• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * EAP peer state machines (RFC 4137)
3  * Copyright (c) 2004-2014, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file implements the Peer State Machine as defined in RFC 4137. The used
9  * states and state transitions match mostly with the RFC. However, there are
10  * couple of additional transitions for working around small issues noticed
11  * during testing. These exceptions are explained in comments within the
12  * functions in this file. The method functions, m.func(), are similar to the
13  * ones used in RFC 4137, but some small changes have used here to optimize
14  * operations and to add functionality needed for fast re-authentication
15  * (session resumption).
16  */
17 
18 #include "includes.h"
19 
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "common/wpa_ctrl.h"
27 #include "eap_common/eap_wsc_common.h"
28 #include "eap_i.h"
29 #include "eap_config.h"
30 
31 #define STATE_MACHINE_DATA struct eap_sm
32 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
33 
34 #define EAP_MAX_AUTH_ROUNDS 50
35 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
36 
37 
38 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
39 				  EapType method);
40 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
41 static void eap_sm_processIdentity(struct eap_sm *sm,
42 				   const struct wpabuf *req);
43 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
44 static struct wpabuf * eap_sm_buildNotify(int id);
45 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
46 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
47 static const char * eap_sm_method_state_txt(EapMethodState state);
48 static const char * eap_sm_decision_txt(EapDecision decision);
49 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
50 
51 
52 
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)53 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
54 {
55 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
56 }
57 
58 
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)59 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
60 			   Boolean value)
61 {
62 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
63 }
64 
65 
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)66 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
67 {
68 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
69 }
70 
71 
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)72 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
73 			  unsigned int value)
74 {
75 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
76 }
77 
78 
eapol_get_eapReqData(struct eap_sm * sm)79 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
80 {
81 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
82 }
83 
84 
eap_notify_status(struct eap_sm * sm,const char * status,const char * parameter)85 static void eap_notify_status(struct eap_sm *sm, const char *status,
86 				      const char *parameter)
87 {
88 	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
89 		   status, parameter);
90 	if (sm->eapol_cb->notify_status)
91 		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
92 }
93 
94 
eap_sm_free_key(struct eap_sm * sm)95 static void eap_sm_free_key(struct eap_sm *sm)
96 {
97 	if (sm->eapKeyData) {
98 		bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
99 		sm->eapKeyData = NULL;
100 	}
101 }
102 
103 
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)104 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
105 {
106 	ext_password_free(sm->ext_pw_buf);
107 	sm->ext_pw_buf = NULL;
108 
109 	if (sm->m == NULL || sm->eap_method_priv == NULL)
110 		return;
111 
112 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
113 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
114 	sm->m->deinit(sm, sm->eap_method_priv);
115 	sm->eap_method_priv = NULL;
116 	sm->m = NULL;
117 }
118 
119 
120 /**
121  * eap_allowed_method - Check whether EAP method is allowed
122  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
123  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
124  * @method: EAP type
125  * Returns: 1 = allowed EAP method, 0 = not allowed
126  */
eap_allowed_method(struct eap_sm * sm,int vendor,u32 method)127 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
128 {
129 	struct eap_peer_config *config = eap_get_config(sm);
130 	int i;
131 	struct eap_method_type *m;
132 
133 	if (config == NULL || config->eap_methods == NULL)
134 		return 1;
135 
136 	m = config->eap_methods;
137 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
138 		     m[i].method != EAP_TYPE_NONE; i++) {
139 		if (m[i].vendor == vendor && m[i].method == method)
140 			return 1;
141 	}
142 	return 0;
143 }
144 
145 
146 /*
147  * This state initializes state machine variables when the machine is
148  * activated (portEnabled = TRUE). This is also used when re-starting
149  * authentication (eapRestart == TRUE).
150  */
SM_STATE(EAP,INITIALIZE)151 SM_STATE(EAP, INITIALIZE)
152 {
153 	SM_ENTRY(EAP, INITIALIZE);
154 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
155 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
156 	    !sm->prev_failure &&
157 	    sm->last_config == eap_get_config(sm)) {
158 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
159 			   "fast reauthentication");
160 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
161 	} else {
162 		sm->last_config = eap_get_config(sm);
163 		eap_deinit_prev_method(sm, "INITIALIZE");
164 	}
165 	sm->selectedMethod = EAP_TYPE_NONE;
166 	sm->methodState = METHOD_NONE;
167 	sm->allowNotifications = TRUE;
168 	sm->decision = DECISION_FAIL;
169 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
170 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
171 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
172 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
173 	eap_sm_free_key(sm);
174 	os_free(sm->eapSessionId);
175 	sm->eapSessionId = NULL;
176 	sm->eapKeyAvailable = FALSE;
177 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
178 	sm->lastId = -1; /* new session - make sure this does not match with
179 			  * the first EAP-Packet */
180 	/*
181 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
182 	 * seemed to be able to trigger cases where both were set and if EAPOL
183 	 * state machine uses eapNoResp first, it may end up not sending a real
184 	 * reply correctly. This occurred when the workaround in FAIL state set
185 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
186 	 * something else(?)
187 	 */
188 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
189 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
190 	sm->num_rounds = 0;
191 	sm->prev_failure = 0;
192 	sm->expected_failure = 0;
193 }
194 
195 
196 /*
197  * This state is reached whenever service from the lower layer is interrupted
198  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
199  * occurs when the port becomes enabled.
200  */
SM_STATE(EAP,DISABLED)201 SM_STATE(EAP, DISABLED)
202 {
203 	SM_ENTRY(EAP, DISABLED);
204 	sm->num_rounds = 0;
205 	/*
206 	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
207 	 * allows the timer tick to be stopped more quickly when EAP is not in
208 	 * use.
209 	 */
210 	eapol_set_int(sm, EAPOL_idleWhile, 0);
211 }
212 
213 
214 /*
215  * The state machine spends most of its time here, waiting for something to
216  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
217  * SEND_RESPONSE states.
218  */
SM_STATE(EAP,IDLE)219 SM_STATE(EAP, IDLE)
220 {
221 	SM_ENTRY(EAP, IDLE);
222 }
223 
224 
225 /*
226  * This state is entered when an EAP packet is received (eapReq == TRUE) to
227  * parse the packet header.
228  */
SM_STATE(EAP,RECEIVED)229 SM_STATE(EAP, RECEIVED)
230 {
231 	const struct wpabuf *eapReqData;
232 
233 	SM_ENTRY(EAP, RECEIVED);
234 	eapReqData = eapol_get_eapReqData(sm);
235 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
236 	eap_sm_parseEapReq(sm, eapReqData);
237 	sm->num_rounds++;
238 }
239 
240 
241 /*
242  * This state is entered when a request for a new type comes in. Either the
243  * correct method is started, or a Nak response is built.
244  */
SM_STATE(EAP,GET_METHOD)245 SM_STATE(EAP, GET_METHOD)
246 {
247 	int reinit;
248 	EapType method;
249 	const struct eap_method *eap_method;
250 
251 	SM_ENTRY(EAP, GET_METHOD);
252 
253 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
254 		method = sm->reqVendorMethod;
255 	else
256 		method = sm->reqMethod;
257 
258 	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
259 
260 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
261 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
262 			   sm->reqVendor, method);
263 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
264 			"vendor=%u method=%u -> NAK",
265 			sm->reqVendor, method);
266 		eap_notify_status(sm, "refuse proposed method",
267 				  eap_method ?  eap_method->name : "unknown");
268 		goto nak;
269 	}
270 
271 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
272 		"vendor=%u method=%u", sm->reqVendor, method);
273 
274 	eap_notify_status(sm, "accept proposed method",
275 			  eap_method ?  eap_method->name : "unknown");
276 	/*
277 	 * RFC 4137 does not define specific operation for fast
278 	 * re-authentication (session resumption). The design here is to allow
279 	 * the previously used method data to be maintained for
280 	 * re-authentication if the method support session resumption.
281 	 * Otherwise, the previously used method data is freed and a new method
282 	 * is allocated here.
283 	 */
284 	if (sm->fast_reauth &&
285 	    sm->m && sm->m->vendor == sm->reqVendor &&
286 	    sm->m->method == method &&
287 	    sm->m->has_reauth_data &&
288 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
289 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
290 			   " for fast re-authentication");
291 		reinit = 1;
292 	} else {
293 		eap_deinit_prev_method(sm, "GET_METHOD");
294 		reinit = 0;
295 	}
296 
297 	sm->selectedMethod = sm->reqMethod;
298 	if (sm->m == NULL)
299 		sm->m = eap_method;
300 	if (!sm->m) {
301 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
302 			   "vendor %d method %d",
303 			   sm->reqVendor, method);
304 		goto nak;
305 	}
306 
307 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
308 
309 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
310 		   "vendor %u method %u (%s)",
311 		   sm->reqVendor, method, sm->m->name);
312 	if (reinit)
313 		sm->eap_method_priv = sm->m->init_for_reauth(
314 			sm, sm->eap_method_priv);
315 	else
316 		sm->eap_method_priv = sm->m->init(sm);
317 
318 	if (sm->eap_method_priv == NULL) {
319 		struct eap_peer_config *config = eap_get_config(sm);
320 		wpa_msg(sm->msg_ctx, MSG_INFO,
321 			"EAP: Failed to initialize EAP method: vendor %u "
322 			"method %u (%s)",
323 			sm->reqVendor, method, sm->m->name);
324 		sm->m = NULL;
325 		sm->methodState = METHOD_NONE;
326 		sm->selectedMethod = EAP_TYPE_NONE;
327 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
328 		    (config->pending_req_pin ||
329 		     config->pending_req_passphrase)) {
330 			/*
331 			 * Return without generating Nak in order to allow
332 			 * entering of PIN code or passphrase to retry the
333 			 * current EAP packet.
334 			 */
335 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
336 				   "request - skip Nak");
337 			return;
338 		}
339 
340 		goto nak;
341 	}
342 
343 	sm->methodState = METHOD_INIT;
344 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
345 		"EAP vendor %u method %u (%s) selected",
346 		sm->reqVendor, method, sm->m->name);
347 	return;
348 
349 nak:
350 	wpabuf_free(sm->eapRespData);
351 	sm->eapRespData = NULL;
352 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
353 }
354 
355 
356 /*
357  * The method processing happens here. The request from the authenticator is
358  * processed, and an appropriate response packet is built.
359  */
SM_STATE(EAP,METHOD)360 SM_STATE(EAP, METHOD)
361 {
362 	struct wpabuf *eapReqData;
363 	struct eap_method_ret ret;
364 	int min_len = 1;
365 
366 	SM_ENTRY(EAP, METHOD);
367 	if (sm->m == NULL) {
368 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
369 		return;
370 	}
371 
372 	eapReqData = eapol_get_eapReqData(sm);
373 	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
374 		min_len = 0; /* LEAP uses EAP-Success without payload */
375 	if (!eap_hdr_len_valid(eapReqData, min_len))
376 		return;
377 
378 	/*
379 	 * Get ignore, methodState, decision, allowNotifications, and
380 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
381 	 * process, and buildResp) in this state. These have been combined into
382 	 * a single function call to m->process() in order to optimize EAP
383 	 * method implementation interface a bit. These procedures are only
384 	 * used from within this METHOD state, so there is no need to keep
385 	 * these as separate C functions.
386 	 *
387 	 * The RFC 4137 procedures return values as follows:
388 	 * ignore = m.check(eapReqData)
389 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
390 	 * eapRespData = m.buildResp(reqId)
391 	 */
392 	os_memset(&ret, 0, sizeof(ret));
393 	ret.ignore = sm->ignore;
394 	ret.methodState = sm->methodState;
395 	ret.decision = sm->decision;
396 	ret.allowNotifications = sm->allowNotifications;
397 	wpabuf_free(sm->eapRespData);
398 	sm->eapRespData = NULL;
399 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
400 					 eapReqData);
401 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
402 		   "methodState=%s decision=%s eapRespData=%p",
403 		   ret.ignore ? "TRUE" : "FALSE",
404 		   eap_sm_method_state_txt(ret.methodState),
405 		   eap_sm_decision_txt(ret.decision),
406 		   sm->eapRespData);
407 
408 	sm->ignore = ret.ignore;
409 	if (sm->ignore)
410 		return;
411 	sm->methodState = ret.methodState;
412 	sm->decision = ret.decision;
413 	sm->allowNotifications = ret.allowNotifications;
414 
415 	if (sm->m->isKeyAvailable && sm->m->getKey &&
416 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
417 		eap_sm_free_key(sm);
418 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
419 					       &sm->eapKeyDataLen);
420 		os_free(sm->eapSessionId);
421 		sm->eapSessionId = NULL;
422 		if (sm->m->getSessionId) {
423 			sm->eapSessionId = sm->m->getSessionId(
424 				sm, sm->eap_method_priv,
425 				&sm->eapSessionIdLen);
426 			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
427 				    sm->eapSessionId, sm->eapSessionIdLen);
428 		}
429 	}
430 }
431 
432 
433 /*
434  * This state signals the lower layer that a response packet is ready to be
435  * sent.
436  */
SM_STATE(EAP,SEND_RESPONSE)437 SM_STATE(EAP, SEND_RESPONSE)
438 {
439 	SM_ENTRY(EAP, SEND_RESPONSE);
440 	wpabuf_free(sm->lastRespData);
441 	if (sm->eapRespData) {
442 		if (sm->workaround)
443 			os_memcpy(sm->last_md5, sm->req_md5, 16);
444 		sm->lastId = sm->reqId;
445 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
446 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
447 	} else {
448 		wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
449 		sm->lastRespData = NULL;
450 	}
451 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
452 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
453 }
454 
455 
456 /*
457  * This state signals the lower layer that the request was discarded, and no
458  * response packet will be sent at this time.
459  */
SM_STATE(EAP,DISCARD)460 SM_STATE(EAP, DISCARD)
461 {
462 	SM_ENTRY(EAP, DISCARD);
463 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
464 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
465 }
466 
467 
468 /*
469  * Handles requests for Identity method and builds a response.
470  */
SM_STATE(EAP,IDENTITY)471 SM_STATE(EAP, IDENTITY)
472 {
473 	const struct wpabuf *eapReqData;
474 
475 	SM_ENTRY(EAP, IDENTITY);
476 	eapReqData = eapol_get_eapReqData(sm);
477 	if (!eap_hdr_len_valid(eapReqData, 1))
478 		return;
479 	eap_sm_processIdentity(sm, eapReqData);
480 	wpabuf_free(sm->eapRespData);
481 	sm->eapRespData = NULL;
482 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
483 }
484 
485 
486 /*
487  * Handles requests for Notification method and builds a response.
488  */
SM_STATE(EAP,NOTIFICATION)489 SM_STATE(EAP, NOTIFICATION)
490 {
491 	const struct wpabuf *eapReqData;
492 
493 	SM_ENTRY(EAP, NOTIFICATION);
494 	eapReqData = eapol_get_eapReqData(sm);
495 	if (!eap_hdr_len_valid(eapReqData, 1))
496 		return;
497 	eap_sm_processNotify(sm, eapReqData);
498 	wpabuf_free(sm->eapRespData);
499 	sm->eapRespData = NULL;
500 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
501 }
502 
503 
504 /*
505  * This state retransmits the previous response packet.
506  */
SM_STATE(EAP,RETRANSMIT)507 SM_STATE(EAP, RETRANSMIT)
508 {
509 	SM_ENTRY(EAP, RETRANSMIT);
510 	wpabuf_free(sm->eapRespData);
511 	if (sm->lastRespData)
512 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
513 	else
514 		sm->eapRespData = NULL;
515 }
516 
517 
518 /*
519  * This state is entered in case of a successful completion of authentication
520  * and state machine waits here until port is disabled or EAP authentication is
521  * restarted.
522  */
SM_STATE(EAP,SUCCESS)523 SM_STATE(EAP, SUCCESS)
524 {
525 	SM_ENTRY(EAP, SUCCESS);
526 	if (sm->eapKeyData != NULL)
527 		sm->eapKeyAvailable = TRUE;
528 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
529 
530 	/*
531 	 * RFC 4137 does not clear eapReq here, but this seems to be required
532 	 * to avoid processing the same request twice when state machine is
533 	 * initialized.
534 	 */
535 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
536 
537 	/*
538 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
539 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
540 	 * addition, either eapResp or eapNoResp is required to be set after
541 	 * processing the received EAP frame.
542 	 */
543 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
544 
545 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
546 		"EAP authentication completed successfully");
547 }
548 
549 
550 /*
551  * This state is entered in case of a failure and state machine waits here
552  * until port is disabled or EAP authentication is restarted.
553  */
SM_STATE(EAP,FAILURE)554 SM_STATE(EAP, FAILURE)
555 {
556 	SM_ENTRY(EAP, FAILURE);
557 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
558 
559 	/*
560 	 * RFC 4137 does not clear eapReq here, but this seems to be required
561 	 * to avoid processing the same request twice when state machine is
562 	 * initialized.
563 	 */
564 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
565 
566 	/*
567 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
568 	 * eapNoResp is required to be set after processing the received EAP
569 	 * frame.
570 	 */
571 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
572 
573 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
574 		"EAP authentication failed");
575 
576 	sm->prev_failure = 1;
577 }
578 
579 
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)580 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
581 {
582 	/*
583 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
584 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
585 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
586 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
587 	 *
588 	 * Accept this kind of Id if EAP workarounds are enabled. These are
589 	 * unauthenticated plaintext messages, so this should have minimal
590 	 * security implications (bit easier to fake EAP-Success/Failure).
591 	 */
592 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
593 			       reqId == ((lastId + 2) & 0xff))) {
594 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
595 			   "identifier field in EAP Success: "
596 			   "reqId=%d lastId=%d (these are supposed to be "
597 			   "same)", reqId, lastId);
598 		return 1;
599 	}
600 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
601 		   "lastId=%d", reqId, lastId);
602 	return 0;
603 }
604 
605 
606 /*
607  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
608  */
609 
eap_peer_sm_step_idle(struct eap_sm * sm)610 static void eap_peer_sm_step_idle(struct eap_sm *sm)
611 {
612 	/*
613 	 * The first three transitions are from RFC 4137. The last two are
614 	 * local additions to handle special cases with LEAP and PEAP server
615 	 * not sending EAP-Success in some cases.
616 	 */
617 	if (eapol_get_bool(sm, EAPOL_eapReq))
618 		SM_ENTER(EAP, RECEIVED);
619 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
620 		  sm->decision != DECISION_FAIL) ||
621 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
622 		  sm->decision == DECISION_UNCOND_SUCC))
623 		SM_ENTER(EAP, SUCCESS);
624 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
625 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
626 		  sm->decision != DECISION_UNCOND_SUCC) ||
627 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
628 		  sm->methodState != METHOD_CONT &&
629 		  sm->decision == DECISION_FAIL))
630 		SM_ENTER(EAP, FAILURE);
631 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
632 		 sm->leap_done && sm->decision != DECISION_FAIL &&
633 		 sm->methodState == METHOD_DONE)
634 		SM_ENTER(EAP, SUCCESS);
635 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
636 		 sm->peap_done && sm->decision != DECISION_FAIL &&
637 		 sm->methodState == METHOD_DONE)
638 		SM_ENTER(EAP, SUCCESS);
639 }
640 
641 
eap_peer_req_is_duplicate(struct eap_sm * sm)642 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
643 {
644 	int duplicate;
645 
646 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
647 	if (sm->workaround && duplicate &&
648 	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
649 		/*
650 		 * RFC 4137 uses (reqId == lastId) as the only verification for
651 		 * duplicate EAP requests. However, this misses cases where the
652 		 * AS is incorrectly using the same id again; and
653 		 * unfortunately, such implementations exist. Use MD5 hash as
654 		 * an extra verification for the packets being duplicate to
655 		 * workaround these issues.
656 		 */
657 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
658 			   "EAP packets were not identical");
659 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
660 			   "duplicate packet");
661 		duplicate = 0;
662 	}
663 
664 	return duplicate;
665 }
666 
667 
eap_peer_sm_step_received(struct eap_sm * sm)668 static void eap_peer_sm_step_received(struct eap_sm *sm)
669 {
670 	int duplicate = eap_peer_req_is_duplicate(sm);
671 
672 	/*
673 	 * Two special cases below for LEAP are local additions to work around
674 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
675 	 * then swapped roles). Other transitions are based on RFC 4137.
676 	 */
677 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
678 	    (sm->reqId == sm->lastId ||
679 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
680 		SM_ENTER(EAP, SUCCESS);
681 	else if (sm->methodState != METHOD_CONT &&
682 		 ((sm->rxFailure &&
683 		   sm->decision != DECISION_UNCOND_SUCC) ||
684 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
685 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
686 		    sm->methodState != METHOD_MAY_CONT))) &&
687 		 (sm->reqId == sm->lastId ||
688 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
689 		SM_ENTER(EAP, FAILURE);
690 	else if (sm->rxReq && duplicate)
691 		SM_ENTER(EAP, RETRANSMIT);
692 	else if (sm->rxReq && !duplicate &&
693 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
694 		 sm->allowNotifications)
695 		SM_ENTER(EAP, NOTIFICATION);
696 	else if (sm->rxReq && !duplicate &&
697 		 sm->selectedMethod == EAP_TYPE_NONE &&
698 		 sm->reqMethod == EAP_TYPE_IDENTITY)
699 		SM_ENTER(EAP, IDENTITY);
700 	else if (sm->rxReq && !duplicate &&
701 		 sm->selectedMethod == EAP_TYPE_NONE &&
702 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
703 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
704 		SM_ENTER(EAP, GET_METHOD);
705 	else if (sm->rxReq && !duplicate &&
706 		 sm->reqMethod == sm->selectedMethod &&
707 		 sm->methodState != METHOD_DONE)
708 		SM_ENTER(EAP, METHOD);
709 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
710 		 (sm->rxSuccess || sm->rxResp))
711 		SM_ENTER(EAP, METHOD);
712 	else
713 		SM_ENTER(EAP, DISCARD);
714 }
715 
716 
eap_peer_sm_step_local(struct eap_sm * sm)717 static void eap_peer_sm_step_local(struct eap_sm *sm)
718 {
719 	switch (sm->EAP_state) {
720 	case EAP_INITIALIZE:
721 		SM_ENTER(EAP, IDLE);
722 		break;
723 	case EAP_DISABLED:
724 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
725 		    !sm->force_disabled)
726 			SM_ENTER(EAP, INITIALIZE);
727 		break;
728 	case EAP_IDLE:
729 		eap_peer_sm_step_idle(sm);
730 		break;
731 	case EAP_RECEIVED:
732 		eap_peer_sm_step_received(sm);
733 		break;
734 	case EAP_GET_METHOD:
735 		if (sm->selectedMethod == sm->reqMethod)
736 			SM_ENTER(EAP, METHOD);
737 		else
738 			SM_ENTER(EAP, SEND_RESPONSE);
739 		break;
740 	case EAP_METHOD:
741 		/*
742 		 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
743 		 * as the condition. eapRespData == NULL here is used to allow
744 		 * final EAP method response to be sent without having to change
745 		 * all methods to either use methodState MAY_CONT or leaving
746 		 * decision to something else than FAIL in cases where the only
747 		 * expected response is EAP-Failure.
748 		 */
749 		if (sm->ignore)
750 			SM_ENTER(EAP, DISCARD);
751 		else if (sm->methodState == METHOD_DONE &&
752 			 sm->decision == DECISION_FAIL && !sm->eapRespData)
753 			SM_ENTER(EAP, FAILURE);
754 		else
755 			SM_ENTER(EAP, SEND_RESPONSE);
756 		break;
757 	case EAP_SEND_RESPONSE:
758 		SM_ENTER(EAP, IDLE);
759 		break;
760 	case EAP_DISCARD:
761 		SM_ENTER(EAP, IDLE);
762 		break;
763 	case EAP_IDENTITY:
764 		SM_ENTER(EAP, SEND_RESPONSE);
765 		break;
766 	case EAP_NOTIFICATION:
767 		SM_ENTER(EAP, SEND_RESPONSE);
768 		break;
769 	case EAP_RETRANSMIT:
770 		SM_ENTER(EAP, SEND_RESPONSE);
771 		break;
772 	case EAP_SUCCESS:
773 		break;
774 	case EAP_FAILURE:
775 		break;
776 	}
777 }
778 
779 
SM_STEP(EAP)780 SM_STEP(EAP)
781 {
782 	/* Global transitions */
783 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
784 	    eapol_get_bool(sm, EAPOL_portEnabled))
785 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
786 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
787 		SM_ENTER_GLOBAL(EAP, DISABLED);
788 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
789 		/* RFC 4137 does not place any limit on number of EAP messages
790 		 * in an authentication session. However, some error cases have
791 		 * ended up in a state were EAP messages were sent between the
792 		 * peer and server in a loop (e.g., TLS ACK frame in both
793 		 * direction). Since this is quite undesired outcome, limit the
794 		 * total number of EAP round-trips and abort authentication if
795 		 * this limit is exceeded.
796 		 */
797 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
798 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
799 				"authentication rounds - abort",
800 				EAP_MAX_AUTH_ROUNDS);
801 			sm->num_rounds++;
802 			SM_ENTER_GLOBAL(EAP, FAILURE);
803 		}
804 	} else {
805 		/* Local transitions */
806 		eap_peer_sm_step_local(sm);
807 	}
808 }
809 
810 
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)811 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
812 				  EapType method)
813 {
814 	if (!eap_allowed_method(sm, vendor, method)) {
815 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
816 			   "vendor %u method %u", vendor, method);
817 		return FALSE;
818 	}
819 	if (eap_peer_get_eap_method(vendor, method))
820 		return TRUE;
821 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
822 		   "vendor %u method %u", vendor, method);
823 	return FALSE;
824 }
825 
826 
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,const struct eap_method * methods,size_t count)827 static struct wpabuf * eap_sm_build_expanded_nak(
828 	struct eap_sm *sm, int id, const struct eap_method *methods,
829 	size_t count)
830 {
831 	struct wpabuf *resp;
832 	int found = 0;
833 	const struct eap_method *m;
834 
835 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
836 
837 	/* RFC 3748 - 5.3.2: Expanded Nak */
838 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
839 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
840 	if (resp == NULL)
841 		return NULL;
842 
843 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
844 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
845 
846 	for (m = methods; m; m = m->next) {
847 		if (sm->reqVendor == m->vendor &&
848 		    sm->reqVendorMethod == m->method)
849 			continue; /* do not allow the current method again */
850 		if (eap_allowed_method(sm, m->vendor, m->method)) {
851 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
852 				   "vendor=%u method=%u",
853 				   m->vendor, m->method);
854 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
855 			wpabuf_put_be24(resp, m->vendor);
856 			wpabuf_put_be32(resp, m->method);
857 
858 			found++;
859 		}
860 	}
861 	if (!found) {
862 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
863 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
864 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
865 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
866 	}
867 
868 	eap_update_len(resp);
869 
870 	return resp;
871 }
872 
873 
eap_sm_buildNak(struct eap_sm * sm,int id)874 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
875 {
876 	struct wpabuf *resp;
877 	u8 *start;
878 	int found = 0, expanded_found = 0;
879 	size_t count;
880 	const struct eap_method *methods, *m;
881 
882 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
883 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
884 		   sm->reqVendor, sm->reqVendorMethod);
885 	methods = eap_peer_get_methods(&count);
886 	if (methods == NULL)
887 		return NULL;
888 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
889 		return eap_sm_build_expanded_nak(sm, id, methods, count);
890 
891 	/* RFC 3748 - 5.3.1: Legacy Nak */
892 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
893 			     sizeof(struct eap_hdr) + 1 + count + 1,
894 			     EAP_CODE_RESPONSE, id);
895 	if (resp == NULL)
896 		return NULL;
897 
898 	start = wpabuf_put(resp, 0);
899 	for (m = methods; m; m = m->next) {
900 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
901 			continue; /* do not allow the current method again */
902 		if (eap_allowed_method(sm, m->vendor, m->method)) {
903 			if (m->vendor != EAP_VENDOR_IETF) {
904 				if (expanded_found)
905 					continue;
906 				expanded_found = 1;
907 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
908 			} else
909 				wpabuf_put_u8(resp, m->method);
910 			found++;
911 		}
912 	}
913 	if (!found)
914 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
915 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
916 
917 	eap_update_len(resp);
918 
919 	return resp;
920 }
921 
922 
eap_sm_processIdentity(struct eap_sm * sm,const struct wpabuf * req)923 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
924 {
925 	const u8 *pos;
926 	size_t msg_len;
927 
928 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
929 		"EAP authentication started");
930 	eap_notify_status(sm, "started", "");
931 
932 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
933 			       &msg_len);
934 	if (pos == NULL)
935 		return;
936 
937 	/*
938 	 * RFC 3748 - 5.1: Identity
939 	 * Data field may contain a displayable message in UTF-8. If this
940 	 * includes NUL-character, only the data before that should be
941 	 * displayed. Some EAP implementasitons may piggy-back additional
942 	 * options after the NUL.
943 	 */
944 	/* TODO: could save displayable message so that it can be shown to the
945 	 * user in case of interaction is required */
946 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
947 			  pos, msg_len);
948 }
949 
950 
951 #ifdef PCSC_FUNCS
952 
953 /*
954  * Rules for figuring out MNC length based on IMSI for SIM cards that do not
955  * include MNC length field.
956  */
mnc_len_from_imsi(const char * imsi)957 static int mnc_len_from_imsi(const char *imsi)
958 {
959 	char mcc_str[4];
960 	unsigned int mcc;
961 
962 	os_memcpy(mcc_str, imsi, 3);
963 	mcc_str[3] = '\0';
964 	mcc = atoi(mcc_str);
965 
966 	if (mcc == 228)
967 		return 2; /* Networks in Switzerland use 2-digit MNC */
968 	if (mcc == 244)
969 		return 2; /* Networks in Finland use 2-digit MNC */
970 
971 	return -1;
972 }
973 
974 
eap_sm_append_3gpp_realm(struct eap_sm * sm,char * imsi,size_t max_len,size_t * imsi_len)975 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
976 				    size_t max_len, size_t *imsi_len)
977 {
978 	int mnc_len;
979 	char *pos, mnc[4];
980 
981 	if (*imsi_len + 36 > max_len) {
982 		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
983 		return -1;
984 	}
985 
986 	/* MNC (2 or 3 digits) */
987 	mnc_len = scard_get_mnc_len(sm->scard_ctx);
988 	if (mnc_len < 0)
989 		mnc_len = mnc_len_from_imsi(imsi);
990 	if (mnc_len < 0) {
991 		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
992 			   "assuming 3");
993 		mnc_len = 3;
994 	}
995 
996 	if (mnc_len == 2) {
997 		mnc[0] = '0';
998 		mnc[1] = imsi[3];
999 		mnc[2] = imsi[4];
1000 	} else if (mnc_len == 3) {
1001 		mnc[0] = imsi[3];
1002 		mnc[1] = imsi[4];
1003 		mnc[2] = imsi[5];
1004 	}
1005 	mnc[3] = '\0';
1006 
1007 	pos = imsi + *imsi_len;
1008 	pos += os_snprintf(pos, imsi + max_len - pos,
1009 			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
1010 			   mnc, imsi[0], imsi[1], imsi[2]);
1011 	*imsi_len = pos - imsi;
1012 
1013 	return 0;
1014 }
1015 
1016 
eap_sm_imsi_identity(struct eap_sm * sm,struct eap_peer_config * conf)1017 static int eap_sm_imsi_identity(struct eap_sm *sm,
1018 				struct eap_peer_config *conf)
1019 {
1020 	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1021 	char imsi[100];
1022 	size_t imsi_len;
1023 	struct eap_method_type *m = conf->eap_methods;
1024 	int i;
1025 
1026 	imsi_len = sizeof(imsi);
1027 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1028 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1029 		return -1;
1030 	}
1031 
1032 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1033 
1034 	if (imsi_len < 7) {
1035 		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1036 		return -1;
1037 	}
1038 
1039 	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1040 		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1041 		return -1;
1042 	}
1043 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1044 
1045 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1046 			  m[i].method != EAP_TYPE_NONE); i++) {
1047 		if (m[i].vendor == EAP_VENDOR_IETF &&
1048 		    m[i].method == EAP_TYPE_AKA_PRIME) {
1049 			method = EAP_SM_AKA_PRIME;
1050 			break;
1051 		}
1052 
1053 		if (m[i].vendor == EAP_VENDOR_IETF &&
1054 		    m[i].method == EAP_TYPE_AKA) {
1055 			method = EAP_SM_AKA;
1056 			break;
1057 		}
1058 	}
1059 
1060 	os_free(conf->identity);
1061 	conf->identity = os_malloc(1 + imsi_len);
1062 	if (conf->identity == NULL) {
1063 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1064 			   "IMSI-based identity");
1065 		return -1;
1066 	}
1067 
1068 	switch (method) {
1069 	case EAP_SM_SIM:
1070 		conf->identity[0] = '1';
1071 		break;
1072 	case EAP_SM_AKA:
1073 		conf->identity[0] = '0';
1074 		break;
1075 	case EAP_SM_AKA_PRIME:
1076 		conf->identity[0] = '6';
1077 		break;
1078 	}
1079 	os_memcpy(conf->identity + 1, imsi, imsi_len);
1080 	conf->identity_len = 1 + imsi_len;
1081 
1082 	return 0;
1083 }
1084 
1085 #endif /* PCSC_FUNCS */
1086 
1087 
eap_sm_set_scard_pin(struct eap_sm * sm,struct eap_peer_config * conf)1088 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1089 				struct eap_peer_config *conf)
1090 {
1091 #ifdef PCSC_FUNCS
1092 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1093 		/*
1094 		 * Make sure the same PIN is not tried again in order to avoid
1095 		 * blocking SIM.
1096 		 */
1097 		os_free(conf->pin);
1098 		conf->pin = NULL;
1099 
1100 		wpa_printf(MSG_WARNING, "PIN validation failed");
1101 		eap_sm_request_pin(sm);
1102 		return -1;
1103 	}
1104 	return 0;
1105 #else /* PCSC_FUNCS */
1106 	return -1;
1107 #endif /* PCSC_FUNCS */
1108 }
1109 
eap_sm_get_scard_identity(struct eap_sm * sm,struct eap_peer_config * conf)1110 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1111 				     struct eap_peer_config *conf)
1112 {
1113 #ifdef PCSC_FUNCS
1114 	if (eap_sm_set_scard_pin(sm, conf))
1115 		return -1;
1116 
1117 	return eap_sm_imsi_identity(sm, conf);
1118 #else /* PCSC_FUNCS */
1119 	return -1;
1120 #endif /* PCSC_FUNCS */
1121 }
1122 
1123 
1124 /**
1125  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1126  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1127  * @id: EAP identifier for the packet
1128  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1129  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1130  * failure
1131  *
1132  * This function allocates and builds an EAP-Identity/Response packet for the
1133  * current network. The caller is responsible for freeing the returned data.
1134  */
eap_sm_buildIdentity(struct eap_sm * sm,int id,int encrypted)1135 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1136 {
1137 	struct eap_peer_config *config = eap_get_config(sm);
1138 	struct wpabuf *resp;
1139 	const u8 *identity;
1140 	size_t identity_len;
1141 
1142 	if (config == NULL) {
1143 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1144 			   "was not available");
1145 		return NULL;
1146 	}
1147 
1148 	if (sm->m && sm->m->get_identity &&
1149 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1150 					    &identity_len)) != NULL) {
1151 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1152 				  "identity", identity, identity_len);
1153 	} else if (!encrypted && config->anonymous_identity) {
1154 		identity = config->anonymous_identity;
1155 		identity_len = config->anonymous_identity_len;
1156 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1157 				  identity, identity_len);
1158 	} else {
1159 		identity = config->identity;
1160 		identity_len = config->identity_len;
1161 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1162 				  identity, identity_len);
1163 	}
1164 
1165 	if (identity == NULL) {
1166 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1167 			   "configuration was not available");
1168 		if (config->pcsc) {
1169 			if (eap_sm_get_scard_identity(sm, config) < 0)
1170 				return NULL;
1171 			identity = config->identity;
1172 			identity_len = config->identity_len;
1173 			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1174 					  "IMSI", identity, identity_len);
1175 		} else {
1176 			eap_sm_request_identity(sm);
1177 			return NULL;
1178 		}
1179 	} else if (config->pcsc) {
1180 		if (eap_sm_set_scard_pin(sm, config) < 0)
1181 			return NULL;
1182 	}
1183 
1184 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1185 			     EAP_CODE_RESPONSE, id);
1186 	if (resp == NULL)
1187 		return NULL;
1188 
1189 	wpabuf_put_data(resp, identity, identity_len);
1190 
1191 	return resp;
1192 }
1193 
1194 
eap_sm_processNotify(struct eap_sm * sm,const struct wpabuf * req)1195 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1196 {
1197 	const u8 *pos;
1198 	char *msg;
1199 	size_t i, msg_len;
1200 
1201 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1202 			       &msg_len);
1203 	if (pos == NULL)
1204 		return;
1205 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1206 			  pos, msg_len);
1207 
1208 	msg = os_malloc(msg_len + 1);
1209 	if (msg == NULL)
1210 		return;
1211 	for (i = 0; i < msg_len; i++)
1212 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1213 	msg[msg_len] = '\0';
1214 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1215 		WPA_EVENT_EAP_NOTIFICATION, msg);
1216 	os_free(msg);
1217 }
1218 
1219 
eap_sm_buildNotify(int id)1220 static struct wpabuf * eap_sm_buildNotify(int id)
1221 {
1222 	struct wpabuf *resp;
1223 
1224 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1225 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1226 			     EAP_CODE_RESPONSE, id);
1227 	if (resp == NULL)
1228 		return NULL;
1229 
1230 	return resp;
1231 }
1232 
1233 
eap_sm_parseEapReq(struct eap_sm * sm,const struct wpabuf * req)1234 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1235 {
1236 	const struct eap_hdr *hdr;
1237 	size_t plen;
1238 	const u8 *pos;
1239 
1240 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1241 	sm->reqId = 0;
1242 	sm->reqMethod = EAP_TYPE_NONE;
1243 	sm->reqVendor = EAP_VENDOR_IETF;
1244 	sm->reqVendorMethod = EAP_TYPE_NONE;
1245 
1246 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1247 		return;
1248 
1249 	hdr = wpabuf_head(req);
1250 	plen = be_to_host16(hdr->length);
1251 	if (plen > wpabuf_len(req)) {
1252 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1253 			   "(len=%lu plen=%lu)",
1254 			   (unsigned long) wpabuf_len(req),
1255 			   (unsigned long) plen);
1256 		return;
1257 	}
1258 
1259 	sm->reqId = hdr->identifier;
1260 
1261 	if (sm->workaround) {
1262 		const u8 *addr[1];
1263 		addr[0] = wpabuf_head(req);
1264 		md5_vector(1, addr, &plen, sm->req_md5);
1265 	}
1266 
1267 	switch (hdr->code) {
1268 	case EAP_CODE_REQUEST:
1269 		if (plen < sizeof(*hdr) + 1) {
1270 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1271 				   "no Type field");
1272 			return;
1273 		}
1274 		sm->rxReq = TRUE;
1275 		pos = (const u8 *) (hdr + 1);
1276 		sm->reqMethod = *pos++;
1277 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1278 			if (plen < sizeof(*hdr) + 8) {
1279 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1280 					   "expanded EAP-Packet (plen=%lu)",
1281 					   (unsigned long) plen);
1282 				return;
1283 			}
1284 			sm->reqVendor = WPA_GET_BE24(pos);
1285 			pos += 3;
1286 			sm->reqVendorMethod = WPA_GET_BE32(pos);
1287 		}
1288 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1289 			   "method=%u vendor=%u vendorMethod=%u",
1290 			   sm->reqId, sm->reqMethod, sm->reqVendor,
1291 			   sm->reqVendorMethod);
1292 		break;
1293 	case EAP_CODE_RESPONSE:
1294 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1295 			/*
1296 			 * LEAP differs from RFC 4137 by using reversed roles
1297 			 * for mutual authentication and because of this, we
1298 			 * need to accept EAP-Response frames if LEAP is used.
1299 			 */
1300 			if (plen < sizeof(*hdr) + 1) {
1301 				wpa_printf(MSG_DEBUG, "EAP: Too short "
1302 					   "EAP-Response - no Type field");
1303 				return;
1304 			}
1305 			sm->rxResp = TRUE;
1306 			pos = (const u8 *) (hdr + 1);
1307 			sm->reqMethod = *pos;
1308 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1309 				   "LEAP method=%d id=%d",
1310 				   sm->reqMethod, sm->reqId);
1311 			break;
1312 		}
1313 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1314 		break;
1315 	case EAP_CODE_SUCCESS:
1316 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1317 		eap_notify_status(sm, "completion", "success");
1318 		sm->rxSuccess = TRUE;
1319 		break;
1320 	case EAP_CODE_FAILURE:
1321 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1322 		eap_notify_status(sm, "completion", "failure");
1323 		sm->rxFailure = TRUE;
1324 		break;
1325 	default:
1326 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1327 			   "code %d", hdr->code);
1328 		break;
1329 	}
1330 }
1331 
1332 
eap_peer_sm_tls_event(void * ctx,enum tls_event ev,union tls_event_data * data)1333 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1334 				  union tls_event_data *data)
1335 {
1336 	struct eap_sm *sm = ctx;
1337 	char *hash_hex = NULL;
1338 
1339 	switch (ev) {
1340 	case TLS_CERT_CHAIN_SUCCESS:
1341 		eap_notify_status(sm, "remote certificate verification",
1342 				  "success");
1343 		break;
1344 	case TLS_CERT_CHAIN_FAILURE:
1345 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1346 			"reason=%d depth=%d subject='%s' err='%s'",
1347 			data->cert_fail.reason,
1348 			data->cert_fail.depth,
1349 			data->cert_fail.subject,
1350 			data->cert_fail.reason_txt);
1351 		eap_notify_status(sm, "remote certificate verification",
1352 				  data->cert_fail.reason_txt);
1353 		break;
1354 	case TLS_PEER_CERTIFICATE:
1355 		if (!sm->eapol_cb->notify_cert)
1356 			break;
1357 
1358 		if (data->peer_cert.hash) {
1359 			size_t len = data->peer_cert.hash_len * 2 + 1;
1360 			hash_hex = os_malloc(len);
1361 			if (hash_hex) {
1362 				wpa_snprintf_hex(hash_hex, len,
1363 						 data->peer_cert.hash,
1364 						 data->peer_cert.hash_len);
1365 			}
1366 		}
1367 
1368 		sm->eapol_cb->notify_cert(sm->eapol_ctx,
1369 					  data->peer_cert.depth,
1370 					  data->peer_cert.subject,
1371 					  hash_hex, data->peer_cert.cert);
1372 		break;
1373 	case TLS_ALERT:
1374 		if (data->alert.is_local)
1375 			eap_notify_status(sm, "local TLS alert",
1376 					  data->alert.description);
1377 		else
1378 			eap_notify_status(sm, "remote TLS alert",
1379 					  data->alert.description);
1380 		break;
1381 	}
1382 
1383 	os_free(hash_hex);
1384 }
1385 
1386 
1387 /**
1388  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1389  * @eapol_ctx: Context data to be used with eapol_cb calls
1390  * @eapol_cb: Pointer to EAPOL callback functions
1391  * @msg_ctx: Context data for wpa_msg() calls
1392  * @conf: EAP configuration
1393  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1394  *
1395  * This function allocates and initializes an EAP state machine. In addition,
1396  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1397  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1398  * state machine. Consequently, the caller must make sure that this data
1399  * structure remains alive while the EAP state machine is active.
1400  */
eap_peer_sm_init(void * eapol_ctx,struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)1401 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1402 				 struct eapol_callbacks *eapol_cb,
1403 				 void *msg_ctx, struct eap_config *conf)
1404 {
1405 	struct eap_sm *sm;
1406 	struct tls_config tlsconf;
1407 
1408 	sm = os_zalloc(sizeof(*sm));
1409 	if (sm == NULL)
1410 		return NULL;
1411 	sm->eapol_ctx = eapol_ctx;
1412 	sm->eapol_cb = eapol_cb;
1413 	sm->msg_ctx = msg_ctx;
1414 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1415 	sm->wps = conf->wps;
1416 
1417 	os_memset(&tlsconf, 0, sizeof(tlsconf));
1418 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1419 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1420 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1421 #ifdef CONFIG_FIPS
1422 	tlsconf.fips_mode = 1;
1423 #endif /* CONFIG_FIPS */
1424 	tlsconf.event_cb = eap_peer_sm_tls_event;
1425 	tlsconf.cb_ctx = sm;
1426 	tlsconf.cert_in_cb = conf->cert_in_cb;
1427 	sm->ssl_ctx = tls_init(&tlsconf);
1428 	if (sm->ssl_ctx == NULL) {
1429 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1430 			   "context.");
1431 		os_free(sm);
1432 		return NULL;
1433 	}
1434 
1435 	sm->ssl_ctx2 = tls_init(&tlsconf);
1436 	if (sm->ssl_ctx2 == NULL) {
1437 		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1438 			   "context (2).");
1439 		/* Run without separate TLS context within TLS tunnel */
1440 	}
1441 
1442 	return sm;
1443 }
1444 
1445 
1446 /**
1447  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1448  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1449  *
1450  * This function deinitializes EAP state machine and frees all allocated
1451  * resources.
1452  */
eap_peer_sm_deinit(struct eap_sm * sm)1453 void eap_peer_sm_deinit(struct eap_sm *sm)
1454 {
1455 	if (sm == NULL)
1456 		return;
1457 	eap_deinit_prev_method(sm, "EAP deinit");
1458 	eap_sm_abort(sm);
1459 	if (sm->ssl_ctx2)
1460 		tls_deinit(sm->ssl_ctx2);
1461 	tls_deinit(sm->ssl_ctx);
1462 	os_free(sm);
1463 }
1464 
1465 
1466 /**
1467  * eap_peer_sm_step - Step EAP peer state machine
1468  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1469  * Returns: 1 if EAP state was changed or 0 if not
1470  *
1471  * This function advances EAP state machine to a new state to match with the
1472  * current variables. This should be called whenever variables used by the EAP
1473  * state machine have changed.
1474  */
eap_peer_sm_step(struct eap_sm * sm)1475 int eap_peer_sm_step(struct eap_sm *sm)
1476 {
1477 	int res = 0;
1478 	do {
1479 		sm->changed = FALSE;
1480 		SM_STEP_RUN(EAP);
1481 		if (sm->changed)
1482 			res = 1;
1483 	} while (sm->changed);
1484 	return res;
1485 }
1486 
1487 
1488 /**
1489  * eap_sm_abort - Abort EAP authentication
1490  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1491  *
1492  * Release system resources that have been allocated for the authentication
1493  * session without fully deinitializing the EAP state machine.
1494  */
eap_sm_abort(struct eap_sm * sm)1495 void eap_sm_abort(struct eap_sm *sm)
1496 {
1497 	wpabuf_free(sm->lastRespData);
1498 	sm->lastRespData = NULL;
1499 	wpabuf_free(sm->eapRespData);
1500 	sm->eapRespData = NULL;
1501 	eap_sm_free_key(sm);
1502 	os_free(sm->eapSessionId);
1503 	sm->eapSessionId = NULL;
1504 
1505 	/* This is not clearly specified in the EAP statemachines draft, but
1506 	 * it seems necessary to make sure that some of the EAPOL variables get
1507 	 * cleared for the next authentication. */
1508 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1509 }
1510 
1511 
1512 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)1513 static const char * eap_sm_state_txt(int state)
1514 {
1515 	switch (state) {
1516 	case EAP_INITIALIZE:
1517 		return "INITIALIZE";
1518 	case EAP_DISABLED:
1519 		return "DISABLED";
1520 	case EAP_IDLE:
1521 		return "IDLE";
1522 	case EAP_RECEIVED:
1523 		return "RECEIVED";
1524 	case EAP_GET_METHOD:
1525 		return "GET_METHOD";
1526 	case EAP_METHOD:
1527 		return "METHOD";
1528 	case EAP_SEND_RESPONSE:
1529 		return "SEND_RESPONSE";
1530 	case EAP_DISCARD:
1531 		return "DISCARD";
1532 	case EAP_IDENTITY:
1533 		return "IDENTITY";
1534 	case EAP_NOTIFICATION:
1535 		return "NOTIFICATION";
1536 	case EAP_RETRANSMIT:
1537 		return "RETRANSMIT";
1538 	case EAP_SUCCESS:
1539 		return "SUCCESS";
1540 	case EAP_FAILURE:
1541 		return "FAILURE";
1542 	default:
1543 		return "UNKNOWN";
1544 	}
1545 }
1546 #endif /* CONFIG_CTRL_IFACE */
1547 
1548 
1549 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)1550 static const char * eap_sm_method_state_txt(EapMethodState state)
1551 {
1552 	switch (state) {
1553 	case METHOD_NONE:
1554 		return "NONE";
1555 	case METHOD_INIT:
1556 		return "INIT";
1557 	case METHOD_CONT:
1558 		return "CONT";
1559 	case METHOD_MAY_CONT:
1560 		return "MAY_CONT";
1561 	case METHOD_DONE:
1562 		return "DONE";
1563 	default:
1564 		return "UNKNOWN";
1565 	}
1566 }
1567 
1568 
eap_sm_decision_txt(EapDecision decision)1569 static const char * eap_sm_decision_txt(EapDecision decision)
1570 {
1571 	switch (decision) {
1572 	case DECISION_FAIL:
1573 		return "FAIL";
1574 	case DECISION_COND_SUCC:
1575 		return "COND_SUCC";
1576 	case DECISION_UNCOND_SUCC:
1577 		return "UNCOND_SUCC";
1578 	default:
1579 		return "UNKNOWN";
1580 	}
1581 }
1582 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1583 
1584 
1585 #ifdef CONFIG_CTRL_IFACE
1586 
1587 /**
1588  * eap_sm_get_status - Get EAP state machine status
1589  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1590  * @buf: Buffer for status information
1591  * @buflen: Maximum buffer length
1592  * @verbose: Whether to include verbose status information
1593  * Returns: Number of bytes written to buf.
1594  *
1595  * Query EAP state machine for status information. This function fills in a
1596  * text area with current status information from the EAPOL state machine. If
1597  * the buffer (buf) is not large enough, status information will be truncated
1598  * to fit the buffer.
1599  */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)1600 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1601 {
1602 	int len, ret;
1603 
1604 	if (sm == NULL)
1605 		return 0;
1606 
1607 	len = os_snprintf(buf, buflen,
1608 			  "EAP state=%s\n",
1609 			  eap_sm_state_txt(sm->EAP_state));
1610 	if (len < 0 || (size_t) len >= buflen)
1611 		return 0;
1612 
1613 	if (sm->selectedMethod != EAP_TYPE_NONE) {
1614 		const char *name;
1615 		if (sm->m) {
1616 			name = sm->m->name;
1617 		} else {
1618 			const struct eap_method *m =
1619 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
1620 							sm->selectedMethod);
1621 			if (m)
1622 				name = m->name;
1623 			else
1624 				name = "?";
1625 		}
1626 		ret = os_snprintf(buf + len, buflen - len,
1627 				  "selectedMethod=%d (EAP-%s)\n",
1628 				  sm->selectedMethod, name);
1629 		if (ret < 0 || (size_t) ret >= buflen - len)
1630 			return len;
1631 		len += ret;
1632 
1633 		if (sm->m && sm->m->get_status) {
1634 			len += sm->m->get_status(sm, sm->eap_method_priv,
1635 						 buf + len, buflen - len,
1636 						 verbose);
1637 		}
1638 	}
1639 
1640 	if (verbose) {
1641 		ret = os_snprintf(buf + len, buflen - len,
1642 				  "reqMethod=%d\n"
1643 				  "methodState=%s\n"
1644 				  "decision=%s\n"
1645 				  "ClientTimeout=%d\n",
1646 				  sm->reqMethod,
1647 				  eap_sm_method_state_txt(sm->methodState),
1648 				  eap_sm_decision_txt(sm->decision),
1649 				  sm->ClientTimeout);
1650 		if (ret < 0 || (size_t) ret >= buflen - len)
1651 			return len;
1652 		len += ret;
1653 	}
1654 
1655 	return len;
1656 }
1657 #endif /* CONFIG_CTRL_IFACE */
1658 
1659 
1660 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_request(struct eap_sm * sm,enum wpa_ctrl_req_type field,const char * msg,size_t msglen)1661 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
1662 			   const char *msg, size_t msglen)
1663 {
1664 	struct eap_peer_config *config;
1665 	const char *txt = NULL;
1666 	char *tmp;
1667 
1668 	if (sm == NULL)
1669 		return;
1670 	config = eap_get_config(sm);
1671 	if (config == NULL)
1672 		return;
1673 
1674 	switch (field) {
1675 	case WPA_CTRL_REQ_EAP_IDENTITY:
1676 		config->pending_req_identity++;
1677 		break;
1678 	case WPA_CTRL_REQ_EAP_PASSWORD:
1679 		config->pending_req_password++;
1680 		break;
1681 	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
1682 		config->pending_req_new_password++;
1683 		break;
1684 	case WPA_CTRL_REQ_EAP_PIN:
1685 		config->pending_req_pin++;
1686 		break;
1687 	case WPA_CTRL_REQ_EAP_OTP:
1688 		if (msg) {
1689 			tmp = os_malloc(msglen + 3);
1690 			if (tmp == NULL)
1691 				return;
1692 			tmp[0] = '[';
1693 			os_memcpy(tmp + 1, msg, msglen);
1694 			tmp[msglen + 1] = ']';
1695 			tmp[msglen + 2] = '\0';
1696 			txt = tmp;
1697 			os_free(config->pending_req_otp);
1698 			config->pending_req_otp = tmp;
1699 			config->pending_req_otp_len = msglen + 3;
1700 		} else {
1701 			if (config->pending_req_otp == NULL)
1702 				return;
1703 			txt = config->pending_req_otp;
1704 		}
1705 		break;
1706 	case WPA_CTRL_REQ_EAP_PASSPHRASE:
1707 		config->pending_req_passphrase++;
1708 		break;
1709 	case WPA_CTRL_REQ_SIM:
1710 		txt = msg;
1711 		break;
1712 	default:
1713 		return;
1714 	}
1715 
1716 	if (sm->eapol_cb->eap_param_needed)
1717 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1718 }
1719 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1720 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1721 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1722 
eap_sm_get_method_name(struct eap_sm * sm)1723 const char * eap_sm_get_method_name(struct eap_sm *sm)
1724 {
1725 	if (sm->m == NULL)
1726 		return "UNKNOWN";
1727 	return sm->m->name;
1728 }
1729 
1730 
1731 /**
1732  * eap_sm_request_identity - Request identity from user (ctrl_iface)
1733  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1734  *
1735  * EAP methods can call this function to request identity information for the
1736  * current network. This is normally called when the identity is not included
1737  * in the network configuration. The request will be sent to monitor programs
1738  * through the control interface.
1739  */
eap_sm_request_identity(struct eap_sm * sm)1740 void eap_sm_request_identity(struct eap_sm *sm)
1741 {
1742 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
1743 }
1744 
1745 
1746 /**
1747  * eap_sm_request_password - Request password from user (ctrl_iface)
1748  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1749  *
1750  * EAP methods can call this function to request password information for the
1751  * current network. This is normally called when the password is not included
1752  * in the network configuration. The request will be sent to monitor programs
1753  * through the control interface.
1754  */
eap_sm_request_password(struct eap_sm * sm)1755 void eap_sm_request_password(struct eap_sm *sm)
1756 {
1757 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
1758 }
1759 
1760 
1761 /**
1762  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1763  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1764  *
1765  * EAP methods can call this function to request new password information for
1766  * the current network. This is normally called when the EAP method indicates
1767  * that the current password has expired and password change is required. The
1768  * request will be sent to monitor programs through the control interface.
1769  */
eap_sm_request_new_password(struct eap_sm * sm)1770 void eap_sm_request_new_password(struct eap_sm *sm)
1771 {
1772 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
1773 }
1774 
1775 
1776 /**
1777  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1778  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1779  *
1780  * EAP methods can call this function to request SIM or smart card PIN
1781  * information for the current network. This is normally called when the PIN is
1782  * not included in the network configuration. The request will be sent to
1783  * monitor programs through the control interface.
1784  */
eap_sm_request_pin(struct eap_sm * sm)1785 void eap_sm_request_pin(struct eap_sm *sm)
1786 {
1787 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
1788 }
1789 
1790 
1791 /**
1792  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1793  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1794  * @msg: Message to be displayed to the user when asking for OTP
1795  * @msg_len: Length of the user displayable message
1796  *
1797  * EAP methods can call this function to request open time password (OTP) for
1798  * the current network. The request will be sent to monitor programs through
1799  * the control interface.
1800  */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)1801 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1802 {
1803 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
1804 }
1805 
1806 
1807 /**
1808  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1809  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1810  *
1811  * EAP methods can call this function to request passphrase for a private key
1812  * for the current network. This is normally called when the passphrase is not
1813  * included in the network configuration. The request will be sent to monitor
1814  * programs through the control interface.
1815  */
eap_sm_request_passphrase(struct eap_sm * sm)1816 void eap_sm_request_passphrase(struct eap_sm *sm)
1817 {
1818 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
1819 }
1820 
1821 
1822 /**
1823  * eap_sm_request_sim - Request external SIM processing
1824  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1825  * @req: EAP method specific request
1826  */
eap_sm_request_sim(struct eap_sm * sm,const char * req)1827 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
1828 {
1829 	eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
1830 }
1831 
1832 
1833 /**
1834  * eap_sm_notify_ctrl_attached - Notification of attached monitor
1835  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1836  *
1837  * Notify EAP state machines that a monitor was attached to the control
1838  * interface to trigger re-sending of pending requests for user input.
1839  */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)1840 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1841 {
1842 	struct eap_peer_config *config = eap_get_config(sm);
1843 
1844 	if (config == NULL)
1845 		return;
1846 
1847 	/* Re-send any pending requests for user data since a new control
1848 	 * interface was added. This handles cases where the EAP authentication
1849 	 * starts immediately after system startup when the user interface is
1850 	 * not yet running. */
1851 	if (config->pending_req_identity)
1852 		eap_sm_request_identity(sm);
1853 	if (config->pending_req_password)
1854 		eap_sm_request_password(sm);
1855 	if (config->pending_req_new_password)
1856 		eap_sm_request_new_password(sm);
1857 	if (config->pending_req_otp)
1858 		eap_sm_request_otp(sm, NULL, 0);
1859 	if (config->pending_req_pin)
1860 		eap_sm_request_pin(sm);
1861 	if (config->pending_req_passphrase)
1862 		eap_sm_request_passphrase(sm);
1863 }
1864 
1865 
eap_allowed_phase2_type(int vendor,int type)1866 static int eap_allowed_phase2_type(int vendor, int type)
1867 {
1868 	if (vendor != EAP_VENDOR_IETF)
1869 		return 0;
1870 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1871 		type != EAP_TYPE_FAST;
1872 }
1873 
1874 
1875 /**
1876  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1877  * @name: EAP method name, e.g., MD5
1878  * @vendor: Buffer for returning EAP Vendor-Id
1879  * Returns: EAP method type or %EAP_TYPE_NONE if not found
1880  *
1881  * This function maps EAP type names into EAP type numbers that are allowed for
1882  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1883  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1884  */
eap_get_phase2_type(const char * name,int * vendor)1885 u32 eap_get_phase2_type(const char *name, int *vendor)
1886 {
1887 	int v;
1888 	u8 type = eap_peer_get_type(name, &v);
1889 	if (eap_allowed_phase2_type(v, type)) {
1890 		*vendor = v;
1891 		return type;
1892 	}
1893 	*vendor = EAP_VENDOR_IETF;
1894 	return EAP_TYPE_NONE;
1895 }
1896 
1897 
1898 /**
1899  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1900  * @config: Pointer to a network configuration
1901  * @count: Pointer to a variable to be filled with number of returned EAP types
1902  * Returns: Pointer to allocated type list or %NULL on failure
1903  *
1904  * This function generates an array of allowed EAP phase 2 (tunneled) types for
1905  * the given network configuration.
1906  */
eap_get_phase2_types(struct eap_peer_config * config,size_t * count)1907 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1908 					      size_t *count)
1909 {
1910 	struct eap_method_type *buf;
1911 	u32 method;
1912 	int vendor;
1913 	size_t mcount;
1914 	const struct eap_method *methods, *m;
1915 
1916 	methods = eap_peer_get_methods(&mcount);
1917 	if (methods == NULL)
1918 		return NULL;
1919 	*count = 0;
1920 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
1921 	if (buf == NULL)
1922 		return NULL;
1923 
1924 	for (m = methods; m; m = m->next) {
1925 		vendor = m->vendor;
1926 		method = m->method;
1927 		if (eap_allowed_phase2_type(vendor, method)) {
1928 			if (vendor == EAP_VENDOR_IETF &&
1929 			    method == EAP_TYPE_TLS && config &&
1930 			    config->private_key2 == NULL)
1931 				continue;
1932 			buf[*count].vendor = vendor;
1933 			buf[*count].method = method;
1934 			(*count)++;
1935 		}
1936 	}
1937 
1938 	return buf;
1939 }
1940 
1941 
1942 /**
1943  * eap_set_fast_reauth - Update fast_reauth setting
1944  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1945  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1946  */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)1947 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1948 {
1949 	sm->fast_reauth = enabled;
1950 }
1951 
1952 
1953 /**
1954  * eap_set_workaround - Update EAP workarounds setting
1955  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1956  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1957  */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)1958 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1959 {
1960 	sm->workaround = workaround;
1961 }
1962 
1963 
1964 /**
1965  * eap_get_config - Get current network configuration
1966  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1967  * Returns: Pointer to the current network configuration or %NULL if not found
1968  *
1969  * EAP peer methods should avoid using this function if they can use other
1970  * access functions, like eap_get_config_identity() and
1971  * eap_get_config_password(), that do not require direct access to
1972  * struct eap_peer_config.
1973  */
eap_get_config(struct eap_sm * sm)1974 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1975 {
1976 	return sm->eapol_cb->get_config(sm->eapol_ctx);
1977 }
1978 
1979 
1980 /**
1981  * eap_get_config_identity - Get identity from the network configuration
1982  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1983  * @len: Buffer for the length of the identity
1984  * Returns: Pointer to the identity or %NULL if not found
1985  */
eap_get_config_identity(struct eap_sm * sm,size_t * len)1986 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1987 {
1988 	struct eap_peer_config *config = eap_get_config(sm);
1989 	if (config == NULL)
1990 		return NULL;
1991 	*len = config->identity_len;
1992 	return config->identity;
1993 }
1994 
1995 
eap_get_ext_password(struct eap_sm * sm,struct eap_peer_config * config)1996 static int eap_get_ext_password(struct eap_sm *sm,
1997 				struct eap_peer_config *config)
1998 {
1999 	char *name;
2000 
2001 	if (config->password == NULL)
2002 		return -1;
2003 
2004 	name = os_zalloc(config->password_len + 1);
2005 	if (name == NULL)
2006 		return -1;
2007 	os_memcpy(name, config->password, config->password_len);
2008 
2009 	ext_password_free(sm->ext_pw_buf);
2010 	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2011 	os_free(name);
2012 
2013 	return sm->ext_pw_buf == NULL ? -1 : 0;
2014 }
2015 
2016 
2017 /**
2018  * eap_get_config_password - Get password from the network configuration
2019  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2020  * @len: Buffer for the length of the password
2021  * Returns: Pointer to the password or %NULL if not found
2022  */
eap_get_config_password(struct eap_sm * sm,size_t * len)2023 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2024 {
2025 	struct eap_peer_config *config = eap_get_config(sm);
2026 	if (config == NULL)
2027 		return NULL;
2028 
2029 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2030 		if (eap_get_ext_password(sm, config) < 0)
2031 			return NULL;
2032 		*len = wpabuf_len(sm->ext_pw_buf);
2033 		return wpabuf_head(sm->ext_pw_buf);
2034 	}
2035 
2036 	*len = config->password_len;
2037 	return config->password;
2038 }
2039 
2040 
2041 /**
2042  * eap_get_config_password2 - Get password from the network configuration
2043  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2044  * @len: Buffer for the length of the password
2045  * @hash: Buffer for returning whether the password is stored as a
2046  * NtPasswordHash instead of plaintext password; can be %NULL if this
2047  * information is not needed
2048  * Returns: Pointer to the password or %NULL if not found
2049  */
eap_get_config_password2(struct eap_sm * sm,size_t * len,int * hash)2050 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2051 {
2052 	struct eap_peer_config *config = eap_get_config(sm);
2053 	if (config == NULL)
2054 		return NULL;
2055 
2056 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2057 		if (eap_get_ext_password(sm, config) < 0)
2058 			return NULL;
2059 		if (hash)
2060 			*hash = 0;
2061 		*len = wpabuf_len(sm->ext_pw_buf);
2062 		return wpabuf_head(sm->ext_pw_buf);
2063 	}
2064 
2065 	*len = config->password_len;
2066 	if (hash)
2067 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2068 	return config->password;
2069 }
2070 
2071 
2072 /**
2073  * eap_get_config_new_password - Get new password from network configuration
2074  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2075  * @len: Buffer for the length of the new password
2076  * Returns: Pointer to the new password or %NULL if not found
2077  */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)2078 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2079 {
2080 	struct eap_peer_config *config = eap_get_config(sm);
2081 	if (config == NULL)
2082 		return NULL;
2083 	*len = config->new_password_len;
2084 	return config->new_password;
2085 }
2086 
2087 
2088 /**
2089  * eap_get_config_otp - Get one-time password from the network configuration
2090  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2091  * @len: Buffer for the length of the one-time password
2092  * Returns: Pointer to the one-time password or %NULL if not found
2093  */
eap_get_config_otp(struct eap_sm * sm,size_t * len)2094 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2095 {
2096 	struct eap_peer_config *config = eap_get_config(sm);
2097 	if (config == NULL)
2098 		return NULL;
2099 	*len = config->otp_len;
2100 	return config->otp;
2101 }
2102 
2103 
2104 /**
2105  * eap_clear_config_otp - Clear used one-time password
2106  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2107  *
2108  * This function clears a used one-time password (OTP) from the current network
2109  * configuration. This should be called when the OTP has been used and is not
2110  * needed anymore.
2111  */
eap_clear_config_otp(struct eap_sm * sm)2112 void eap_clear_config_otp(struct eap_sm *sm)
2113 {
2114 	struct eap_peer_config *config = eap_get_config(sm);
2115 	if (config == NULL)
2116 		return;
2117 	os_memset(config->otp, 0, config->otp_len);
2118 	os_free(config->otp);
2119 	config->otp = NULL;
2120 	config->otp_len = 0;
2121 }
2122 
2123 
2124 /**
2125  * eap_get_config_phase1 - Get phase1 data from the network configuration
2126  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2127  * Returns: Pointer to the phase1 data or %NULL if not found
2128  */
eap_get_config_phase1(struct eap_sm * sm)2129 const char * eap_get_config_phase1(struct eap_sm *sm)
2130 {
2131 	struct eap_peer_config *config = eap_get_config(sm);
2132 	if (config == NULL)
2133 		return NULL;
2134 	return config->phase1;
2135 }
2136 
2137 
2138 /**
2139  * eap_get_config_phase2 - Get phase2 data from the network configuration
2140  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2141  * Returns: Pointer to the phase1 data or %NULL if not found
2142  */
eap_get_config_phase2(struct eap_sm * sm)2143 const char * eap_get_config_phase2(struct eap_sm *sm)
2144 {
2145 	struct eap_peer_config *config = eap_get_config(sm);
2146 	if (config == NULL)
2147 		return NULL;
2148 	return config->phase2;
2149 }
2150 
2151 
eap_get_config_fragment_size(struct eap_sm * sm)2152 int eap_get_config_fragment_size(struct eap_sm *sm)
2153 {
2154 	struct eap_peer_config *config = eap_get_config(sm);
2155 	if (config == NULL)
2156 		return -1;
2157 	return config->fragment_size;
2158 }
2159 
2160 
2161 /**
2162  * eap_key_available - Get key availability (eapKeyAvailable variable)
2163  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2164  * Returns: 1 if EAP keying material is available, 0 if not
2165  */
eap_key_available(struct eap_sm * sm)2166 int eap_key_available(struct eap_sm *sm)
2167 {
2168 	return sm ? sm->eapKeyAvailable : 0;
2169 }
2170 
2171 
2172 /**
2173  * eap_notify_success - Notify EAP state machine about external success trigger
2174  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2175  *
2176  * This function is called when external event, e.g., successful completion of
2177  * WPA-PSK key handshake, is indicating that EAP state machine should move to
2178  * success state. This is mainly used with security modes that do not use EAP
2179  * state machine (e.g., WPA-PSK).
2180  */
eap_notify_success(struct eap_sm * sm)2181 void eap_notify_success(struct eap_sm *sm)
2182 {
2183 	if (sm) {
2184 		sm->decision = DECISION_COND_SUCC;
2185 		sm->EAP_state = EAP_SUCCESS;
2186 	}
2187 }
2188 
2189 
2190 /**
2191  * eap_notify_lower_layer_success - Notification of lower layer success
2192  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2193  *
2194  * Notify EAP state machines that a lower layer has detected a successful
2195  * authentication. This is used to recover from dropped EAP-Success messages.
2196  */
eap_notify_lower_layer_success(struct eap_sm * sm)2197 void eap_notify_lower_layer_success(struct eap_sm *sm)
2198 {
2199 	if (sm == NULL)
2200 		return;
2201 
2202 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2203 	    sm->decision == DECISION_FAIL ||
2204 	    (sm->methodState != METHOD_MAY_CONT &&
2205 	     sm->methodState != METHOD_DONE))
2206 		return;
2207 
2208 	if (sm->eapKeyData != NULL)
2209 		sm->eapKeyAvailable = TRUE;
2210 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2211 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2212 		"EAP authentication completed successfully (based on lower "
2213 		"layer success)");
2214 }
2215 
2216 
2217 /**
2218  * eap_get_eapSessionId - Get Session-Id from EAP state machine
2219  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2220  * @len: Pointer to variable that will be set to number of bytes in the session
2221  * Returns: Pointer to the EAP Session-Id or %NULL on failure
2222  *
2223  * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2224  * only after a successful authentication. EAP state machine continues to manage
2225  * the Session-Id and the caller must not change or free the returned data.
2226  */
eap_get_eapSessionId(struct eap_sm * sm,size_t * len)2227 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2228 {
2229 	if (sm == NULL || sm->eapSessionId == NULL) {
2230 		*len = 0;
2231 		return NULL;
2232 	}
2233 
2234 	*len = sm->eapSessionIdLen;
2235 	return sm->eapSessionId;
2236 }
2237 
2238 
2239 /**
2240  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2241  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2242  * @len: Pointer to variable that will be set to number of bytes in the key
2243  * Returns: Pointer to the EAP keying data or %NULL on failure
2244  *
2245  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2246  * key is available only after a successful authentication. EAP state machine
2247  * continues to manage the key data and the caller must not change or free the
2248  * returned data.
2249  */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)2250 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2251 {
2252 	if (sm == NULL || sm->eapKeyData == NULL) {
2253 		*len = 0;
2254 		return NULL;
2255 	}
2256 
2257 	*len = sm->eapKeyDataLen;
2258 	return sm->eapKeyData;
2259 }
2260 
2261 
2262 /**
2263  * eap_get_eapKeyData - Get EAP response data
2264  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2265  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2266  *
2267  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2268  * available when EAP state machine has processed an incoming EAP request. The
2269  * EAP state machine does not maintain a reference to the response after this
2270  * function is called and the caller is responsible for freeing the data.
2271  */
eap_get_eapRespData(struct eap_sm * sm)2272 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2273 {
2274 	struct wpabuf *resp;
2275 
2276 	if (sm == NULL || sm->eapRespData == NULL)
2277 		return NULL;
2278 
2279 	resp = sm->eapRespData;
2280 	sm->eapRespData = NULL;
2281 
2282 	return resp;
2283 }
2284 
2285 
2286 /**
2287  * eap_sm_register_scard_ctx - Notification of smart card context
2288  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2289  * @ctx: Context data for smart card operations
2290  *
2291  * Notify EAP state machines of context data for smart card operations. This
2292  * context data will be used as a parameter for scard_*() functions.
2293  */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)2294 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2295 {
2296 	if (sm)
2297 		sm->scard_ctx = ctx;
2298 }
2299 
2300 
2301 /**
2302  * eap_set_config_blob - Set or add a named configuration blob
2303  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2304  * @blob: New value for the blob
2305  *
2306  * Adds a new configuration blob or replaces the current value of an existing
2307  * blob.
2308  */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)2309 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2310 {
2311 #ifndef CONFIG_NO_CONFIG_BLOBS
2312 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2313 #endif /* CONFIG_NO_CONFIG_BLOBS */
2314 }
2315 
2316 
2317 /**
2318  * eap_get_config_blob - Get a named configuration blob
2319  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2320  * @name: Name of the blob
2321  * Returns: Pointer to blob data or %NULL if not found
2322  */
eap_get_config_blob(struct eap_sm * sm,const char * name)2323 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2324 						   const char *name)
2325 {
2326 #ifndef CONFIG_NO_CONFIG_BLOBS
2327 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2328 #else /* CONFIG_NO_CONFIG_BLOBS */
2329 	return NULL;
2330 #endif /* CONFIG_NO_CONFIG_BLOBS */
2331 }
2332 
2333 
2334 /**
2335  * eap_set_force_disabled - Set force_disabled flag
2336  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2337  * @disabled: 1 = EAP disabled, 0 = EAP enabled
2338  *
2339  * This function is used to force EAP state machine to be disabled when it is
2340  * not in use (e.g., with WPA-PSK or plaintext connections).
2341  */
eap_set_force_disabled(struct eap_sm * sm,int disabled)2342 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2343 {
2344 	sm->force_disabled = disabled;
2345 }
2346 
2347 
2348 /**
2349  * eap_set_external_sim - Set external_sim flag
2350  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2351  * @external_sim: Whether external SIM/USIM processing is used
2352  */
eap_set_external_sim(struct eap_sm * sm,int external_sim)2353 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
2354 {
2355 	sm->external_sim = external_sim;
2356 }
2357 
2358 
2359  /**
2360  * eap_notify_pending - Notify that EAP method is ready to re-process a request
2361  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2362  *
2363  * An EAP method can perform a pending operation (e.g., to get a response from
2364  * an external process). Once the response is available, this function can be
2365  * used to request EAPOL state machine to retry delivering the previously
2366  * received (and still unanswered) EAP request to EAP state machine.
2367  */
eap_notify_pending(struct eap_sm * sm)2368 void eap_notify_pending(struct eap_sm *sm)
2369 {
2370 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2371 }
2372 
2373 
2374 /**
2375  * eap_invalidate_cached_session - Mark cached session data invalid
2376  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2377  */
eap_invalidate_cached_session(struct eap_sm * sm)2378 void eap_invalidate_cached_session(struct eap_sm *sm)
2379 {
2380 	if (sm)
2381 		eap_deinit_prev_method(sm, "invalidate");
2382 }
2383 
2384 
eap_is_wps_pbc_enrollee(struct eap_peer_config * conf)2385 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2386 {
2387 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2388 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2389 		return 0; /* Not a WPS Enrollee */
2390 
2391 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2392 		return 0; /* Not using PBC */
2393 
2394 	return 1;
2395 }
2396 
2397 
eap_is_wps_pin_enrollee(struct eap_peer_config * conf)2398 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2399 {
2400 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2401 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2402 		return 0; /* Not a WPS Enrollee */
2403 
2404 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2405 		return 0; /* Not using PIN */
2406 
2407 	return 1;
2408 }
2409 
2410 
eap_sm_set_ext_pw_ctx(struct eap_sm * sm,struct ext_password_data * ext)2411 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2412 {
2413 	ext_password_free(sm->ext_pw_buf);
2414 	sm->ext_pw_buf = NULL;
2415 	sm->ext_pw = ext;
2416 }
2417 
2418 
2419 /**
2420  * eap_set_anon_id - Set or add anonymous identity
2421  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2422  * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2423  * @len: Length of anonymous identity in octets
2424  */
eap_set_anon_id(struct eap_sm * sm,const u8 * id,size_t len)2425 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2426 {
2427 	if (sm->eapol_cb->set_anon_id)
2428 		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2429 }
2430 
2431 
eap_peer_was_failure_expected(struct eap_sm * sm)2432 int eap_peer_was_failure_expected(struct eap_sm *sm)
2433 {
2434 	return sm->expected_failure;
2435 }
2436