1 /*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "sha1.h"
30 #include "sha256.h"
31 #include "crypto.h"
32
33 #if OPENSSL_VERSION_NUMBER < 0x00907000
34 #define DES_key_schedule des_key_schedule
35 #define DES_cblock des_cblock
36 #define DES_set_key(key, schedule) des_set_key((key), *(schedule))
37 #define DES_ecb_encrypt(input, output, ks, enc) \
38 des_ecb_encrypt((input), (output), *(ks), (enc))
39 #endif /* openssl < 0.9.7 */
40
get_group5_prime(void)41 static BIGNUM * get_group5_prime(void)
42 {
43 #if OPENSSL_VERSION_NUMBER < 0x00908000 || defined(OPENSSL_IS_BORINGSSL)
44 static const unsigned char RFC3526_PRIME_1536[] = {
45 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
46 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
47 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
48 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
49 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
50 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
51 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
52 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
53 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
54 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
55 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
56 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
57 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
58 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
59 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
60 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
61 };
62 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
63 #else /* openssl < 0.9.8 */
64 return get_rfc3526_prime_1536(NULL);
65 #endif /* openssl < 0.9.8 */
66 }
67
68 #if OPENSSL_VERSION_NUMBER < 0x00908000
69 #ifndef OPENSSL_NO_SHA256
70 #ifndef OPENSSL_FIPS
71 #define NO_SHA256_WRAPPER
72 #endif
73 #endif
74
75 #endif /* openssl < 0.9.8 */
76
77 #ifdef OPENSSL_NO_SHA256
78 #define NO_SHA256_WRAPPER
79 #endif
80
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)81 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
82 const u8 *addr[], const size_t *len, u8 *mac)
83 {
84 EVP_MD_CTX ctx;
85 size_t i;
86 unsigned int mac_len;
87
88 EVP_MD_CTX_init(&ctx);
89 if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
90 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
91 ERR_error_string(ERR_get_error(), NULL));
92 return -1;
93 }
94 for (i = 0; i < num_elem; i++) {
95 if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
96 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
97 "failed: %s",
98 ERR_error_string(ERR_get_error(), NULL));
99 return -1;
100 }
101 }
102 if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
103 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
104 ERR_error_string(ERR_get_error(), NULL));
105 return -1;
106 }
107
108 return 0;
109 }
110
111
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)112 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
113 {
114 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
115 }
116
117
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)118 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
119 {
120 u8 pkey[8], next, tmp;
121 int i;
122 DES_key_schedule ks;
123
124 /* Add parity bits to the key */
125 next = 0;
126 for (i = 0; i < 7; i++) {
127 tmp = key[i];
128 pkey[i] = (tmp >> i) | next | 1;
129 next = tmp << (7 - i);
130 }
131 pkey[i] = next | 1;
132
133 DES_set_key((DES_cblock *) &pkey, &ks);
134 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
135 DES_ENCRYPT);
136 }
137
138
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)139 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
140 u8 *data, size_t data_len)
141 {
142 #ifdef OPENSSL_NO_RC4
143 return -1;
144 #else /* OPENSSL_NO_RC4 */
145 EVP_CIPHER_CTX ctx;
146 int outl;
147 int res = -1;
148 unsigned char skip_buf[16];
149
150 EVP_CIPHER_CTX_init(&ctx);
151 if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
152 !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
153 !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
154 !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
155 goto out;
156
157 while (skip >= sizeof(skip_buf)) {
158 size_t len = skip;
159 if (len > sizeof(skip_buf))
160 len = sizeof(skip_buf);
161 if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
162 goto out;
163 skip -= len;
164 }
165
166 if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
167 res = 0;
168
169 out:
170 EVP_CIPHER_CTX_cleanup(&ctx);
171 return res;
172 #endif /* OPENSSL_NO_RC4 */
173 }
174
175
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)176 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
177 {
178 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
179 }
180
181
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)182 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
183 {
184 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
185 }
186
187
188 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)189 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
190 u8 *mac)
191 {
192 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
193 }
194 #endif /* NO_SHA256_WRAPPER */
195
196
aes_get_evp_cipher(size_t keylen)197 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
198 {
199 switch (keylen) {
200 case 16:
201 return EVP_aes_128_ecb();
202 #ifndef OPENSSL_IS_BORINGSSL
203 case 24:
204 return EVP_aes_192_ecb();
205 #endif /* OPENSSL_IS_BORINGSSL */
206 case 32:
207 return EVP_aes_256_ecb();
208 }
209
210 return NULL;
211 }
212
213
aes_encrypt_init(const u8 * key,size_t len)214 void * aes_encrypt_init(const u8 *key, size_t len)
215 {
216 EVP_CIPHER_CTX *ctx;
217 const EVP_CIPHER *type;
218
219 type = aes_get_evp_cipher(len);
220 if (type == NULL)
221 return NULL;
222
223 ctx = os_malloc(sizeof(*ctx));
224 if (ctx == NULL)
225 return NULL;
226 EVP_CIPHER_CTX_init(ctx);
227 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
228 os_free(ctx);
229 return NULL;
230 }
231 EVP_CIPHER_CTX_set_padding(ctx, 0);
232 return ctx;
233 }
234
235
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)236 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
237 {
238 EVP_CIPHER_CTX *c = ctx;
239 int clen = 16;
240 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
241 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
242 ERR_error_string(ERR_get_error(), NULL));
243 }
244 }
245
246
aes_encrypt_deinit(void * ctx)247 void aes_encrypt_deinit(void *ctx)
248 {
249 EVP_CIPHER_CTX *c = ctx;
250 u8 buf[16];
251 int len = sizeof(buf);
252 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
253 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
254 "%s", ERR_error_string(ERR_get_error(), NULL));
255 }
256 if (len != 0) {
257 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
258 "in AES encrypt", len);
259 }
260 EVP_CIPHER_CTX_cleanup(c);
261 os_free(c);
262 }
263
264
aes_decrypt_init(const u8 * key,size_t len)265 void * aes_decrypt_init(const u8 *key, size_t len)
266 {
267 EVP_CIPHER_CTX *ctx;
268 const EVP_CIPHER *type;
269
270 type = aes_get_evp_cipher(len);
271 if (type == NULL)
272 return NULL;
273
274 ctx = os_malloc(sizeof(*ctx));
275 if (ctx == NULL)
276 return NULL;
277 EVP_CIPHER_CTX_init(ctx);
278 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
279 os_free(ctx);
280 return NULL;
281 }
282 EVP_CIPHER_CTX_set_padding(ctx, 0);
283 return ctx;
284 }
285
286
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)287 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
288 {
289 EVP_CIPHER_CTX *c = ctx;
290 int plen = 16;
291 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
292 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
293 ERR_error_string(ERR_get_error(), NULL));
294 }
295 }
296
297
aes_decrypt_deinit(void * ctx)298 void aes_decrypt_deinit(void *ctx)
299 {
300 EVP_CIPHER_CTX *c = ctx;
301 u8 buf[16];
302 int len = sizeof(buf);
303 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
304 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
305 "%s", ERR_error_string(ERR_get_error(), NULL));
306 }
307 if (len != 0) {
308 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
309 "in AES decrypt", len);
310 }
311 EVP_CIPHER_CTX_cleanup(c);
312 os_free(ctx);
313 }
314
315
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)316 int crypto_mod_exp(const u8 *base, size_t base_len,
317 const u8 *power, size_t power_len,
318 const u8 *modulus, size_t modulus_len,
319 u8 *result, size_t *result_len)
320 {
321 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
322 int ret = -1;
323 BN_CTX *ctx;
324
325 ctx = BN_CTX_new();
326 if (ctx == NULL)
327 return -1;
328
329 bn_base = BN_bin2bn(base, base_len, NULL);
330 bn_exp = BN_bin2bn(power, power_len, NULL);
331 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
332 bn_result = BN_new();
333
334 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
335 bn_result == NULL)
336 goto error;
337
338 if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
339 goto error;
340
341 *result_len = BN_bn2bin(bn_result, result);
342 ret = 0;
343
344 error:
345 BN_clear_free(bn_base);
346 BN_clear_free(bn_exp);
347 BN_clear_free(bn_modulus);
348 BN_clear_free(bn_result);
349 BN_CTX_free(ctx);
350 return ret;
351 }
352
353
354 struct crypto_cipher {
355 EVP_CIPHER_CTX enc;
356 EVP_CIPHER_CTX dec;
357 };
358
359
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)360 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
361 const u8 *iv, const u8 *key,
362 size_t key_len)
363 {
364 struct crypto_cipher *ctx;
365 const EVP_CIPHER *cipher;
366
367 ctx = os_zalloc(sizeof(*ctx));
368 if (ctx == NULL)
369 return NULL;
370
371 switch (alg) {
372 #ifndef OPENSSL_NO_RC4
373 case CRYPTO_CIPHER_ALG_RC4:
374 cipher = EVP_rc4();
375 break;
376 #endif /* OPENSSL_NO_RC4 */
377 #ifndef OPENSSL_NO_AES
378 case CRYPTO_CIPHER_ALG_AES:
379 switch (key_len) {
380 case 16:
381 cipher = EVP_aes_128_cbc();
382 break;
383 #ifndef OPENSSL_IS_BORINGSSL
384 case 24:
385 cipher = EVP_aes_192_cbc();
386 break;
387 #endif /* OPENSSL_IS_BORINGSSL */
388 case 32:
389 cipher = EVP_aes_256_cbc();
390 break;
391 default:
392 os_free(ctx);
393 return NULL;
394 }
395 break;
396 #endif /* OPENSSL_NO_AES */
397 #ifndef OPENSSL_NO_DES
398 case CRYPTO_CIPHER_ALG_3DES:
399 cipher = EVP_des_ede3_cbc();
400 break;
401 case CRYPTO_CIPHER_ALG_DES:
402 cipher = EVP_des_cbc();
403 break;
404 #endif /* OPENSSL_NO_DES */
405 #ifndef OPENSSL_NO_RC2
406 case CRYPTO_CIPHER_ALG_RC2:
407 cipher = EVP_rc2_ecb();
408 break;
409 #endif /* OPENSSL_NO_RC2 */
410 default:
411 os_free(ctx);
412 return NULL;
413 }
414
415 EVP_CIPHER_CTX_init(&ctx->enc);
416 EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
417 if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
418 !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
419 !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
420 EVP_CIPHER_CTX_cleanup(&ctx->enc);
421 os_free(ctx);
422 return NULL;
423 }
424
425 EVP_CIPHER_CTX_init(&ctx->dec);
426 EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
427 if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
428 !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
429 !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
430 EVP_CIPHER_CTX_cleanup(&ctx->enc);
431 EVP_CIPHER_CTX_cleanup(&ctx->dec);
432 os_free(ctx);
433 return NULL;
434 }
435
436 return ctx;
437 }
438
439
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)440 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
441 u8 *crypt, size_t len)
442 {
443 int outl;
444 if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
445 return -1;
446 return 0;
447 }
448
449
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)450 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
451 u8 *plain, size_t len)
452 {
453 int outl;
454 outl = len;
455 if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
456 return -1;
457 return 0;
458 }
459
460
crypto_cipher_deinit(struct crypto_cipher * ctx)461 void crypto_cipher_deinit(struct crypto_cipher *ctx)
462 {
463 EVP_CIPHER_CTX_cleanup(&ctx->enc);
464 EVP_CIPHER_CTX_cleanup(&ctx->dec);
465 os_free(ctx);
466 }
467
468
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)469 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
470 {
471 DH *dh;
472 struct wpabuf *pubkey = NULL, *privkey = NULL;
473 size_t publen, privlen;
474
475 *priv = NULL;
476 *publ = NULL;
477
478 dh = DH_new();
479 if (dh == NULL)
480 return NULL;
481
482 dh->g = BN_new();
483 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
484 goto err;
485
486 dh->p = get_group5_prime();
487 if (dh->p == NULL)
488 goto err;
489
490 if (DH_generate_key(dh) != 1)
491 goto err;
492
493 publen = BN_num_bytes(dh->pub_key);
494 pubkey = wpabuf_alloc(publen);
495 if (pubkey == NULL)
496 goto err;
497 privlen = BN_num_bytes(dh->priv_key);
498 privkey = wpabuf_alloc(privlen);
499 if (privkey == NULL)
500 goto err;
501
502 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
503 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
504
505 *priv = privkey;
506 *publ = pubkey;
507 return dh;
508
509 err:
510 wpabuf_free(pubkey);
511 wpabuf_free(privkey);
512 DH_free(dh);
513 return NULL;
514 }
515
516
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)517 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
518 {
519 DH *dh;
520
521 dh = DH_new();
522 if (dh == NULL)
523 return NULL;
524
525 dh->g = BN_new();
526 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
527 goto err;
528
529 dh->p = get_group5_prime();
530 if (dh->p == NULL)
531 goto err;
532
533 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
534 if (dh->priv_key == NULL)
535 goto err;
536
537 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
538 if (dh->pub_key == NULL)
539 goto err;
540
541 if (DH_generate_key(dh) != 1)
542 goto err;
543
544 return dh;
545
546 err:
547 DH_free(dh);
548 return NULL;
549 }
550
551
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)552 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
553 const struct wpabuf *own_private)
554 {
555 BIGNUM *pub_key;
556 struct wpabuf *res = NULL;
557 size_t rlen;
558 DH *dh = ctx;
559 int keylen;
560
561 if (ctx == NULL)
562 return NULL;
563
564 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
565 NULL);
566 if (pub_key == NULL)
567 return NULL;
568
569 rlen = DH_size(dh);
570 res = wpabuf_alloc(rlen);
571 if (res == NULL)
572 goto err;
573
574 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
575 if (keylen < 0)
576 goto err;
577 wpabuf_put(res, keylen);
578 BN_clear_free(pub_key);
579
580 return res;
581
582 err:
583 BN_clear_free(pub_key);
584 wpabuf_free(res);
585 return NULL;
586 }
587
588
dh5_free(void * ctx)589 void dh5_free(void *ctx)
590 {
591 DH *dh;
592 if (ctx == NULL)
593 return;
594 dh = ctx;
595 DH_free(dh);
596 }
597
598
599 struct crypto_hash {
600 HMAC_CTX ctx;
601 };
602
603
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)604 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
605 size_t key_len)
606 {
607 struct crypto_hash *ctx;
608 const EVP_MD *md;
609
610 switch (alg) {
611 #ifndef OPENSSL_NO_MD5
612 case CRYPTO_HASH_ALG_HMAC_MD5:
613 md = EVP_md5();
614 break;
615 #endif /* OPENSSL_NO_MD5 */
616 #ifndef OPENSSL_NO_SHA
617 case CRYPTO_HASH_ALG_HMAC_SHA1:
618 md = EVP_sha1();
619 break;
620 #endif /* OPENSSL_NO_SHA */
621 #ifndef OPENSSL_NO_SHA256
622 #ifdef CONFIG_SHA256
623 case CRYPTO_HASH_ALG_HMAC_SHA256:
624 md = EVP_sha256();
625 break;
626 #endif /* CONFIG_SHA256 */
627 #endif /* OPENSSL_NO_SHA256 */
628 default:
629 return NULL;
630 }
631
632 ctx = os_zalloc(sizeof(*ctx));
633 if (ctx == NULL)
634 return NULL;
635 HMAC_CTX_init(&ctx->ctx);
636
637 #if OPENSSL_VERSION_NUMBER < 0x00909000
638 HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
639 #else /* openssl < 0.9.9 */
640 if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
641 os_free(ctx);
642 return NULL;
643 }
644 #endif /* openssl < 0.9.9 */
645
646 return ctx;
647 }
648
649
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)650 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
651 {
652 if (ctx == NULL)
653 return;
654 HMAC_Update(&ctx->ctx, data, len);
655 }
656
657
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)658 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
659 {
660 unsigned int mdlen;
661 int res;
662
663 if (ctx == NULL)
664 return -2;
665
666 if (mac == NULL || len == NULL) {
667 os_free(ctx);
668 return 0;
669 }
670
671 mdlen = *len;
672 #if OPENSSL_VERSION_NUMBER < 0x00909000
673 HMAC_Final(&ctx->ctx, mac, &mdlen);
674 res = 1;
675 #else /* openssl < 0.9.9 */
676 res = HMAC_Final(&ctx->ctx, mac, &mdlen);
677 #endif /* openssl < 0.9.9 */
678 HMAC_CTX_cleanup(&ctx->ctx);
679 os_free(ctx);
680
681 if (res == 1) {
682 *len = mdlen;
683 return 0;
684 }
685
686 return -1;
687 }
688
689
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)690 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
691 int iterations, u8 *buf, size_t buflen)
692 {
693 #if OPENSSL_VERSION_NUMBER < 0x00908000
694 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase),
695 (unsigned char *) ssid,
696 ssid_len, 4096, buflen, buf) != 1)
697 return -1;
698 #else /* openssl < 0.9.8 */
699 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
700 ssid_len, 4096, buflen, buf) != 1)
701 return -1;
702 #endif /* openssl < 0.9.8 */
703 return 0;
704 }
705
706
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)707 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
708 const u8 *addr[], const size_t *len, u8 *mac)
709 {
710 HMAC_CTX ctx;
711 size_t i;
712 unsigned int mdlen;
713 int res;
714
715 HMAC_CTX_init(&ctx);
716 #if OPENSSL_VERSION_NUMBER < 0x00909000
717 HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL);
718 #else /* openssl < 0.9.9 */
719 if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1)
720 return -1;
721 #endif /* openssl < 0.9.9 */
722
723 for (i = 0; i < num_elem; i++)
724 HMAC_Update(&ctx, addr[i], len[i]);
725
726 mdlen = 20;
727 #if OPENSSL_VERSION_NUMBER < 0x00909000
728 HMAC_Final(&ctx, mac, &mdlen);
729 res = 1;
730 #else /* openssl < 0.9.9 */
731 res = HMAC_Final(&ctx, mac, &mdlen);
732 #endif /* openssl < 0.9.9 */
733 HMAC_CTX_cleanup(&ctx);
734
735 return res == 1 ? 0 : -1;
736 }
737
738
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)739 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
740 u8 *mac)
741 {
742 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
743 }
744
745
746 #ifdef CONFIG_SHA256
747
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)748 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
749 const u8 *addr[], const size_t *len, u8 *mac)
750 {
751 HMAC_CTX ctx;
752 size_t i;
753 unsigned int mdlen;
754 int res;
755
756 HMAC_CTX_init(&ctx);
757 #if OPENSSL_VERSION_NUMBER < 0x00909000
758 HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL);
759 #else /* openssl < 0.9.9 */
760 if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1)
761 return -1;
762 #endif /* openssl < 0.9.9 */
763
764 for (i = 0; i < num_elem; i++)
765 HMAC_Update(&ctx, addr[i], len[i]);
766
767 mdlen = 32;
768 #if OPENSSL_VERSION_NUMBER < 0x00909000
769 HMAC_Final(&ctx, mac, &mdlen);
770 res = 1;
771 #else /* openssl < 0.9.9 */
772 res = HMAC_Final(&ctx, mac, &mdlen);
773 #endif /* openssl < 0.9.9 */
774 HMAC_CTX_cleanup(&ctx);
775
776 return res == 1 ? 0 : -1;
777 }
778
779
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)780 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
781 size_t data_len, u8 *mac)
782 {
783 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
784 }
785
786 #endif /* CONFIG_SHA256 */
787
788
crypto_get_random(void * buf,size_t len)789 int crypto_get_random(void *buf, size_t len)
790 {
791 if (RAND_bytes(buf, len) != 1)
792 return -1;
793 return 0;
794 }
795
796
797 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)798 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
799 const u8 *addr[], const size_t *len, u8 *mac)
800 {
801 CMAC_CTX *ctx;
802 int ret = -1;
803 size_t outlen, i;
804
805 ctx = CMAC_CTX_new();
806 if (ctx == NULL)
807 return -1;
808
809 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
810 goto fail;
811 for (i = 0; i < num_elem; i++) {
812 if (!CMAC_Update(ctx, addr[i], len[i]))
813 goto fail;
814 }
815 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
816 goto fail;
817
818 ret = 0;
819 fail:
820 CMAC_CTX_free(ctx);
821 return ret;
822 }
823
824
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)825 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
826 {
827 return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
828 }
829 #endif /* CONFIG_OPENSSL_CMAC */
830
831
crypto_bignum_init(void)832 struct crypto_bignum * crypto_bignum_init(void)
833 {
834 return (struct crypto_bignum *) BN_new();
835 }
836
837
crypto_bignum_init_set(const u8 * buf,size_t len)838 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
839 {
840 BIGNUM *bn = BN_bin2bn(buf, len, NULL);
841 return (struct crypto_bignum *) bn;
842 }
843
844
crypto_bignum_deinit(struct crypto_bignum * n,int clear)845 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
846 {
847 if (clear)
848 BN_clear_free((BIGNUM *) n);
849 else
850 BN_free((BIGNUM *) n);
851 }
852
853
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)854 int crypto_bignum_to_bin(const struct crypto_bignum *a,
855 u8 *buf, size_t buflen, size_t padlen)
856 {
857 int num_bytes, offset;
858
859 if (padlen > buflen)
860 return -1;
861
862 num_bytes = BN_num_bytes((const BIGNUM *) a);
863 if ((size_t) num_bytes > buflen)
864 return -1;
865 if (padlen > (size_t) num_bytes)
866 offset = padlen - num_bytes;
867 else
868 offset = 0;
869
870 os_memset(buf, 0, offset);
871 BN_bn2bin((const BIGNUM *) a, buf + offset);
872
873 return num_bytes + offset;
874 }
875
876
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)877 int crypto_bignum_add(const struct crypto_bignum *a,
878 const struct crypto_bignum *b,
879 struct crypto_bignum *c)
880 {
881 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
882 0 : -1;
883 }
884
885
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)886 int crypto_bignum_mod(const struct crypto_bignum *a,
887 const struct crypto_bignum *b,
888 struct crypto_bignum *c)
889 {
890 int res;
891 BN_CTX *bnctx;
892
893 bnctx = BN_CTX_new();
894 if (bnctx == NULL)
895 return -1;
896 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
897 bnctx);
898 BN_CTX_free(bnctx);
899
900 return res ? 0 : -1;
901 }
902
903
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)904 int crypto_bignum_exptmod(const struct crypto_bignum *a,
905 const struct crypto_bignum *b,
906 const struct crypto_bignum *c,
907 struct crypto_bignum *d)
908 {
909 int res;
910 BN_CTX *bnctx;
911
912 bnctx = BN_CTX_new();
913 if (bnctx == NULL)
914 return -1;
915 res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
916 (const BIGNUM *) c, bnctx);
917 BN_CTX_free(bnctx);
918
919 return res ? 0 : -1;
920 }
921
922
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)923 int crypto_bignum_inverse(const struct crypto_bignum *a,
924 const struct crypto_bignum *b,
925 struct crypto_bignum *c)
926 {
927 BIGNUM *res;
928 BN_CTX *bnctx;
929
930 bnctx = BN_CTX_new();
931 if (bnctx == NULL)
932 return -1;
933 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
934 (const BIGNUM *) b, bnctx);
935 BN_CTX_free(bnctx);
936
937 return res ? 0 : -1;
938 }
939
940
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)941 int crypto_bignum_sub(const struct crypto_bignum *a,
942 const struct crypto_bignum *b,
943 struct crypto_bignum *c)
944 {
945 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
946 0 : -1;
947 }
948
949
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)950 int crypto_bignum_div(const struct crypto_bignum *a,
951 const struct crypto_bignum *b,
952 struct crypto_bignum *c)
953 {
954 int res;
955
956 BN_CTX *bnctx;
957
958 bnctx = BN_CTX_new();
959 if (bnctx == NULL)
960 return -1;
961 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
962 (const BIGNUM *) b, bnctx);
963 BN_CTX_free(bnctx);
964
965 return res ? 0 : -1;
966 }
967
968
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)969 int crypto_bignum_mulmod(const struct crypto_bignum *a,
970 const struct crypto_bignum *b,
971 const struct crypto_bignum *c,
972 struct crypto_bignum *d)
973 {
974 int res;
975
976 BN_CTX *bnctx;
977
978 bnctx = BN_CTX_new();
979 if (bnctx == NULL)
980 return -1;
981 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
982 (const BIGNUM *) c, bnctx);
983 BN_CTX_free(bnctx);
984
985 return res ? 0 : -1;
986 }
987
988
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)989 int crypto_bignum_cmp(const struct crypto_bignum *a,
990 const struct crypto_bignum *b)
991 {
992 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
993 }
994
995
crypto_bignum_bits(const struct crypto_bignum * a)996 int crypto_bignum_bits(const struct crypto_bignum *a)
997 {
998 return BN_num_bits((const BIGNUM *) a);
999 }
1000
1001
crypto_bignum_is_zero(const struct crypto_bignum * a)1002 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1003 {
1004 return BN_is_zero((const BIGNUM *) a);
1005 }
1006
1007
crypto_bignum_is_one(const struct crypto_bignum * a)1008 int crypto_bignum_is_one(const struct crypto_bignum *a)
1009 {
1010 return BN_is_one((const BIGNUM *) a);
1011 }
1012
1013
1014 #ifdef CONFIG_ECC
1015
1016 struct crypto_ec {
1017 EC_GROUP *group;
1018 BN_CTX *bnctx;
1019 BIGNUM *prime;
1020 BIGNUM *order;
1021 };
1022
crypto_ec_init(int group)1023 struct crypto_ec * crypto_ec_init(int group)
1024 {
1025 struct crypto_ec *e;
1026 int nid;
1027
1028 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1029 switch (group) {
1030 case 19:
1031 nid = NID_X9_62_prime256v1;
1032 break;
1033 case 20:
1034 nid = NID_secp384r1;
1035 break;
1036 case 21:
1037 nid = NID_secp521r1;
1038 break;
1039 case 25:
1040 nid = NID_X9_62_prime192v1;
1041 break;
1042 case 26:
1043 nid = NID_secp224r1;
1044 break;
1045 default:
1046 return NULL;
1047 }
1048
1049 e = os_zalloc(sizeof(*e));
1050 if (e == NULL)
1051 return NULL;
1052
1053 e->bnctx = BN_CTX_new();
1054 e->group = EC_GROUP_new_by_curve_name(nid);
1055 e->prime = BN_new();
1056 e->order = BN_new();
1057 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1058 e->order == NULL ||
1059 !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) ||
1060 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1061 crypto_ec_deinit(e);
1062 e = NULL;
1063 }
1064
1065 return e;
1066 }
1067
1068
crypto_ec_deinit(struct crypto_ec * e)1069 void crypto_ec_deinit(struct crypto_ec *e)
1070 {
1071 if (e == NULL)
1072 return;
1073 BN_clear_free(e->order);
1074 BN_clear_free(e->prime);
1075 EC_GROUP_free(e->group);
1076 BN_CTX_free(e->bnctx);
1077 os_free(e);
1078 }
1079
1080
crypto_ec_point_init(struct crypto_ec * e)1081 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1082 {
1083 if (e == NULL)
1084 return NULL;
1085 return (struct crypto_ec_point *) EC_POINT_new(e->group);
1086 }
1087
1088
crypto_ec_prime_len(struct crypto_ec * e)1089 size_t crypto_ec_prime_len(struct crypto_ec *e)
1090 {
1091 return BN_num_bytes(e->prime);
1092 }
1093
1094
crypto_ec_prime_len_bits(struct crypto_ec * e)1095 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1096 {
1097 return BN_num_bits(e->prime);
1098 }
1099
1100
crypto_ec_get_prime(struct crypto_ec * e)1101 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1102 {
1103 return (const struct crypto_bignum *) e->prime;
1104 }
1105
1106
crypto_ec_get_order(struct crypto_ec * e)1107 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1108 {
1109 return (const struct crypto_bignum *) e->order;
1110 }
1111
1112
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1113 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1114 {
1115 if (clear)
1116 EC_POINT_clear_free((EC_POINT *) p);
1117 else
1118 EC_POINT_free((EC_POINT *) p);
1119 }
1120
1121
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1122 int crypto_ec_point_to_bin(struct crypto_ec *e,
1123 const struct crypto_ec_point *point, u8 *x, u8 *y)
1124 {
1125 BIGNUM *x_bn, *y_bn;
1126 int ret = -1;
1127 int len = BN_num_bytes(e->prime);
1128
1129 x_bn = BN_new();
1130 y_bn = BN_new();
1131
1132 if (x_bn && y_bn &&
1133 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1134 x_bn, y_bn, e->bnctx)) {
1135 if (x) {
1136 crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1137 x, len, len);
1138 }
1139 if (y) {
1140 crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1141 y, len, len);
1142 }
1143 ret = 0;
1144 }
1145
1146 BN_clear_free(x_bn);
1147 BN_clear_free(y_bn);
1148 return ret;
1149 }
1150
1151
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1152 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1153 const u8 *val)
1154 {
1155 BIGNUM *x, *y;
1156 EC_POINT *elem;
1157 int len = BN_num_bytes(e->prime);
1158
1159 x = BN_bin2bn(val, len, NULL);
1160 y = BN_bin2bn(val + len, len, NULL);
1161 elem = EC_POINT_new(e->group);
1162 if (x == NULL || y == NULL || elem == NULL) {
1163 BN_clear_free(x);
1164 BN_clear_free(y);
1165 EC_POINT_clear_free(elem);
1166 return NULL;
1167 }
1168
1169 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1170 e->bnctx)) {
1171 EC_POINT_clear_free(elem);
1172 elem = NULL;
1173 }
1174
1175 BN_clear_free(x);
1176 BN_clear_free(y);
1177
1178 return (struct crypto_ec_point *) elem;
1179 }
1180
1181
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1182 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1183 const struct crypto_ec_point *b,
1184 struct crypto_ec_point *c)
1185 {
1186 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1187 (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1188 }
1189
1190
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1191 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1192 const struct crypto_bignum *b,
1193 struct crypto_ec_point *res)
1194 {
1195 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1196 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1197 ? 0 : -1;
1198 }
1199
1200
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1201 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1202 {
1203 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1204 }
1205
1206
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1207 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1208 struct crypto_ec_point *p,
1209 const struct crypto_bignum *x, int y_bit)
1210 {
1211 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1212 (const BIGNUM *) x, y_bit,
1213 e->bnctx) ||
1214 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1215 return -1;
1216 return 0;
1217 }
1218
1219
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1220 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1221 const struct crypto_ec_point *p)
1222 {
1223 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1224 }
1225
1226
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1227 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1228 const struct crypto_ec_point *p)
1229 {
1230 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx);
1231 }
1232
1233 #endif /* CONFIG_ECC */
1234