• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Wrapper functions for OpenSSL libcrypto
3  * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25 
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "sha1.h"
30 #include "sha256.h"
31 #include "crypto.h"
32 
33 #if OPENSSL_VERSION_NUMBER < 0x00907000
34 #define DES_key_schedule des_key_schedule
35 #define DES_cblock des_cblock
36 #define DES_set_key(key, schedule) des_set_key((key), *(schedule))
37 #define DES_ecb_encrypt(input, output, ks, enc) \
38 	des_ecb_encrypt((input), (output), *(ks), (enc))
39 #endif /* openssl < 0.9.7 */
40 
get_group5_prime(void)41 static BIGNUM * get_group5_prime(void)
42 {
43 #if OPENSSL_VERSION_NUMBER < 0x00908000 || defined(OPENSSL_IS_BORINGSSL)
44 	static const unsigned char RFC3526_PRIME_1536[] = {
45 		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
46 		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
47 		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
48 		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
49 		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
50 		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
51 		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
52 		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
53 		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
54 		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
55 		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
56 		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
57 		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
58 		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
59 		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
60 		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
61 	};
62         return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
63 #else /* openssl < 0.9.8 */
64 	return get_rfc3526_prime_1536(NULL);
65 #endif /* openssl < 0.9.8 */
66 }
67 
68 #if OPENSSL_VERSION_NUMBER < 0x00908000
69 #ifndef OPENSSL_NO_SHA256
70 #ifndef OPENSSL_FIPS
71 #define NO_SHA256_WRAPPER
72 #endif
73 #endif
74 
75 #endif /* openssl < 0.9.8 */
76 
77 #ifdef OPENSSL_NO_SHA256
78 #define NO_SHA256_WRAPPER
79 #endif
80 
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)81 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
82 				 const u8 *addr[], const size_t *len, u8 *mac)
83 {
84 	EVP_MD_CTX ctx;
85 	size_t i;
86 	unsigned int mac_len;
87 
88 	EVP_MD_CTX_init(&ctx);
89 	if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
90 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
91 			   ERR_error_string(ERR_get_error(), NULL));
92 		return -1;
93 	}
94 	for (i = 0; i < num_elem; i++) {
95 		if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
96 			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
97 				   "failed: %s",
98 				   ERR_error_string(ERR_get_error(), NULL));
99 			return -1;
100 		}
101 	}
102 	if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
103 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
104 			   ERR_error_string(ERR_get_error(), NULL));
105 		return -1;
106 	}
107 
108 	return 0;
109 }
110 
111 
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)112 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
113 {
114 	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
115 }
116 
117 
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)118 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
119 {
120 	u8 pkey[8], next, tmp;
121 	int i;
122 	DES_key_schedule ks;
123 
124 	/* Add parity bits to the key */
125 	next = 0;
126 	for (i = 0; i < 7; i++) {
127 		tmp = key[i];
128 		pkey[i] = (tmp >> i) | next | 1;
129 		next = tmp << (7 - i);
130 	}
131 	pkey[i] = next | 1;
132 
133 	DES_set_key((DES_cblock *) &pkey, &ks);
134 	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
135 			DES_ENCRYPT);
136 }
137 
138 
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)139 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
140 	     u8 *data, size_t data_len)
141 {
142 #ifdef OPENSSL_NO_RC4
143 	return -1;
144 #else /* OPENSSL_NO_RC4 */
145 	EVP_CIPHER_CTX ctx;
146 	int outl;
147 	int res = -1;
148 	unsigned char skip_buf[16];
149 
150 	EVP_CIPHER_CTX_init(&ctx);
151 	if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
152 	    !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
153 	    !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
154 	    !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
155 		goto out;
156 
157 	while (skip >= sizeof(skip_buf)) {
158 		size_t len = skip;
159 		if (len > sizeof(skip_buf))
160 			len = sizeof(skip_buf);
161 		if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
162 			goto out;
163 		skip -= len;
164 	}
165 
166 	if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
167 		res = 0;
168 
169 out:
170 	EVP_CIPHER_CTX_cleanup(&ctx);
171 	return res;
172 #endif /* OPENSSL_NO_RC4 */
173 }
174 
175 
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)176 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
177 {
178 	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
179 }
180 
181 
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)182 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
183 {
184 	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
185 }
186 
187 
188 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)189 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
190 		  u8 *mac)
191 {
192 	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
193 }
194 #endif /* NO_SHA256_WRAPPER */
195 
196 
aes_get_evp_cipher(size_t keylen)197 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
198 {
199 	switch (keylen) {
200 	case 16:
201 		return EVP_aes_128_ecb();
202 #ifndef OPENSSL_IS_BORINGSSL
203 	case 24:
204 		return EVP_aes_192_ecb();
205 #endif /* OPENSSL_IS_BORINGSSL */
206 	case 32:
207 		return EVP_aes_256_ecb();
208 	}
209 
210 	return NULL;
211 }
212 
213 
aes_encrypt_init(const u8 * key,size_t len)214 void * aes_encrypt_init(const u8 *key, size_t len)
215 {
216 	EVP_CIPHER_CTX *ctx;
217 	const EVP_CIPHER *type;
218 
219 	type = aes_get_evp_cipher(len);
220 	if (type == NULL)
221 		return NULL;
222 
223 	ctx = os_malloc(sizeof(*ctx));
224 	if (ctx == NULL)
225 		return NULL;
226 	EVP_CIPHER_CTX_init(ctx);
227 	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
228 		os_free(ctx);
229 		return NULL;
230 	}
231 	EVP_CIPHER_CTX_set_padding(ctx, 0);
232 	return ctx;
233 }
234 
235 
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)236 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
237 {
238 	EVP_CIPHER_CTX *c = ctx;
239 	int clen = 16;
240 	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
241 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
242 			   ERR_error_string(ERR_get_error(), NULL));
243 	}
244 }
245 
246 
aes_encrypt_deinit(void * ctx)247 void aes_encrypt_deinit(void *ctx)
248 {
249 	EVP_CIPHER_CTX *c = ctx;
250 	u8 buf[16];
251 	int len = sizeof(buf);
252 	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
253 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
254 			   "%s", ERR_error_string(ERR_get_error(), NULL));
255 	}
256 	if (len != 0) {
257 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
258 			   "in AES encrypt", len);
259 	}
260 	EVP_CIPHER_CTX_cleanup(c);
261 	os_free(c);
262 }
263 
264 
aes_decrypt_init(const u8 * key,size_t len)265 void * aes_decrypt_init(const u8 *key, size_t len)
266 {
267 	EVP_CIPHER_CTX *ctx;
268 	const EVP_CIPHER *type;
269 
270 	type = aes_get_evp_cipher(len);
271 	if (type == NULL)
272 		return NULL;
273 
274 	ctx = os_malloc(sizeof(*ctx));
275 	if (ctx == NULL)
276 		return NULL;
277 	EVP_CIPHER_CTX_init(ctx);
278 	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
279 		os_free(ctx);
280 		return NULL;
281 	}
282 	EVP_CIPHER_CTX_set_padding(ctx, 0);
283 	return ctx;
284 }
285 
286 
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)287 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
288 {
289 	EVP_CIPHER_CTX *c = ctx;
290 	int plen = 16;
291 	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
292 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
293 			   ERR_error_string(ERR_get_error(), NULL));
294 	}
295 }
296 
297 
aes_decrypt_deinit(void * ctx)298 void aes_decrypt_deinit(void *ctx)
299 {
300 	EVP_CIPHER_CTX *c = ctx;
301 	u8 buf[16];
302 	int len = sizeof(buf);
303 	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
304 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
305 			   "%s", ERR_error_string(ERR_get_error(), NULL));
306 	}
307 	if (len != 0) {
308 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
309 			   "in AES decrypt", len);
310 	}
311 	EVP_CIPHER_CTX_cleanup(c);
312 	os_free(ctx);
313 }
314 
315 
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)316 int crypto_mod_exp(const u8 *base, size_t base_len,
317 		   const u8 *power, size_t power_len,
318 		   const u8 *modulus, size_t modulus_len,
319 		   u8 *result, size_t *result_len)
320 {
321 	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
322 	int ret = -1;
323 	BN_CTX *ctx;
324 
325 	ctx = BN_CTX_new();
326 	if (ctx == NULL)
327 		return -1;
328 
329 	bn_base = BN_bin2bn(base, base_len, NULL);
330 	bn_exp = BN_bin2bn(power, power_len, NULL);
331 	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
332 	bn_result = BN_new();
333 
334 	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
335 	    bn_result == NULL)
336 		goto error;
337 
338 	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
339 		goto error;
340 
341 	*result_len = BN_bn2bin(bn_result, result);
342 	ret = 0;
343 
344 error:
345 	BN_clear_free(bn_base);
346 	BN_clear_free(bn_exp);
347 	BN_clear_free(bn_modulus);
348 	BN_clear_free(bn_result);
349 	BN_CTX_free(ctx);
350 	return ret;
351 }
352 
353 
354 struct crypto_cipher {
355 	EVP_CIPHER_CTX enc;
356 	EVP_CIPHER_CTX dec;
357 };
358 
359 
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)360 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
361 					  const u8 *iv, const u8 *key,
362 					  size_t key_len)
363 {
364 	struct crypto_cipher *ctx;
365 	const EVP_CIPHER *cipher;
366 
367 	ctx = os_zalloc(sizeof(*ctx));
368 	if (ctx == NULL)
369 		return NULL;
370 
371 	switch (alg) {
372 #ifndef OPENSSL_NO_RC4
373 	case CRYPTO_CIPHER_ALG_RC4:
374 		cipher = EVP_rc4();
375 		break;
376 #endif /* OPENSSL_NO_RC4 */
377 #ifndef OPENSSL_NO_AES
378 	case CRYPTO_CIPHER_ALG_AES:
379 		switch (key_len) {
380 		case 16:
381 			cipher = EVP_aes_128_cbc();
382 			break;
383 #ifndef OPENSSL_IS_BORINGSSL
384 		case 24:
385 			cipher = EVP_aes_192_cbc();
386 			break;
387 #endif /* OPENSSL_IS_BORINGSSL */
388 		case 32:
389 			cipher = EVP_aes_256_cbc();
390 			break;
391 		default:
392 			os_free(ctx);
393 			return NULL;
394 		}
395 		break;
396 #endif /* OPENSSL_NO_AES */
397 #ifndef OPENSSL_NO_DES
398 	case CRYPTO_CIPHER_ALG_3DES:
399 		cipher = EVP_des_ede3_cbc();
400 		break;
401 	case CRYPTO_CIPHER_ALG_DES:
402 		cipher = EVP_des_cbc();
403 		break;
404 #endif /* OPENSSL_NO_DES */
405 #ifndef OPENSSL_NO_RC2
406 	case CRYPTO_CIPHER_ALG_RC2:
407 		cipher = EVP_rc2_ecb();
408 		break;
409 #endif /* OPENSSL_NO_RC2 */
410 	default:
411 		os_free(ctx);
412 		return NULL;
413 	}
414 
415 	EVP_CIPHER_CTX_init(&ctx->enc);
416 	EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
417 	if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
418 	    !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
419 	    !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
420 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
421 		os_free(ctx);
422 		return NULL;
423 	}
424 
425 	EVP_CIPHER_CTX_init(&ctx->dec);
426 	EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
427 	if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
428 	    !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
429 	    !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
430 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
431 		EVP_CIPHER_CTX_cleanup(&ctx->dec);
432 		os_free(ctx);
433 		return NULL;
434 	}
435 
436 	return ctx;
437 }
438 
439 
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)440 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
441 			  u8 *crypt, size_t len)
442 {
443 	int outl;
444 	if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
445 		return -1;
446 	return 0;
447 }
448 
449 
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)450 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
451 			  u8 *plain, size_t len)
452 {
453 	int outl;
454 	outl = len;
455 	if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
456 		return -1;
457 	return 0;
458 }
459 
460 
crypto_cipher_deinit(struct crypto_cipher * ctx)461 void crypto_cipher_deinit(struct crypto_cipher *ctx)
462 {
463 	EVP_CIPHER_CTX_cleanup(&ctx->enc);
464 	EVP_CIPHER_CTX_cleanup(&ctx->dec);
465 	os_free(ctx);
466 }
467 
468 
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)469 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
470 {
471 	DH *dh;
472 	struct wpabuf *pubkey = NULL, *privkey = NULL;
473 	size_t publen, privlen;
474 
475 	*priv = NULL;
476 	*publ = NULL;
477 
478 	dh = DH_new();
479 	if (dh == NULL)
480 		return NULL;
481 
482 	dh->g = BN_new();
483 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
484 		goto err;
485 
486 	dh->p = get_group5_prime();
487 	if (dh->p == NULL)
488 		goto err;
489 
490 	if (DH_generate_key(dh) != 1)
491 		goto err;
492 
493 	publen = BN_num_bytes(dh->pub_key);
494 	pubkey = wpabuf_alloc(publen);
495 	if (pubkey == NULL)
496 		goto err;
497 	privlen = BN_num_bytes(dh->priv_key);
498 	privkey = wpabuf_alloc(privlen);
499 	if (privkey == NULL)
500 		goto err;
501 
502 	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
503 	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
504 
505 	*priv = privkey;
506 	*publ = pubkey;
507 	return dh;
508 
509 err:
510 	wpabuf_free(pubkey);
511 	wpabuf_free(privkey);
512 	DH_free(dh);
513 	return NULL;
514 }
515 
516 
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)517 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
518 {
519 	DH *dh;
520 
521 	dh = DH_new();
522 	if (dh == NULL)
523 		return NULL;
524 
525 	dh->g = BN_new();
526 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
527 		goto err;
528 
529 	dh->p = get_group5_prime();
530 	if (dh->p == NULL)
531 		goto err;
532 
533 	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
534 	if (dh->priv_key == NULL)
535 		goto err;
536 
537 	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
538 	if (dh->pub_key == NULL)
539 		goto err;
540 
541 	if (DH_generate_key(dh) != 1)
542 		goto err;
543 
544 	return dh;
545 
546 err:
547 	DH_free(dh);
548 	return NULL;
549 }
550 
551 
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)552 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
553 				  const struct wpabuf *own_private)
554 {
555 	BIGNUM *pub_key;
556 	struct wpabuf *res = NULL;
557 	size_t rlen;
558 	DH *dh = ctx;
559 	int keylen;
560 
561 	if (ctx == NULL)
562 		return NULL;
563 
564 	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
565 			    NULL);
566 	if (pub_key == NULL)
567 		return NULL;
568 
569 	rlen = DH_size(dh);
570 	res = wpabuf_alloc(rlen);
571 	if (res == NULL)
572 		goto err;
573 
574 	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
575 	if (keylen < 0)
576 		goto err;
577 	wpabuf_put(res, keylen);
578 	BN_clear_free(pub_key);
579 
580 	return res;
581 
582 err:
583 	BN_clear_free(pub_key);
584 	wpabuf_free(res);
585 	return NULL;
586 }
587 
588 
dh5_free(void * ctx)589 void dh5_free(void *ctx)
590 {
591 	DH *dh;
592 	if (ctx == NULL)
593 		return;
594 	dh = ctx;
595 	DH_free(dh);
596 }
597 
598 
599 struct crypto_hash {
600 	HMAC_CTX ctx;
601 };
602 
603 
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)604 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
605 				      size_t key_len)
606 {
607 	struct crypto_hash *ctx;
608 	const EVP_MD *md;
609 
610 	switch (alg) {
611 #ifndef OPENSSL_NO_MD5
612 	case CRYPTO_HASH_ALG_HMAC_MD5:
613 		md = EVP_md5();
614 		break;
615 #endif /* OPENSSL_NO_MD5 */
616 #ifndef OPENSSL_NO_SHA
617 	case CRYPTO_HASH_ALG_HMAC_SHA1:
618 		md = EVP_sha1();
619 		break;
620 #endif /* OPENSSL_NO_SHA */
621 #ifndef OPENSSL_NO_SHA256
622 #ifdef CONFIG_SHA256
623 	case CRYPTO_HASH_ALG_HMAC_SHA256:
624 		md = EVP_sha256();
625 		break;
626 #endif /* CONFIG_SHA256 */
627 #endif /* OPENSSL_NO_SHA256 */
628 	default:
629 		return NULL;
630 	}
631 
632 	ctx = os_zalloc(sizeof(*ctx));
633 	if (ctx == NULL)
634 		return NULL;
635 	HMAC_CTX_init(&ctx->ctx);
636 
637 #if OPENSSL_VERSION_NUMBER < 0x00909000
638 	HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
639 #else /* openssl < 0.9.9 */
640 	if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
641 		os_free(ctx);
642 		return NULL;
643 	}
644 #endif /* openssl < 0.9.9 */
645 
646 	return ctx;
647 }
648 
649 
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)650 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
651 {
652 	if (ctx == NULL)
653 		return;
654 	HMAC_Update(&ctx->ctx, data, len);
655 }
656 
657 
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)658 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
659 {
660 	unsigned int mdlen;
661 	int res;
662 
663 	if (ctx == NULL)
664 		return -2;
665 
666 	if (mac == NULL || len == NULL) {
667 		os_free(ctx);
668 		return 0;
669 	}
670 
671 	mdlen = *len;
672 #if OPENSSL_VERSION_NUMBER < 0x00909000
673 	HMAC_Final(&ctx->ctx, mac, &mdlen);
674 	res = 1;
675 #else /* openssl < 0.9.9 */
676 	res = HMAC_Final(&ctx->ctx, mac, &mdlen);
677 #endif /* openssl < 0.9.9 */
678 	HMAC_CTX_cleanup(&ctx->ctx);
679 	os_free(ctx);
680 
681 	if (res == 1) {
682 		*len = mdlen;
683 		return 0;
684 	}
685 
686 	return -1;
687 }
688 
689 
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)690 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
691 		int iterations, u8 *buf, size_t buflen)
692 {
693 #if OPENSSL_VERSION_NUMBER < 0x00908000
694 	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase),
695 				   (unsigned char *) ssid,
696 				   ssid_len, 4096, buflen, buf) != 1)
697 		return -1;
698 #else /* openssl < 0.9.8 */
699 	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
700 				   ssid_len, 4096, buflen, buf) != 1)
701 		return -1;
702 #endif /* openssl < 0.9.8 */
703 	return 0;
704 }
705 
706 
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)707 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
708 		     const u8 *addr[], const size_t *len, u8 *mac)
709 {
710 	HMAC_CTX ctx;
711 	size_t i;
712 	unsigned int mdlen;
713 	int res;
714 
715 	HMAC_CTX_init(&ctx);
716 #if OPENSSL_VERSION_NUMBER < 0x00909000
717 	HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL);
718 #else /* openssl < 0.9.9 */
719 	if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1)
720 		return -1;
721 #endif /* openssl < 0.9.9 */
722 
723 	for (i = 0; i < num_elem; i++)
724 		HMAC_Update(&ctx, addr[i], len[i]);
725 
726 	mdlen = 20;
727 #if OPENSSL_VERSION_NUMBER < 0x00909000
728 	HMAC_Final(&ctx, mac, &mdlen);
729 	res = 1;
730 #else /* openssl < 0.9.9 */
731 	res = HMAC_Final(&ctx, mac, &mdlen);
732 #endif /* openssl < 0.9.9 */
733 	HMAC_CTX_cleanup(&ctx);
734 
735 	return res == 1 ? 0 : -1;
736 }
737 
738 
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)739 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
740 	       u8 *mac)
741 {
742 	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
743 }
744 
745 
746 #ifdef CONFIG_SHA256
747 
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)748 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
749 		       const u8 *addr[], const size_t *len, u8 *mac)
750 {
751 	HMAC_CTX ctx;
752 	size_t i;
753 	unsigned int mdlen;
754 	int res;
755 
756 	HMAC_CTX_init(&ctx);
757 #if OPENSSL_VERSION_NUMBER < 0x00909000
758 	HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL);
759 #else /* openssl < 0.9.9 */
760 	if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1)
761 		return -1;
762 #endif /* openssl < 0.9.9 */
763 
764 	for (i = 0; i < num_elem; i++)
765 		HMAC_Update(&ctx, addr[i], len[i]);
766 
767 	mdlen = 32;
768 #if OPENSSL_VERSION_NUMBER < 0x00909000
769 	HMAC_Final(&ctx, mac, &mdlen);
770 	res = 1;
771 #else /* openssl < 0.9.9 */
772 	res = HMAC_Final(&ctx, mac, &mdlen);
773 #endif /* openssl < 0.9.9 */
774 	HMAC_CTX_cleanup(&ctx);
775 
776 	return res == 1 ? 0 : -1;
777 }
778 
779 
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)780 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
781 		size_t data_len, u8 *mac)
782 {
783 	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
784 }
785 
786 #endif /* CONFIG_SHA256 */
787 
788 
crypto_get_random(void * buf,size_t len)789 int crypto_get_random(void *buf, size_t len)
790 {
791 	if (RAND_bytes(buf, len) != 1)
792 		return -1;
793 	return 0;
794 }
795 
796 
797 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)798 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
799 			 const u8 *addr[], const size_t *len, u8 *mac)
800 {
801 	CMAC_CTX *ctx;
802 	int ret = -1;
803 	size_t outlen, i;
804 
805 	ctx = CMAC_CTX_new();
806 	if (ctx == NULL)
807 		return -1;
808 
809 	if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
810 		goto fail;
811 	for (i = 0; i < num_elem; i++) {
812 		if (!CMAC_Update(ctx, addr[i], len[i]))
813 			goto fail;
814 	}
815 	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
816 		goto fail;
817 
818 	ret = 0;
819 fail:
820 	CMAC_CTX_free(ctx);
821 	return ret;
822 }
823 
824 
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)825 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
826 {
827 	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
828 }
829 #endif /* CONFIG_OPENSSL_CMAC */
830 
831 
crypto_bignum_init(void)832 struct crypto_bignum * crypto_bignum_init(void)
833 {
834 	return (struct crypto_bignum *) BN_new();
835 }
836 
837 
crypto_bignum_init_set(const u8 * buf,size_t len)838 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
839 {
840 	BIGNUM *bn = BN_bin2bn(buf, len, NULL);
841 	return (struct crypto_bignum *) bn;
842 }
843 
844 
crypto_bignum_deinit(struct crypto_bignum * n,int clear)845 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
846 {
847 	if (clear)
848 		BN_clear_free((BIGNUM *) n);
849 	else
850 		BN_free((BIGNUM *) n);
851 }
852 
853 
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)854 int crypto_bignum_to_bin(const struct crypto_bignum *a,
855 			 u8 *buf, size_t buflen, size_t padlen)
856 {
857 	int num_bytes, offset;
858 
859 	if (padlen > buflen)
860 		return -1;
861 
862 	num_bytes = BN_num_bytes((const BIGNUM *) a);
863 	if ((size_t) num_bytes > buflen)
864 		return -1;
865 	if (padlen > (size_t) num_bytes)
866 		offset = padlen - num_bytes;
867 	else
868 		offset = 0;
869 
870 	os_memset(buf, 0, offset);
871 	BN_bn2bin((const BIGNUM *) a, buf + offset);
872 
873 	return num_bytes + offset;
874 }
875 
876 
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)877 int crypto_bignum_add(const struct crypto_bignum *a,
878 		      const struct crypto_bignum *b,
879 		      struct crypto_bignum *c)
880 {
881 	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
882 		0 : -1;
883 }
884 
885 
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)886 int crypto_bignum_mod(const struct crypto_bignum *a,
887 		      const struct crypto_bignum *b,
888 		      struct crypto_bignum *c)
889 {
890 	int res;
891 	BN_CTX *bnctx;
892 
893 	bnctx = BN_CTX_new();
894 	if (bnctx == NULL)
895 		return -1;
896 	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
897 		     bnctx);
898 	BN_CTX_free(bnctx);
899 
900 	return res ? 0 : -1;
901 }
902 
903 
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)904 int crypto_bignum_exptmod(const struct crypto_bignum *a,
905 			  const struct crypto_bignum *b,
906 			  const struct crypto_bignum *c,
907 			  struct crypto_bignum *d)
908 {
909 	int res;
910 	BN_CTX *bnctx;
911 
912 	bnctx = BN_CTX_new();
913 	if (bnctx == NULL)
914 		return -1;
915 	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
916 			 (const BIGNUM *) c, bnctx);
917 	BN_CTX_free(bnctx);
918 
919 	return res ? 0 : -1;
920 }
921 
922 
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)923 int crypto_bignum_inverse(const struct crypto_bignum *a,
924 			  const struct crypto_bignum *b,
925 			  struct crypto_bignum *c)
926 {
927 	BIGNUM *res;
928 	BN_CTX *bnctx;
929 
930 	bnctx = BN_CTX_new();
931 	if (bnctx == NULL)
932 		return -1;
933 	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
934 			     (const BIGNUM *) b, bnctx);
935 	BN_CTX_free(bnctx);
936 
937 	return res ? 0 : -1;
938 }
939 
940 
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)941 int crypto_bignum_sub(const struct crypto_bignum *a,
942 		      const struct crypto_bignum *b,
943 		      struct crypto_bignum *c)
944 {
945 	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
946 		0 : -1;
947 }
948 
949 
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)950 int crypto_bignum_div(const struct crypto_bignum *a,
951 		      const struct crypto_bignum *b,
952 		      struct crypto_bignum *c)
953 {
954 	int res;
955 
956 	BN_CTX *bnctx;
957 
958 	bnctx = BN_CTX_new();
959 	if (bnctx == NULL)
960 		return -1;
961 	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
962 		     (const BIGNUM *) b, bnctx);
963 	BN_CTX_free(bnctx);
964 
965 	return res ? 0 : -1;
966 }
967 
968 
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)969 int crypto_bignum_mulmod(const struct crypto_bignum *a,
970 			 const struct crypto_bignum *b,
971 			 const struct crypto_bignum *c,
972 			 struct crypto_bignum *d)
973 {
974 	int res;
975 
976 	BN_CTX *bnctx;
977 
978 	bnctx = BN_CTX_new();
979 	if (bnctx == NULL)
980 		return -1;
981 	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
982 			 (const BIGNUM *) c, bnctx);
983 	BN_CTX_free(bnctx);
984 
985 	return res ? 0 : -1;
986 }
987 
988 
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)989 int crypto_bignum_cmp(const struct crypto_bignum *a,
990 		      const struct crypto_bignum *b)
991 {
992 	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
993 }
994 
995 
crypto_bignum_bits(const struct crypto_bignum * a)996 int crypto_bignum_bits(const struct crypto_bignum *a)
997 {
998 	return BN_num_bits((const BIGNUM *) a);
999 }
1000 
1001 
crypto_bignum_is_zero(const struct crypto_bignum * a)1002 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1003 {
1004 	return BN_is_zero((const BIGNUM *) a);
1005 }
1006 
1007 
crypto_bignum_is_one(const struct crypto_bignum * a)1008 int crypto_bignum_is_one(const struct crypto_bignum *a)
1009 {
1010 	return BN_is_one((const BIGNUM *) a);
1011 }
1012 
1013 
1014 #ifdef CONFIG_ECC
1015 
1016 struct crypto_ec {
1017 	EC_GROUP *group;
1018 	BN_CTX *bnctx;
1019 	BIGNUM *prime;
1020 	BIGNUM *order;
1021 };
1022 
crypto_ec_init(int group)1023 struct crypto_ec * crypto_ec_init(int group)
1024 {
1025 	struct crypto_ec *e;
1026 	int nid;
1027 
1028 	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1029 	switch (group) {
1030 	case 19:
1031 		nid = NID_X9_62_prime256v1;
1032 		break;
1033 	case 20:
1034 		nid = NID_secp384r1;
1035 		break;
1036 	case 21:
1037 		nid = NID_secp521r1;
1038 		break;
1039 	case 25:
1040 		nid = NID_X9_62_prime192v1;
1041 		break;
1042 	case 26:
1043 		nid = NID_secp224r1;
1044 		break;
1045 	default:
1046 		return NULL;
1047 	}
1048 
1049 	e = os_zalloc(sizeof(*e));
1050 	if (e == NULL)
1051 		return NULL;
1052 
1053 	e->bnctx = BN_CTX_new();
1054 	e->group = EC_GROUP_new_by_curve_name(nid);
1055 	e->prime = BN_new();
1056 	e->order = BN_new();
1057 	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1058 	    e->order == NULL ||
1059 	    !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) ||
1060 	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1061 		crypto_ec_deinit(e);
1062 		e = NULL;
1063 	}
1064 
1065 	return e;
1066 }
1067 
1068 
crypto_ec_deinit(struct crypto_ec * e)1069 void crypto_ec_deinit(struct crypto_ec *e)
1070 {
1071 	if (e == NULL)
1072 		return;
1073 	BN_clear_free(e->order);
1074 	BN_clear_free(e->prime);
1075 	EC_GROUP_free(e->group);
1076 	BN_CTX_free(e->bnctx);
1077 	os_free(e);
1078 }
1079 
1080 
crypto_ec_point_init(struct crypto_ec * e)1081 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1082 {
1083 	if (e == NULL)
1084 		return NULL;
1085 	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1086 }
1087 
1088 
crypto_ec_prime_len(struct crypto_ec * e)1089 size_t crypto_ec_prime_len(struct crypto_ec *e)
1090 {
1091 	return BN_num_bytes(e->prime);
1092 }
1093 
1094 
crypto_ec_prime_len_bits(struct crypto_ec * e)1095 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1096 {
1097 	return BN_num_bits(e->prime);
1098 }
1099 
1100 
crypto_ec_get_prime(struct crypto_ec * e)1101 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1102 {
1103 	return (const struct crypto_bignum *) e->prime;
1104 }
1105 
1106 
crypto_ec_get_order(struct crypto_ec * e)1107 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1108 {
1109 	return (const struct crypto_bignum *) e->order;
1110 }
1111 
1112 
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1113 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1114 {
1115 	if (clear)
1116 		EC_POINT_clear_free((EC_POINT *) p);
1117 	else
1118 		EC_POINT_free((EC_POINT *) p);
1119 }
1120 
1121 
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1122 int crypto_ec_point_to_bin(struct crypto_ec *e,
1123 			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1124 {
1125 	BIGNUM *x_bn, *y_bn;
1126 	int ret = -1;
1127 	int len = BN_num_bytes(e->prime);
1128 
1129 	x_bn = BN_new();
1130 	y_bn = BN_new();
1131 
1132 	if (x_bn && y_bn &&
1133 	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1134 						x_bn, y_bn, e->bnctx)) {
1135 		if (x) {
1136 			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1137 					     x, len, len);
1138 		}
1139 		if (y) {
1140 			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1141 					     y, len, len);
1142 		}
1143 		ret = 0;
1144 	}
1145 
1146 	BN_clear_free(x_bn);
1147 	BN_clear_free(y_bn);
1148 	return ret;
1149 }
1150 
1151 
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1152 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1153 						  const u8 *val)
1154 {
1155 	BIGNUM *x, *y;
1156 	EC_POINT *elem;
1157 	int len = BN_num_bytes(e->prime);
1158 
1159 	x = BN_bin2bn(val, len, NULL);
1160 	y = BN_bin2bn(val + len, len, NULL);
1161 	elem = EC_POINT_new(e->group);
1162 	if (x == NULL || y == NULL || elem == NULL) {
1163 		BN_clear_free(x);
1164 		BN_clear_free(y);
1165 		EC_POINT_clear_free(elem);
1166 		return NULL;
1167 	}
1168 
1169 	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1170 						 e->bnctx)) {
1171 		EC_POINT_clear_free(elem);
1172 		elem = NULL;
1173 	}
1174 
1175 	BN_clear_free(x);
1176 	BN_clear_free(y);
1177 
1178 	return (struct crypto_ec_point *) elem;
1179 }
1180 
1181 
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1182 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1183 			const struct crypto_ec_point *b,
1184 			struct crypto_ec_point *c)
1185 {
1186 	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1187 			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1188 }
1189 
1190 
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1191 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1192 			const struct crypto_bignum *b,
1193 			struct crypto_ec_point *res)
1194 {
1195 	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1196 			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1197 		? 0 : -1;
1198 }
1199 
1200 
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1201 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1202 {
1203 	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1204 }
1205 
1206 
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1207 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1208 				  struct crypto_ec_point *p,
1209 				  const struct crypto_bignum *x, int y_bit)
1210 {
1211 	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1212 						     (const BIGNUM *) x, y_bit,
1213 						     e->bnctx) ||
1214 	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1215 		return -1;
1216 	return 0;
1217 }
1218 
1219 
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1220 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1221 				   const struct crypto_ec_point *p)
1222 {
1223 	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1224 }
1225 
1226 
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1227 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1228 				const struct crypto_ec_point *p)
1229 {
1230 	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx);
1231 }
1232 
1233 #endif /* CONFIG_ECC */
1234