1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZTargetMachine.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
19
20 using namespace llvm;
21
22 #define DEBUG_TYPE "systemz-isel"
23
24 namespace {
25 // Used to build addressing modes.
26 struct SystemZAddressingMode {
27 // The shape of the address.
28 enum AddrForm {
29 // base+displacement
30 FormBD,
31
32 // base+displacement+index for load and store operands
33 FormBDXNormal,
34
35 // base+displacement+index for load address operands
36 FormBDXLA,
37
38 // base+displacement+index+ADJDYNALLOC
39 FormBDXDynAlloc
40 };
41 AddrForm Form;
42
43 // The type of displacement. The enum names here correspond directly
44 // to the definitions in SystemZOperand.td. We could split them into
45 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
46 enum DispRange {
47 Disp12Only,
48 Disp12Pair,
49 Disp20Only,
50 Disp20Only128,
51 Disp20Pair
52 };
53 DispRange DR;
54
55 // The parts of the address. The address is equivalent to:
56 //
57 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
58 SDValue Base;
59 int64_t Disp;
60 SDValue Index;
61 bool IncludesDynAlloc;
62
SystemZAddressingMode__anond8d991340111::SystemZAddressingMode63 SystemZAddressingMode(AddrForm form, DispRange dr)
64 : Form(form), DR(dr), Base(), Disp(0), Index(),
65 IncludesDynAlloc(false) {}
66
67 // True if the address can have an index register.
hasIndexField__anond8d991340111::SystemZAddressingMode68 bool hasIndexField() { return Form != FormBD; }
69
70 // True if the address can (and must) include ADJDYNALLOC.
isDynAlloc__anond8d991340111::SystemZAddressingMode71 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
72
dump__anond8d991340111::SystemZAddressingMode73 void dump() {
74 errs() << "SystemZAddressingMode " << this << '\n';
75
76 errs() << " Base ";
77 if (Base.getNode())
78 Base.getNode()->dump();
79 else
80 errs() << "null\n";
81
82 if (hasIndexField()) {
83 errs() << " Index ";
84 if (Index.getNode())
85 Index.getNode()->dump();
86 else
87 errs() << "null\n";
88 }
89
90 errs() << " Disp " << Disp;
91 if (IncludesDynAlloc)
92 errs() << " + ADJDYNALLOC";
93 errs() << '\n';
94 }
95 };
96
97 // Return a mask with Count low bits set.
allOnes(unsigned int Count)98 static uint64_t allOnes(unsigned int Count) {
99 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
100 }
101
102 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
103 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
104 // Rotate (I5). The combined operand value is effectively:
105 //
106 // (or (rotl Input, Rotate), ~Mask)
107 //
108 // for RNSBG and:
109 //
110 // (and (rotl Input, Rotate), Mask)
111 //
112 // otherwise. The output value has BitSize bits, although Input may be
113 // narrower (in which case the upper bits are don't care).
114 struct RxSBGOperands {
RxSBGOperands__anond8d991340111::RxSBGOperands115 RxSBGOperands(unsigned Op, SDValue N)
116 : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
117 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
118 Rotate(0) {}
119
120 unsigned Opcode;
121 unsigned BitSize;
122 uint64_t Mask;
123 SDValue Input;
124 unsigned Start;
125 unsigned End;
126 unsigned Rotate;
127 };
128
129 class SystemZDAGToDAGISel : public SelectionDAGISel {
130 const SystemZTargetLowering &Lowering;
131 const SystemZSubtarget &Subtarget;
132
133 // Used by SystemZOperands.td to create integer constants.
getImm(const SDNode * Node,uint64_t Imm) const134 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
135 return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
136 }
137
getTargetMachine() const138 const SystemZTargetMachine &getTargetMachine() const {
139 return static_cast<const SystemZTargetMachine &>(TM);
140 }
141
getInstrInfo() const142 const SystemZInstrInfo *getInstrInfo() const {
143 return getTargetMachine().getInstrInfo();
144 }
145
146 // Try to fold more of the base or index of AM into AM, where IsBase
147 // selects between the base and index.
148 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
149
150 // Try to describe N in AM, returning true on success.
151 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
152
153 // Extract individual target operands from matched address AM.
154 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
155 SDValue &Base, SDValue &Disp) const;
156 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
157 SDValue &Base, SDValue &Disp, SDValue &Index) const;
158
159 // Try to match Addr as a FormBD address with displacement type DR.
160 // Return true on success, storing the base and displacement in
161 // Base and Disp respectively.
162 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
163 SDValue &Base, SDValue &Disp) const;
164
165 // Try to match Addr as a FormBDX address with displacement type DR.
166 // Return true on success and if the result had no index. Store the
167 // base and displacement in Base and Disp respectively.
168 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
169 SDValue &Base, SDValue &Disp) const;
170
171 // Try to match Addr as a FormBDX* address of form Form with
172 // displacement type DR. Return true on success, storing the base,
173 // displacement and index in Base, Disp and Index respectively.
174 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
175 SystemZAddressingMode::DispRange DR, SDValue Addr,
176 SDValue &Base, SDValue &Disp, SDValue &Index) const;
177
178 // PC-relative address matching routines used by SystemZOperands.td.
selectPCRelAddress(SDValue Addr,SDValue & Target) const179 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
180 if (SystemZISD::isPCREL(Addr.getOpcode())) {
181 Target = Addr.getOperand(0);
182 return true;
183 }
184 return false;
185 }
186
187 // BD matching routines used by SystemZOperands.td.
selectBDAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp) const188 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
189 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
190 }
selectBDAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const191 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
192 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
193 }
selectBDAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp) const194 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
195 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
196 }
selectBDAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const197 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
198 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
199 }
200
201 // MVI matching routines used by SystemZOperands.td.
selectMVIAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const202 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
203 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
204 }
selectMVIAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const205 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
206 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
207 }
208
209 // BDX matching routines used by SystemZOperands.td.
selectBDXAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const210 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
211 SDValue &Index) const {
212 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
213 SystemZAddressingMode::Disp12Only,
214 Addr, Base, Disp, Index);
215 }
selectBDXAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const216 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
217 SDValue &Index) const {
218 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
219 SystemZAddressingMode::Disp12Pair,
220 Addr, Base, Disp, Index);
221 }
selectDynAlloc12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const222 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
223 SDValue &Index) const {
224 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
225 SystemZAddressingMode::Disp12Only,
226 Addr, Base, Disp, Index);
227 }
selectBDXAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const228 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
229 SDValue &Index) const {
230 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
231 SystemZAddressingMode::Disp20Only,
232 Addr, Base, Disp, Index);
233 }
selectBDXAddr20Only128(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const234 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
235 SDValue &Index) const {
236 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
237 SystemZAddressingMode::Disp20Only128,
238 Addr, Base, Disp, Index);
239 }
selectBDXAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const240 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
241 SDValue &Index) const {
242 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
243 SystemZAddressingMode::Disp20Pair,
244 Addr, Base, Disp, Index);
245 }
selectLAAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const246 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
247 SDValue &Index) const {
248 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
249 SystemZAddressingMode::Disp12Pair,
250 Addr, Base, Disp, Index);
251 }
selectLAAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const252 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
253 SDValue &Index) const {
254 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
255 SystemZAddressingMode::Disp20Pair,
256 Addr, Base, Disp, Index);
257 }
258
259 // Check whether (or Op (and X InsertMask)) is effectively an insertion
260 // of X into bits InsertMask of some Y != Op. Return true if so and
261 // set Op to that Y.
262 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
263
264 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
265 // Return true on success.
266 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
267
268 // Try to fold some of RxSBG.Input into other fields of RxSBG.
269 // Return true on success.
270 bool expandRxSBG(RxSBGOperands &RxSBG) const;
271
272 // Return an undefined value of type VT.
273 SDValue getUNDEF(SDLoc DL, EVT VT) const;
274
275 // Convert N to VT, if it isn't already.
276 SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const;
277
278 // Try to implement AND or shift node N using RISBG with the zero flag set.
279 // Return the selected node on success, otherwise return null.
280 SDNode *tryRISBGZero(SDNode *N);
281
282 // Try to use RISBG or Opcode to implement OR or XOR node N.
283 // Return the selected node on success, otherwise return null.
284 SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
285
286 // If Op0 is null, then Node is a constant that can be loaded using:
287 //
288 // (Opcode UpperVal LowerVal)
289 //
290 // If Op0 is nonnull, then Node can be implemented using:
291 //
292 // (Opcode (Opcode Op0 UpperVal) LowerVal)
293 SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
294 uint64_t UpperVal, uint64_t LowerVal);
295
296 // Return true if Load and Store are loads and stores of the same size
297 // and are guaranteed not to overlap. Such operations can be implemented
298 // using block (SS-format) instructions.
299 //
300 // Partial overlap would lead to incorrect code, since the block operations
301 // are logically bytewise, even though they have a fast path for the
302 // non-overlapping case. We also need to avoid full overlap (i.e. two
303 // addresses that might be equal at run time) because although that case
304 // would be handled correctly, it might be implemented by millicode.
305 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
306
307 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
308 // from Y to X.
309 bool storeLoadCanUseMVC(SDNode *N) const;
310
311 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
312 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
313 // to X.
314 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
315
316 public:
SystemZDAGToDAGISel(SystemZTargetMachine & TM,CodeGenOpt::Level OptLevel)317 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
318 : SelectionDAGISel(TM, OptLevel),
319 Lowering(*TM.getTargetLowering()),
320 Subtarget(*TM.getSubtargetImpl()) { }
321
322 // Override MachineFunctionPass.
getPassName() const323 const char *getPassName() const override {
324 return "SystemZ DAG->DAG Pattern Instruction Selection";
325 }
326
327 // Override SelectionDAGISel.
328 SDNode *Select(SDNode *Node) override;
329 bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
330 std::vector<SDValue> &OutOps) override;
331
332 // Include the pieces autogenerated from the target description.
333 #include "SystemZGenDAGISel.inc"
334 };
335 } // end anonymous namespace
336
createSystemZISelDag(SystemZTargetMachine & TM,CodeGenOpt::Level OptLevel)337 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
338 CodeGenOpt::Level OptLevel) {
339 return new SystemZDAGToDAGISel(TM, OptLevel);
340 }
341
342 // Return true if Val should be selected as a displacement for an address
343 // with range DR. Here we're interested in the range of both the instruction
344 // described by DR and of any pairing instruction.
selectDisp(SystemZAddressingMode::DispRange DR,int64_t Val)345 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
346 switch (DR) {
347 case SystemZAddressingMode::Disp12Only:
348 return isUInt<12>(Val);
349
350 case SystemZAddressingMode::Disp12Pair:
351 case SystemZAddressingMode::Disp20Only:
352 case SystemZAddressingMode::Disp20Pair:
353 return isInt<20>(Val);
354
355 case SystemZAddressingMode::Disp20Only128:
356 return isInt<20>(Val) && isInt<20>(Val + 8);
357 }
358 llvm_unreachable("Unhandled displacement range");
359 }
360
361 // Change the base or index in AM to Value, where IsBase selects
362 // between the base and index.
changeComponent(SystemZAddressingMode & AM,bool IsBase,SDValue Value)363 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
364 SDValue Value) {
365 if (IsBase)
366 AM.Base = Value;
367 else
368 AM.Index = Value;
369 }
370
371 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
372 // where IsBase selects between the base and index. Try to fold the
373 // ADJDYNALLOC into AM.
expandAdjDynAlloc(SystemZAddressingMode & AM,bool IsBase,SDValue Value)374 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
375 SDValue Value) {
376 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
377 changeComponent(AM, IsBase, Value);
378 AM.IncludesDynAlloc = true;
379 return true;
380 }
381 return false;
382 }
383
384 // The base of AM is equivalent to Base + Index. Try to use Index as
385 // the index register.
expandIndex(SystemZAddressingMode & AM,SDValue Base,SDValue Index)386 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
387 SDValue Index) {
388 if (AM.hasIndexField() && !AM.Index.getNode()) {
389 AM.Base = Base;
390 AM.Index = Index;
391 return true;
392 }
393 return false;
394 }
395
396 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
397 // between the base and index. Try to fold Op1 into AM's displacement.
expandDisp(SystemZAddressingMode & AM,bool IsBase,SDValue Op0,uint64_t Op1)398 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
399 SDValue Op0, uint64_t Op1) {
400 // First try adjusting the displacement.
401 int64_t TestDisp = AM.Disp + Op1;
402 if (selectDisp(AM.DR, TestDisp)) {
403 changeComponent(AM, IsBase, Op0);
404 AM.Disp = TestDisp;
405 return true;
406 }
407
408 // We could consider forcing the displacement into a register and
409 // using it as an index, but it would need to be carefully tuned.
410 return false;
411 }
412
expandAddress(SystemZAddressingMode & AM,bool IsBase) const413 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
414 bool IsBase) const {
415 SDValue N = IsBase ? AM.Base : AM.Index;
416 unsigned Opcode = N.getOpcode();
417 if (Opcode == ISD::TRUNCATE) {
418 N = N.getOperand(0);
419 Opcode = N.getOpcode();
420 }
421 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
422 SDValue Op0 = N.getOperand(0);
423 SDValue Op1 = N.getOperand(1);
424
425 unsigned Op0Code = Op0->getOpcode();
426 unsigned Op1Code = Op1->getOpcode();
427
428 if (Op0Code == SystemZISD::ADJDYNALLOC)
429 return expandAdjDynAlloc(AM, IsBase, Op1);
430 if (Op1Code == SystemZISD::ADJDYNALLOC)
431 return expandAdjDynAlloc(AM, IsBase, Op0);
432
433 if (Op0Code == ISD::Constant)
434 return expandDisp(AM, IsBase, Op1,
435 cast<ConstantSDNode>(Op0)->getSExtValue());
436 if (Op1Code == ISD::Constant)
437 return expandDisp(AM, IsBase, Op0,
438 cast<ConstantSDNode>(Op1)->getSExtValue());
439
440 if (IsBase && expandIndex(AM, Op0, Op1))
441 return true;
442 }
443 if (Opcode == SystemZISD::PCREL_OFFSET) {
444 SDValue Full = N.getOperand(0);
445 SDValue Base = N.getOperand(1);
446 SDValue Anchor = Base.getOperand(0);
447 uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
448 cast<GlobalAddressSDNode>(Anchor)->getOffset());
449 return expandDisp(AM, IsBase, Base, Offset);
450 }
451 return false;
452 }
453
454 // Return true if an instruction with displacement range DR should be
455 // used for displacement value Val. selectDisp(DR, Val) must already hold.
isValidDisp(SystemZAddressingMode::DispRange DR,int64_t Val)456 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
457 assert(selectDisp(DR, Val) && "Invalid displacement");
458 switch (DR) {
459 case SystemZAddressingMode::Disp12Only:
460 case SystemZAddressingMode::Disp20Only:
461 case SystemZAddressingMode::Disp20Only128:
462 return true;
463
464 case SystemZAddressingMode::Disp12Pair:
465 // Use the other instruction if the displacement is too large.
466 return isUInt<12>(Val);
467
468 case SystemZAddressingMode::Disp20Pair:
469 // Use the other instruction if the displacement is small enough.
470 return !isUInt<12>(Val);
471 }
472 llvm_unreachable("Unhandled displacement range");
473 }
474
475 // Return true if Base + Disp + Index should be performed by LA(Y).
shouldUseLA(SDNode * Base,int64_t Disp,SDNode * Index)476 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
477 // Don't use LA(Y) for constants.
478 if (!Base)
479 return false;
480
481 // Always use LA(Y) for frame addresses, since we know that the destination
482 // register is almost always (perhaps always) going to be different from
483 // the frame register.
484 if (Base->getOpcode() == ISD::FrameIndex)
485 return true;
486
487 if (Disp) {
488 // Always use LA(Y) if there is a base, displacement and index.
489 if (Index)
490 return true;
491
492 // Always use LA if the displacement is small enough. It should always
493 // be no worse than AGHI (and better if it avoids a move).
494 if (isUInt<12>(Disp))
495 return true;
496
497 // For similar reasons, always use LAY if the constant is too big for AGHI.
498 // LAY should be no worse than AGFI.
499 if (!isInt<16>(Disp))
500 return true;
501 } else {
502 // Don't use LA for plain registers.
503 if (!Index)
504 return false;
505
506 // Don't use LA for plain addition if the index operand is only used
507 // once. It should be a natural two-operand addition in that case.
508 if (Index->hasOneUse())
509 return false;
510
511 // Prefer addition if the second operation is sign-extended, in the
512 // hope of using AGF.
513 unsigned IndexOpcode = Index->getOpcode();
514 if (IndexOpcode == ISD::SIGN_EXTEND ||
515 IndexOpcode == ISD::SIGN_EXTEND_INREG)
516 return false;
517 }
518
519 // Don't use LA for two-operand addition if either operand is only
520 // used once. The addition instructions are better in that case.
521 if (Base->hasOneUse())
522 return false;
523
524 return true;
525 }
526
527 // Return true if Addr is suitable for AM, updating AM if so.
selectAddress(SDValue Addr,SystemZAddressingMode & AM) const528 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
529 SystemZAddressingMode &AM) const {
530 // Start out assuming that the address will need to be loaded separately,
531 // then try to extend it as much as we can.
532 AM.Base = Addr;
533
534 // First try treating the address as a constant.
535 if (Addr.getOpcode() == ISD::Constant &&
536 expandDisp(AM, true, SDValue(),
537 cast<ConstantSDNode>(Addr)->getSExtValue()))
538 ;
539 else
540 // Otherwise try expanding each component.
541 while (expandAddress(AM, true) ||
542 (AM.Index.getNode() && expandAddress(AM, false)))
543 continue;
544
545 // Reject cases where it isn't profitable to use LA(Y).
546 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
547 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
548 return false;
549
550 // Reject cases where the other instruction in a pair should be used.
551 if (!isValidDisp(AM.DR, AM.Disp))
552 return false;
553
554 // Make sure that ADJDYNALLOC is included where necessary.
555 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
556 return false;
557
558 DEBUG(AM.dump());
559 return true;
560 }
561
562 // Insert a node into the DAG at least before Pos. This will reposition
563 // the node as needed, and will assign it a node ID that is <= Pos's ID.
564 // Note that this does *not* preserve the uniqueness of node IDs!
565 // The selection DAG must no longer depend on their uniqueness when this
566 // function is used.
insertDAGNode(SelectionDAG * DAG,SDNode * Pos,SDValue N)567 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
568 if (N.getNode()->getNodeId() == -1 ||
569 N.getNode()->getNodeId() > Pos->getNodeId()) {
570 DAG->RepositionNode(Pos, N.getNode());
571 N.getNode()->setNodeId(Pos->getNodeId());
572 }
573 }
574
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp) const575 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
576 EVT VT, SDValue &Base,
577 SDValue &Disp) const {
578 Base = AM.Base;
579 if (!Base.getNode())
580 // Register 0 means "no base". This is mostly useful for shifts.
581 Base = CurDAG->getRegister(0, VT);
582 else if (Base.getOpcode() == ISD::FrameIndex) {
583 // Lower a FrameIndex to a TargetFrameIndex.
584 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
585 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
586 } else if (Base.getValueType() != VT) {
587 // Truncate values from i64 to i32, for shifts.
588 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
589 "Unexpected truncation");
590 SDLoc DL(Base);
591 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
592 insertDAGNode(CurDAG, Base.getNode(), Trunc);
593 Base = Trunc;
594 }
595
596 // Lower the displacement to a TargetConstant.
597 Disp = CurDAG->getTargetConstant(AM.Disp, VT);
598 }
599
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp,SDValue & Index) const600 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
601 EVT VT, SDValue &Base,
602 SDValue &Disp,
603 SDValue &Index) const {
604 getAddressOperands(AM, VT, Base, Disp);
605
606 Index = AM.Index;
607 if (!Index.getNode())
608 // Register 0 means "no index".
609 Index = CurDAG->getRegister(0, VT);
610 }
611
selectBDAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const612 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
613 SDValue Addr, SDValue &Base,
614 SDValue &Disp) const {
615 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
616 if (!selectAddress(Addr, AM))
617 return false;
618
619 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
620 return true;
621 }
622
selectMVIAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const623 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
624 SDValue Addr, SDValue &Base,
625 SDValue &Disp) const {
626 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
627 if (!selectAddress(Addr, AM) || AM.Index.getNode())
628 return false;
629
630 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
631 return true;
632 }
633
selectBDXAddr(SystemZAddressingMode::AddrForm Form,SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const634 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
635 SystemZAddressingMode::DispRange DR,
636 SDValue Addr, SDValue &Base,
637 SDValue &Disp, SDValue &Index) const {
638 SystemZAddressingMode AM(Form, DR);
639 if (!selectAddress(Addr, AM))
640 return false;
641
642 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
643 return true;
644 }
645
detectOrAndInsertion(SDValue & Op,uint64_t InsertMask) const646 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
647 uint64_t InsertMask) const {
648 // We're only interested in cases where the insertion is into some operand
649 // of Op, rather than into Op itself. The only useful case is an AND.
650 if (Op.getOpcode() != ISD::AND)
651 return false;
652
653 // We need a constant mask.
654 auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
655 if (!MaskNode)
656 return false;
657
658 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
659 uint64_t AndMask = MaskNode->getZExtValue();
660 if (InsertMask & AndMask)
661 return false;
662
663 // It's only an insertion if all bits are covered or are known to be zero.
664 // The inner check covers all cases but is more expensive.
665 uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
666 if (Used != (AndMask | InsertMask)) {
667 APInt KnownZero, KnownOne;
668 CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne);
669 if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
670 return false;
671 }
672
673 Op = Op.getOperand(0);
674 return true;
675 }
676
refineRxSBGMask(RxSBGOperands & RxSBG,uint64_t Mask) const677 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
678 uint64_t Mask) const {
679 const SystemZInstrInfo *TII = getInstrInfo();
680 if (RxSBG.Rotate != 0)
681 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
682 Mask &= RxSBG.Mask;
683 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
684 RxSBG.Mask = Mask;
685 return true;
686 }
687 return false;
688 }
689
690 // Return true if any bits of (RxSBG.Input & Mask) are significant.
maskMatters(RxSBGOperands & RxSBG,uint64_t Mask)691 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
692 // Rotate the mask in the same way as RxSBG.Input is rotated.
693 if (RxSBG.Rotate != 0)
694 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
695 return (Mask & RxSBG.Mask) != 0;
696 }
697
expandRxSBG(RxSBGOperands & RxSBG) const698 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
699 SDValue N = RxSBG.Input;
700 unsigned Opcode = N.getOpcode();
701 switch (Opcode) {
702 case ISD::AND: {
703 if (RxSBG.Opcode == SystemZ::RNSBG)
704 return false;
705
706 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
707 if (!MaskNode)
708 return false;
709
710 SDValue Input = N.getOperand(0);
711 uint64_t Mask = MaskNode->getZExtValue();
712 if (!refineRxSBGMask(RxSBG, Mask)) {
713 // If some bits of Input are already known zeros, those bits will have
714 // been removed from the mask. See if adding them back in makes the
715 // mask suitable.
716 APInt KnownZero, KnownOne;
717 CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
718 Mask |= KnownZero.getZExtValue();
719 if (!refineRxSBGMask(RxSBG, Mask))
720 return false;
721 }
722 RxSBG.Input = Input;
723 return true;
724 }
725
726 case ISD::OR: {
727 if (RxSBG.Opcode != SystemZ::RNSBG)
728 return false;
729
730 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
731 if (!MaskNode)
732 return false;
733
734 SDValue Input = N.getOperand(0);
735 uint64_t Mask = ~MaskNode->getZExtValue();
736 if (!refineRxSBGMask(RxSBG, Mask)) {
737 // If some bits of Input are already known ones, those bits will have
738 // been removed from the mask. See if adding them back in makes the
739 // mask suitable.
740 APInt KnownZero, KnownOne;
741 CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
742 Mask &= ~KnownOne.getZExtValue();
743 if (!refineRxSBGMask(RxSBG, Mask))
744 return false;
745 }
746 RxSBG.Input = Input;
747 return true;
748 }
749
750 case ISD::ROTL: {
751 // Any 64-bit rotate left can be merged into the RxSBG.
752 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
753 return false;
754 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
755 if (!CountNode)
756 return false;
757
758 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
759 RxSBG.Input = N.getOperand(0);
760 return true;
761 }
762
763 case ISD::ANY_EXTEND:
764 // Bits above the extended operand are don't-care.
765 RxSBG.Input = N.getOperand(0);
766 return true;
767
768 case ISD::ZERO_EXTEND:
769 if (RxSBG.Opcode != SystemZ::RNSBG) {
770 // Restrict the mask to the extended operand.
771 unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
772 if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
773 return false;
774
775 RxSBG.Input = N.getOperand(0);
776 return true;
777 }
778 // Fall through.
779
780 case ISD::SIGN_EXTEND: {
781 // Check that the extension bits are don't-care (i.e. are masked out
782 // by the final mask).
783 unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
784 if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
785 return false;
786
787 RxSBG.Input = N.getOperand(0);
788 return true;
789 }
790
791 case ISD::SHL: {
792 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
793 if (!CountNode)
794 return false;
795
796 uint64_t Count = CountNode->getZExtValue();
797 unsigned BitSize = N.getValueType().getSizeInBits();
798 if (Count < 1 || Count >= BitSize)
799 return false;
800
801 if (RxSBG.Opcode == SystemZ::RNSBG) {
802 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
803 // count bits from RxSBG.Input are ignored.
804 if (maskMatters(RxSBG, allOnes(Count)))
805 return false;
806 } else {
807 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
808 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
809 return false;
810 }
811
812 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
813 RxSBG.Input = N.getOperand(0);
814 return true;
815 }
816
817 case ISD::SRL:
818 case ISD::SRA: {
819 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
820 if (!CountNode)
821 return false;
822
823 uint64_t Count = CountNode->getZExtValue();
824 unsigned BitSize = N.getValueType().getSizeInBits();
825 if (Count < 1 || Count >= BitSize)
826 return false;
827
828 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
829 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
830 // count bits from RxSBG.Input are ignored.
831 if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
832 return false;
833 } else {
834 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
835 // which is similar to SLL above.
836 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
837 return false;
838 }
839
840 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
841 RxSBG.Input = N.getOperand(0);
842 return true;
843 }
844 default:
845 return false;
846 }
847 }
848
getUNDEF(SDLoc DL,EVT VT) const849 SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const {
850 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
851 return SDValue(N, 0);
852 }
853
convertTo(SDLoc DL,EVT VT,SDValue N) const854 SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const {
855 if (N.getValueType() == MVT::i32 && VT == MVT::i64)
856 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
857 DL, VT, getUNDEF(DL, MVT::i64), N);
858 if (N.getValueType() == MVT::i64 && VT == MVT::i32)
859 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
860 assert(N.getValueType() == VT && "Unexpected value types");
861 return N;
862 }
863
tryRISBGZero(SDNode * N)864 SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
865 EVT VT = N->getValueType(0);
866 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
867 unsigned Count = 0;
868 while (expandRxSBG(RISBG))
869 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND)
870 Count += 1;
871 if (Count == 0)
872 return nullptr;
873 if (Count == 1) {
874 // Prefer to use normal shift instructions over RISBG, since they can handle
875 // all cases and are sometimes shorter.
876 if (N->getOpcode() != ISD::AND)
877 return nullptr;
878
879 // Prefer register extensions like LLC over RISBG. Also prefer to start
880 // out with normal ANDs if one instruction would be enough. We can convert
881 // these ANDs into an RISBG later if a three-address instruction is useful.
882 if (VT == MVT::i32 ||
883 RISBG.Mask == 0xff ||
884 RISBG.Mask == 0xffff ||
885 SystemZ::isImmLF(~RISBG.Mask) ||
886 SystemZ::isImmHF(~RISBG.Mask)) {
887 // Force the new mask into the DAG, since it may include known-one bits.
888 auto *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
889 if (MaskN->getZExtValue() != RISBG.Mask) {
890 SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT);
891 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
892 return SelectCode(N);
893 }
894 return nullptr;
895 }
896 }
897
898 unsigned Opcode = SystemZ::RISBG;
899 EVT OpcodeVT = MVT::i64;
900 if (VT == MVT::i32 && Subtarget.hasHighWord()) {
901 Opcode = SystemZ::RISBMux;
902 OpcodeVT = MVT::i32;
903 RISBG.Start &= 31;
904 RISBG.End &= 31;
905 }
906 SDValue Ops[5] = {
907 getUNDEF(SDLoc(N), OpcodeVT),
908 convertTo(SDLoc(N), OpcodeVT, RISBG.Input),
909 CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
910 CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
911 CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
912 };
913 N = CurDAG->getMachineNode(Opcode, SDLoc(N), OpcodeVT, Ops);
914 return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
915 }
916
tryRxSBG(SDNode * N,unsigned Opcode)917 SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
918 // Try treating each operand of N as the second operand of the RxSBG
919 // and see which goes deepest.
920 RxSBGOperands RxSBG[] = {
921 RxSBGOperands(Opcode, N->getOperand(0)),
922 RxSBGOperands(Opcode, N->getOperand(1))
923 };
924 unsigned Count[] = { 0, 0 };
925 for (unsigned I = 0; I < 2; ++I)
926 while (expandRxSBG(RxSBG[I]))
927 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND)
928 Count[I] += 1;
929
930 // Do nothing if neither operand is suitable.
931 if (Count[0] == 0 && Count[1] == 0)
932 return nullptr;
933
934 // Pick the deepest second operand.
935 unsigned I = Count[0] > Count[1] ? 0 : 1;
936 SDValue Op0 = N->getOperand(I ^ 1);
937
938 // Prefer IC for character insertions from memory.
939 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
940 if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
941 if (Load->getMemoryVT() == MVT::i8)
942 return nullptr;
943
944 // See whether we can avoid an AND in the first operand by converting
945 // ROSBG to RISBG.
946 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
947 Opcode = SystemZ::RISBG;
948
949 EVT VT = N->getValueType(0);
950 SDValue Ops[5] = {
951 convertTo(SDLoc(N), MVT::i64, Op0),
952 convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
953 CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
954 CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
955 CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
956 };
957 N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
958 return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
959 }
960
splitLargeImmediate(unsigned Opcode,SDNode * Node,SDValue Op0,uint64_t UpperVal,uint64_t LowerVal)961 SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
962 SDValue Op0, uint64_t UpperVal,
963 uint64_t LowerVal) {
964 EVT VT = Node->getValueType(0);
965 SDLoc DL(Node);
966 SDValue Upper = CurDAG->getConstant(UpperVal, VT);
967 if (Op0.getNode())
968 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
969 Upper = SDValue(Select(Upper.getNode()), 0);
970
971 SDValue Lower = CurDAG->getConstant(LowerVal, VT);
972 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
973 return Or.getNode();
974 }
975
canUseBlockOperation(StoreSDNode * Store,LoadSDNode * Load) const976 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
977 LoadSDNode *Load) const {
978 // Check that the two memory operands have the same size.
979 if (Load->getMemoryVT() != Store->getMemoryVT())
980 return false;
981
982 // Volatility stops an access from being decomposed.
983 if (Load->isVolatile() || Store->isVolatile())
984 return false;
985
986 // There's no chance of overlap if the load is invariant.
987 if (Load->isInvariant())
988 return true;
989
990 // Otherwise we need to check whether there's an alias.
991 const Value *V1 = Load->getMemOperand()->getValue();
992 const Value *V2 = Store->getMemOperand()->getValue();
993 if (!V1 || !V2)
994 return false;
995
996 // Reject equality.
997 uint64_t Size = Load->getMemoryVT().getStoreSize();
998 int64_t End1 = Load->getSrcValueOffset() + Size;
999 int64_t End2 = Store->getSrcValueOffset() + Size;
1000 if (V1 == V2 && End1 == End2)
1001 return false;
1002
1003 return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
1004 AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
1005 }
1006
storeLoadCanUseMVC(SDNode * N) const1007 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1008 auto *Store = cast<StoreSDNode>(N);
1009 auto *Load = cast<LoadSDNode>(Store->getValue());
1010
1011 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1012 // instructions.
1013 uint64_t Size = Load->getMemoryVT().getStoreSize();
1014 if (Size > 1 && Size <= 8) {
1015 // Prefer LHRL, LRL and LGRL.
1016 if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1017 return false;
1018 // Prefer STHRL, STRL and STGRL.
1019 if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1020 return false;
1021 }
1022
1023 return canUseBlockOperation(Store, Load);
1024 }
1025
storeLoadCanUseBlockBinary(SDNode * N,unsigned I) const1026 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1027 unsigned I) const {
1028 auto *StoreA = cast<StoreSDNode>(N);
1029 auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1030 auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1031 return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1032 }
1033
Select(SDNode * Node)1034 SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
1035 // Dump information about the Node being selected
1036 DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
1037
1038 // If we have a custom node, we already have selected!
1039 if (Node->isMachineOpcode()) {
1040 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1041 Node->setNodeId(-1);
1042 return nullptr;
1043 }
1044
1045 unsigned Opcode = Node->getOpcode();
1046 SDNode *ResNode = nullptr;
1047 switch (Opcode) {
1048 case ISD::OR:
1049 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1050 ResNode = tryRxSBG(Node, SystemZ::ROSBG);
1051 goto or_xor;
1052
1053 case ISD::XOR:
1054 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1055 ResNode = tryRxSBG(Node, SystemZ::RXSBG);
1056 // Fall through.
1057 or_xor:
1058 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1059 // split the operation into two.
1060 if (!ResNode && Node->getValueType(0) == MVT::i64)
1061 if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1062 uint64_t Val = Op1->getZExtValue();
1063 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
1064 Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1065 Val - uint32_t(Val), uint32_t(Val));
1066 }
1067 break;
1068
1069 case ISD::AND:
1070 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1071 ResNode = tryRxSBG(Node, SystemZ::RNSBG);
1072 // Fall through.
1073 case ISD::ROTL:
1074 case ISD::SHL:
1075 case ISD::SRL:
1076 case ISD::ZERO_EXTEND:
1077 if (!ResNode)
1078 ResNode = tryRISBGZero(Node);
1079 break;
1080
1081 case ISD::Constant:
1082 // If this is a 64-bit constant that is out of the range of LLILF,
1083 // LLIHF and LGFI, split it into two 32-bit pieces.
1084 if (Node->getValueType(0) == MVT::i64) {
1085 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1086 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
1087 Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
1088 Val - uint32_t(Val), uint32_t(Val));
1089 }
1090 break;
1091
1092 case SystemZISD::SELECT_CCMASK: {
1093 SDValue Op0 = Node->getOperand(0);
1094 SDValue Op1 = Node->getOperand(1);
1095 // Prefer to put any load first, so that it can be matched as a
1096 // conditional load.
1097 if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1098 SDValue CCValid = Node->getOperand(2);
1099 SDValue CCMask = Node->getOperand(3);
1100 uint64_t ConstCCValid =
1101 cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1102 uint64_t ConstCCMask =
1103 cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1104 // Invert the condition.
1105 CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask,
1106 CCMask.getValueType());
1107 SDValue Op4 = Node->getOperand(4);
1108 Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1109 }
1110 break;
1111 }
1112 }
1113
1114 // Select the default instruction
1115 if (!ResNode)
1116 ResNode = SelectCode(Node);
1117
1118 DEBUG(errs() << "=> ";
1119 if (ResNode == nullptr || ResNode == Node)
1120 Node->dump(CurDAG);
1121 else
1122 ResNode->dump(CurDAG);
1123 errs() << "\n";
1124 );
1125 return ResNode;
1126 }
1127
1128 bool SystemZDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,char ConstraintCode,std::vector<SDValue> & OutOps)1129 SelectInlineAsmMemoryOperand(const SDValue &Op,
1130 char ConstraintCode,
1131 std::vector<SDValue> &OutOps) {
1132 assert(ConstraintCode == 'm' && "Unexpected constraint code");
1133 // Accept addresses with short displacements, which are compatible
1134 // with Q, R, S and T. But keep the index operand for future expansion.
1135 SDValue Base, Disp, Index;
1136 if (!selectBDXAddr(SystemZAddressingMode::FormBD,
1137 SystemZAddressingMode::Disp12Only,
1138 Op, Base, Disp, Index))
1139 return true;
1140 OutOps.push_back(Base);
1141 OutOps.push_back(Disp);
1142 OutOps.push_back(Index);
1143 return false;
1144 }
1145