• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: strandmark@google.com (Petter Strandmark)
30 
31 #ifndef CERES_INTERNAL_CXSPARSE_H_
32 #define CERES_INTERNAL_CXSPARSE_H_
33 
34 // This include must come before any #ifndef check on Ceres compile options.
35 #include "ceres/internal/port.h"
36 
37 #ifndef CERES_NO_CXSPARSE
38 
39 #include <vector>
40 #include "cs.h"
41 
42 namespace ceres {
43 namespace internal {
44 
45 class CompressedRowSparseMatrix;
46 class TripletSparseMatrix;
47 
48 // This object provides access to solving linear systems using Cholesky
49 // factorization with a known symbolic factorization. This features does not
50 // explicity exist in CXSparse. The methods in the class are nonstatic because
51 // the class manages internal scratch space.
52 class CXSparse {
53  public:
54   CXSparse();
55   ~CXSparse();
56 
57   // Solves a symmetric linear system A * x = b using Cholesky factorization.
58   //  A                      - The system matrix.
59   //  symbolic_factorization - The symbolic factorization of A. This is obtained
60   //                           from AnalyzeCholesky.
61   //  b                      - The right hand size of the linear equation. This
62   //                           array will also recieve the solution.
63   // Returns false if Cholesky factorization of A fails.
64   bool SolveCholesky(cs_di* A, cs_dis* symbolic_factorization, double* b);
65 
66   // Creates a sparse matrix from a compressed-column form. No memory is
67   // allocated or copied; the structure A is filled out with info from the
68   // argument.
69   cs_di CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
70 
71   // Creates a new matrix from a triplet form. Deallocate the returned matrix
72   // with Free. May return NULL if the compression or allocation fails.
73   cs_di* CreateSparseMatrix(TripletSparseMatrix* A);
74 
75   // B = A'
76   //
77   // The returned matrix should be deallocated with Free when not used
78   // anymore.
79   cs_di* TransposeMatrix(cs_di* A);
80 
81   // C = A * B
82   //
83   // The returned matrix should be deallocated with Free when not used
84   // anymore.
85   cs_di* MatrixMatrixMultiply(cs_di* A, cs_di* B);
86 
87   // Computes a symbolic factorization of A that can be used in SolveCholesky.
88   //
89   // The returned matrix should be deallocated with Free when not used anymore.
90   cs_dis* AnalyzeCholesky(cs_di* A);
91 
92   // Computes a symbolic factorization of A that can be used in
93   // SolveCholesky, but does not compute a fill-reducing ordering.
94   //
95   // The returned matrix should be deallocated with Free when not used anymore.
96   cs_dis* AnalyzeCholeskyWithNaturalOrdering(cs_di* A);
97 
98   // Computes a symbolic factorization of A that can be used in
99   // SolveCholesky. The difference from AnalyzeCholesky is that this
100   // function first detects the block sparsity of the matrix using
101   // information about the row and column blocks and uses this block
102   // sparse matrix to find a fill-reducing ordering. This ordering is
103   // then used to find a symbolic factorization. This can result in a
104   // significant performance improvement AnalyzeCholesky on block
105   // sparse matrices.
106   //
107   // The returned matrix should be deallocated with Free when not used
108   // anymore.
109   cs_dis* BlockAnalyzeCholesky(cs_di* A,
110                                const vector<int>& row_blocks,
111                                const vector<int>& col_blocks);
112 
113   // Compute an fill-reducing approximate minimum degree ordering of
114   // the matrix A. ordering should be non-NULL and should point to
115   // enough memory to hold the ordering for the rows of A.
116   void ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering);
117 
118   void Free(cs_di* sparse_matrix);
119   void Free(cs_dis* symbolic_factorization);
120 
121  private:
122   // Cached scratch space
123   CS_ENTRY* scratch_;
124   int scratch_size_;
125 };
126 
127 }  // namespace internal
128 }  // namespace ceres
129 
130 #else  // CERES_NO_CXSPARSE
131 
132 typedef void cs_dis;
133 
134 class CXSparse {
135  public:
Free(void *)136   void Free(void*) {};
137 
138 };
139 #endif  // CERES_NO_CXSPARSE
140 
141 #endif  // CERES_INTERNAL_CXSPARSE_H_
142