     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
getMemDep() const632     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
633   private:
634     /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
635     /// its value number.
addToLeaderTable(uint32_t N,Value * V,const BasicBlock * BB)636     void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
637       LeaderTableEntry &Curr = LeaderTable[N];
638       if (!Curr.Val) {
639         Curr.Val = V;
640         Curr.BB = BB;
641         return;
642       }
643 
644       LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
645       Node->Val = V;
646       Node->BB = BB;
647       Node->Next = Curr.Next;
648       Curr.Next = Node;
649     }
650 
651     /// removeFromLeaderTable - Scan the list of values corresponding to a given
652     /// value number, and remove the given instruction if encountered.
removeFromLeaderTable(uint32_t N,Instruction * I,BasicBlock * BB)653     void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
654       LeaderTableEntry* Prev = nullptr;
655       LeaderTableEntry* Curr = &LeaderTable[N];
656 
657       while (Curr->Val != I || Curr->BB != BB) {
658         Prev = Curr;
659         Curr = Curr->Next;
660       }
661 
662       if (Prev) {
663         Prev->Next = Curr->Next;
664       } else {
665         if (!Curr->Next) {
666           Curr->Val = nullptr;
667           Curr->BB = nullptr;
668         } else {
669           LeaderTableEntry* Next = Curr->Next;
670           Curr->Val = Next->Val;
671           Curr->BB = Next->BB;
672           Curr->Next = Next->Next;
673         }
674       }
675     }
676 
677     // List of critical edges to be split between iterations.
678     SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
679 
680     // This transformation requires dominator postdominator info
getAnalysisUsage(AnalysisUsage & AU) const681     void getAnalysisUsage(AnalysisUsage &AU) const override {
682       AU.addRequired<DominatorTreeWrapperPass>();
683       AU.addRequired<TargetLibraryInfo>();
684       if (!NoLoads)
685         AU.addRequired<MemoryDependenceAnalysis>();
686       AU.addRequired<AliasAnalysis>();
687 
688       AU.addPreserved<DominatorTreeWrapperPass>();
689       AU.addPreserved<AliasAnalysis>();
690     }
691 
692 
693     // Helper fuctions of redundant load elimination
694     bool processLoad(LoadInst *L);
695     bool processNonLocalLoad(LoadInst *L);
696     void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
697                                  AvailValInBlkVect &ValuesPerBlock,
698                                  UnavailBlkVect &UnavailableBlocks);
699     bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
700                         UnavailBlkVect &UnavailableBlocks);
701 
702     // Other helper routines
703     bool processInstruction(Instruction *I);
704     bool processBlock(BasicBlock *BB);
705     void dump(DenseMap<uint32_t, Value*> &d);
706     bool iterateOnFunction(Function &F);
707     bool performPRE(Function &F);
708     Value *findLeader(const BasicBlock *BB, uint32_t num);
709     void cleanupGlobalSets();
710     void verifyRemoved(const Instruction *I) const;
711     bool splitCriticalEdges();
712     BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
713     unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
714                                          const BasicBlockEdge &Root);
715     bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
716     bool processFoldableCondBr(BranchInst *BI);
717     void addDeadBlock(BasicBlock *BB);
718     void assignValNumForDeadCode();
719   };
720 
721   char GVN::ID = 0;
722 }
723 
724 // createGVNPass - The public interface to this file...
createGVNPass(bool NoLoads)725 FunctionPass *llvm::createGVNPass(bool NoLoads) {
726   return new GVN(NoLoads);
727 }
728 
729 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)730 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
731 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
732 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
733 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
734 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
735 
736 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
737 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
738   errs() << "{\n";
739   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
740        E = d.end(); I != E; ++I) {
741       errs() << I->first << "\n";
742       I->second->dump();
743   }
744   errs() << "}\n";
745 }
746 #endif
747 
748 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
749 /// we're analyzing is fully available in the specified block.  As we go, keep
750 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
751 /// map is actually a tri-state map with the following values:
752 ///   0) we know the block *is not* fully available.
753 ///   1) we know the block *is* fully available.
754 ///   2) we do not know whether the block is fully available or not, but we are
755 ///      currently speculating that it will be.
756 ///   3) we are speculating for this block and have used that to speculate for
757 ///      other blocks.
IsValueFullyAvailableInBlock(BasicBlock * BB,DenseMap<BasicBlock *,char> & FullyAvailableBlocks,uint32_t RecurseDepth)758 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
759                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
760                             uint32_t RecurseDepth) {
761   if (RecurseDepth > MaxRecurseDepth)
762     return false;
763 
764   // Optimistically assume that the block is fully available and check to see
765   // if we already know about this block in one lookup.
766   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
767     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
768 
769   // If the entry already existed for this block, return the precomputed value.
770   if (!IV.second) {
771     // If this is a speculative "available" value, mark it as being used for
772     // speculation of other blocks.
773     if (IV.first->second == 2)
774       IV.first->second = 3;
775     return IV.first->second != 0;
776   }
777 
778   // Otherwise, see if it is fully available in all predecessors.
779   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
780 
781   // If this block has no predecessors, it isn't live-in here.
782   if (PI == PE)
783     goto SpeculationFailure;
784 
785   for (; PI != PE; ++PI)
786     // If the value isn't fully available in one of our predecessors, then it
787     // isn't fully available in this block either.  Undo our previous
788     // optimistic assumption and bail out.
789     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
790       goto SpeculationFailure;
791 
792   return true;
793 
794 // SpeculationFailure - If we get here, we found out that this is not, after
795 // all, a fully-available block.  We have a problem if we speculated on this and
796 // used the speculation to mark other blocks as available.
797 SpeculationFailure:
798   char &BBVal = FullyAvailableBlocks[BB];
799 
800   // If we didn't speculate on this, just return with it set to false.
801   if (BBVal == 2) {
802     BBVal = 0;
803     return false;
804   }
805 
806   // If we did speculate on this value, we could have blocks set to 1 that are
807   // incorrect.  Walk the (transitive) successors of this block and mark them as
808   // 0 if set to one.
809   SmallVector<BasicBlock*, 32> BBWorklist;
810   BBWorklist.push_back(BB);
811 
812   do {
813     BasicBlock *Entry = BBWorklist.pop_back_val();
814     // Note that this sets blocks to 0 (unavailable) if they happen to not
815     // already be in FullyAvailableBlocks.  This is safe.
816     char &EntryVal = FullyAvailableBlocks[Entry];
817     if (EntryVal == 0) continue;  // Already unavailable.
818 
819     // Mark as unavailable.
820     EntryVal = 0;
821 
822     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
823   } while (!BBWorklist.empty());
824 
825   return false;
826 }
827 
828 
829 /// CanCoerceMustAliasedValueToLoad - Return true if
830 /// CoerceAvailableValueToLoadType will succeed.
CanCoerceMustAliasedValueToLoad(Value * StoredVal,Type * LoadTy,const DataLayout & DL)831 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
832                                             Type *LoadTy,
833                                             const DataLayout &DL) {
834   // If the loaded or stored value is an first class array or struct, don't try
835   // to transform them.  We need to be able to bitcast to integer.
836   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
837       StoredVal->getType()->isStructTy() ||
838       StoredVal->getType()->isArrayTy())
839     return false;
840 
841   // The store has to be at least as big as the load.
842   if (DL.getTypeSizeInBits(StoredVal->getType()) <
843         DL.getTypeSizeInBits(LoadTy))
844     return false;
845 
846   return true;
847 }
848 
849 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
850 /// then a load from a must-aliased pointer of a different type, try to coerce
851 /// the stored value.  LoadedTy is the type of the load we want to replace and
852 /// InsertPt is the place to insert new instructions.
853 ///
854 /// If we can't do it, return null.
CoerceAvailableValueToLoadType(Value * StoredVal,Type * LoadedTy,Instruction * InsertPt,const DataLayout & DL)855 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
856                                              Type *LoadedTy,
857                                              Instruction *InsertPt,
858                                              const DataLayout &DL) {
859   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL))
860     return nullptr;
861 
862   // If this is already the right type, just return it.
863   Type *StoredValTy = StoredVal->getType();
864 
865   uint64_t StoreSize = DL.getTypeSizeInBits(StoredValTy);
866   uint64_t LoadSize = DL.getTypeSizeInBits(LoadedTy);
867 
868   // If the store and reload are the same size, we can always reuse it.
869   if (StoreSize == LoadSize) {
870     // Pointer to Pointer -> use bitcast.
871     if (StoredValTy->getScalarType()->isPointerTy() &&
872         LoadedTy->getScalarType()->isPointerTy())
873       return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
874 
875     // Convert source pointers to integers, which can be bitcast.
876     if (StoredValTy->getScalarType()->isPointerTy()) {
877       StoredValTy = DL.getIntPtrType(StoredValTy);
878       StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
879     }
880 
881     Type *TypeToCastTo = LoadedTy;
882     if (TypeToCastTo->getScalarType()->isPointerTy())
883       TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
884 
885     if (StoredValTy != TypeToCastTo)
886       StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
887 
888     // Cast to pointer if the load needs a pointer type.
889     if (LoadedTy->getScalarType()->isPointerTy())
890       StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
891 
892     return StoredVal;
893   }
894 
895   // If the loaded value is smaller than the available value, then we can
896   // extract out a piece from it.  If the available value is too small, then we
897   // can't do anything.
898   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
899 
900   // Convert source pointers to integers, which can be manipulated.
901   if (StoredValTy->getScalarType()->isPointerTy()) {
902     StoredValTy = DL.getIntPtrType(StoredValTy);
903     StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
904   }
905 
906   // Convert vectors and fp to integer, which can be manipulated.
907   if (!StoredValTy->isIntegerTy()) {
908     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
909     StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
910   }
911 
912   // If this is a big-endian system, we need to shift the value down to the low
913   // bits so that a truncate will work.
914   if (DL.isBigEndian()) {
915     Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
916     StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
917   }
918 
919   // Truncate the integer to the right size now.
920   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
921   StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
922 
923   if (LoadedTy == NewIntTy)
924     return StoredVal;
925 
926   // If the result is a pointer, inttoptr.
927   if (LoadedTy->getScalarType()->isPointerTy())
928     return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
929 
930   // Otherwise, bitcast.
931   return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
932 }
933 
934 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
935 /// memdep query of a load that ends up being a clobbering memory write (store,
936 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
937 /// by the load but we can't be sure because the pointers don't mustalias.
938 ///
939 /// Check this case to see if there is anything more we can do before we give
940 /// up.  This returns -1 if we have to give up, or a byte number in the stored
941 /// value of the piece that feeds the load.
AnalyzeLoadFromClobberingWrite(Type * LoadTy,Value * LoadPtr,Value * WritePtr,uint64_t WriteSizeInBits,const DataLayout & DL)942 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
943                                           Value *WritePtr,
944                                           uint64_t WriteSizeInBits,
945                                           const DataLayout &DL) {
946   // If the loaded or stored value is a first class array or struct, don't try
947   // to transform them.  We need to be able to bitcast to integer.
948   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
949     return -1;
950 
951   int64_t StoreOffset = 0, LoadOffset = 0;
952   Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&DL);
953   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &DL);
954   if (StoreBase != LoadBase)
955     return -1;
956 
957   // If the load and store are to the exact same address, they should have been
958   // a must alias.  AA must have gotten confused.
959   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
960   // to a load from the base of the memset.
961 #if 0
962   if (LoadOffset == StoreOffset) {
963     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
964     << "Base       = " << *StoreBase << "\n"
965     << "Store Ptr  = " << *WritePtr << "\n"
966     << "Store Offs = " << StoreOffset << "\n"
967     << "Load Ptr   = " << *LoadPtr << "\n";
968     abort();
969   }
970 #endif
971 
972   // If the load and store don't overlap at all, the store doesn't provide
973   // anything to the load.  In this case, they really don't alias at all, AA
974   // must have gotten confused.
975   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
976 
977   if ((WriteSizeInBits & 7) | (LoadSize & 7))
978     return -1;
979   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
980   LoadSize >>= 3;
981 
982 
983   bool isAAFailure = false;
984   if (StoreOffset < LoadOffset)
985     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
986   else
987     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
988 
989   if (isAAFailure) {
990 #if 0
991     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
992     << "Base       = " << *StoreBase << "\n"
993     << "Store Ptr  = " << *WritePtr << "\n"
994     << "Store Offs = " << StoreOffset << "\n"
995     << "Load Ptr   = " << *LoadPtr << "\n";
996     abort();
997 #endif
998     return -1;
999   }
1000 
1001   // If the Load isn't completely contained within the stored bits, we don't
1002   // have all the bits to feed it.  We could do something crazy in the future
1003   // (issue a smaller load then merge the bits in) but this seems unlikely to be
1004   // valuable.
1005   if (StoreOffset > LoadOffset ||
1006       StoreOffset+StoreSize < LoadOffset+LoadSize)
1007     return -1;
1008 
1009   // Okay, we can do this transformation.  Return the number of bytes into the
1010   // store that the load is.
1011   return LoadOffset-StoreOffset;
1012 }
1013 
1014 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
1015 /// memdep query of a load that ends up being a clobbering store.
AnalyzeLoadFromClobberingStore(Type * LoadTy,Value * LoadPtr,StoreInst * DepSI,const DataLayout & DL)1016 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
1017                                           StoreInst *DepSI,
1018                                           const DataLayout &DL) {
1019   // Cannot handle reading from store of first-class aggregate yet.
1020   if (DepSI->getValueOperand()->getType()->isStructTy() ||
1021       DepSI->getValueOperand()->getType()->isArrayTy())
1022     return -1;
1023 
1024   Value *StorePtr = DepSI->getPointerOperand();
1025   uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
1026   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1027                                         StorePtr, StoreSize, DL);
1028 }
1029 
1030 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
1031 /// memdep query of a load that ends up being clobbered by another load.  See if
1032 /// the other load can feed into the second load.
AnalyzeLoadFromClobberingLoad(Type * LoadTy,Value * LoadPtr,LoadInst * DepLI,const DataLayout & DL)1033 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
1034                                          LoadInst *DepLI, const DataLayout &DL){
1035   // Cannot handle reading from store of first-class aggregate yet.
1036   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
1037     return -1;
1038 
1039   Value *DepPtr = DepLI->getPointerOperand();
1040   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
1041   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
1042   if (R != -1) return R;
1043 
1044   // If we have a load/load clobber an DepLI can be widened to cover this load,
1045   // then we should widen it!
1046   int64_t LoadOffs = 0;
1047   const Value *LoadBase =
1048     GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &DL);
1049   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
1050 
1051   unsigned Size = MemoryDependenceAnalysis::
1052     getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, DL);
1053   if (Size == 0) return -1;
1054 
1055   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
1056 }
1057 
1058 
1059 
AnalyzeLoadFromClobberingMemInst(Type * LoadTy,Value * LoadPtr,MemIntrinsic * MI,const DataLayout & DL)1060 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
1061                                             MemIntrinsic *MI,
1062                                             const DataLayout &DL) {
1063   // If the mem operation is a non-constant size, we can't handle it.
1064   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1065   if (!SizeCst) return -1;
1066   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1067 
1068   // If this is memset, we just need to see if the offset is valid in the size
1069   // of the memset..
1070   if (MI->getIntrinsicID() == Intrinsic::memset)
1071     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1072                                           MemSizeInBits, DL);
1073 
1074   // If we have a memcpy/memmove, the only case we can handle is if this is a
1075   // copy from constant memory.  In that case, we can read directly from the
1076   // constant memory.
1077   MemTransferInst *MTI = cast<MemTransferInst>(MI);
1078 
1079   Constant *Src = dyn_cast<Constant>(MTI->getSource());
1080   if (!Src) return -1;
1081 
1082   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &DL));
1083   if (!GV || !GV->isConstant()) return -1;
1084 
1085   // See if the access is within the bounds of the transfer.
1086   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1087                                               MI->getDest(), MemSizeInBits, DL);
1088   if (Offset == -1)
1089     return Offset;
1090 
1091   unsigned AS = Src->getType()->getPointerAddressSpace();
1092   // Otherwise, see if we can constant fold a load from the constant with the
1093   // offset applied as appropriate.
1094   Src = ConstantExpr::getBitCast(Src,
1095                                  Type::getInt8PtrTy(Src->getContext(), AS));
1096   Constant *OffsetCst =
1097     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1098   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1099   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1100   if (ConstantFoldLoadFromConstPtr(Src, &DL))
1101     return Offset;
1102   return -1;
1103 }
1104 
1105 
1106 /// GetStoreValueForLoad - This function is called when we have a
1107 /// memdep query of a load that ends up being a clobbering store.  This means
1108 /// that the store provides bits used by the load but we the pointers don't
1109 /// mustalias.  Check this case to see if there is anything more we can do
1110 /// before we give up.
GetStoreValueForLoad(Value * SrcVal,unsigned Offset,Type * LoadTy,Instruction * InsertPt,const DataLayout & DL)1111 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1112                                    Type *LoadTy,
1113                                    Instruction *InsertPt, const DataLayout &DL){
1114   LLVMContext &Ctx = SrcVal->getType()->getContext();
1115 
1116   uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1117   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
1118 
1119   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1120 
1121   // Compute which bits of the stored value are being used by the load.  Convert
1122   // to an integer type to start with.
1123   if (SrcVal->getType()->getScalarType()->isPointerTy())
1124     SrcVal = Builder.CreatePtrToInt(SrcVal,
1125         DL.getIntPtrType(SrcVal->getType()));
1126   if (!SrcVal->getType()->isIntegerTy())
1127     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1128 
1129   // Shift the bits to the least significant depending on endianness.
1130   unsigned ShiftAmt;
1131   if (DL.isLittleEndian())
1132     ShiftAmt = Offset*8;
1133   else
1134     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1135 
1136   if (ShiftAmt)
1137     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1138 
1139   if (LoadSize != StoreSize)
1140     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1141 
1142   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, DL);
1143 }
1144 
1145 /// GetLoadValueForLoad - This function is called when we have a
1146 /// memdep query of a load that ends up being a clobbering load.  This means
1147 /// that the load *may* provide bits used by the load but we can't be sure
1148 /// because the pointers don't mustalias.  Check this case to see if there is
1149 /// anything more we can do before we give up.
GetLoadValueForLoad(LoadInst * SrcVal,unsigned Offset,Type * LoadTy,Instruction * InsertPt,GVN & gvn)1150 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1151                                   Type *LoadTy, Instruction *InsertPt,
1152                                   GVN &gvn) {
1153   const DataLayout &DL = *gvn.getDataLayout();
1154   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1155   // widen SrcVal out to a larger load.
1156   unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
1157   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
1158   if (Offset+LoadSize > SrcValSize) {
1159     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1160     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1161     // If we have a load/load clobber an DepLI can be widened to cover this
1162     // load, then we should widen it to the next power of 2 size big enough!
1163     unsigned NewLoadSize = Offset+LoadSize;
1164     if (!isPowerOf2_32(NewLoadSize))
1165       NewLoadSize = NextPowerOf2(NewLoadSize);
1166 
1167     Value *PtrVal = SrcVal->getPointerOperand();
1168 
1169     // Insert the new load after the old load.  This ensures that subsequent
1170     // memdep queries will find the new load.  We can't easily remove the old
1171     // load completely because it is already in the value numbering table.
1172     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1173     Type *DestPTy =
1174       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1175     DestPTy = PointerType::get(DestPTy,
1176                                PtrVal->getType()->getPointerAddressSpace());
1177     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1178     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1179     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1180     NewLoad->takeName(SrcVal);
1181     NewLoad->setAlignment(SrcVal->getAlignment());
1182 
1183     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1184     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1185 
1186     // Replace uses of the original load with the wider load.  On a big endian
1187     // system, we need to shift down to get the relevant bits.
1188     Value *RV = NewLoad;
1189     if (DL.isBigEndian())
1190       RV = Builder.CreateLShr(RV,
1191                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1192     RV = Builder.CreateTrunc(RV, SrcVal->getType());
1193     SrcVal->replaceAllUsesWith(RV);
1194 
1195     // We would like to use gvn.markInstructionForDeletion here, but we can't
1196     // because the load is already memoized into the leader map table that GVN
1197     // tracks.  It is potentially possible to remove the load from the table,
1198     // but then there all of the operations based on it would need to be
1199     // rehashed.  Just leave the dead load around.
1200     gvn.getMemDep().removeInstruction(SrcVal);
1201     SrcVal = NewLoad;
1202   }
1203 
1204   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
1205 }
1206 
1207 
1208 /// GetMemInstValueForLoad - This function is called when we have a
1209 /// memdep query of a load that ends up being a clobbering mem intrinsic.
GetMemInstValueForLoad(MemIntrinsic * SrcInst,unsigned Offset,Type * LoadTy,Instruction * InsertPt,const DataLayout & DL)1210 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1211                                      Type *LoadTy, Instruction *InsertPt,
1212                                      const DataLayout &DL){
1213   LLVMContext &Ctx = LoadTy->getContext();
1214   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
1215 
1216   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1217 
1218   // We know that this method is only called when the mem transfer fully
1219   // provides the bits for the load.
1220   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1221     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1222     // independently of what the offset is.
1223     Value *Val = MSI->getValue();
1224     if (LoadSize != 1)
1225       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1226 
1227     Value *OneElt = Val;
1228 
1229     // Splat the value out to the right number of bits.
1230     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1231       // If we can double the number of bytes set, do it.
1232       if (NumBytesSet*2 <= LoadSize) {
1233         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1234         Val = Builder.CreateOr(Val, ShVal);
1235         NumBytesSet <<= 1;
1236         continue;
1237       }
1238 
1239       // Otherwise insert one byte at a time.
1240       Value *ShVal = Builder.CreateShl(Val, 1*8);
1241       Val = Builder.CreateOr(OneElt, ShVal);
1242       ++NumBytesSet;
1243     }
1244 
1245     return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, DL);
1246   }
1247 
1248   // Otherwise, this is a memcpy/memmove from a constant global.
1249   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1250   Constant *Src = cast<Constant>(MTI->getSource());
1251   unsigned AS = Src->getType()->getPointerAddressSpace();
1252 
1253   // Otherwise, see if we can constant fold a load from the constant with the
1254   // offset applied as appropriate.
1255   Src = ConstantExpr::getBitCast(Src,
1256                                  Type::getInt8PtrTy(Src->getContext(), AS));
1257   Constant *OffsetCst =
1258     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1259   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1260   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1261   return ConstantFoldLoadFromConstPtr(Src, &DL);
1262 }
1263 
1264 
1265 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1266 /// construct SSA form, allowing us to eliminate LI.  This returns the value
1267 /// that should be used at LI's definition site.
ConstructSSAForLoadSet(LoadInst * LI,SmallVectorImpl<AvailableValueInBlock> & ValuesPerBlock,GVN & gvn)1268 static Value *ConstructSSAForLoadSet(LoadInst *LI,
1269                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1270                                      GVN &gvn) {
1271   // Check for the fully redundant, dominating load case.  In this case, we can
1272   // just use the dominating value directly.
1273   if (ValuesPerBlock.size() == 1 &&
1274       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1275                                                LI->getParent())) {
1276     assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
1277     return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1278   }
1279 
1280   // Otherwise, we have to construct SSA form.
1281   SmallVector<PHINode*, 8> NewPHIs;
1282   SSAUpdater SSAUpdate(&NewPHIs);
1283   SSAUpdate.Initialize(LI->getType(), LI->getName());
1284 
1285   Type *LoadTy = LI->getType();
1286 
1287   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1288     const AvailableValueInBlock &AV = ValuesPerBlock[i];
1289     BasicBlock *BB = AV.BB;
1290 
1291     if (SSAUpdate.HasValueForBlock(BB))
1292       continue;
1293 
1294     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1295   }
1296 
1297   // Perform PHI construction.
1298   Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1299 
1300   // If new PHI nodes were created, notify alias analysis.
1301   if (V->getType()->getScalarType()->isPointerTy()) {
1302     AliasAnalysis *AA = gvn.getAliasAnalysis();
1303 
1304     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1305       AA->copyValue(LI, NewPHIs[i]);
1306 
1307     // Now that we've copied information to the new PHIs, scan through
1308     // them again and inform alias analysis that we've added potentially
1309     // escaping uses to any values that are operands to these PHIs.
1310     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1311       PHINode *P = NewPHIs[i];
1312       for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1313         unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1314         AA->addEscapingUse(P->getOperandUse(jj));
1315       }
1316     }
1317   }
1318 
1319   return V;
1320 }
1321 
MaterializeAdjustedValue(Type * LoadTy,GVN & gvn) const1322 Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1323   Value *Res;
1324   if (isSimpleValue()) {
1325     Res = getSimpleValue();
1326     if (Res->getType() != LoadTy) {
1327       const DataLayout *DL = gvn.getDataLayout();
1328       assert(DL && "Need target data to handle type mismatch case");
1329       Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1330                                  *DL);
1331 
1332       DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1333                    << *getSimpleValue() << '\n'
1334                    << *Res << '\n' << "\n\n\n");
1335     }
1336   } else if (isCoercedLoadValue()) {
1337     LoadInst *Load = getCoercedLoadValue();
1338     if (Load->getType() == LoadTy && Offset == 0) {
1339       Res = Load;
1340     } else {
1341       Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1342                                 gvn);
1343 
1344       DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1345                    << *getCoercedLoadValue() << '\n'
1346                    << *Res << '\n' << "\n\n\n");
1347     }
1348   } else if (isMemIntrinValue()) {
1349     const DataLayout *DL = gvn.getDataLayout();
1350     assert(DL && "Need target data to handle type mismatch case");
1351     Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1352                                  LoadTy, BB->getTerminator(), *DL);
1353     DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1354                  << "  " << *getMemIntrinValue() << '\n'
1355                  << *Res << '\n' << "\n\n\n");
1356   } else {
1357     assert(isUndefValue() && "Should be UndefVal");
1358     DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
1359     return UndefValue::get(LoadTy);
1360   }
1361   return Res;
1362 }
1363 
isLifetimeStart(const Instruction * Inst)1364 static bool isLifetimeStart(const Instruction *Inst) {
1365   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1366     return II->getIntrinsicID() == Intrinsic::lifetime_start;
1367   return false;
1368 }
1369 
AnalyzeLoadAvailability(LoadInst * LI,LoadDepVect & Deps,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)1370 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
1371                                   AvailValInBlkVect &ValuesPerBlock,
1372                                   UnavailBlkVect &UnavailableBlocks) {
1373 
1374   // Filter out useless results (non-locals, etc).  Keep track of the blocks
1375   // where we have a value available in repl, also keep track of whether we see
1376   // dependencies that produce an unknown value for the load (such as a call
1377   // that could potentially clobber the load).
1378   unsigned NumDeps = Deps.size();
1379   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1380     BasicBlock *DepBB = Deps[i].getBB();
1381     MemDepResult DepInfo = Deps[i].getResult();
1382 
1383     if (DeadBlocks.count(DepBB)) {
1384       // Dead dependent mem-op disguise as a load evaluating the same value
1385       // as the load in question.
1386       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1387       continue;
1388     }
1389 
1390     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1391       UnavailableBlocks.push_back(DepBB);
1392       continue;
1393     }
1394 
1395     if (DepInfo.isClobber()) {
1396       // The address being loaded in this non-local block may not be the same as
1397       // the pointer operand of the load if PHI translation occurs.  Make sure
1398       // to consider the right address.
1399       Value *Address = Deps[i].getAddress();
1400 
1401       // If the dependence is to a store that writes to a superset of the bits
1402       // read by the load, we can extract the bits we need for the load from the
1403       // stored value.
1404       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1405         if (DL && Address) {
1406           int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1407                                                       DepSI, *DL);
1408           if (Offset != -1) {
1409             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1410                                                        DepSI->getValueOperand(),
1411                                                                 Offset));
1412             continue;
1413           }
1414         }
1415       }
1416 
1417       // Check to see if we have something like this:
1418       //    load i32* P
1419       //    load i8* (P+1)
1420       // if we have this, replace the later with an extraction from the former.
1421       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1422         // If this is a clobber and L is the first instruction in its block, then
1423         // we have the first instruction in the entry block.
1424         if (DepLI != LI && Address && DL) {
1425           int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(), Address,
1426                                                      DepLI, *DL);
1427 
1428           if (Offset != -1) {
1429             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1430                                                                     Offset));
1431             continue;
1432           }
1433         }
1434       }
1435 
1436       // If the clobbering value is a memset/memcpy/memmove, see if we can
1437       // forward a value on from it.
1438       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1439         if (DL && Address) {
1440           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1441                                                         DepMI, *DL);
1442           if (Offset != -1) {
1443             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1444                                                                   Offset));
1445             continue;
1446           }
1447         }
1448       }
1449 
1450       UnavailableBlocks.push_back(DepBB);
1451       continue;
1452     }
1453 
1454     // DepInfo.isDef() here
1455 
1456     Instruction *DepInst = DepInfo.getInst();
1457 
1458     // Loading the allocation -> undef.
1459     if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1460         // Loading immediately after lifetime begin -> undef.
1461         isLifetimeStart(DepInst)) {
1462       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1463                                              UndefValue::get(LI->getType())));
1464       continue;
1465     }
1466 
1467     // Loading from calloc (which zero initializes memory) -> zero
1468     if (isCallocLikeFn(DepInst, TLI)) {
1469       ValuesPerBlock.push_back(AvailableValueInBlock::get(
1470           DepBB, Constant::getNullValue(LI->getType())));
1471       continue;
1472     }
1473 
1474     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1475       // Reject loads and stores that are to the same address but are of
1476       // different types if we have to.
1477       if (S->getValueOperand()->getType() != LI->getType()) {
1478         // If the stored value is larger or equal to the loaded value, we can
1479         // reuse it.
1480         if (!DL || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1481                                                     LI->getType(), *DL)) {
1482           UnavailableBlocks.push_back(DepBB);
1483           continue;
1484         }
1485       }
1486 
1487       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1488                                                          S->getValueOperand()));
1489       continue;
1490     }
1491 
1492     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1493       // If the types mismatch and we can't handle it, reject reuse of the load.
1494       if (LD->getType() != LI->getType()) {
1495         // If the stored value is larger or equal to the loaded value, we can
1496         // reuse it.
1497         if (!DL || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*DL)) {
1498           UnavailableBlocks.push_back(DepBB);
1499           continue;
1500         }
1501       }
1502       ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1503       continue;
1504     }
1505 
1506     UnavailableBlocks.push_back(DepBB);
1507   }
1508 }
1509 
PerformLoadPRE(LoadInst * LI,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)1510 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1511                          UnavailBlkVect &UnavailableBlocks) {
1512   // Okay, we have *some* definitions of the value.  This means that the value
1513   // is available in some of our (transitive) predecessors.  Lets think about
1514   // doing PRE of this load.  This will involve inserting a new load into the
1515   // predecessor when it's not available.  We could do this in general, but
1516   // prefer to not increase code size.  As such, we only do this when we know
1517   // that we only have to insert *one* load (which means we're basically moving
1518   // the load, not inserting a new one).
1519 
1520   SmallPtrSet<BasicBlock *, 4> Blockers;
1521   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1522     Blockers.insert(UnavailableBlocks[i]);
1523 
1524   // Let's find the first basic block with more than one predecessor.  Walk
1525   // backwards through predecessors if needed.
1526   BasicBlock *LoadBB = LI->getParent();
1527   BasicBlock *TmpBB = LoadBB;
1528 
1529   while (TmpBB->getSinglePredecessor()) {
1530     TmpBB = TmpBB->getSinglePredecessor();
1531     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1532       return false;
1533     if (Blockers.count(TmpBB))
1534       return false;
1535 
1536     // If any of these blocks has more than one successor (i.e. if the edge we
1537     // just traversed was critical), then there are other paths through this
1538     // block along which the load may not be anticipated.  Hoisting the load
1539     // above this block would be adding the load to execution paths along
1540     // which it was not previously executed.
1541     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1542       return false;
1543   }
1544 
1545   assert(TmpBB);
1546   LoadBB = TmpBB;
1547 
1548   // Check to see how many predecessors have the loaded value fully
1549   // available.
1550   MapVector<BasicBlock *, Value *> PredLoads;
1551   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1552   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1553     FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1554   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1555     FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1556 
1557   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1558   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1559        PI != E; ++PI) {
1560     BasicBlock *Pred = *PI;
1561     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1562       continue;
1563     }
1564 
1565     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1566       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1567         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1568               << Pred->getName() << "': " << *LI << '\n');
1569         return false;
1570       }
1571 
1572       if (LoadBB->isLandingPad()) {
1573         DEBUG(dbgs()
1574               << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1575               << Pred->getName() << "': " << *LI << '\n');
1576         return false;
1577       }
1578 
1579       CriticalEdgePred.push_back(Pred);
1580     } else {
1581       // Only add the predecessors that will not be split for now.
1582       PredLoads[Pred] = nullptr;
1583     }
1584   }
1585 
1586   // Decide whether PRE is profitable for this load.
1587   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1588   assert(NumUnavailablePreds != 0 &&
1589          "Fully available value should already be eliminated!");
1590 
1591   // If this load is unavailable in multiple predecessors, reject it.
1592   // FIXME: If we could restructure the CFG, we could make a common pred with
1593   // all the preds that don't have an available LI and insert a new load into
1594   // that one block.
1595   if (NumUnavailablePreds != 1)
1596       return false;
1597 
1598   // Split critical edges, and update the unavailable predecessors accordingly.
1599   for (BasicBlock *OrigPred : CriticalEdgePred) {
1600     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1601     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1602     PredLoads[NewPred] = nullptr;
1603     DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1604                  << LoadBB->getName() << '\n');
1605   }
1606 
1607   // Check if the load can safely be moved to all the unavailable predecessors.
1608   bool CanDoPRE = true;
1609   SmallVector<Instruction*, 8> NewInsts;
1610   for (auto &PredLoad : PredLoads) {
1611     BasicBlock *UnavailablePred = PredLoad.first;
1612 
1613     // Do PHI translation to get its value in the predecessor if necessary.  The
1614     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1615 
1616     // If all preds have a single successor, then we know it is safe to insert
1617     // the load on the pred (?!?), so we can insert code to materialize the
1618     // pointer if it is not available.
1619     PHITransAddr Address(LI->getPointerOperand(), DL);
1620     Value *LoadPtr = nullptr;
1621     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1622                                                 *DT, NewInsts);
1623 
1624     // If we couldn't find or insert a computation of this phi translated value,
1625     // we fail PRE.
1626     if (!LoadPtr) {
1627       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1628             << *LI->getPointerOperand() << "\n");
1629       CanDoPRE = false;
1630       break;
1631     }
1632 
1633     PredLoad.second = LoadPtr;
1634   }
1635 
1636   if (!CanDoPRE) {
1637     while (!NewInsts.empty()) {
1638       Instruction *I = NewInsts.pop_back_val();
1639       if (MD) MD->removeInstruction(I);
1640       I->eraseFromParent();
1641     }
1642     // HINT: Don't revert the edge-splitting as following transformation may
1643     // also need to split these critical edges.
1644     return !CriticalEdgePred.empty();
1645   }
1646 
1647   // Okay, we can eliminate this load by inserting a reload in the predecessor
1648   // and using PHI construction to get the value in the other predecessors, do
1649   // it.
1650   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1651   DEBUG(if (!NewInsts.empty())
1652           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1653                  << *NewInsts.back() << '\n');
1654 
1655   // Assign value numbers to the new instructions.
1656   for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1657     // FIXME: We really _ought_ to insert these value numbers into their
1658     // parent's availability map.  However, in doing so, we risk getting into
1659     // ordering issues.  If a block hasn't been processed yet, we would be
1660     // marking a value as AVAIL-IN, which isn't what we intend.
1661     VN.lookup_or_add(NewInsts[i]);
1662   }
1663 
1664   for (const auto &PredLoad : PredLoads) {
1665     BasicBlock *UnavailablePred = PredLoad.first;
1666     Value *LoadPtr = PredLoad.second;
1667 
1668     Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1669                                         LI->getAlignment(),
1670                                         UnavailablePred->getTerminator());
1671 
1672     // Transfer the old load's TBAA tag to the new load.
1673     if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1674       NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1675 
1676     // Transfer DebugLoc.
1677     NewLoad->setDebugLoc(LI->getDebugLoc());
1678 
1679     // Add the newly created load.
1680     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1681                                                         NewLoad));
1682     MD->invalidateCachedPointerInfo(LoadPtr);
1683     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1684   }
1685 
1686   // Perform PHI construction.
1687   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1688   LI->replaceAllUsesWith(V);
1689   if (isa<PHINode>(V))
1690     V->takeName(LI);
1691   if (V->getType()->getScalarType()->isPointerTy())
1692     MD->invalidateCachedPointerInfo(V);
1693   markInstructionForDeletion(LI);
1694   ++NumPRELoad;
1695   return true;
1696 }
1697 
1698 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1699 /// non-local by performing PHI construction.
processNonLocalLoad(LoadInst * LI)1700 bool GVN::processNonLocalLoad(LoadInst *LI) {
1701   // Step 1: Find the non-local dependencies of the load.
1702   LoadDepVect Deps;
1703   AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1704   MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1705 
1706   // If we had to process more than one hundred blocks to find the
1707   // dependencies, this load isn't worth worrying about.  Optimizing
1708   // it will be too expensive.
1709   unsigned NumDeps = Deps.size();
1710   if (NumDeps > 100)
1711     return false;
1712 
1713   // If we had a phi translation failure, we'll have a single entry which is a
1714   // clobber in the current block.  Reject this early.
1715   if (NumDeps == 1 &&
1716       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1717     DEBUG(
1718       dbgs() << "GVN: non-local load ";
1719       LI->printAsOperand(dbgs());
1720       dbgs() << " has unknown dependencies\n";
1721     );
1722     return false;
1723   }
1724 
1725   // Step 2: Analyze the availability of the load
1726   AvailValInBlkVect ValuesPerBlock;
1727   UnavailBlkVect UnavailableBlocks;
1728   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1729 
1730   // If we have no predecessors that produce a known value for this load, exit
1731   // early.
1732   if (ValuesPerBlock.empty())
1733     return false;
1734 
1735   // Step 3: Eliminate fully redundancy.
1736   //
1737   // If all of the instructions we depend on produce a known value for this
1738   // load, then it is fully redundant and we can use PHI insertion to compute
1739   // its value.  Insert PHIs and remove the fully redundant value now.
1740   if (UnavailableBlocks.empty()) {
1741     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1742 
1743     // Perform PHI construction.
1744     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1745     LI->replaceAllUsesWith(V);
1746 
1747     if (isa<PHINode>(V))
1748       V->takeName(LI);
1749     if (V->getType()->getScalarType()->isPointerTy())
1750       MD->invalidateCachedPointerInfo(V);
1751     markInstructionForDeletion(LI);
1752     ++NumGVNLoad;
1753     return true;
1754   }
1755 
1756   // Step 4: Eliminate partial redundancy.
1757   if (!EnablePRE || !EnableLoadPRE)
1758     return false;
1759 
1760   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1761 }
1762 
1763 
patchReplacementInstruction(Instruction * I,Value * Repl)1764 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1765   // Patch the replacement so that it is not more restrictive than the value
1766   // being replaced.
1767   BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
1768   BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1769   if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
1770       isa<OverflowingBinaryOperator>(ReplOp)) {
1771     if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
1772       ReplOp->setHasNoSignedWrap(false);
1773     if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
1774       ReplOp->setHasNoUnsignedWrap(false);
1775   }
1776   if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1777     SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
1778     ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
1779     for (int i = 0, n = Metadata.size(); i < n; ++i) {
1780       unsigned Kind = Metadata[i].first;
1781       MDNode *IMD = I->getMetadata(Kind);
1782       MDNode *ReplMD = Metadata[i].second;
1783       switch(Kind) {
1784       default:
1785         ReplInst->setMetadata(Kind, nullptr); // Remove unknown metadata
1786         break;
1787       case LLVMContext::MD_dbg:
1788         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1789       case LLVMContext::MD_tbaa:
1790         ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
1791         break;
1792       case LLVMContext::MD_range:
1793         ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
1794         break;
1795       case LLVMContext::MD_prof:
1796         llvm_unreachable("MD_prof in a non-terminator instruction");
1797         break;
1798       case LLVMContext::MD_fpmath:
1799         ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
1800         break;
1801       case LLVMContext::MD_invariant_load:
1802         // Only set the !invariant.load if it is present in both instructions.
1803         ReplInst->setMetadata(Kind, IMD);
1804         break;
1805       }
1806     }
1807   }
1808 }
1809 
patchAndReplaceAllUsesWith(Instruction * I,Value * Repl)1810 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1811   patchReplacementInstruction(I, Repl);
1812   I->replaceAllUsesWith(Repl);
1813 }
1814 
1815 /// processLoad - Attempt to eliminate a load, first by eliminating it
1816 /// locally, and then attempting non-local elimination if that fails.
processLoad(LoadInst * L)1817 bool GVN::processLoad(LoadInst *L) {
1818   if (!MD)
1819     return false;
1820 
1821   if (!L->isSimple())
1822     return false;
1823 
1824   if (L->use_empty()) {
1825     markInstructionForDeletion(L);
1826     return true;
1827   }
1828 
1829   // ... to a pointer that has been loaded from before...
1830   MemDepResult Dep = MD->getDependency(L);
1831 
1832   // If we have a clobber and target data is around, see if this is a clobber
1833   // that we can fix up through code synthesis.
1834   if (Dep.isClobber() && DL) {
1835     // Check to see if we have something like this:
1836     //   store i32 123, i32* %P
1837     //   %A = bitcast i32* %P to i8*
1838     //   %B = gep i8* %A, i32 1
1839     //   %C = load i8* %B
1840     //
1841     // We could do that by recognizing if the clobber instructions are obviously
1842     // a common base + constant offset, and if the previous store (or memset)
1843     // completely covers this load.  This sort of thing can happen in bitfield
1844     // access code.
1845     Value *AvailVal = nullptr;
1846     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1847       int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1848                                                   L->getPointerOperand(),
1849                                                   DepSI, *DL);
1850       if (Offset != -1)
1851         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1852                                         L->getType(), L, *DL);
1853     }
1854 
1855     // Check to see if we have something like this:
1856     //    load i32* P
1857     //    load i8* (P+1)
1858     // if we have this, replace the later with an extraction from the former.
1859     if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1860       // If this is a clobber and L is the first instruction in its block, then
1861       // we have the first instruction in the entry block.
1862       if (DepLI == L)
1863         return false;
1864 
1865       int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1866                                                  L->getPointerOperand(),
1867                                                  DepLI, *DL);
1868       if (Offset != -1)
1869         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1870     }
1871 
1872     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1873     // a value on from it.
1874     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1875       int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1876                                                     L->getPointerOperand(),
1877                                                     DepMI, *DL);
1878       if (Offset != -1)
1879         AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *DL);
1880     }
1881 
1882     if (AvailVal) {
1883       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1884             << *AvailVal << '\n' << *L << "\n\n\n");
1885 
1886       // Replace the load!
1887       L->replaceAllUsesWith(AvailVal);
1888       if (AvailVal->getType()->getScalarType()->isPointerTy())
1889         MD->invalidateCachedPointerInfo(AvailVal);
1890       markInstructionForDeletion(L);
1891       ++NumGVNLoad;
1892       return true;
1893     }
1894   }
1895 
1896   // If the value isn't available, don't do anything!
1897   if (Dep.isClobber()) {
1898     DEBUG(
1899       // fast print dep, using operator<< on instruction is too slow.
1900       dbgs() << "GVN: load ";
1901       L->printAsOperand(dbgs());
1902       Instruction *I = Dep.getInst();
1903       dbgs() << " is clobbered by " << *I << '\n';
1904     );
1905     return false;
1906   }
1907 
1908   // If it is defined in another block, try harder.
1909   if (Dep.isNonLocal())
1910     return processNonLocalLoad(L);
1911 
1912   if (!Dep.isDef()) {
1913     DEBUG(
1914       // fast print dep, using operator<< on instruction is too slow.
1915       dbgs() << "GVN: load ";
1916       L->printAsOperand(dbgs());
1917       dbgs() << " has unknown dependence\n";
1918     );
1919     return false;
1920   }
1921 
1922   Instruction *DepInst = Dep.getInst();
1923   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1924     Value *StoredVal = DepSI->getValueOperand();
1925 
1926     // The store and load are to a must-aliased pointer, but they may not
1927     // actually have the same type.  See if we know how to reuse the stored
1928     // value (depending on its type).
1929     if (StoredVal->getType() != L->getType()) {
1930       if (DL) {
1931         StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1932                                                    L, *DL);
1933         if (!StoredVal)
1934           return false;
1935 
1936         DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1937                      << '\n' << *L << "\n\n\n");
1938       }
1939       else
1940         return false;
1941     }
1942 
1943     // Remove it!
1944     L->replaceAllUsesWith(StoredVal);
1945     if (StoredVal->getType()->getScalarType()->isPointerTy())
1946       MD->invalidateCachedPointerInfo(StoredVal);
1947     markInstructionForDeletion(L);
1948     ++NumGVNLoad;
1949     return true;
1950   }
1951 
1952   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1953     Value *AvailableVal = DepLI;
1954 
1955     // The loads are of a must-aliased pointer, but they may not actually have
1956     // the same type.  See if we know how to reuse the previously loaded value
1957     // (depending on its type).
1958     if (DepLI->getType() != L->getType()) {
1959       if (DL) {
1960         AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1961                                                       L, *DL);
1962         if (!AvailableVal)
1963           return false;
1964 
1965         DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1966                      << "\n" << *L << "\n\n\n");
1967       }
1968       else
1969         return false;
1970     }
1971 
1972     // Remove it!
1973     patchAndReplaceAllUsesWith(L, AvailableVal);
1974     if (DepLI->getType()->getScalarType()->isPointerTy())
1975       MD->invalidateCachedPointerInfo(DepLI);
1976     markInstructionForDeletion(L);
1977     ++NumGVNLoad;
1978     return true;
1979   }
1980 
1981   // If this load really doesn't depend on anything, then we must be loading an
1982   // undef value.  This can happen when loading for a fresh allocation with no
1983   // intervening stores, for example.
1984   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1985     L->replaceAllUsesWith(UndefValue::get(L->getType()));
1986     markInstructionForDeletion(L);
1987     ++NumGVNLoad;
1988     return true;
1989   }
1990 
1991   // If this load occurs either right after a lifetime begin,
1992   // then the loaded value is undefined.
1993   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1994     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1995       L->replaceAllUsesWith(UndefValue::get(L->getType()));
1996       markInstructionForDeletion(L);
1997       ++NumGVNLoad;
1998       return true;
1999     }
2000   }
2001 
2002   // If this load follows a calloc (which zero initializes memory),
2003   // then the loaded value is zero
2004   if (isCallocLikeFn(DepInst, TLI)) {
2005     L->replaceAllUsesWith(Constant::getNullValue(L->getType()));
2006     markInstructionForDeletion(L);
2007     ++NumGVNLoad;
2008     return true;
2009   }
2010 
2011   return false;
2012 }
2013 
2014 // findLeader - In order to find a leader for a given value number at a
2015 // specific basic block, we first obtain the list of all Values for that number,
2016 // and then scan the list to find one whose block dominates the block in
2017 // question.  This is fast because dominator tree queries consist of only
2018 // a few comparisons of DFS numbers.
findLeader(const BasicBlock * BB,uint32_t num)2019 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
2020   LeaderTableEntry Vals = LeaderTable[num];
2021   if (!Vals.Val) return nullptr;
2022 
2023   Value *Val = nullptr;
2024   if (DT->dominates(Vals.BB, BB)) {
2025     Val = Vals.Val;
2026     if (isa<Constant>(Val)) return Val;
2027   }
2028 
2029   LeaderTableEntry* Next = Vals.Next;
2030   while (Next) {
2031     if (DT->dominates(Next->BB, BB)) {
2032       if (isa<Constant>(Next->Val)) return Next->Val;
2033       if (!Val) Val = Next->Val;
2034     }
2035 
2036     Next = Next->Next;
2037   }
2038 
2039   return Val;
2040 }
2041 
2042 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
2043 /// use is dominated by the given basic block.  Returns the number of uses that
2044 /// were replaced.
replaceAllDominatedUsesWith(Value * From,Value * To,const BasicBlockEdge & Root)2045 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
2046                                           const BasicBlockEdge &Root) {
2047   unsigned Count = 0;
2048   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2049        UI != UE; ) {
2050     Use &U = *UI++;
2051 
2052     if (DT->dominates(Root, U)) {
2053       U.set(To);
2054       ++Count;
2055     }
2056   }
2057   return Count;
2058 }
2059 
2060 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
2061 /// true if every path from the entry block to 'Dst' passes via this edge.  In
2062 /// particular 'Dst' must not be reachable via another edge from 'Src'.
isOnlyReachableViaThisEdge(const BasicBlockEdge & E,DominatorTree * DT)2063 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2064                                        DominatorTree *DT) {
2065   // While in theory it is interesting to consider the case in which Dst has
2066   // more than one predecessor, because Dst might be part of a loop which is
2067   // only reachable from Src, in practice it is pointless since at the time
2068   // GVN runs all such loops have preheaders, which means that Dst will have
2069   // been changed to have only one predecessor, namely Src.
2070   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2071   const BasicBlock *Src = E.getStart();
2072   assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2073   (void)Src;
2074   return Pred != nullptr;
2075 }
2076 
2077 /// propagateEquality - The given values are known to be equal in every block
2078 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2079 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
propagateEquality(Value * LHS,Value * RHS,const BasicBlockEdge & Root)2080 bool GVN::propagateEquality(Value *LHS, Value *RHS,
2081                             const BasicBlockEdge &Root) {
2082   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2083   Worklist.push_back(std::make_pair(LHS, RHS));
2084   bool Changed = false;
2085   // For speed, compute a conservative fast approximation to
2086   // DT->dominates(Root, Root.getEnd());
2087   bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2088 
2089   while (!Worklist.empty()) {
2090     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2091     LHS = Item.first; RHS = Item.second;
2092 
2093     if (LHS == RHS) continue;
2094     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2095 
2096     // Don't try to propagate equalities between constants.
2097     if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
2098 
2099     // Prefer a constant on the right-hand side, or an Argument if no constants.
2100     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2101       std::swap(LHS, RHS);
2102     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2103 
2104     // If there is no obvious reason to prefer the left-hand side over the right-
2105     // hand side, ensure the longest lived term is on the right-hand side, so the
2106     // shortest lived term will be replaced by the longest lived.  This tends to
2107     // expose more simplifications.
2108     uint32_t LVN = VN.lookup_or_add(LHS);
2109     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2110         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2111       // Move the 'oldest' value to the right-hand side, using the value number as
2112       // a proxy for age.
2113       uint32_t RVN = VN.lookup_or_add(RHS);
2114       if (LVN < RVN) {
2115         std::swap(LHS, RHS);
2116         LVN = RVN;
2117       }
2118     }
2119 
2120     // If value numbering later sees that an instruction in the scope is equal
2121     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2122     // the invariant that instructions only occur in the leader table for their
2123     // own value number (this is used by removeFromLeaderTable), do not do this
2124     // if RHS is an instruction (if an instruction in the scope is morphed into
2125     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2126     // using the leader table is about compiling faster, not optimizing better).
2127     // The leader table only tracks basic blocks, not edges. Only add to if we
2128     // have the simple case where the edge dominates the end.
2129     if (RootDominatesEnd && !isa<Instruction>(RHS))
2130       addToLeaderTable(LVN, RHS, Root.getEnd());
2131 
2132     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2133     // LHS always has at least one use that is not dominated by Root, this will
2134     // never do anything if LHS has only one use.
2135     if (!LHS->hasOneUse()) {
2136       unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2137       Changed |= NumReplacements > 0;
2138       NumGVNEqProp += NumReplacements;
2139     }
2140 
2141     // Now try to deduce additional equalities from this one.  For example, if the
2142     // known equality was "(A != B)" == "false" then it follows that A and B are
2143     // equal in the scope.  Only boolean equalities with an explicit true or false
2144     // RHS are currently supported.
2145     if (!RHS->getType()->isIntegerTy(1))
2146       // Not a boolean equality - bail out.
2147       continue;
2148     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2149     if (!CI)
2150       // RHS neither 'true' nor 'false' - bail out.
2151       continue;
2152     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2153     bool isKnownTrue = CI->isAllOnesValue();
2154     bool isKnownFalse = !isKnownTrue;
2155 
2156     // If "A && B" is known true then both A and B are known true.  If "A || B"
2157     // is known false then both A and B are known false.
2158     Value *A, *B;
2159     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2160         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2161       Worklist.push_back(std::make_pair(A, RHS));
2162       Worklist.push_back(std::make_pair(B, RHS));
2163       continue;
2164     }
2165 
2166     // If we are propagating an equality like "(A == B)" == "true" then also
2167     // propagate the equality A == B.  When propagating a comparison such as
2168     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2169     if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2170       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2171 
2172       // If "A == B" is known true, or "A != B" is known false, then replace
2173       // A with B everywhere in the scope.
2174       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2175           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2176         Worklist.push_back(std::make_pair(Op0, Op1));
2177 
2178       // If "A >= B" is known true, replace "A < B" with false everywhere.
2179       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2180       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2181       // Since we don't have the instruction "A < B" immediately to hand, work out
2182       // the value number that it would have and use that to find an appropriate
2183       // instruction (if any).
2184       uint32_t NextNum = VN.getNextUnusedValueNumber();
2185       uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2186       // If the number we were assigned was brand new then there is no point in
2187       // looking for an instruction realizing it: there cannot be one!
2188       if (Num < NextNum) {
2189         Value *NotCmp = findLeader(Root.getEnd(), Num);
2190         if (NotCmp && isa<Instruction>(NotCmp)) {
2191           unsigned NumReplacements =
2192             replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2193           Changed |= NumReplacements > 0;
2194           NumGVNEqProp += NumReplacements;
2195         }
2196       }
2197       // Ensure that any instruction in scope that gets the "A < B" value number
2198       // is replaced with false.
2199       // The leader table only tracks basic blocks, not edges. Only add to if we
2200       // have the simple case where the edge dominates the end.
2201       if (RootDominatesEnd)
2202         addToLeaderTable(Num, NotVal, Root.getEnd());
2203 
2204       continue;
2205     }
2206   }
2207 
2208   return Changed;
2209 }
2210 
2211 /// processInstruction - When calculating availability, handle an instruction
2212 /// by inserting it into the appropriate sets
processInstruction(Instruction * I)2213 bool GVN::processInstruction(Instruction *I) {
2214   // Ignore dbg info intrinsics.
2215   if (isa<DbgInfoIntrinsic>(I))
2216     return false;
2217 
2218   // If the instruction can be easily simplified then do so now in preference
2219   // to value numbering it.  Value numbering often exposes redundancies, for
2220   // example if it determines that %y is equal to %x then the instruction
2221   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2222   if (Value *V = SimplifyInstruction(I, DL, TLI, DT)) {
2223     I->replaceAllUsesWith(V);
2224     if (MD && V->getType()->getScalarType()->isPointerTy())
2225       MD->invalidateCachedPointerInfo(V);
2226     markInstructionForDeletion(I);
2227     ++NumGVNSimpl;
2228     return true;
2229   }
2230 
2231   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2232     if (processLoad(LI))
2233       return true;
2234 
2235     unsigned Num = VN.lookup_or_add(LI);
2236     addToLeaderTable(Num, LI, LI->getParent());
2237     return false;
2238   }
2239 
2240   // For conditional branches, we can perform simple conditional propagation on
2241   // the condition value itself.
2242   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2243     if (!BI->isConditional())
2244       return false;
2245 
2246     if (isa<Constant>(BI->getCondition()))
2247       return processFoldableCondBr(BI);
2248 
2249     Value *BranchCond = BI->getCondition();
2250     BasicBlock *TrueSucc = BI->getSuccessor(0);
2251     BasicBlock *FalseSucc = BI->getSuccessor(1);
2252     // Avoid multiple edges early.
2253     if (TrueSucc == FalseSucc)
2254       return false;
2255 
2256     BasicBlock *Parent = BI->getParent();
2257     bool Changed = false;
2258 
2259     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2260     BasicBlockEdge TrueE(Parent, TrueSucc);
2261     Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
2262 
2263     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2264     BasicBlockEdge FalseE(Parent, FalseSucc);
2265     Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
2266 
2267     return Changed;
2268   }
2269 
2270   // For switches, propagate the case values into the case destinations.
2271   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2272     Value *SwitchCond = SI->getCondition();
2273     BasicBlock *Parent = SI->getParent();
2274     bool Changed = false;
2275 
2276     // Remember how many outgoing edges there are to every successor.
2277     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2278     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2279       ++SwitchEdges[SI->getSuccessor(i)];
2280 
2281     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2282          i != e; ++i) {
2283       BasicBlock *Dst = i.getCaseSuccessor();
2284       // If there is only a single edge, propagate the case value into it.
2285       if (SwitchEdges.lookup(Dst) == 1) {
2286         BasicBlockEdge E(Parent, Dst);
2287         Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
2288       }
2289     }
2290     return Changed;
2291   }
2292 
2293   // Instructions with void type don't return a value, so there's
2294   // no point in trying to find redundancies in them.
2295   if (I->getType()->isVoidTy()) return false;
2296 
2297   uint32_t NextNum = VN.getNextUnusedValueNumber();
2298   unsigned Num = VN.lookup_or_add(I);
2299 
2300   // Allocations are always uniquely numbered, so we can save time and memory
2301   // by fast failing them.
2302   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2303     addToLeaderTable(Num, I, I->getParent());
2304     return false;
2305   }
2306 
2307   // If the number we were assigned was a brand new VN, then we don't
2308   // need to do a lookup to see if the number already exists
2309   // somewhere in the domtree: it can't!
2310   if (Num >= NextNum) {
2311     addToLeaderTable(Num, I, I->getParent());
2312     return false;
2313   }
2314 
2315   // Perform fast-path value-number based elimination of values inherited from
2316   // dominators.
2317   Value *repl = findLeader(I->getParent(), Num);
2318   if (!repl) {
2319     // Failure, just remember this instance for future use.
2320     addToLeaderTable(Num, I, I->getParent());
2321     return false;
2322   }
2323 
2324   // Remove it!
2325   patchAndReplaceAllUsesWith(I, repl);
2326   if (MD && repl->getType()->getScalarType()->isPointerTy())
2327     MD->invalidateCachedPointerInfo(repl);
2328   markInstructionForDeletion(I);
2329   return true;
2330 }
2331 
2332 /// runOnFunction - This is the main transformation entry point for a function.
runOnFunction(Function & F)2333 bool GVN::runOnFunction(Function& F) {
2334   if (skipOptnoneFunction(F))
2335     return false;
2336 
2337   if (!NoLoads)
2338     MD = &getAnalysis<MemoryDependenceAnalysis>();
2339   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2340   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
2341   DL = DLP ? &DLP->getDataLayout() : nullptr;
2342   TLI = &getAnalysis<TargetLibraryInfo>();
2343   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2344   VN.setMemDep(MD);
2345   VN.setDomTree(DT);
2346 
2347   bool Changed = false;
2348   bool ShouldContinue = true;
2349 
2350   // Merge unconditional branches, allowing PRE to catch more
2351   // optimization opportunities.
2352   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2353     BasicBlock *BB = FI++;
2354 
2355     bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2356     if (removedBlock) ++NumGVNBlocks;
2357 
2358     Changed |= removedBlock;
2359   }
2360 
2361   unsigned Iteration = 0;
2362   while (ShouldContinue) {
2363     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2364     ShouldContinue = iterateOnFunction(F);
2365     Changed |= ShouldContinue;
2366     ++Iteration;
2367   }
2368 
2369   if (EnablePRE) {
2370     // Fabricate val-num for dead-code in order to suppress assertion in
2371     // performPRE().
2372     assignValNumForDeadCode();
2373     bool PREChanged = true;
2374     while (PREChanged) {
2375       PREChanged = performPRE(F);
2376       Changed |= PREChanged;
2377     }
2378   }
2379 
2380   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2381   // computations into blocks where they become fully redundant.  Note that
2382   // we can't do this until PRE's critical edge splitting updates memdep.
2383   // Actually, when this happens, we should just fully integrate PRE into GVN.
2384 
2385   cleanupGlobalSets();
2386   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2387   // iteration.
2388   DeadBlocks.clear();
2389 
2390   return Changed;
2391 }
2392 
2393 
processBlock(BasicBlock * BB)2394 bool GVN::processBlock(BasicBlock *BB) {
2395   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2396   // (and incrementing BI before processing an instruction).
2397   assert(InstrsToErase.empty() &&
2398          "We expect InstrsToErase to be empty across iterations");
2399   if (DeadBlocks.count(BB))
2400     return false;
2401 
2402   bool ChangedFunction = false;
2403 
2404   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2405        BI != BE;) {
2406     ChangedFunction |= processInstruction(BI);
2407     if (InstrsToErase.empty()) {
2408       ++BI;
2409       continue;
2410     }
2411 
2412     // If we need some instructions deleted, do it now.
2413     NumGVNInstr += InstrsToErase.size();
2414 
2415     // Avoid iterator invalidation.
2416     bool AtStart = BI == BB->begin();
2417     if (!AtStart)
2418       --BI;
2419 
2420     for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
2421          E = InstrsToErase.end(); I != E; ++I) {
2422       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2423       if (MD) MD->removeInstruction(*I);
2424       DEBUG(verifyRemoved(*I));
2425       (*I)->eraseFromParent();
2426     }
2427     InstrsToErase.clear();
2428 
2429     if (AtStart)
2430       BI = BB->begin();
2431     else
2432       ++BI;
2433   }
2434 
2435   return ChangedFunction;
2436 }
2437 
2438 /// performPRE - Perform a purely local form of PRE that looks for diamond
2439 /// control flow patterns and attempts to perform simple PRE at the join point.
performPRE(Function & F)2440 bool GVN::performPRE(Function &F) {
2441   bool Changed = false;
2442   SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
2443   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2444     // Nothing to PRE in the entry block.
2445     if (CurrentBlock == &F.getEntryBlock()) continue;
2446 
2447     // Don't perform PRE on a landing pad.
2448     if (CurrentBlock->isLandingPad()) continue;
2449 
2450     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2451          BE = CurrentBlock->end(); BI != BE; ) {
2452       Instruction *CurInst = BI++;
2453 
2454       if (isa<AllocaInst>(CurInst) ||
2455           isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2456           CurInst->getType()->isVoidTy() ||
2457           CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2458           isa<DbgInfoIntrinsic>(CurInst))
2459         continue;
2460 
2461       // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2462       // sinking the compare again, and it would force the code generator to
2463       // move the i1 from processor flags or predicate registers into a general
2464       // purpose register.
2465       if (isa<CmpInst>(CurInst))
2466         continue;
2467 
2468       // We don't currently value number ANY inline asm calls.
2469       if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2470         if (CallI->isInlineAsm())
2471           continue;
2472 
2473       uint32_t ValNo = VN.lookup(CurInst);
2474 
2475       // Look for the predecessors for PRE opportunities.  We're
2476       // only trying to solve the basic diamond case, where
2477       // a value is computed in the successor and one predecessor,
2478       // but not the other.  We also explicitly disallow cases
2479       // where the successor is its own predecessor, because they're
2480       // more complicated to get right.
2481       unsigned NumWith = 0;
2482       unsigned NumWithout = 0;
2483       BasicBlock *PREPred = nullptr;
2484       predMap.clear();
2485 
2486       for (pred_iterator PI = pred_begin(CurrentBlock),
2487            PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2488         BasicBlock *P = *PI;
2489         // We're not interested in PRE where the block is its
2490         // own predecessor, or in blocks with predecessors
2491         // that are not reachable.
2492         if (P == CurrentBlock) {
2493           NumWithout = 2;
2494           break;
2495         } else if (!DT->isReachableFromEntry(P))  {
2496           NumWithout = 2;
2497           break;
2498         }
2499 
2500         Value* predV = findLeader(P, ValNo);
2501         if (!predV) {
2502           predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2503           PREPred = P;
2504           ++NumWithout;
2505         } else if (predV == CurInst) {
2506           /* CurInst dominates this predecessor. */
2507           NumWithout = 2;
2508           break;
2509         } else {
2510           predMap.push_back(std::make_pair(predV, P));
2511           ++NumWith;
2512         }
2513       }
2514 
2515       // Don't do PRE when it might increase code size, i.e. when
2516       // we would need to insert instructions in more than one pred.
2517       if (NumWithout != 1 || NumWith == 0)
2518         continue;
2519 
2520       // Don't do PRE across indirect branch.
2521       if (isa<IndirectBrInst>(PREPred->getTerminator()))
2522         continue;
2523 
2524       // We can't do PRE safely on a critical edge, so instead we schedule
2525       // the edge to be split and perform the PRE the next time we iterate
2526       // on the function.
2527       unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2528       if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2529         toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2530         continue;
2531       }
2532 
2533       // Instantiate the expression in the predecessor that lacked it.
2534       // Because we are going top-down through the block, all value numbers
2535       // will be available in the predecessor by the time we need them.  Any
2536       // that weren't originally present will have been instantiated earlier
2537       // in this loop.
2538       Instruction *PREInstr = CurInst->clone();
2539       bool success = true;
2540       for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2541         Value *Op = PREInstr->getOperand(i);
2542         if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2543           continue;
2544 
2545         if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2546           PREInstr->setOperand(i, V);
2547         } else {
2548           success = false;
2549           break;
2550         }
2551       }
2552 
2553       // Fail out if we encounter an operand that is not available in
2554       // the PRE predecessor.  This is typically because of loads which
2555       // are not value numbered precisely.
2556       if (!success) {
2557         DEBUG(verifyRemoved(PREInstr));
2558         delete PREInstr;
2559         continue;
2560       }
2561 
2562       PREInstr->insertBefore(PREPred->getTerminator());
2563       PREInstr->setName(CurInst->getName() + ".pre");
2564       PREInstr->setDebugLoc(CurInst->getDebugLoc());
2565       VN.add(PREInstr, ValNo);
2566       ++NumGVNPRE;
2567 
2568       // Update the availability map to include the new instruction.
2569       addToLeaderTable(ValNo, PREInstr, PREPred);
2570 
2571       // Create a PHI to make the value available in this block.
2572       PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
2573                                      CurInst->getName() + ".pre-phi",
2574                                      CurrentBlock->begin());
2575       for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2576         if (Value *V = predMap[i].first)
2577           Phi->addIncoming(V, predMap[i].second);
2578         else
2579           Phi->addIncoming(PREInstr, PREPred);
2580       }
2581 
2582       VN.add(Phi, ValNo);
2583       addToLeaderTable(ValNo, Phi, CurrentBlock);
2584       Phi->setDebugLoc(CurInst->getDebugLoc());
2585       CurInst->replaceAllUsesWith(Phi);
2586       if (Phi->getType()->getScalarType()->isPointerTy()) {
2587         // Because we have added a PHI-use of the pointer value, it has now
2588         // "escaped" from alias analysis' perspective.  We need to inform
2589         // AA of this.
2590         for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2591              ++ii) {
2592           unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2593           VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2594         }
2595 
2596         if (MD)
2597           MD->invalidateCachedPointerInfo(Phi);
2598       }
2599       VN.erase(CurInst);
2600       removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2601 
2602       DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2603       if (MD) MD->removeInstruction(CurInst);
2604       DEBUG(verifyRemoved(CurInst));
2605       CurInst->eraseFromParent();
2606       Changed = true;
2607     }
2608   }
2609 
2610   if (splitCriticalEdges())
2611     Changed = true;
2612 
2613   return Changed;
2614 }
2615 
2616 /// Split the critical edge connecting the given two blocks, and return
2617 /// the block inserted to the critical edge.
splitCriticalEdges(BasicBlock * Pred,BasicBlock * Succ)2618 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2619   BasicBlock *BB = SplitCriticalEdge(Pred, Succ, this);
2620   if (MD)
2621     MD->invalidateCachedPredecessors();
2622   return BB;
2623 }
2624 
2625 /// splitCriticalEdges - Split critical edges found during the previous
2626 /// iteration that may enable further optimization.
splitCriticalEdges()2627 bool GVN::splitCriticalEdges() {
2628   if (toSplit.empty())
2629     return false;
2630   do {
2631     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2632     SplitCriticalEdge(Edge.first, Edge.second, this);
2633   } while (!toSplit.empty());
2634   if (MD) MD->invalidateCachedPredecessors();
2635   return true;
2636 }
2637 
2638 /// iterateOnFunction - Executes one iteration of GVN
iterateOnFunction(Function & F)2639 bool GVN::iterateOnFunction(Function &F) {
2640   cleanupGlobalSets();
2641 
2642   // Top-down walk of the dominator tree
2643   bool Changed = false;
2644 #if 0
2645   // Needed for value numbering with phi construction to work.
2646   ReversePostOrderTraversal<Function*> RPOT(&F);
2647   for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2648        RE = RPOT.end(); RI != RE; ++RI)
2649     Changed |= processBlock(*RI);
2650 #else
2651   // Save the blocks this function have before transformation begins. GVN may
2652   // split critical edge, and hence may invalidate the RPO/DT iterator.
2653   //
2654   std::vector<BasicBlock *> BBVect;
2655   BBVect.reserve(256);
2656   for (DomTreeNode *x : depth_first(DT->getRootNode()))
2657     BBVect.push_back(x->getBlock());
2658 
2659   for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
2660        I != E; I++)
2661     Changed |= processBlock(*I);
2662 #endif
2663 
2664   return Changed;
2665 }
2666 
cleanupGlobalSets()2667 void GVN::cleanupGlobalSets() {
2668   VN.clear();
2669   LeaderTable.clear();
2670   TableAllocator.Reset();
2671 }
2672 
2673 /// verifyRemoved - Verify that the specified instruction does not occur in our
2674 /// internal data structures.
verifyRemoved(const Instruction * Inst) const2675 void GVN::verifyRemoved(const Instruction *Inst) const {
2676   VN.verifyRemoved(Inst);
2677 
2678   // Walk through the value number scope to make sure the instruction isn't
2679   // ferreted away in it.
2680   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2681        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2682     const LeaderTableEntry *Node = &I->second;
2683     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2684 
2685     while (Node->Next) {
2686       Node = Node->Next;
2687       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2688     }
2689   }
2690 }
2691 
2692 // BB is declared dead, which implied other blocks become dead as well. This
2693 // function is to add all these blocks to "DeadBlocks". For the dead blocks'
2694 // live successors, update their phi nodes by replacing the operands
2695 // corresponding to dead blocks with UndefVal.
2696 //
addDeadBlock(BasicBlock * BB)2697 void GVN::addDeadBlock(BasicBlock *BB) {
2698   SmallVector<BasicBlock *, 4> NewDead;
2699   SmallSetVector<BasicBlock *, 4> DF;
2700 
2701   NewDead.push_back(BB);
2702   while (!NewDead.empty()) {
2703     BasicBlock *D = NewDead.pop_back_val();
2704     if (DeadBlocks.count(D))
2705       continue;
2706 
2707     // All blocks dominated by D are dead.
2708     SmallVector<BasicBlock *, 8> Dom;
2709     DT->getDescendants(D, Dom);
2710     DeadBlocks.insert(Dom.begin(), Dom.end());
2711 
2712     // Figure out the dominance-frontier(D).
2713     for (SmallVectorImpl<BasicBlock *>::iterator I = Dom.begin(),
2714            E = Dom.end(); I != E; I++) {
2715       BasicBlock *B = *I;
2716       for (succ_iterator SI = succ_begin(B), SE = succ_end(B); SI != SE; SI++) {
2717         BasicBlock *S = *SI;
2718         if (DeadBlocks.count(S))
2719           continue;
2720 
2721         bool AllPredDead = true;
2722         for (pred_iterator PI = pred_begin(S), PE = pred_end(S); PI != PE; PI++)
2723           if (!DeadBlocks.count(*PI)) {
2724             AllPredDead = false;
2725             break;
2726           }
2727 
2728         if (!AllPredDead) {
2729           // S could be proved dead later on. That is why we don't update phi
2730           // operands at this moment.
2731           DF.insert(S);
2732         } else {
2733           // While S is not dominated by D, it is dead by now. This could take
2734           // place if S already have a dead predecessor before D is declared
2735           // dead.
2736           NewDead.push_back(S);
2737         }
2738       }
2739     }
2740   }
2741 
2742   // For the dead blocks' live successors, update their phi nodes by replacing
2743   // the operands corresponding to dead blocks with UndefVal.
2744   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2745         I != E; I++) {
2746     BasicBlock *B = *I;
2747     if (DeadBlocks.count(B))
2748       continue;
2749 
2750     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2751     for (SmallVectorImpl<BasicBlock *>::iterator PI = Preds.begin(),
2752            PE = Preds.end(); PI != PE; PI++) {
2753       BasicBlock *P = *PI;
2754 
2755       if (!DeadBlocks.count(P))
2756         continue;
2757 
2758       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2759         if (BasicBlock *S = splitCriticalEdges(P, B))
2760           DeadBlocks.insert(P = S);
2761       }
2762 
2763       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2764         PHINode &Phi = cast<PHINode>(*II);
2765         Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2766                              UndefValue::get(Phi.getType()));
2767       }
2768     }
2769   }
2770 }
2771 
2772 // If the given branch is recognized as a foldable branch (i.e. conditional
2773 // branch with constant condition), it will perform following analyses and
2774 // transformation.
2775 //  1) If the dead out-coming edge is a critical-edge, split it. Let
2776 //     R be the target of the dead out-coming edge.
2777 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
2778 //     edge. The result of this step will be {X| X is dominated by R}
2779 //  2) Identify those blocks which haves at least one dead prodecessor. The
2780 //     result of this step will be dominance-frontier(R).
2781 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2782 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2783 //
2784 // Return true iff *NEW* dead code are found.
processFoldableCondBr(BranchInst * BI)2785 bool GVN::processFoldableCondBr(BranchInst *BI) {
2786   if (!BI || BI->isUnconditional())
2787     return false;
2788 
2789   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2790   if (!Cond)
2791     return false;
2792 
2793   BasicBlock *DeadRoot = Cond->getZExtValue() ?
2794                          BI->getSuccessor(1) : BI->getSuccessor(0);
2795   if (DeadBlocks.count(DeadRoot))
2796     return false;
2797 
2798   if (!DeadRoot->getSinglePredecessor())
2799     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2800 
2801   addDeadBlock(DeadRoot);
2802   return true;
2803 }
2804 
2805 // performPRE() will trigger assert if it come across an instruciton without
2806 // associated val-num. As it normally has far more live instructions than dead
2807 // instructions, it makes more sense just to "fabricate" a val-number for the
2808 // dead code than checking if instruction involved is dead or not.
assignValNumForDeadCode()2809 void GVN::assignValNumForDeadCode() {
2810   for (SetVector<BasicBlock *>::iterator I = DeadBlocks.begin(),
2811         E = DeadBlocks.end(); I != E; I++) {
2812     BasicBlock *BB = *I;
2813     for (BasicBlock::iterator II = BB->begin(), EE = BB->end();
2814           II != EE; II++) {
2815       Instruction *Inst = &*II;
2816       unsigned ValNum = VN.lookup_or_add(Inst);
2817       addToLeaderTable(ValNum, Inst, BB);
2818     }
2819   }
2820 }
2821