1 /*
2 * wpa_supplicant/hostapd / common helper functions, etc.
3 * Copyright (c) 2002-2007, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10
11 #include "common.h"
12
13
hex2num(char c)14 static int hex2num(char c)
15 {
16 if (c >= '0' && c <= '9')
17 return c - '0';
18 if (c >= 'a' && c <= 'f')
19 return c - 'a' + 10;
20 if (c >= 'A' && c <= 'F')
21 return c - 'A' + 10;
22 return -1;
23 }
24
25
hex2byte(const char * hex)26 int hex2byte(const char *hex)
27 {
28 int a, b;
29 a = hex2num(*hex++);
30 if (a < 0)
31 return -1;
32 b = hex2num(*hex++);
33 if (b < 0)
34 return -1;
35 return (a << 4) | b;
36 }
37
38
39 /**
40 * hwaddr_aton - Convert ASCII string to MAC address (colon-delimited format)
41 * @txt: MAC address as a string (e.g., "00:11:22:33:44:55")
42 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
43 * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
44 */
hwaddr_aton(const char * txt,u8 * addr)45 int hwaddr_aton(const char *txt, u8 *addr)
46 {
47 int i;
48
49 for (i = 0; i < 6; i++) {
50 int a, b;
51
52 a = hex2num(*txt++);
53 if (a < 0)
54 return -1;
55 b = hex2num(*txt++);
56 if (b < 0)
57 return -1;
58 *addr++ = (a << 4) | b;
59 if (i < 5 && *txt++ != ':')
60 return -1;
61 }
62
63 return 0;
64 }
65
66 /**
67 * hwaddr_compact_aton - Convert ASCII string to MAC address (no colon delimitors format)
68 * @txt: MAC address as a string (e.g., "001122334455")
69 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
70 * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
71 */
hwaddr_compact_aton(const char * txt,u8 * addr)72 int hwaddr_compact_aton(const char *txt, u8 *addr)
73 {
74 int i;
75
76 for (i = 0; i < 6; i++) {
77 int a, b;
78
79 a = hex2num(*txt++);
80 if (a < 0)
81 return -1;
82 b = hex2num(*txt++);
83 if (b < 0)
84 return -1;
85 *addr++ = (a << 4) | b;
86 }
87
88 return 0;
89 }
90
91 /**
92 * hwaddr_aton2 - Convert ASCII string to MAC address (in any known format)
93 * @txt: MAC address as a string (e.g., 00:11:22:33:44:55 or 0011.2233.4455)
94 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
95 * Returns: Characters used (> 0) on success, -1 on failure
96 */
hwaddr_aton2(const char * txt,u8 * addr)97 int hwaddr_aton2(const char *txt, u8 *addr)
98 {
99 int i;
100 const char *pos = txt;
101
102 for (i = 0; i < 6; i++) {
103 int a, b;
104
105 while (*pos == ':' || *pos == '.' || *pos == '-')
106 pos++;
107
108 a = hex2num(*pos++);
109 if (a < 0)
110 return -1;
111 b = hex2num(*pos++);
112 if (b < 0)
113 return -1;
114 *addr++ = (a << 4) | b;
115 }
116
117 return pos - txt;
118 }
119
120
121 /**
122 * hexstr2bin - Convert ASCII hex string into binary data
123 * @hex: ASCII hex string (e.g., "01ab")
124 * @buf: Buffer for the binary data
125 * @len: Length of the text to convert in bytes (of buf); hex will be double
126 * this size
127 * Returns: 0 on success, -1 on failure (invalid hex string)
128 */
hexstr2bin(const char * hex,u8 * buf,size_t len)129 int hexstr2bin(const char *hex, u8 *buf, size_t len)
130 {
131 size_t i;
132 int a;
133 const char *ipos = hex;
134 u8 *opos = buf;
135
136 for (i = 0; i < len; i++) {
137 a = hex2byte(ipos);
138 if (a < 0)
139 return -1;
140 *opos++ = a;
141 ipos += 2;
142 }
143 return 0;
144 }
145
146
147 /**
148 * inc_byte_array - Increment arbitrary length byte array by one
149 * @counter: Pointer to byte array
150 * @len: Length of the counter in bytes
151 *
152 * This function increments the last byte of the counter by one and continues
153 * rolling over to more significant bytes if the byte was incremented from
154 * 0xff to 0x00.
155 */
inc_byte_array(u8 * counter,size_t len)156 void inc_byte_array(u8 *counter, size_t len)
157 {
158 int pos = len - 1;
159 while (pos >= 0) {
160 counter[pos]++;
161 if (counter[pos] != 0)
162 break;
163 pos--;
164 }
165 }
166
167
wpa_get_ntp_timestamp(u8 * buf)168 void wpa_get_ntp_timestamp(u8 *buf)
169 {
170 struct os_time now;
171 u32 sec, usec;
172 be32 tmp;
173
174 /* 64-bit NTP timestamp (time from 1900-01-01 00:00:00) */
175 os_get_time(&now);
176 sec = now.sec + 2208988800U; /* Epoch to 1900 */
177 /* Estimate 2^32/10^6 = 4295 - 1/32 - 1/512 */
178 usec = now.usec;
179 usec = 4295 * usec - (usec >> 5) - (usec >> 9);
180 tmp = host_to_be32(sec);
181 os_memcpy(buf, (u8 *) &tmp, 4);
182 tmp = host_to_be32(usec);
183 os_memcpy(buf + 4, (u8 *) &tmp, 4);
184 }
185
186
_wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len,int uppercase)187 static inline int _wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data,
188 size_t len, int uppercase)
189 {
190 size_t i;
191 char *pos = buf, *end = buf + buf_size;
192 int ret;
193 if (buf_size == 0)
194 return 0;
195 for (i = 0; i < len; i++) {
196 ret = os_snprintf(pos, end - pos, uppercase ? "%02X" : "%02x",
197 data[i]);
198 if (ret < 0 || ret >= end - pos) {
199 end[-1] = '\0';
200 return pos - buf;
201 }
202 pos += ret;
203 }
204 end[-1] = '\0';
205 return pos - buf;
206 }
207
208 /**
209 * wpa_snprintf_hex - Print data as a hex string into a buffer
210 * @buf: Memory area to use as the output buffer
211 * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
212 * @data: Data to be printed
213 * @len: Length of data in bytes
214 * Returns: Number of bytes written
215 */
wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len)216 int wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data, size_t len)
217 {
218 return _wpa_snprintf_hex(buf, buf_size, data, len, 0);
219 }
220
221
222 /**
223 * wpa_snprintf_hex_uppercase - Print data as a upper case hex string into buf
224 * @buf: Memory area to use as the output buffer
225 * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
226 * @data: Data to be printed
227 * @len: Length of data in bytes
228 * Returns: Number of bytes written
229 */
wpa_snprintf_hex_uppercase(char * buf,size_t buf_size,const u8 * data,size_t len)230 int wpa_snprintf_hex_uppercase(char *buf, size_t buf_size, const u8 *data,
231 size_t len)
232 {
233 return _wpa_snprintf_hex(buf, buf_size, data, len, 1);
234 }
235
236
237 #ifdef CONFIG_ANSI_C_EXTRA
238
239 #ifdef _WIN32_WCE
perror(const char * s)240 void perror(const char *s)
241 {
242 wpa_printf(MSG_ERROR, "%s: GetLastError: %d",
243 s, (int) GetLastError());
244 }
245 #endif /* _WIN32_WCE */
246
247
248 int optind = 1;
249 int optopt;
250 char *optarg;
251
getopt(int argc,char * const argv[],const char * optstring)252 int getopt(int argc, char *const argv[], const char *optstring)
253 {
254 static int optchr = 1;
255 char *cp;
256
257 if (optchr == 1) {
258 if (optind >= argc) {
259 /* all arguments processed */
260 return EOF;
261 }
262
263 if (argv[optind][0] != '-' || argv[optind][1] == '\0') {
264 /* no option characters */
265 return EOF;
266 }
267 }
268
269 if (os_strcmp(argv[optind], "--") == 0) {
270 /* no more options */
271 optind++;
272 return EOF;
273 }
274
275 optopt = argv[optind][optchr];
276 cp = os_strchr(optstring, optopt);
277 if (cp == NULL || optopt == ':') {
278 if (argv[optind][++optchr] == '\0') {
279 optchr = 1;
280 optind++;
281 }
282 return '?';
283 }
284
285 if (cp[1] == ':') {
286 /* Argument required */
287 optchr = 1;
288 if (argv[optind][optchr + 1]) {
289 /* No space between option and argument */
290 optarg = &argv[optind++][optchr + 1];
291 } else if (++optind >= argc) {
292 /* option requires an argument */
293 return '?';
294 } else {
295 /* Argument in the next argv */
296 optarg = argv[optind++];
297 }
298 } else {
299 /* No argument */
300 if (argv[optind][++optchr] == '\0') {
301 optchr = 1;
302 optind++;
303 }
304 optarg = NULL;
305 }
306 return *cp;
307 }
308 #endif /* CONFIG_ANSI_C_EXTRA */
309
310
311 #ifdef CONFIG_NATIVE_WINDOWS
312 /**
313 * wpa_unicode2ascii_inplace - Convert unicode string into ASCII
314 * @str: Pointer to string to convert
315 *
316 * This function converts a unicode string to ASCII using the same
317 * buffer for output. If UNICODE is not set, the buffer is not
318 * modified.
319 */
wpa_unicode2ascii_inplace(TCHAR * str)320 void wpa_unicode2ascii_inplace(TCHAR *str)
321 {
322 #ifdef UNICODE
323 char *dst = (char *) str;
324 while (*str)
325 *dst++ = (char) *str++;
326 *dst = '\0';
327 #endif /* UNICODE */
328 }
329
330
wpa_strdup_tchar(const char * str)331 TCHAR * wpa_strdup_tchar(const char *str)
332 {
333 #ifdef UNICODE
334 TCHAR *buf;
335 buf = os_malloc((strlen(str) + 1) * sizeof(TCHAR));
336 if (buf == NULL)
337 return NULL;
338 wsprintf(buf, L"%S", str);
339 return buf;
340 #else /* UNICODE */
341 return os_strdup(str);
342 #endif /* UNICODE */
343 }
344 #endif /* CONFIG_NATIVE_WINDOWS */
345
346
printf_encode(char * txt,size_t maxlen,const u8 * data,size_t len)347 void printf_encode(char *txt, size_t maxlen, const u8 *data, size_t len)
348 {
349 char *end = txt + maxlen;
350 size_t i;
351
352 for (i = 0; i < len; i++) {
353 if (txt + 4 >= end)
354 break;
355
356 switch (data[i]) {
357 case '\"':
358 *txt++ = '\\';
359 *txt++ = '\"';
360 break;
361 case '\\':
362 *txt++ = '\\';
363 *txt++ = '\\';
364 break;
365 case '\033':
366 *txt++ = '\\';
367 *txt++ = 'e';
368 break;
369 case '\n':
370 *txt++ = '\\';
371 *txt++ = 'n';
372 break;
373 case '\r':
374 *txt++ = '\\';
375 *txt++ = 'r';
376 break;
377 case '\t':
378 *txt++ = '\\';
379 *txt++ = 't';
380 break;
381 default:
382 if (data[i] >= 32 && data[i] <= 127) {
383 *txt++ = data[i];
384 } else {
385 txt += os_snprintf(txt, end - txt, "\\x%02x",
386 data[i]);
387 }
388 break;
389 }
390 }
391
392 *txt = '\0';
393 }
394
395
printf_decode(u8 * buf,size_t maxlen,const char * str)396 size_t printf_decode(u8 *buf, size_t maxlen, const char *str)
397 {
398 const char *pos = str;
399 size_t len = 0;
400 int val;
401
402 while (*pos) {
403 if (len + 1 >= maxlen)
404 break;
405 switch (*pos) {
406 case '\\':
407 pos++;
408 switch (*pos) {
409 case '\\':
410 buf[len++] = '\\';
411 pos++;
412 break;
413 case '"':
414 buf[len++] = '"';
415 pos++;
416 break;
417 case 'n':
418 buf[len++] = '\n';
419 pos++;
420 break;
421 case 'r':
422 buf[len++] = '\r';
423 pos++;
424 break;
425 case 't':
426 buf[len++] = '\t';
427 pos++;
428 break;
429 case 'e':
430 buf[len++] = '\033';
431 pos++;
432 break;
433 case 'x':
434 pos++;
435 val = hex2byte(pos);
436 if (val < 0) {
437 val = hex2num(*pos);
438 if (val < 0)
439 break;
440 buf[len++] = val;
441 pos++;
442 } else {
443 buf[len++] = val;
444 pos += 2;
445 }
446 break;
447 case '0':
448 case '1':
449 case '2':
450 case '3':
451 case '4':
452 case '5':
453 case '6':
454 case '7':
455 val = *pos++ - '0';
456 if (*pos >= '0' && *pos <= '7')
457 val = val * 8 + (*pos++ - '0');
458 if (*pos >= '0' && *pos <= '7')
459 val = val * 8 + (*pos++ - '0');
460 buf[len++] = val;
461 break;
462 default:
463 break;
464 }
465 break;
466 default:
467 buf[len++] = *pos++;
468 break;
469 }
470 }
471 if (maxlen > len)
472 buf[len] = '\0';
473
474 return len;
475 }
476
477
478 /**
479 * wpa_ssid_txt - Convert SSID to a printable string
480 * @ssid: SSID (32-octet string)
481 * @ssid_len: Length of ssid in octets
482 * Returns: Pointer to a printable string
483 *
484 * This function can be used to convert SSIDs into printable form. In most
485 * cases, SSIDs do not use unprintable characters, but IEEE 802.11 standard
486 * does not limit the used character set, so anything could be used in an SSID.
487 *
488 * This function uses a static buffer, so only one call can be used at the
489 * time, i.e., this is not re-entrant and the returned buffer must be used
490 * before calling this again.
491 */
wpa_ssid_txt(const u8 * ssid,size_t ssid_len)492 const char * wpa_ssid_txt(const u8 *ssid, size_t ssid_len)
493 {
494 static char ssid_txt[32 * 4 + 1];
495
496 if (ssid == NULL) {
497 ssid_txt[0] = '\0';
498 return ssid_txt;
499 }
500
501 printf_encode(ssid_txt, sizeof(ssid_txt), ssid, ssid_len);
502 return ssid_txt;
503 }
504
505
__hide_aliasing_typecast(void * foo)506 void * __hide_aliasing_typecast(void *foo)
507 {
508 return foo;
509 }
510
511
wpa_config_parse_string(const char * value,size_t * len)512 char * wpa_config_parse_string(const char *value, size_t *len)
513 {
514 if (*value == '"') {
515 const char *pos;
516 char *str;
517 value++;
518 pos = os_strrchr(value, '"');
519 if (pos == NULL || pos[1] != '\0')
520 return NULL;
521 *len = pos - value;
522 str = dup_binstr(value, *len);
523 if (str == NULL)
524 return NULL;
525 return str;
526 } else if (*value == 'P' && value[1] == '"') {
527 const char *pos;
528 char *tstr, *str;
529 size_t tlen;
530 value += 2;
531 pos = os_strrchr(value, '"');
532 if (pos == NULL || pos[1] != '\0')
533 return NULL;
534 tlen = pos - value;
535 tstr = dup_binstr(value, tlen);
536 if (tstr == NULL)
537 return NULL;
538
539 str = os_malloc(tlen + 1);
540 if (str == NULL) {
541 os_free(tstr);
542 return NULL;
543 }
544
545 *len = printf_decode((u8 *) str, tlen + 1, tstr);
546 os_free(tstr);
547
548 return str;
549 } else {
550 u8 *str;
551 size_t tlen, hlen = os_strlen(value);
552 if (hlen & 1)
553 return NULL;
554 tlen = hlen / 2;
555 str = os_malloc(tlen + 1);
556 if (str == NULL)
557 return NULL;
558 if (hexstr2bin(value, str, tlen)) {
559 os_free(str);
560 return NULL;
561 }
562 str[tlen] = '\0';
563 *len = tlen;
564 return (char *) str;
565 }
566 }
567
568
is_hex(const u8 * data,size_t len)569 int is_hex(const u8 *data, size_t len)
570 {
571 size_t i;
572
573 for (i = 0; i < len; i++) {
574 if (data[i] < 32 || data[i] >= 127)
575 return 1;
576 }
577 return 0;
578 }
579
580
find_first_bit(u32 value)581 int find_first_bit(u32 value)
582 {
583 int pos = 0;
584
585 while (value) {
586 if (value & 0x1)
587 return pos;
588 value >>= 1;
589 pos++;
590 }
591
592 return -1;
593 }
594
595
merge_byte_arrays(u8 * res,size_t res_len,const u8 * src1,size_t src1_len,const u8 * src2,size_t src2_len)596 size_t merge_byte_arrays(u8 *res, size_t res_len,
597 const u8 *src1, size_t src1_len,
598 const u8 *src2, size_t src2_len)
599 {
600 size_t len = 0;
601
602 os_memset(res, 0, res_len);
603
604 if (src1) {
605 if (src1_len >= res_len) {
606 os_memcpy(res, src1, res_len);
607 return res_len;
608 }
609
610 os_memcpy(res, src1, src1_len);
611 len += src1_len;
612 }
613
614 if (src2) {
615 if (len + src2_len >= res_len) {
616 os_memcpy(res + len, src2, res_len - len);
617 return res_len;
618 }
619
620 os_memcpy(res + len, src2, src2_len);
621 len += src2_len;
622 }
623
624 return len;
625 }
626
627
dup_binstr(const void * src,size_t len)628 char * dup_binstr(const void *src, size_t len)
629 {
630 char *res;
631
632 if (src == NULL)
633 return NULL;
634 res = os_malloc(len + 1);
635 if (res == NULL)
636 return NULL;
637 os_memcpy(res, src, len);
638 res[len] = '\0';
639
640 return res;
641 }
642
643
freq_range_list_parse(struct wpa_freq_range_list * res,const char * value)644 int freq_range_list_parse(struct wpa_freq_range_list *res, const char *value)
645 {
646 struct wpa_freq_range *freq = NULL, *n;
647 unsigned int count = 0;
648 const char *pos, *pos2, *pos3;
649
650 /*
651 * Comma separated list of frequency ranges.
652 * For example: 2412-2432,2462,5000-6000
653 */
654 pos = value;
655 while (pos && pos[0]) {
656 n = os_realloc_array(freq, count + 1,
657 sizeof(struct wpa_freq_range));
658 if (n == NULL) {
659 os_free(freq);
660 return -1;
661 }
662 freq = n;
663 freq[count].min = atoi(pos);
664 pos2 = os_strchr(pos, '-');
665 pos3 = os_strchr(pos, ',');
666 if (pos2 && (!pos3 || pos2 < pos3)) {
667 pos2++;
668 freq[count].max = atoi(pos2);
669 } else
670 freq[count].max = freq[count].min;
671 pos = pos3;
672 if (pos)
673 pos++;
674 count++;
675 }
676
677 os_free(res->range);
678 res->range = freq;
679 res->num = count;
680
681 return 0;
682 }
683
684
freq_range_list_includes(const struct wpa_freq_range_list * list,unsigned int freq)685 int freq_range_list_includes(const struct wpa_freq_range_list *list,
686 unsigned int freq)
687 {
688 unsigned int i;
689
690 if (list == NULL)
691 return 0;
692
693 for (i = 0; i < list->num; i++) {
694 if (freq >= list->range[i].min && freq <= list->range[i].max)
695 return 1;
696 }
697
698 return 0;
699 }
700
701
freq_range_list_str(const struct wpa_freq_range_list * list)702 char * freq_range_list_str(const struct wpa_freq_range_list *list)
703 {
704 char *buf, *pos, *end;
705 size_t maxlen;
706 unsigned int i;
707 int res;
708
709 if (list->num == 0)
710 return NULL;
711
712 maxlen = list->num * 30;
713 buf = os_malloc(maxlen);
714 if (buf == NULL)
715 return NULL;
716 pos = buf;
717 end = buf + maxlen;
718
719 for (i = 0; i < list->num; i++) {
720 struct wpa_freq_range *range = &list->range[i];
721
722 if (range->min == range->max)
723 res = os_snprintf(pos, end - pos, "%s%u",
724 i == 0 ? "" : ",", range->min);
725 else
726 res = os_snprintf(pos, end - pos, "%s%u-%u",
727 i == 0 ? "" : ",",
728 range->min, range->max);
729 if (res < 0 || res > end - pos) {
730 os_free(buf);
731 return NULL;
732 }
733 pos += res;
734 }
735
736 return buf;
737 }
738
739
int_array_len(const int * a)740 int int_array_len(const int *a)
741 {
742 int i;
743 for (i = 0; a && a[i]; i++)
744 ;
745 return i;
746 }
747
748
int_array_concat(int ** res,const int * a)749 void int_array_concat(int **res, const int *a)
750 {
751 int reslen, alen, i;
752 int *n;
753
754 reslen = int_array_len(*res);
755 alen = int_array_len(a);
756
757 n = os_realloc_array(*res, reslen + alen + 1, sizeof(int));
758 if (n == NULL) {
759 os_free(*res);
760 *res = NULL;
761 return;
762 }
763 for (i = 0; i <= alen; i++)
764 n[reslen + i] = a[i];
765 *res = n;
766 }
767
768
freq_cmp(const void * a,const void * b)769 static int freq_cmp(const void *a, const void *b)
770 {
771 int _a = *(int *) a;
772 int _b = *(int *) b;
773
774 if (_a == 0)
775 return 1;
776 if (_b == 0)
777 return -1;
778 return _a - _b;
779 }
780
781
int_array_sort_unique(int * a)782 void int_array_sort_unique(int *a)
783 {
784 int alen;
785 int i, j;
786
787 if (a == NULL)
788 return;
789
790 alen = int_array_len(a);
791 qsort(a, alen, sizeof(int), freq_cmp);
792
793 i = 0;
794 j = 1;
795 while (a[i] && a[j]) {
796 if (a[i] == a[j]) {
797 j++;
798 continue;
799 }
800 a[++i] = a[j++];
801 }
802 if (a[i])
803 i++;
804 a[i] = 0;
805 }
806
807
int_array_add_unique(int ** res,int a)808 void int_array_add_unique(int **res, int a)
809 {
810 int reslen;
811 int *n;
812
813 for (reslen = 0; *res && (*res)[reslen]; reslen++) {
814 if ((*res)[reslen] == a)
815 return; /* already in the list */
816 }
817
818 n = os_realloc_array(*res, reslen + 2, sizeof(int));
819 if (n == NULL) {
820 os_free(*res);
821 *res = NULL;
822 return;
823 }
824
825 n[reslen] = a;
826 n[reslen + 1] = 0;
827
828 *res = n;
829 }
830
831
str_clear_free(char * str)832 void str_clear_free(char *str)
833 {
834 if (str) {
835 size_t len = os_strlen(str);
836 os_memset(str, 0, len);
837 os_free(str);
838 }
839 }
840
841
bin_clear_free(void * bin,size_t len)842 void bin_clear_free(void *bin, size_t len)
843 {
844 if (bin) {
845 os_memset(bin, 0, len);
846 os_free(bin);
847 }
848 }
849
850
random_mac_addr(u8 * addr)851 int random_mac_addr(u8 *addr)
852 {
853 if (os_get_random(addr, ETH_ALEN) < 0)
854 return -1;
855 addr[0] &= 0xfe; /* unicast */
856 addr[0] |= 0x02; /* locally administered */
857 return 0;
858 }
859
860
random_mac_addr_keep_oui(u8 * addr)861 int random_mac_addr_keep_oui(u8 *addr)
862 {
863 if (os_get_random(addr + 3, 3) < 0)
864 return -1;
865 addr[0] &= 0xfe; /* unicast */
866 addr[0] |= 0x02; /* locally administered */
867 return 0;
868 }
869