1 /*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2014, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18 #include "includes.h"
19
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "common/wpa_ctrl.h"
27 #include "eap_common/eap_wsc_common.h"
28 #include "eap_i.h"
29 #include "eap_config.h"
30
31 #define STATE_MACHINE_DATA struct eap_sm
32 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
33
34 #define EAP_MAX_AUTH_ROUNDS 50
35 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
36
37
38 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
39 EapType method);
40 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
41 static void eap_sm_processIdentity(struct eap_sm *sm,
42 const struct wpabuf *req);
43 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
44 static struct wpabuf * eap_sm_buildNotify(int id);
45 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
46 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
47 static const char * eap_sm_method_state_txt(EapMethodState state);
48 static const char * eap_sm_decision_txt(EapDecision decision);
49 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
50
51
52
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)53 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
54 {
55 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
56 }
57
58
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)59 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
60 Boolean value)
61 {
62 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
63 }
64
65
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)66 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
67 {
68 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
69 }
70
71
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)72 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
73 unsigned int value)
74 {
75 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
76 }
77
78
eapol_get_eapReqData(struct eap_sm * sm)79 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
80 {
81 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
82 }
83
84
eap_notify_status(struct eap_sm * sm,const char * status,const char * parameter)85 static void eap_notify_status(struct eap_sm *sm, const char *status,
86 const char *parameter)
87 {
88 wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
89 status, parameter);
90 if (sm->eapol_cb->notify_status)
91 sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
92 }
93
94
eap_sm_free_key(struct eap_sm * sm)95 static void eap_sm_free_key(struct eap_sm *sm)
96 {
97 if (sm->eapKeyData) {
98 bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
99 sm->eapKeyData = NULL;
100 }
101 }
102
103
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)104 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
105 {
106 ext_password_free(sm->ext_pw_buf);
107 sm->ext_pw_buf = NULL;
108
109 if (sm->m == NULL || sm->eap_method_priv == NULL)
110 return;
111
112 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
113 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
114 sm->m->deinit(sm, sm->eap_method_priv);
115 sm->eap_method_priv = NULL;
116 sm->m = NULL;
117 }
118
119
120 /**
121 * eap_allowed_method - Check whether EAP method is allowed
122 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
123 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
124 * @method: EAP type
125 * Returns: 1 = allowed EAP method, 0 = not allowed
126 */
eap_allowed_method(struct eap_sm * sm,int vendor,u32 method)127 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
128 {
129 struct eap_peer_config *config = eap_get_config(sm);
130 int i;
131 struct eap_method_type *m;
132
133 if (config == NULL || config->eap_methods == NULL)
134 return 1;
135
136 m = config->eap_methods;
137 for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
138 m[i].method != EAP_TYPE_NONE; i++) {
139 if (m[i].vendor == vendor && m[i].method == method)
140 return 1;
141 }
142 return 0;
143 }
144
145
146 /*
147 * This state initializes state machine variables when the machine is
148 * activated (portEnabled = TRUE). This is also used when re-starting
149 * authentication (eapRestart == TRUE).
150 */
SM_STATE(EAP,INITIALIZE)151 SM_STATE(EAP, INITIALIZE)
152 {
153 SM_ENTRY(EAP, INITIALIZE);
154 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
155 sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
156 !sm->prev_failure &&
157 sm->last_config == eap_get_config(sm)) {
158 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
159 "fast reauthentication");
160 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
161 } else {
162 sm->last_config = eap_get_config(sm);
163 eap_deinit_prev_method(sm, "INITIALIZE");
164 }
165 sm->selectedMethod = EAP_TYPE_NONE;
166 sm->methodState = METHOD_NONE;
167 sm->allowNotifications = TRUE;
168 sm->decision = DECISION_FAIL;
169 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
170 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
171 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
172 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
173 eap_sm_free_key(sm);
174 os_free(sm->eapSessionId);
175 sm->eapSessionId = NULL;
176 sm->eapKeyAvailable = FALSE;
177 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
178 sm->lastId = -1; /* new session - make sure this does not match with
179 * the first EAP-Packet */
180 /*
181 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
182 * seemed to be able to trigger cases where both were set and if EAPOL
183 * state machine uses eapNoResp first, it may end up not sending a real
184 * reply correctly. This occurred when the workaround in FAIL state set
185 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
186 * something else(?)
187 */
188 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
189 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
190 sm->num_rounds = 0;
191 sm->prev_failure = 0;
192 sm->expected_failure = 0;
193 }
194
195
196 /*
197 * This state is reached whenever service from the lower layer is interrupted
198 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
199 * occurs when the port becomes enabled.
200 */
SM_STATE(EAP,DISABLED)201 SM_STATE(EAP, DISABLED)
202 {
203 SM_ENTRY(EAP, DISABLED);
204 sm->num_rounds = 0;
205 /*
206 * RFC 4137 does not describe clearing of idleWhile here, but doing so
207 * allows the timer tick to be stopped more quickly when EAP is not in
208 * use.
209 */
210 eapol_set_int(sm, EAPOL_idleWhile, 0);
211 }
212
213
214 /*
215 * The state machine spends most of its time here, waiting for something to
216 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
217 * SEND_RESPONSE states.
218 */
SM_STATE(EAP,IDLE)219 SM_STATE(EAP, IDLE)
220 {
221 SM_ENTRY(EAP, IDLE);
222 }
223
224
225 /*
226 * This state is entered when an EAP packet is received (eapReq == TRUE) to
227 * parse the packet header.
228 */
SM_STATE(EAP,RECEIVED)229 SM_STATE(EAP, RECEIVED)
230 {
231 const struct wpabuf *eapReqData;
232
233 SM_ENTRY(EAP, RECEIVED);
234 eapReqData = eapol_get_eapReqData(sm);
235 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
236 eap_sm_parseEapReq(sm, eapReqData);
237 sm->num_rounds++;
238 }
239
240
241 /*
242 * This state is entered when a request for a new type comes in. Either the
243 * correct method is started, or a Nak response is built.
244 */
SM_STATE(EAP,GET_METHOD)245 SM_STATE(EAP, GET_METHOD)
246 {
247 int reinit;
248 EapType method;
249 const struct eap_method *eap_method;
250
251 SM_ENTRY(EAP, GET_METHOD);
252
253 if (sm->reqMethod == EAP_TYPE_EXPANDED)
254 method = sm->reqVendorMethod;
255 else
256 method = sm->reqMethod;
257
258 eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
259
260 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
261 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
262 sm->reqVendor, method);
263 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
264 "vendor=%u method=%u -> NAK",
265 sm->reqVendor, method);
266 eap_notify_status(sm, "refuse proposed method",
267 eap_method ? eap_method->name : "unknown");
268 goto nak;
269 }
270
271 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
272 "vendor=%u method=%u", sm->reqVendor, method);
273
274 eap_notify_status(sm, "accept proposed method",
275 eap_method ? eap_method->name : "unknown");
276 /*
277 * RFC 4137 does not define specific operation for fast
278 * re-authentication (session resumption). The design here is to allow
279 * the previously used method data to be maintained for
280 * re-authentication if the method support session resumption.
281 * Otherwise, the previously used method data is freed and a new method
282 * is allocated here.
283 */
284 if (sm->fast_reauth &&
285 sm->m && sm->m->vendor == sm->reqVendor &&
286 sm->m->method == method &&
287 sm->m->has_reauth_data &&
288 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
289 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
290 " for fast re-authentication");
291 reinit = 1;
292 } else {
293 eap_deinit_prev_method(sm, "GET_METHOD");
294 reinit = 0;
295 }
296
297 sm->selectedMethod = sm->reqMethod;
298 if (sm->m == NULL)
299 sm->m = eap_method;
300 if (!sm->m) {
301 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
302 "vendor %d method %d",
303 sm->reqVendor, method);
304 goto nak;
305 }
306
307 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
308
309 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
310 "vendor %u method %u (%s)",
311 sm->reqVendor, method, sm->m->name);
312 if (reinit)
313 sm->eap_method_priv = sm->m->init_for_reauth(
314 sm, sm->eap_method_priv);
315 else
316 sm->eap_method_priv = sm->m->init(sm);
317
318 if (sm->eap_method_priv == NULL) {
319 struct eap_peer_config *config = eap_get_config(sm);
320 wpa_msg(sm->msg_ctx, MSG_INFO,
321 "EAP: Failed to initialize EAP method: vendor %u "
322 "method %u (%s)",
323 sm->reqVendor, method, sm->m->name);
324 sm->m = NULL;
325 sm->methodState = METHOD_NONE;
326 sm->selectedMethod = EAP_TYPE_NONE;
327 if (sm->reqMethod == EAP_TYPE_TLS && config &&
328 (config->pending_req_pin ||
329 config->pending_req_passphrase)) {
330 /*
331 * Return without generating Nak in order to allow
332 * entering of PIN code or passphrase to retry the
333 * current EAP packet.
334 */
335 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
336 "request - skip Nak");
337 return;
338 }
339
340 goto nak;
341 }
342
343 sm->methodState = METHOD_INIT;
344 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
345 "EAP vendor %u method %u (%s) selected",
346 sm->reqVendor, method, sm->m->name);
347 return;
348
349 nak:
350 wpabuf_free(sm->eapRespData);
351 sm->eapRespData = NULL;
352 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
353 }
354
355
356 /*
357 * The method processing happens here. The request from the authenticator is
358 * processed, and an appropriate response packet is built.
359 */
SM_STATE(EAP,METHOD)360 SM_STATE(EAP, METHOD)
361 {
362 struct wpabuf *eapReqData;
363 struct eap_method_ret ret;
364 int min_len = 1;
365
366 SM_ENTRY(EAP, METHOD);
367 if (sm->m == NULL) {
368 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
369 return;
370 }
371
372 eapReqData = eapol_get_eapReqData(sm);
373 if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
374 min_len = 0; /* LEAP uses EAP-Success without payload */
375 if (!eap_hdr_len_valid(eapReqData, min_len))
376 return;
377
378 /*
379 * Get ignore, methodState, decision, allowNotifications, and
380 * eapRespData. RFC 4137 uses three separate method procedure (check,
381 * process, and buildResp) in this state. These have been combined into
382 * a single function call to m->process() in order to optimize EAP
383 * method implementation interface a bit. These procedures are only
384 * used from within this METHOD state, so there is no need to keep
385 * these as separate C functions.
386 *
387 * The RFC 4137 procedures return values as follows:
388 * ignore = m.check(eapReqData)
389 * (methodState, decision, allowNotifications) = m.process(eapReqData)
390 * eapRespData = m.buildResp(reqId)
391 */
392 os_memset(&ret, 0, sizeof(ret));
393 ret.ignore = sm->ignore;
394 ret.methodState = sm->methodState;
395 ret.decision = sm->decision;
396 ret.allowNotifications = sm->allowNotifications;
397 wpabuf_free(sm->eapRespData);
398 sm->eapRespData = NULL;
399 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
400 eapReqData);
401 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
402 "methodState=%s decision=%s eapRespData=%p",
403 ret.ignore ? "TRUE" : "FALSE",
404 eap_sm_method_state_txt(ret.methodState),
405 eap_sm_decision_txt(ret.decision),
406 sm->eapRespData);
407
408 sm->ignore = ret.ignore;
409 if (sm->ignore)
410 return;
411 sm->methodState = ret.methodState;
412 sm->decision = ret.decision;
413 sm->allowNotifications = ret.allowNotifications;
414
415 if (sm->m->isKeyAvailable && sm->m->getKey &&
416 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
417 eap_sm_free_key(sm);
418 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
419 &sm->eapKeyDataLen);
420 os_free(sm->eapSessionId);
421 sm->eapSessionId = NULL;
422 if (sm->m->getSessionId) {
423 sm->eapSessionId = sm->m->getSessionId(
424 sm, sm->eap_method_priv,
425 &sm->eapSessionIdLen);
426 wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
427 sm->eapSessionId, sm->eapSessionIdLen);
428 }
429 }
430 }
431
432
433 /*
434 * This state signals the lower layer that a response packet is ready to be
435 * sent.
436 */
SM_STATE(EAP,SEND_RESPONSE)437 SM_STATE(EAP, SEND_RESPONSE)
438 {
439 SM_ENTRY(EAP, SEND_RESPONSE);
440 wpabuf_free(sm->lastRespData);
441 if (sm->eapRespData) {
442 if (sm->workaround)
443 os_memcpy(sm->last_md5, sm->req_md5, 16);
444 sm->lastId = sm->reqId;
445 sm->lastRespData = wpabuf_dup(sm->eapRespData);
446 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
447 } else {
448 wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
449 sm->lastRespData = NULL;
450 }
451 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
452 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
453 }
454
455
456 /*
457 * This state signals the lower layer that the request was discarded, and no
458 * response packet will be sent at this time.
459 */
SM_STATE(EAP,DISCARD)460 SM_STATE(EAP, DISCARD)
461 {
462 SM_ENTRY(EAP, DISCARD);
463 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
464 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
465 }
466
467
468 /*
469 * Handles requests for Identity method and builds a response.
470 */
SM_STATE(EAP,IDENTITY)471 SM_STATE(EAP, IDENTITY)
472 {
473 const struct wpabuf *eapReqData;
474
475 SM_ENTRY(EAP, IDENTITY);
476 eapReqData = eapol_get_eapReqData(sm);
477 if (!eap_hdr_len_valid(eapReqData, 1))
478 return;
479 eap_sm_processIdentity(sm, eapReqData);
480 wpabuf_free(sm->eapRespData);
481 sm->eapRespData = NULL;
482 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
483 }
484
485
486 /*
487 * Handles requests for Notification method and builds a response.
488 */
SM_STATE(EAP,NOTIFICATION)489 SM_STATE(EAP, NOTIFICATION)
490 {
491 const struct wpabuf *eapReqData;
492
493 SM_ENTRY(EAP, NOTIFICATION);
494 eapReqData = eapol_get_eapReqData(sm);
495 if (!eap_hdr_len_valid(eapReqData, 1))
496 return;
497 eap_sm_processNotify(sm, eapReqData);
498 wpabuf_free(sm->eapRespData);
499 sm->eapRespData = NULL;
500 sm->eapRespData = eap_sm_buildNotify(sm->reqId);
501 }
502
503
504 /*
505 * This state retransmits the previous response packet.
506 */
SM_STATE(EAP,RETRANSMIT)507 SM_STATE(EAP, RETRANSMIT)
508 {
509 SM_ENTRY(EAP, RETRANSMIT);
510 wpabuf_free(sm->eapRespData);
511 if (sm->lastRespData)
512 sm->eapRespData = wpabuf_dup(sm->lastRespData);
513 else
514 sm->eapRespData = NULL;
515 }
516
517
518 /*
519 * This state is entered in case of a successful completion of authentication
520 * and state machine waits here until port is disabled or EAP authentication is
521 * restarted.
522 */
SM_STATE(EAP,SUCCESS)523 SM_STATE(EAP, SUCCESS)
524 {
525 SM_ENTRY(EAP, SUCCESS);
526 if (sm->eapKeyData != NULL)
527 sm->eapKeyAvailable = TRUE;
528 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
529
530 /*
531 * RFC 4137 does not clear eapReq here, but this seems to be required
532 * to avoid processing the same request twice when state machine is
533 * initialized.
534 */
535 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
536
537 /*
538 * RFC 4137 does not set eapNoResp here, but this seems to be required
539 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
540 * addition, either eapResp or eapNoResp is required to be set after
541 * processing the received EAP frame.
542 */
543 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
544
545 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
546 "EAP authentication completed successfully");
547 }
548
549
550 /*
551 * This state is entered in case of a failure and state machine waits here
552 * until port is disabled or EAP authentication is restarted.
553 */
SM_STATE(EAP,FAILURE)554 SM_STATE(EAP, FAILURE)
555 {
556 SM_ENTRY(EAP, FAILURE);
557 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
558
559 /*
560 * RFC 4137 does not clear eapReq here, but this seems to be required
561 * to avoid processing the same request twice when state machine is
562 * initialized.
563 */
564 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
565
566 /*
567 * RFC 4137 does not set eapNoResp here. However, either eapResp or
568 * eapNoResp is required to be set after processing the received EAP
569 * frame.
570 */
571 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
572
573 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
574 "EAP authentication failed");
575
576 sm->prev_failure = 1;
577 }
578
579
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)580 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
581 {
582 /*
583 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
584 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
585 * RFC 4137 require that reqId == lastId. In addition, it looks like
586 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
587 *
588 * Accept this kind of Id if EAP workarounds are enabled. These are
589 * unauthenticated plaintext messages, so this should have minimal
590 * security implications (bit easier to fake EAP-Success/Failure).
591 */
592 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
593 reqId == ((lastId + 2) & 0xff))) {
594 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
595 "identifier field in EAP Success: "
596 "reqId=%d lastId=%d (these are supposed to be "
597 "same)", reqId, lastId);
598 return 1;
599 }
600 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
601 "lastId=%d", reqId, lastId);
602 return 0;
603 }
604
605
606 /*
607 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
608 */
609
eap_peer_sm_step_idle(struct eap_sm * sm)610 static void eap_peer_sm_step_idle(struct eap_sm *sm)
611 {
612 /*
613 * The first three transitions are from RFC 4137. The last two are
614 * local additions to handle special cases with LEAP and PEAP server
615 * not sending EAP-Success in some cases.
616 */
617 if (eapol_get_bool(sm, EAPOL_eapReq))
618 SM_ENTER(EAP, RECEIVED);
619 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
620 sm->decision != DECISION_FAIL) ||
621 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
622 sm->decision == DECISION_UNCOND_SUCC))
623 SM_ENTER(EAP, SUCCESS);
624 else if (eapol_get_bool(sm, EAPOL_altReject) ||
625 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
626 sm->decision != DECISION_UNCOND_SUCC) ||
627 (eapol_get_bool(sm, EAPOL_altAccept) &&
628 sm->methodState != METHOD_CONT &&
629 sm->decision == DECISION_FAIL))
630 SM_ENTER(EAP, FAILURE);
631 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
632 sm->leap_done && sm->decision != DECISION_FAIL &&
633 sm->methodState == METHOD_DONE)
634 SM_ENTER(EAP, SUCCESS);
635 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
636 sm->peap_done && sm->decision != DECISION_FAIL &&
637 sm->methodState == METHOD_DONE)
638 SM_ENTER(EAP, SUCCESS);
639 }
640
641
eap_peer_req_is_duplicate(struct eap_sm * sm)642 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
643 {
644 int duplicate;
645
646 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
647 if (sm->workaround && duplicate &&
648 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
649 /*
650 * RFC 4137 uses (reqId == lastId) as the only verification for
651 * duplicate EAP requests. However, this misses cases where the
652 * AS is incorrectly using the same id again; and
653 * unfortunately, such implementations exist. Use MD5 hash as
654 * an extra verification for the packets being duplicate to
655 * workaround these issues.
656 */
657 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
658 "EAP packets were not identical");
659 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
660 "duplicate packet");
661 duplicate = 0;
662 }
663
664 return duplicate;
665 }
666
667
eap_peer_sm_step_received(struct eap_sm * sm)668 static void eap_peer_sm_step_received(struct eap_sm *sm)
669 {
670 int duplicate = eap_peer_req_is_duplicate(sm);
671
672 /*
673 * Two special cases below for LEAP are local additions to work around
674 * odd LEAP behavior (EAP-Success in the middle of authentication and
675 * then swapped roles). Other transitions are based on RFC 4137.
676 */
677 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
678 (sm->reqId == sm->lastId ||
679 eap_success_workaround(sm, sm->reqId, sm->lastId)))
680 SM_ENTER(EAP, SUCCESS);
681 else if (sm->methodState != METHOD_CONT &&
682 ((sm->rxFailure &&
683 sm->decision != DECISION_UNCOND_SUCC) ||
684 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
685 (sm->selectedMethod != EAP_TYPE_LEAP ||
686 sm->methodState != METHOD_MAY_CONT))) &&
687 (sm->reqId == sm->lastId ||
688 eap_success_workaround(sm, sm->reqId, sm->lastId)))
689 SM_ENTER(EAP, FAILURE);
690 else if (sm->rxReq && duplicate)
691 SM_ENTER(EAP, RETRANSMIT);
692 else if (sm->rxReq && !duplicate &&
693 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
694 sm->allowNotifications)
695 SM_ENTER(EAP, NOTIFICATION);
696 else if (sm->rxReq && !duplicate &&
697 sm->selectedMethod == EAP_TYPE_NONE &&
698 sm->reqMethod == EAP_TYPE_IDENTITY)
699 SM_ENTER(EAP, IDENTITY);
700 else if (sm->rxReq && !duplicate &&
701 sm->selectedMethod == EAP_TYPE_NONE &&
702 sm->reqMethod != EAP_TYPE_IDENTITY &&
703 sm->reqMethod != EAP_TYPE_NOTIFICATION)
704 SM_ENTER(EAP, GET_METHOD);
705 else if (sm->rxReq && !duplicate &&
706 sm->reqMethod == sm->selectedMethod &&
707 sm->methodState != METHOD_DONE)
708 SM_ENTER(EAP, METHOD);
709 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
710 (sm->rxSuccess || sm->rxResp))
711 SM_ENTER(EAP, METHOD);
712 else
713 SM_ENTER(EAP, DISCARD);
714 }
715
716
eap_peer_sm_step_local(struct eap_sm * sm)717 static void eap_peer_sm_step_local(struct eap_sm *sm)
718 {
719 switch (sm->EAP_state) {
720 case EAP_INITIALIZE:
721 SM_ENTER(EAP, IDLE);
722 break;
723 case EAP_DISABLED:
724 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
725 !sm->force_disabled)
726 SM_ENTER(EAP, INITIALIZE);
727 break;
728 case EAP_IDLE:
729 eap_peer_sm_step_idle(sm);
730 break;
731 case EAP_RECEIVED:
732 eap_peer_sm_step_received(sm);
733 break;
734 case EAP_GET_METHOD:
735 if (sm->selectedMethod == sm->reqMethod)
736 SM_ENTER(EAP, METHOD);
737 else
738 SM_ENTER(EAP, SEND_RESPONSE);
739 break;
740 case EAP_METHOD:
741 /*
742 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
743 * as the condition. eapRespData == NULL here is used to allow
744 * final EAP method response to be sent without having to change
745 * all methods to either use methodState MAY_CONT or leaving
746 * decision to something else than FAIL in cases where the only
747 * expected response is EAP-Failure.
748 */
749 if (sm->ignore)
750 SM_ENTER(EAP, DISCARD);
751 else if (sm->methodState == METHOD_DONE &&
752 sm->decision == DECISION_FAIL && !sm->eapRespData)
753 SM_ENTER(EAP, FAILURE);
754 else
755 SM_ENTER(EAP, SEND_RESPONSE);
756 break;
757 case EAP_SEND_RESPONSE:
758 SM_ENTER(EAP, IDLE);
759 break;
760 case EAP_DISCARD:
761 SM_ENTER(EAP, IDLE);
762 break;
763 case EAP_IDENTITY:
764 SM_ENTER(EAP, SEND_RESPONSE);
765 break;
766 case EAP_NOTIFICATION:
767 SM_ENTER(EAP, SEND_RESPONSE);
768 break;
769 case EAP_RETRANSMIT:
770 SM_ENTER(EAP, SEND_RESPONSE);
771 break;
772 case EAP_SUCCESS:
773 break;
774 case EAP_FAILURE:
775 break;
776 }
777 }
778
779
SM_STEP(EAP)780 SM_STEP(EAP)
781 {
782 /* Global transitions */
783 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
784 eapol_get_bool(sm, EAPOL_portEnabled))
785 SM_ENTER_GLOBAL(EAP, INITIALIZE);
786 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
787 SM_ENTER_GLOBAL(EAP, DISABLED);
788 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
789 /* RFC 4137 does not place any limit on number of EAP messages
790 * in an authentication session. However, some error cases have
791 * ended up in a state were EAP messages were sent between the
792 * peer and server in a loop (e.g., TLS ACK frame in both
793 * direction). Since this is quite undesired outcome, limit the
794 * total number of EAP round-trips and abort authentication if
795 * this limit is exceeded.
796 */
797 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
798 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
799 "authentication rounds - abort",
800 EAP_MAX_AUTH_ROUNDS);
801 sm->num_rounds++;
802 SM_ENTER_GLOBAL(EAP, FAILURE);
803 }
804 } else {
805 /* Local transitions */
806 eap_peer_sm_step_local(sm);
807 }
808 }
809
810
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)811 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
812 EapType method)
813 {
814 if (!eap_allowed_method(sm, vendor, method)) {
815 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
816 "vendor %u method %u", vendor, method);
817 return FALSE;
818 }
819 if (eap_peer_get_eap_method(vendor, method))
820 return TRUE;
821 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
822 "vendor %u method %u", vendor, method);
823 return FALSE;
824 }
825
826
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,const struct eap_method * methods,size_t count)827 static struct wpabuf * eap_sm_build_expanded_nak(
828 struct eap_sm *sm, int id, const struct eap_method *methods,
829 size_t count)
830 {
831 struct wpabuf *resp;
832 int found = 0;
833 const struct eap_method *m;
834
835 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
836
837 /* RFC 3748 - 5.3.2: Expanded Nak */
838 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
839 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
840 if (resp == NULL)
841 return NULL;
842
843 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
844 wpabuf_put_be32(resp, EAP_TYPE_NAK);
845
846 for (m = methods; m; m = m->next) {
847 if (sm->reqVendor == m->vendor &&
848 sm->reqVendorMethod == m->method)
849 continue; /* do not allow the current method again */
850 if (eap_allowed_method(sm, m->vendor, m->method)) {
851 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
852 "vendor=%u method=%u",
853 m->vendor, m->method);
854 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
855 wpabuf_put_be24(resp, m->vendor);
856 wpabuf_put_be32(resp, m->method);
857
858 found++;
859 }
860 }
861 if (!found) {
862 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
863 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
864 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
865 wpabuf_put_be32(resp, EAP_TYPE_NONE);
866 }
867
868 eap_update_len(resp);
869
870 return resp;
871 }
872
873
eap_sm_buildNak(struct eap_sm * sm,int id)874 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
875 {
876 struct wpabuf *resp;
877 u8 *start;
878 int found = 0, expanded_found = 0;
879 size_t count;
880 const struct eap_method *methods, *m;
881
882 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
883 "vendor=%u method=%u not allowed)", sm->reqMethod,
884 sm->reqVendor, sm->reqVendorMethod);
885 methods = eap_peer_get_methods(&count);
886 if (methods == NULL)
887 return NULL;
888 if (sm->reqMethod == EAP_TYPE_EXPANDED)
889 return eap_sm_build_expanded_nak(sm, id, methods, count);
890
891 /* RFC 3748 - 5.3.1: Legacy Nak */
892 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
893 sizeof(struct eap_hdr) + 1 + count + 1,
894 EAP_CODE_RESPONSE, id);
895 if (resp == NULL)
896 return NULL;
897
898 start = wpabuf_put(resp, 0);
899 for (m = methods; m; m = m->next) {
900 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
901 continue; /* do not allow the current method again */
902 if (eap_allowed_method(sm, m->vendor, m->method)) {
903 if (m->vendor != EAP_VENDOR_IETF) {
904 if (expanded_found)
905 continue;
906 expanded_found = 1;
907 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
908 } else
909 wpabuf_put_u8(resp, m->method);
910 found++;
911 }
912 }
913 if (!found)
914 wpabuf_put_u8(resp, EAP_TYPE_NONE);
915 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
916
917 eap_update_len(resp);
918
919 return resp;
920 }
921
922
eap_sm_processIdentity(struct eap_sm * sm,const struct wpabuf * req)923 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
924 {
925 const u8 *pos;
926 size_t msg_len;
927
928 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
929 "EAP authentication started");
930 eap_notify_status(sm, "started", "");
931
932 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
933 &msg_len);
934 if (pos == NULL)
935 return;
936
937 /*
938 * RFC 3748 - 5.1: Identity
939 * Data field may contain a displayable message in UTF-8. If this
940 * includes NUL-character, only the data before that should be
941 * displayed. Some EAP implementasitons may piggy-back additional
942 * options after the NUL.
943 */
944 /* TODO: could save displayable message so that it can be shown to the
945 * user in case of interaction is required */
946 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
947 pos, msg_len);
948 }
949
950
951 #ifdef PCSC_FUNCS
952
953 /*
954 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
955 * include MNC length field.
956 */
mnc_len_from_imsi(const char * imsi)957 static int mnc_len_from_imsi(const char *imsi)
958 {
959 char mcc_str[4];
960 unsigned int mcc;
961
962 os_memcpy(mcc_str, imsi, 3);
963 mcc_str[3] = '\0';
964 mcc = atoi(mcc_str);
965
966 if (mcc == 228)
967 return 2; /* Networks in Switzerland use 2-digit MNC */
968 if (mcc == 244)
969 return 2; /* Networks in Finland use 2-digit MNC */
970
971 return -1;
972 }
973
974
eap_sm_append_3gpp_realm(struct eap_sm * sm,char * imsi,size_t max_len,size_t * imsi_len)975 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
976 size_t max_len, size_t *imsi_len)
977 {
978 int mnc_len;
979 char *pos, mnc[4];
980
981 if (*imsi_len + 36 > max_len) {
982 wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
983 return -1;
984 }
985
986 /* MNC (2 or 3 digits) */
987 mnc_len = scard_get_mnc_len(sm->scard_ctx);
988 if (mnc_len < 0)
989 mnc_len = mnc_len_from_imsi(imsi);
990 if (mnc_len < 0) {
991 wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
992 "assuming 3");
993 mnc_len = 3;
994 }
995
996 if (mnc_len == 2) {
997 mnc[0] = '0';
998 mnc[1] = imsi[3];
999 mnc[2] = imsi[4];
1000 } else if (mnc_len == 3) {
1001 mnc[0] = imsi[3];
1002 mnc[1] = imsi[4];
1003 mnc[2] = imsi[5];
1004 }
1005 mnc[3] = '\0';
1006
1007 pos = imsi + *imsi_len;
1008 pos += os_snprintf(pos, imsi + max_len - pos,
1009 "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
1010 mnc, imsi[0], imsi[1], imsi[2]);
1011 *imsi_len = pos - imsi;
1012
1013 return 0;
1014 }
1015
1016
eap_sm_imsi_identity(struct eap_sm * sm,struct eap_peer_config * conf)1017 static int eap_sm_imsi_identity(struct eap_sm *sm,
1018 struct eap_peer_config *conf)
1019 {
1020 enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1021 char imsi[100];
1022 size_t imsi_len;
1023 struct eap_method_type *m = conf->eap_methods;
1024 int i;
1025
1026 imsi_len = sizeof(imsi);
1027 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1028 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1029 return -1;
1030 }
1031
1032 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1033
1034 if (imsi_len < 7) {
1035 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1036 return -1;
1037 }
1038
1039 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1040 wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1041 return -1;
1042 }
1043 wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1044
1045 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1046 m[i].method != EAP_TYPE_NONE); i++) {
1047 if (m[i].vendor == EAP_VENDOR_IETF &&
1048 m[i].method == EAP_TYPE_AKA_PRIME) {
1049 method = EAP_SM_AKA_PRIME;
1050 break;
1051 }
1052
1053 if (m[i].vendor == EAP_VENDOR_IETF &&
1054 m[i].method == EAP_TYPE_AKA) {
1055 method = EAP_SM_AKA;
1056 break;
1057 }
1058 }
1059
1060 os_free(conf->identity);
1061 conf->identity = os_malloc(1 + imsi_len);
1062 if (conf->identity == NULL) {
1063 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1064 "IMSI-based identity");
1065 return -1;
1066 }
1067
1068 switch (method) {
1069 case EAP_SM_SIM:
1070 conf->identity[0] = '1';
1071 break;
1072 case EAP_SM_AKA:
1073 conf->identity[0] = '0';
1074 break;
1075 case EAP_SM_AKA_PRIME:
1076 conf->identity[0] = '6';
1077 break;
1078 }
1079 os_memcpy(conf->identity + 1, imsi, imsi_len);
1080 conf->identity_len = 1 + imsi_len;
1081
1082 return 0;
1083 }
1084
1085 #endif /* PCSC_FUNCS */
1086
1087
eap_sm_set_scard_pin(struct eap_sm * sm,struct eap_peer_config * conf)1088 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1089 struct eap_peer_config *conf)
1090 {
1091 #ifdef PCSC_FUNCS
1092 if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1093 /*
1094 * Make sure the same PIN is not tried again in order to avoid
1095 * blocking SIM.
1096 */
1097 os_free(conf->pin);
1098 conf->pin = NULL;
1099
1100 wpa_printf(MSG_WARNING, "PIN validation failed");
1101 eap_sm_request_pin(sm);
1102 return -1;
1103 }
1104 return 0;
1105 #else /* PCSC_FUNCS */
1106 return -1;
1107 #endif /* PCSC_FUNCS */
1108 }
1109
eap_sm_get_scard_identity(struct eap_sm * sm,struct eap_peer_config * conf)1110 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1111 struct eap_peer_config *conf)
1112 {
1113 #ifdef PCSC_FUNCS
1114 if (eap_sm_set_scard_pin(sm, conf))
1115 return -1;
1116
1117 return eap_sm_imsi_identity(sm, conf);
1118 #else /* PCSC_FUNCS */
1119 return -1;
1120 #endif /* PCSC_FUNCS */
1121 }
1122
1123
1124 /**
1125 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1126 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1127 * @id: EAP identifier for the packet
1128 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1129 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1130 * failure
1131 *
1132 * This function allocates and builds an EAP-Identity/Response packet for the
1133 * current network. The caller is responsible for freeing the returned data.
1134 */
eap_sm_buildIdentity(struct eap_sm * sm,int id,int encrypted)1135 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1136 {
1137 struct eap_peer_config *config = eap_get_config(sm);
1138 struct wpabuf *resp;
1139 const u8 *identity;
1140 size_t identity_len;
1141
1142 if (config == NULL) {
1143 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1144 "was not available");
1145 return NULL;
1146 }
1147
1148 if (sm->m && sm->m->get_identity &&
1149 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1150 &identity_len)) != NULL) {
1151 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1152 "identity", identity, identity_len);
1153 } else if (!encrypted && config->anonymous_identity) {
1154 identity = config->anonymous_identity;
1155 identity_len = config->anonymous_identity_len;
1156 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1157 identity, identity_len);
1158 } else {
1159 identity = config->identity;
1160 identity_len = config->identity_len;
1161 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1162 identity, identity_len);
1163 }
1164
1165 if (identity == NULL) {
1166 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1167 "configuration was not available");
1168 if (config->pcsc) {
1169 if (eap_sm_get_scard_identity(sm, config) < 0)
1170 return NULL;
1171 identity = config->identity;
1172 identity_len = config->identity_len;
1173 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1174 "IMSI", identity, identity_len);
1175 } else {
1176 eap_sm_request_identity(sm);
1177 return NULL;
1178 }
1179 } else if (config->pcsc) {
1180 if (eap_sm_set_scard_pin(sm, config) < 0)
1181 return NULL;
1182 }
1183
1184 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1185 EAP_CODE_RESPONSE, id);
1186 if (resp == NULL)
1187 return NULL;
1188
1189 wpabuf_put_data(resp, identity, identity_len);
1190
1191 return resp;
1192 }
1193
1194
eap_sm_processNotify(struct eap_sm * sm,const struct wpabuf * req)1195 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1196 {
1197 const u8 *pos;
1198 char *msg;
1199 size_t i, msg_len;
1200
1201 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1202 &msg_len);
1203 if (pos == NULL)
1204 return;
1205 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1206 pos, msg_len);
1207
1208 msg = os_malloc(msg_len + 1);
1209 if (msg == NULL)
1210 return;
1211 for (i = 0; i < msg_len; i++)
1212 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1213 msg[msg_len] = '\0';
1214 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1215 WPA_EVENT_EAP_NOTIFICATION, msg);
1216 os_free(msg);
1217 }
1218
1219
eap_sm_buildNotify(int id)1220 static struct wpabuf * eap_sm_buildNotify(int id)
1221 {
1222 struct wpabuf *resp;
1223
1224 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1225 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1226 EAP_CODE_RESPONSE, id);
1227 if (resp == NULL)
1228 return NULL;
1229
1230 return resp;
1231 }
1232
1233
eap_sm_parseEapReq(struct eap_sm * sm,const struct wpabuf * req)1234 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1235 {
1236 const struct eap_hdr *hdr;
1237 size_t plen;
1238 const u8 *pos;
1239
1240 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1241 sm->reqId = 0;
1242 sm->reqMethod = EAP_TYPE_NONE;
1243 sm->reqVendor = EAP_VENDOR_IETF;
1244 sm->reqVendorMethod = EAP_TYPE_NONE;
1245
1246 if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1247 return;
1248
1249 hdr = wpabuf_head(req);
1250 plen = be_to_host16(hdr->length);
1251 if (plen > wpabuf_len(req)) {
1252 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1253 "(len=%lu plen=%lu)",
1254 (unsigned long) wpabuf_len(req),
1255 (unsigned long) plen);
1256 return;
1257 }
1258
1259 sm->reqId = hdr->identifier;
1260
1261 if (sm->workaround) {
1262 const u8 *addr[1];
1263 addr[0] = wpabuf_head(req);
1264 md5_vector(1, addr, &plen, sm->req_md5);
1265 }
1266
1267 switch (hdr->code) {
1268 case EAP_CODE_REQUEST:
1269 if (plen < sizeof(*hdr) + 1) {
1270 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1271 "no Type field");
1272 return;
1273 }
1274 sm->rxReq = TRUE;
1275 pos = (const u8 *) (hdr + 1);
1276 sm->reqMethod = *pos++;
1277 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1278 if (plen < sizeof(*hdr) + 8) {
1279 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1280 "expanded EAP-Packet (plen=%lu)",
1281 (unsigned long) plen);
1282 return;
1283 }
1284 sm->reqVendor = WPA_GET_BE24(pos);
1285 pos += 3;
1286 sm->reqVendorMethod = WPA_GET_BE32(pos);
1287 }
1288 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1289 "method=%u vendor=%u vendorMethod=%u",
1290 sm->reqId, sm->reqMethod, sm->reqVendor,
1291 sm->reqVendorMethod);
1292 break;
1293 case EAP_CODE_RESPONSE:
1294 if (sm->selectedMethod == EAP_TYPE_LEAP) {
1295 /*
1296 * LEAP differs from RFC 4137 by using reversed roles
1297 * for mutual authentication and because of this, we
1298 * need to accept EAP-Response frames if LEAP is used.
1299 */
1300 if (plen < sizeof(*hdr) + 1) {
1301 wpa_printf(MSG_DEBUG, "EAP: Too short "
1302 "EAP-Response - no Type field");
1303 return;
1304 }
1305 sm->rxResp = TRUE;
1306 pos = (const u8 *) (hdr + 1);
1307 sm->reqMethod = *pos;
1308 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1309 "LEAP method=%d id=%d",
1310 sm->reqMethod, sm->reqId);
1311 break;
1312 }
1313 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1314 break;
1315 case EAP_CODE_SUCCESS:
1316 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1317 eap_notify_status(sm, "completion", "success");
1318 sm->rxSuccess = TRUE;
1319 break;
1320 case EAP_CODE_FAILURE:
1321 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1322 eap_notify_status(sm, "completion", "failure");
1323 sm->rxFailure = TRUE;
1324 break;
1325 default:
1326 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1327 "code %d", hdr->code);
1328 break;
1329 }
1330 }
1331
1332
eap_peer_sm_tls_event(void * ctx,enum tls_event ev,union tls_event_data * data)1333 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1334 union tls_event_data *data)
1335 {
1336 struct eap_sm *sm = ctx;
1337 char *hash_hex = NULL;
1338
1339 switch (ev) {
1340 case TLS_CERT_CHAIN_SUCCESS:
1341 eap_notify_status(sm, "remote certificate verification",
1342 "success");
1343 break;
1344 case TLS_CERT_CHAIN_FAILURE:
1345 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1346 "reason=%d depth=%d subject='%s' err='%s'",
1347 data->cert_fail.reason,
1348 data->cert_fail.depth,
1349 data->cert_fail.subject,
1350 data->cert_fail.reason_txt);
1351 eap_notify_status(sm, "remote certificate verification",
1352 data->cert_fail.reason_txt);
1353 break;
1354 case TLS_PEER_CERTIFICATE:
1355 if (!sm->eapol_cb->notify_cert)
1356 break;
1357
1358 if (data->peer_cert.hash) {
1359 size_t len = data->peer_cert.hash_len * 2 + 1;
1360 hash_hex = os_malloc(len);
1361 if (hash_hex) {
1362 wpa_snprintf_hex(hash_hex, len,
1363 data->peer_cert.hash,
1364 data->peer_cert.hash_len);
1365 }
1366 }
1367
1368 sm->eapol_cb->notify_cert(sm->eapol_ctx,
1369 data->peer_cert.depth,
1370 data->peer_cert.subject,
1371 hash_hex, data->peer_cert.cert);
1372 break;
1373 case TLS_ALERT:
1374 if (data->alert.is_local)
1375 eap_notify_status(sm, "local TLS alert",
1376 data->alert.description);
1377 else
1378 eap_notify_status(sm, "remote TLS alert",
1379 data->alert.description);
1380 break;
1381 }
1382
1383 os_free(hash_hex);
1384 }
1385
1386
1387 /**
1388 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1389 * @eapol_ctx: Context data to be used with eapol_cb calls
1390 * @eapol_cb: Pointer to EAPOL callback functions
1391 * @msg_ctx: Context data for wpa_msg() calls
1392 * @conf: EAP configuration
1393 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1394 *
1395 * This function allocates and initializes an EAP state machine. In addition,
1396 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1397 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1398 * state machine. Consequently, the caller must make sure that this data
1399 * structure remains alive while the EAP state machine is active.
1400 */
eap_peer_sm_init(void * eapol_ctx,struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)1401 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1402 struct eapol_callbacks *eapol_cb,
1403 void *msg_ctx, struct eap_config *conf)
1404 {
1405 struct eap_sm *sm;
1406 struct tls_config tlsconf;
1407
1408 sm = os_zalloc(sizeof(*sm));
1409 if (sm == NULL)
1410 return NULL;
1411 sm->eapol_ctx = eapol_ctx;
1412 sm->eapol_cb = eapol_cb;
1413 sm->msg_ctx = msg_ctx;
1414 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1415 sm->wps = conf->wps;
1416
1417 os_memset(&tlsconf, 0, sizeof(tlsconf));
1418 tlsconf.opensc_engine_path = conf->opensc_engine_path;
1419 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1420 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1421 #ifdef CONFIG_FIPS
1422 tlsconf.fips_mode = 1;
1423 #endif /* CONFIG_FIPS */
1424 tlsconf.event_cb = eap_peer_sm_tls_event;
1425 tlsconf.cb_ctx = sm;
1426 tlsconf.cert_in_cb = conf->cert_in_cb;
1427 sm->ssl_ctx = tls_init(&tlsconf);
1428 if (sm->ssl_ctx == NULL) {
1429 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1430 "context.");
1431 os_free(sm);
1432 return NULL;
1433 }
1434
1435 sm->ssl_ctx2 = tls_init(&tlsconf);
1436 if (sm->ssl_ctx2 == NULL) {
1437 wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1438 "context (2).");
1439 /* Run without separate TLS context within TLS tunnel */
1440 }
1441
1442 return sm;
1443 }
1444
1445
1446 /**
1447 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1448 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1449 *
1450 * This function deinitializes EAP state machine and frees all allocated
1451 * resources.
1452 */
eap_peer_sm_deinit(struct eap_sm * sm)1453 void eap_peer_sm_deinit(struct eap_sm *sm)
1454 {
1455 if (sm == NULL)
1456 return;
1457 eap_deinit_prev_method(sm, "EAP deinit");
1458 eap_sm_abort(sm);
1459 if (sm->ssl_ctx2)
1460 tls_deinit(sm->ssl_ctx2);
1461 tls_deinit(sm->ssl_ctx);
1462 os_free(sm);
1463 }
1464
1465
1466 /**
1467 * eap_peer_sm_step - Step EAP peer state machine
1468 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1469 * Returns: 1 if EAP state was changed or 0 if not
1470 *
1471 * This function advances EAP state machine to a new state to match with the
1472 * current variables. This should be called whenever variables used by the EAP
1473 * state machine have changed.
1474 */
eap_peer_sm_step(struct eap_sm * sm)1475 int eap_peer_sm_step(struct eap_sm *sm)
1476 {
1477 int res = 0;
1478 do {
1479 sm->changed = FALSE;
1480 SM_STEP_RUN(EAP);
1481 if (sm->changed)
1482 res = 1;
1483 } while (sm->changed);
1484 return res;
1485 }
1486
1487
1488 /**
1489 * eap_sm_abort - Abort EAP authentication
1490 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1491 *
1492 * Release system resources that have been allocated for the authentication
1493 * session without fully deinitializing the EAP state machine.
1494 */
eap_sm_abort(struct eap_sm * sm)1495 void eap_sm_abort(struct eap_sm *sm)
1496 {
1497 wpabuf_free(sm->lastRespData);
1498 sm->lastRespData = NULL;
1499 wpabuf_free(sm->eapRespData);
1500 sm->eapRespData = NULL;
1501 eap_sm_free_key(sm);
1502 os_free(sm->eapSessionId);
1503 sm->eapSessionId = NULL;
1504
1505 /* This is not clearly specified in the EAP statemachines draft, but
1506 * it seems necessary to make sure that some of the EAPOL variables get
1507 * cleared for the next authentication. */
1508 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1509 }
1510
1511
1512 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)1513 static const char * eap_sm_state_txt(int state)
1514 {
1515 switch (state) {
1516 case EAP_INITIALIZE:
1517 return "INITIALIZE";
1518 case EAP_DISABLED:
1519 return "DISABLED";
1520 case EAP_IDLE:
1521 return "IDLE";
1522 case EAP_RECEIVED:
1523 return "RECEIVED";
1524 case EAP_GET_METHOD:
1525 return "GET_METHOD";
1526 case EAP_METHOD:
1527 return "METHOD";
1528 case EAP_SEND_RESPONSE:
1529 return "SEND_RESPONSE";
1530 case EAP_DISCARD:
1531 return "DISCARD";
1532 case EAP_IDENTITY:
1533 return "IDENTITY";
1534 case EAP_NOTIFICATION:
1535 return "NOTIFICATION";
1536 case EAP_RETRANSMIT:
1537 return "RETRANSMIT";
1538 case EAP_SUCCESS:
1539 return "SUCCESS";
1540 case EAP_FAILURE:
1541 return "FAILURE";
1542 default:
1543 return "UNKNOWN";
1544 }
1545 }
1546 #endif /* CONFIG_CTRL_IFACE */
1547
1548
1549 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)1550 static const char * eap_sm_method_state_txt(EapMethodState state)
1551 {
1552 switch (state) {
1553 case METHOD_NONE:
1554 return "NONE";
1555 case METHOD_INIT:
1556 return "INIT";
1557 case METHOD_CONT:
1558 return "CONT";
1559 case METHOD_MAY_CONT:
1560 return "MAY_CONT";
1561 case METHOD_DONE:
1562 return "DONE";
1563 default:
1564 return "UNKNOWN";
1565 }
1566 }
1567
1568
eap_sm_decision_txt(EapDecision decision)1569 static const char * eap_sm_decision_txt(EapDecision decision)
1570 {
1571 switch (decision) {
1572 case DECISION_FAIL:
1573 return "FAIL";
1574 case DECISION_COND_SUCC:
1575 return "COND_SUCC";
1576 case DECISION_UNCOND_SUCC:
1577 return "UNCOND_SUCC";
1578 default:
1579 return "UNKNOWN";
1580 }
1581 }
1582 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1583
1584
1585 #ifdef CONFIG_CTRL_IFACE
1586
1587 /**
1588 * eap_sm_get_status - Get EAP state machine status
1589 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1590 * @buf: Buffer for status information
1591 * @buflen: Maximum buffer length
1592 * @verbose: Whether to include verbose status information
1593 * Returns: Number of bytes written to buf.
1594 *
1595 * Query EAP state machine for status information. This function fills in a
1596 * text area with current status information from the EAPOL state machine. If
1597 * the buffer (buf) is not large enough, status information will be truncated
1598 * to fit the buffer.
1599 */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)1600 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1601 {
1602 int len, ret;
1603
1604 if (sm == NULL)
1605 return 0;
1606
1607 len = os_snprintf(buf, buflen,
1608 "EAP state=%s\n",
1609 eap_sm_state_txt(sm->EAP_state));
1610 if (len < 0 || (size_t) len >= buflen)
1611 return 0;
1612
1613 if (sm->selectedMethod != EAP_TYPE_NONE) {
1614 const char *name;
1615 if (sm->m) {
1616 name = sm->m->name;
1617 } else {
1618 const struct eap_method *m =
1619 eap_peer_get_eap_method(EAP_VENDOR_IETF,
1620 sm->selectedMethod);
1621 if (m)
1622 name = m->name;
1623 else
1624 name = "?";
1625 }
1626 ret = os_snprintf(buf + len, buflen - len,
1627 "selectedMethod=%d (EAP-%s)\n",
1628 sm->selectedMethod, name);
1629 if (ret < 0 || (size_t) ret >= buflen - len)
1630 return len;
1631 len += ret;
1632
1633 if (sm->m && sm->m->get_status) {
1634 len += sm->m->get_status(sm, sm->eap_method_priv,
1635 buf + len, buflen - len,
1636 verbose);
1637 }
1638 }
1639
1640 if (verbose) {
1641 ret = os_snprintf(buf + len, buflen - len,
1642 "reqMethod=%d\n"
1643 "methodState=%s\n"
1644 "decision=%s\n"
1645 "ClientTimeout=%d\n",
1646 sm->reqMethod,
1647 eap_sm_method_state_txt(sm->methodState),
1648 eap_sm_decision_txt(sm->decision),
1649 sm->ClientTimeout);
1650 if (ret < 0 || (size_t) ret >= buflen - len)
1651 return len;
1652 len += ret;
1653 }
1654
1655 return len;
1656 }
1657 #endif /* CONFIG_CTRL_IFACE */
1658
1659
1660 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_request(struct eap_sm * sm,enum wpa_ctrl_req_type field,const char * msg,size_t msglen)1661 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
1662 const char *msg, size_t msglen)
1663 {
1664 struct eap_peer_config *config;
1665 const char *txt = NULL;
1666 char *tmp;
1667
1668 if (sm == NULL)
1669 return;
1670 config = eap_get_config(sm);
1671 if (config == NULL)
1672 return;
1673
1674 switch (field) {
1675 case WPA_CTRL_REQ_EAP_IDENTITY:
1676 config->pending_req_identity++;
1677 break;
1678 case WPA_CTRL_REQ_EAP_PASSWORD:
1679 config->pending_req_password++;
1680 break;
1681 case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
1682 config->pending_req_new_password++;
1683 break;
1684 case WPA_CTRL_REQ_EAP_PIN:
1685 config->pending_req_pin++;
1686 break;
1687 case WPA_CTRL_REQ_EAP_OTP:
1688 if (msg) {
1689 tmp = os_malloc(msglen + 3);
1690 if (tmp == NULL)
1691 return;
1692 tmp[0] = '[';
1693 os_memcpy(tmp + 1, msg, msglen);
1694 tmp[msglen + 1] = ']';
1695 tmp[msglen + 2] = '\0';
1696 txt = tmp;
1697 os_free(config->pending_req_otp);
1698 config->pending_req_otp = tmp;
1699 config->pending_req_otp_len = msglen + 3;
1700 } else {
1701 if (config->pending_req_otp == NULL)
1702 return;
1703 txt = config->pending_req_otp;
1704 }
1705 break;
1706 case WPA_CTRL_REQ_EAP_PASSPHRASE:
1707 config->pending_req_passphrase++;
1708 break;
1709 case WPA_CTRL_REQ_SIM:
1710 txt = msg;
1711 break;
1712 default:
1713 return;
1714 }
1715
1716 if (sm->eapol_cb->eap_param_needed)
1717 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1718 }
1719 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1720 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1721 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1722
eap_sm_get_method_name(struct eap_sm * sm)1723 const char * eap_sm_get_method_name(struct eap_sm *sm)
1724 {
1725 if (sm->m == NULL)
1726 return "UNKNOWN";
1727 return sm->m->name;
1728 }
1729
1730
1731 /**
1732 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1733 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1734 *
1735 * EAP methods can call this function to request identity information for the
1736 * current network. This is normally called when the identity is not included
1737 * in the network configuration. The request will be sent to monitor programs
1738 * through the control interface.
1739 */
eap_sm_request_identity(struct eap_sm * sm)1740 void eap_sm_request_identity(struct eap_sm *sm)
1741 {
1742 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
1743 }
1744
1745
1746 /**
1747 * eap_sm_request_password - Request password from user (ctrl_iface)
1748 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1749 *
1750 * EAP methods can call this function to request password information for the
1751 * current network. This is normally called when the password is not included
1752 * in the network configuration. The request will be sent to monitor programs
1753 * through the control interface.
1754 */
eap_sm_request_password(struct eap_sm * sm)1755 void eap_sm_request_password(struct eap_sm *sm)
1756 {
1757 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
1758 }
1759
1760
1761 /**
1762 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1763 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1764 *
1765 * EAP methods can call this function to request new password information for
1766 * the current network. This is normally called when the EAP method indicates
1767 * that the current password has expired and password change is required. The
1768 * request will be sent to monitor programs through the control interface.
1769 */
eap_sm_request_new_password(struct eap_sm * sm)1770 void eap_sm_request_new_password(struct eap_sm *sm)
1771 {
1772 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
1773 }
1774
1775
1776 /**
1777 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1778 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1779 *
1780 * EAP methods can call this function to request SIM or smart card PIN
1781 * information for the current network. This is normally called when the PIN is
1782 * not included in the network configuration. The request will be sent to
1783 * monitor programs through the control interface.
1784 */
eap_sm_request_pin(struct eap_sm * sm)1785 void eap_sm_request_pin(struct eap_sm *sm)
1786 {
1787 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
1788 }
1789
1790
1791 /**
1792 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1793 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1794 * @msg: Message to be displayed to the user when asking for OTP
1795 * @msg_len: Length of the user displayable message
1796 *
1797 * EAP methods can call this function to request open time password (OTP) for
1798 * the current network. The request will be sent to monitor programs through
1799 * the control interface.
1800 */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)1801 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1802 {
1803 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
1804 }
1805
1806
1807 /**
1808 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1809 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1810 *
1811 * EAP methods can call this function to request passphrase for a private key
1812 * for the current network. This is normally called when the passphrase is not
1813 * included in the network configuration. The request will be sent to monitor
1814 * programs through the control interface.
1815 */
eap_sm_request_passphrase(struct eap_sm * sm)1816 void eap_sm_request_passphrase(struct eap_sm *sm)
1817 {
1818 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
1819 }
1820
1821
1822 /**
1823 * eap_sm_request_sim - Request external SIM processing
1824 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1825 * @req: EAP method specific request
1826 */
eap_sm_request_sim(struct eap_sm * sm,const char * req)1827 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
1828 {
1829 eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
1830 }
1831
1832
1833 /**
1834 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1835 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1836 *
1837 * Notify EAP state machines that a monitor was attached to the control
1838 * interface to trigger re-sending of pending requests for user input.
1839 */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)1840 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1841 {
1842 struct eap_peer_config *config = eap_get_config(sm);
1843
1844 if (config == NULL)
1845 return;
1846
1847 /* Re-send any pending requests for user data since a new control
1848 * interface was added. This handles cases where the EAP authentication
1849 * starts immediately after system startup when the user interface is
1850 * not yet running. */
1851 if (config->pending_req_identity)
1852 eap_sm_request_identity(sm);
1853 if (config->pending_req_password)
1854 eap_sm_request_password(sm);
1855 if (config->pending_req_new_password)
1856 eap_sm_request_new_password(sm);
1857 if (config->pending_req_otp)
1858 eap_sm_request_otp(sm, NULL, 0);
1859 if (config->pending_req_pin)
1860 eap_sm_request_pin(sm);
1861 if (config->pending_req_passphrase)
1862 eap_sm_request_passphrase(sm);
1863 }
1864
1865
eap_allowed_phase2_type(int vendor,int type)1866 static int eap_allowed_phase2_type(int vendor, int type)
1867 {
1868 if (vendor != EAP_VENDOR_IETF)
1869 return 0;
1870 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1871 type != EAP_TYPE_FAST;
1872 }
1873
1874
1875 /**
1876 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1877 * @name: EAP method name, e.g., MD5
1878 * @vendor: Buffer for returning EAP Vendor-Id
1879 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1880 *
1881 * This function maps EAP type names into EAP type numbers that are allowed for
1882 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1883 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1884 */
eap_get_phase2_type(const char * name,int * vendor)1885 u32 eap_get_phase2_type(const char *name, int *vendor)
1886 {
1887 int v;
1888 u8 type = eap_peer_get_type(name, &v);
1889 if (eap_allowed_phase2_type(v, type)) {
1890 *vendor = v;
1891 return type;
1892 }
1893 *vendor = EAP_VENDOR_IETF;
1894 return EAP_TYPE_NONE;
1895 }
1896
1897
1898 /**
1899 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1900 * @config: Pointer to a network configuration
1901 * @count: Pointer to a variable to be filled with number of returned EAP types
1902 * Returns: Pointer to allocated type list or %NULL on failure
1903 *
1904 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1905 * the given network configuration.
1906 */
eap_get_phase2_types(struct eap_peer_config * config,size_t * count)1907 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1908 size_t *count)
1909 {
1910 struct eap_method_type *buf;
1911 u32 method;
1912 int vendor;
1913 size_t mcount;
1914 const struct eap_method *methods, *m;
1915
1916 methods = eap_peer_get_methods(&mcount);
1917 if (methods == NULL)
1918 return NULL;
1919 *count = 0;
1920 buf = os_malloc(mcount * sizeof(struct eap_method_type));
1921 if (buf == NULL)
1922 return NULL;
1923
1924 for (m = methods; m; m = m->next) {
1925 vendor = m->vendor;
1926 method = m->method;
1927 if (eap_allowed_phase2_type(vendor, method)) {
1928 if (vendor == EAP_VENDOR_IETF &&
1929 method == EAP_TYPE_TLS && config &&
1930 config->private_key2 == NULL)
1931 continue;
1932 buf[*count].vendor = vendor;
1933 buf[*count].method = method;
1934 (*count)++;
1935 }
1936 }
1937
1938 return buf;
1939 }
1940
1941
1942 /**
1943 * eap_set_fast_reauth - Update fast_reauth setting
1944 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1945 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1946 */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)1947 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1948 {
1949 sm->fast_reauth = enabled;
1950 }
1951
1952
1953 /**
1954 * eap_set_workaround - Update EAP workarounds setting
1955 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1956 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1957 */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)1958 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1959 {
1960 sm->workaround = workaround;
1961 }
1962
1963
1964 /**
1965 * eap_get_config - Get current network configuration
1966 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1967 * Returns: Pointer to the current network configuration or %NULL if not found
1968 *
1969 * EAP peer methods should avoid using this function if they can use other
1970 * access functions, like eap_get_config_identity() and
1971 * eap_get_config_password(), that do not require direct access to
1972 * struct eap_peer_config.
1973 */
eap_get_config(struct eap_sm * sm)1974 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1975 {
1976 return sm->eapol_cb->get_config(sm->eapol_ctx);
1977 }
1978
1979
1980 /**
1981 * eap_get_config_identity - Get identity from the network configuration
1982 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1983 * @len: Buffer for the length of the identity
1984 * Returns: Pointer to the identity or %NULL if not found
1985 */
eap_get_config_identity(struct eap_sm * sm,size_t * len)1986 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1987 {
1988 struct eap_peer_config *config = eap_get_config(sm);
1989 if (config == NULL)
1990 return NULL;
1991 *len = config->identity_len;
1992 return config->identity;
1993 }
1994
1995
eap_get_ext_password(struct eap_sm * sm,struct eap_peer_config * config)1996 static int eap_get_ext_password(struct eap_sm *sm,
1997 struct eap_peer_config *config)
1998 {
1999 char *name;
2000
2001 if (config->password == NULL)
2002 return -1;
2003
2004 name = os_zalloc(config->password_len + 1);
2005 if (name == NULL)
2006 return -1;
2007 os_memcpy(name, config->password, config->password_len);
2008
2009 ext_password_free(sm->ext_pw_buf);
2010 sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2011 os_free(name);
2012
2013 return sm->ext_pw_buf == NULL ? -1 : 0;
2014 }
2015
2016
2017 /**
2018 * eap_get_config_password - Get password from the network configuration
2019 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2020 * @len: Buffer for the length of the password
2021 * Returns: Pointer to the password or %NULL if not found
2022 */
eap_get_config_password(struct eap_sm * sm,size_t * len)2023 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2024 {
2025 struct eap_peer_config *config = eap_get_config(sm);
2026 if (config == NULL)
2027 return NULL;
2028
2029 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2030 if (eap_get_ext_password(sm, config) < 0)
2031 return NULL;
2032 *len = wpabuf_len(sm->ext_pw_buf);
2033 return wpabuf_head(sm->ext_pw_buf);
2034 }
2035
2036 *len = config->password_len;
2037 return config->password;
2038 }
2039
2040
2041 /**
2042 * eap_get_config_password2 - Get password from the network configuration
2043 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2044 * @len: Buffer for the length of the password
2045 * @hash: Buffer for returning whether the password is stored as a
2046 * NtPasswordHash instead of plaintext password; can be %NULL if this
2047 * information is not needed
2048 * Returns: Pointer to the password or %NULL if not found
2049 */
eap_get_config_password2(struct eap_sm * sm,size_t * len,int * hash)2050 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2051 {
2052 struct eap_peer_config *config = eap_get_config(sm);
2053 if (config == NULL)
2054 return NULL;
2055
2056 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2057 if (eap_get_ext_password(sm, config) < 0)
2058 return NULL;
2059 if (hash)
2060 *hash = 0;
2061 *len = wpabuf_len(sm->ext_pw_buf);
2062 return wpabuf_head(sm->ext_pw_buf);
2063 }
2064
2065 *len = config->password_len;
2066 if (hash)
2067 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2068 return config->password;
2069 }
2070
2071
2072 /**
2073 * eap_get_config_new_password - Get new password from network configuration
2074 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2075 * @len: Buffer for the length of the new password
2076 * Returns: Pointer to the new password or %NULL if not found
2077 */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)2078 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2079 {
2080 struct eap_peer_config *config = eap_get_config(sm);
2081 if (config == NULL)
2082 return NULL;
2083 *len = config->new_password_len;
2084 return config->new_password;
2085 }
2086
2087
2088 /**
2089 * eap_get_config_otp - Get one-time password from the network configuration
2090 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2091 * @len: Buffer for the length of the one-time password
2092 * Returns: Pointer to the one-time password or %NULL if not found
2093 */
eap_get_config_otp(struct eap_sm * sm,size_t * len)2094 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2095 {
2096 struct eap_peer_config *config = eap_get_config(sm);
2097 if (config == NULL)
2098 return NULL;
2099 *len = config->otp_len;
2100 return config->otp;
2101 }
2102
2103
2104 /**
2105 * eap_clear_config_otp - Clear used one-time password
2106 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2107 *
2108 * This function clears a used one-time password (OTP) from the current network
2109 * configuration. This should be called when the OTP has been used and is not
2110 * needed anymore.
2111 */
eap_clear_config_otp(struct eap_sm * sm)2112 void eap_clear_config_otp(struct eap_sm *sm)
2113 {
2114 struct eap_peer_config *config = eap_get_config(sm);
2115 if (config == NULL)
2116 return;
2117 os_memset(config->otp, 0, config->otp_len);
2118 os_free(config->otp);
2119 config->otp = NULL;
2120 config->otp_len = 0;
2121 }
2122
2123
2124 /**
2125 * eap_get_config_phase1 - Get phase1 data from the network configuration
2126 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2127 * Returns: Pointer to the phase1 data or %NULL if not found
2128 */
eap_get_config_phase1(struct eap_sm * sm)2129 const char * eap_get_config_phase1(struct eap_sm *sm)
2130 {
2131 struct eap_peer_config *config = eap_get_config(sm);
2132 if (config == NULL)
2133 return NULL;
2134 return config->phase1;
2135 }
2136
2137
2138 /**
2139 * eap_get_config_phase2 - Get phase2 data from the network configuration
2140 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2141 * Returns: Pointer to the phase1 data or %NULL if not found
2142 */
eap_get_config_phase2(struct eap_sm * sm)2143 const char * eap_get_config_phase2(struct eap_sm *sm)
2144 {
2145 struct eap_peer_config *config = eap_get_config(sm);
2146 if (config == NULL)
2147 return NULL;
2148 return config->phase2;
2149 }
2150
2151
eap_get_config_fragment_size(struct eap_sm * sm)2152 int eap_get_config_fragment_size(struct eap_sm *sm)
2153 {
2154 struct eap_peer_config *config = eap_get_config(sm);
2155 if (config == NULL)
2156 return -1;
2157 return config->fragment_size;
2158 }
2159
2160
2161 /**
2162 * eap_key_available - Get key availability (eapKeyAvailable variable)
2163 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2164 * Returns: 1 if EAP keying material is available, 0 if not
2165 */
eap_key_available(struct eap_sm * sm)2166 int eap_key_available(struct eap_sm *sm)
2167 {
2168 return sm ? sm->eapKeyAvailable : 0;
2169 }
2170
2171
2172 /**
2173 * eap_notify_success - Notify EAP state machine about external success trigger
2174 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2175 *
2176 * This function is called when external event, e.g., successful completion of
2177 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2178 * success state. This is mainly used with security modes that do not use EAP
2179 * state machine (e.g., WPA-PSK).
2180 */
eap_notify_success(struct eap_sm * sm)2181 void eap_notify_success(struct eap_sm *sm)
2182 {
2183 if (sm) {
2184 sm->decision = DECISION_COND_SUCC;
2185 sm->EAP_state = EAP_SUCCESS;
2186 }
2187 }
2188
2189
2190 /**
2191 * eap_notify_lower_layer_success - Notification of lower layer success
2192 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2193 *
2194 * Notify EAP state machines that a lower layer has detected a successful
2195 * authentication. This is used to recover from dropped EAP-Success messages.
2196 */
eap_notify_lower_layer_success(struct eap_sm * sm)2197 void eap_notify_lower_layer_success(struct eap_sm *sm)
2198 {
2199 if (sm == NULL)
2200 return;
2201
2202 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2203 sm->decision == DECISION_FAIL ||
2204 (sm->methodState != METHOD_MAY_CONT &&
2205 sm->methodState != METHOD_DONE))
2206 return;
2207
2208 if (sm->eapKeyData != NULL)
2209 sm->eapKeyAvailable = TRUE;
2210 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2211 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2212 "EAP authentication completed successfully (based on lower "
2213 "layer success)");
2214 }
2215
2216
2217 /**
2218 * eap_get_eapSessionId - Get Session-Id from EAP state machine
2219 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2220 * @len: Pointer to variable that will be set to number of bytes in the session
2221 * Returns: Pointer to the EAP Session-Id or %NULL on failure
2222 *
2223 * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2224 * only after a successful authentication. EAP state machine continues to manage
2225 * the Session-Id and the caller must not change or free the returned data.
2226 */
eap_get_eapSessionId(struct eap_sm * sm,size_t * len)2227 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2228 {
2229 if (sm == NULL || sm->eapSessionId == NULL) {
2230 *len = 0;
2231 return NULL;
2232 }
2233
2234 *len = sm->eapSessionIdLen;
2235 return sm->eapSessionId;
2236 }
2237
2238
2239 /**
2240 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2241 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2242 * @len: Pointer to variable that will be set to number of bytes in the key
2243 * Returns: Pointer to the EAP keying data or %NULL on failure
2244 *
2245 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2246 * key is available only after a successful authentication. EAP state machine
2247 * continues to manage the key data and the caller must not change or free the
2248 * returned data.
2249 */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)2250 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2251 {
2252 if (sm == NULL || sm->eapKeyData == NULL) {
2253 *len = 0;
2254 return NULL;
2255 }
2256
2257 *len = sm->eapKeyDataLen;
2258 return sm->eapKeyData;
2259 }
2260
2261
2262 /**
2263 * eap_get_eapKeyData - Get EAP response data
2264 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2265 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2266 *
2267 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2268 * available when EAP state machine has processed an incoming EAP request. The
2269 * EAP state machine does not maintain a reference to the response after this
2270 * function is called and the caller is responsible for freeing the data.
2271 */
eap_get_eapRespData(struct eap_sm * sm)2272 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2273 {
2274 struct wpabuf *resp;
2275
2276 if (sm == NULL || sm->eapRespData == NULL)
2277 return NULL;
2278
2279 resp = sm->eapRespData;
2280 sm->eapRespData = NULL;
2281
2282 return resp;
2283 }
2284
2285
2286 /**
2287 * eap_sm_register_scard_ctx - Notification of smart card context
2288 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2289 * @ctx: Context data for smart card operations
2290 *
2291 * Notify EAP state machines of context data for smart card operations. This
2292 * context data will be used as a parameter for scard_*() functions.
2293 */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)2294 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2295 {
2296 if (sm)
2297 sm->scard_ctx = ctx;
2298 }
2299
2300
2301 /**
2302 * eap_set_config_blob - Set or add a named configuration blob
2303 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2304 * @blob: New value for the blob
2305 *
2306 * Adds a new configuration blob or replaces the current value of an existing
2307 * blob.
2308 */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)2309 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2310 {
2311 #ifndef CONFIG_NO_CONFIG_BLOBS
2312 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2313 #endif /* CONFIG_NO_CONFIG_BLOBS */
2314 }
2315
2316
2317 /**
2318 * eap_get_config_blob - Get a named configuration blob
2319 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2320 * @name: Name of the blob
2321 * Returns: Pointer to blob data or %NULL if not found
2322 */
eap_get_config_blob(struct eap_sm * sm,const char * name)2323 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2324 const char *name)
2325 {
2326 #ifndef CONFIG_NO_CONFIG_BLOBS
2327 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2328 #else /* CONFIG_NO_CONFIG_BLOBS */
2329 return NULL;
2330 #endif /* CONFIG_NO_CONFIG_BLOBS */
2331 }
2332
2333
2334 /**
2335 * eap_set_force_disabled - Set force_disabled flag
2336 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2337 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2338 *
2339 * This function is used to force EAP state machine to be disabled when it is
2340 * not in use (e.g., with WPA-PSK or plaintext connections).
2341 */
eap_set_force_disabled(struct eap_sm * sm,int disabled)2342 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2343 {
2344 sm->force_disabled = disabled;
2345 }
2346
2347
2348 /**
2349 * eap_set_external_sim - Set external_sim flag
2350 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2351 * @external_sim: Whether external SIM/USIM processing is used
2352 */
eap_set_external_sim(struct eap_sm * sm,int external_sim)2353 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
2354 {
2355 sm->external_sim = external_sim;
2356 }
2357
2358
2359 /**
2360 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2361 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2362 *
2363 * An EAP method can perform a pending operation (e.g., to get a response from
2364 * an external process). Once the response is available, this function can be
2365 * used to request EAPOL state machine to retry delivering the previously
2366 * received (and still unanswered) EAP request to EAP state machine.
2367 */
eap_notify_pending(struct eap_sm * sm)2368 void eap_notify_pending(struct eap_sm *sm)
2369 {
2370 sm->eapol_cb->notify_pending(sm->eapol_ctx);
2371 }
2372
2373
2374 /**
2375 * eap_invalidate_cached_session - Mark cached session data invalid
2376 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2377 */
eap_invalidate_cached_session(struct eap_sm * sm)2378 void eap_invalidate_cached_session(struct eap_sm *sm)
2379 {
2380 if (sm)
2381 eap_deinit_prev_method(sm, "invalidate");
2382 }
2383
2384
eap_is_wps_pbc_enrollee(struct eap_peer_config * conf)2385 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2386 {
2387 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2388 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2389 return 0; /* Not a WPS Enrollee */
2390
2391 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2392 return 0; /* Not using PBC */
2393
2394 return 1;
2395 }
2396
2397
eap_is_wps_pin_enrollee(struct eap_peer_config * conf)2398 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2399 {
2400 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2401 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2402 return 0; /* Not a WPS Enrollee */
2403
2404 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2405 return 0; /* Not using PIN */
2406
2407 return 1;
2408 }
2409
2410
eap_sm_set_ext_pw_ctx(struct eap_sm * sm,struct ext_password_data * ext)2411 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2412 {
2413 ext_password_free(sm->ext_pw_buf);
2414 sm->ext_pw_buf = NULL;
2415 sm->ext_pw = ext;
2416 }
2417
2418
2419 /**
2420 * eap_set_anon_id - Set or add anonymous identity
2421 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2422 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2423 * @len: Length of anonymous identity in octets
2424 */
eap_set_anon_id(struct eap_sm * sm,const u8 * id,size_t len)2425 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2426 {
2427 if (sm->eapol_cb->set_anon_id)
2428 sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2429 }
2430
2431
eap_peer_was_failure_expected(struct eap_sm * sm)2432 int eap_peer_was_failure_expected(struct eap_sm *sm)
2433 {
2434 return sm->expected_failure;
2435 }
2436