1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include <cctype>
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "systemz-lower"
28
29 namespace {
30 // Represents a sequence for extracting a 0/1 value from an IPM result:
31 // (((X ^ XORValue) + AddValue) >> Bit)
32 struct IPMConversion {
IPMConversion__anon258740200111::IPMConversion33 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
34 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
35
36 int64_t XORValue;
37 int64_t AddValue;
38 unsigned Bit;
39 };
40
41 // Represents information about a comparison.
42 struct Comparison {
Comparison__anon258740200111::Comparison43 Comparison(SDValue Op0In, SDValue Op1In)
44 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
45
46 // The operands to the comparison.
47 SDValue Op0, Op1;
48
49 // The opcode that should be used to compare Op0 and Op1.
50 unsigned Opcode;
51
52 // A SystemZICMP value. Only used for integer comparisons.
53 unsigned ICmpType;
54
55 // The mask of CC values that Opcode can produce.
56 unsigned CCValid;
57
58 // The mask of CC values for which the original condition is true.
59 unsigned CCMask;
60 };
61 } // end anonymous namespace
62
63 // Classify VT as either 32 or 64 bit.
is32Bit(EVT VT)64 static bool is32Bit(EVT VT) {
65 switch (VT.getSimpleVT().SimpleTy) {
66 case MVT::i32:
67 return true;
68 case MVT::i64:
69 return false;
70 default:
71 llvm_unreachable("Unsupported type");
72 }
73 }
74
75 // Return a version of MachineOperand that can be safely used before the
76 // final use.
earlyUseOperand(MachineOperand Op)77 static MachineOperand earlyUseOperand(MachineOperand Op) {
78 if (Op.isReg())
79 Op.setIsKill(false);
80 return Op;
81 }
82
SystemZTargetLowering(const TargetMachine & tm)83 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm)
84 : TargetLowering(tm, new TargetLoweringObjectFileELF()),
85 Subtarget(tm.getSubtarget<SystemZSubtarget>()) {
86 MVT PtrVT = getPointerTy();
87
88 // Set up the register classes.
89 if (Subtarget.hasHighWord())
90 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
91 else
92 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
93 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
94 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
95 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97
98 // Compute derived properties from the register classes
99 computeRegisterProperties();
100
101 // Set up special registers.
102 setExceptionPointerRegister(SystemZ::R6D);
103 setExceptionSelectorRegister(SystemZ::R7D);
104 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
105
106 // TODO: It may be better to default to latency-oriented scheduling, however
107 // LLVM's current latency-oriented scheduler can't handle physreg definitions
108 // such as SystemZ has with CC, so set this to the register-pressure
109 // scheduler, because it can.
110 setSchedulingPreference(Sched::RegPressure);
111
112 setBooleanContents(ZeroOrOneBooleanContent);
113 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
114
115 // Instructions are strings of 2-byte aligned 2-byte values.
116 setMinFunctionAlignment(2);
117
118 // Handle operations that are handled in a similar way for all types.
119 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
120 I <= MVT::LAST_FP_VALUETYPE;
121 ++I) {
122 MVT VT = MVT::SimpleValueType(I);
123 if (isTypeLegal(VT)) {
124 // Lower SET_CC into an IPM-based sequence.
125 setOperationAction(ISD::SETCC, VT, Custom);
126
127 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
128 setOperationAction(ISD::SELECT, VT, Expand);
129
130 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
131 setOperationAction(ISD::SELECT_CC, VT, Custom);
132 setOperationAction(ISD::BR_CC, VT, Custom);
133 }
134 }
135
136 // Expand jump table branches as address arithmetic followed by an
137 // indirect jump.
138 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
139
140 // Expand BRCOND into a BR_CC (see above).
141 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
142
143 // Handle integer types.
144 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
145 I <= MVT::LAST_INTEGER_VALUETYPE;
146 ++I) {
147 MVT VT = MVT::SimpleValueType(I);
148 if (isTypeLegal(VT)) {
149 // Expand individual DIV and REMs into DIVREMs.
150 setOperationAction(ISD::SDIV, VT, Expand);
151 setOperationAction(ISD::UDIV, VT, Expand);
152 setOperationAction(ISD::SREM, VT, Expand);
153 setOperationAction(ISD::UREM, VT, Expand);
154 setOperationAction(ISD::SDIVREM, VT, Custom);
155 setOperationAction(ISD::UDIVREM, VT, Custom);
156
157 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
158 // stores, putting a serialization instruction after the stores.
159 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
160 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
161
162 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
163 // available, or if the operand is constant.
164 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
165
166 // No special instructions for these.
167 setOperationAction(ISD::CTPOP, VT, Expand);
168 setOperationAction(ISD::CTTZ, VT, Expand);
169 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
170 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
171 setOperationAction(ISD::ROTR, VT, Expand);
172
173 // Use *MUL_LOHI where possible instead of MULH*.
174 setOperationAction(ISD::MULHS, VT, Expand);
175 setOperationAction(ISD::MULHU, VT, Expand);
176 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
177 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
178
179 // Only z196 and above have native support for conversions to unsigned.
180 if (!Subtarget.hasFPExtension())
181 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
182 }
183 }
184
185 // Type legalization will convert 8- and 16-bit atomic operations into
186 // forms that operate on i32s (but still keeping the original memory VT).
187 // Lower them into full i32 operations.
188 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
189 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
190 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
191 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
192 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
193 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
194 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
195 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
196 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
197 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
198 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
199 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
200
201 // z10 has instructions for signed but not unsigned FP conversion.
202 // Handle unsigned 32-bit types as signed 64-bit types.
203 if (!Subtarget.hasFPExtension()) {
204 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
205 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
206 }
207
208 // We have native support for a 64-bit CTLZ, via FLOGR.
209 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
210 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
211
212 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
213 setOperationAction(ISD::OR, MVT::i64, Custom);
214
215 // FIXME: Can we support these natively?
216 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
217 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
218 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
219
220 // We have native instructions for i8, i16 and i32 extensions, but not i1.
221 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
222 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
223 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
224 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
225
226 // Handle the various types of symbolic address.
227 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
228 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
229 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
230 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
231 setOperationAction(ISD::JumpTable, PtrVT, Custom);
232
233 // We need to handle dynamic allocations specially because of the
234 // 160-byte area at the bottom of the stack.
235 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
236
237 // Use custom expanders so that we can force the function to use
238 // a frame pointer.
239 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
240 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
241
242 // Handle prefetches with PFD or PFDRL.
243 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
244
245 // Handle floating-point types.
246 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
247 I <= MVT::LAST_FP_VALUETYPE;
248 ++I) {
249 MVT VT = MVT::SimpleValueType(I);
250 if (isTypeLegal(VT)) {
251 // We can use FI for FRINT.
252 setOperationAction(ISD::FRINT, VT, Legal);
253
254 // We can use the extended form of FI for other rounding operations.
255 if (Subtarget.hasFPExtension()) {
256 setOperationAction(ISD::FNEARBYINT, VT, Legal);
257 setOperationAction(ISD::FFLOOR, VT, Legal);
258 setOperationAction(ISD::FCEIL, VT, Legal);
259 setOperationAction(ISD::FTRUNC, VT, Legal);
260 setOperationAction(ISD::FROUND, VT, Legal);
261 }
262
263 // No special instructions for these.
264 setOperationAction(ISD::FSIN, VT, Expand);
265 setOperationAction(ISD::FCOS, VT, Expand);
266 setOperationAction(ISD::FREM, VT, Expand);
267 }
268 }
269
270 // We have fused multiply-addition for f32 and f64 but not f128.
271 setOperationAction(ISD::FMA, MVT::f32, Legal);
272 setOperationAction(ISD::FMA, MVT::f64, Legal);
273 setOperationAction(ISD::FMA, MVT::f128, Expand);
274
275 // Needed so that we don't try to implement f128 constant loads using
276 // a load-and-extend of a f80 constant (in cases where the constant
277 // would fit in an f80).
278 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
279
280 // Floating-point truncation and stores need to be done separately.
281 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
282 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
283 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
284
285 // We have 64-bit FPR<->GPR moves, but need special handling for
286 // 32-bit forms.
287 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
288 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
289
290 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
291 // structure, but VAEND is a no-op.
292 setOperationAction(ISD::VASTART, MVT::Other, Custom);
293 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
294 setOperationAction(ISD::VAEND, MVT::Other, Expand);
295
296 // Codes for which we want to perform some z-specific combinations.
297 setTargetDAGCombine(ISD::SIGN_EXTEND);
298
299 // We want to use MVC in preference to even a single load/store pair.
300 MaxStoresPerMemcpy = 0;
301 MaxStoresPerMemcpyOptSize = 0;
302
303 // The main memset sequence is a byte store followed by an MVC.
304 // Two STC or MV..I stores win over that, but the kind of fused stores
305 // generated by target-independent code don't when the byte value is
306 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
307 // than "STC;MVC". Handle the choice in target-specific code instead.
308 MaxStoresPerMemset = 0;
309 MaxStoresPerMemsetOptSize = 0;
310 }
311
getSetCCResultType(LLVMContext &,EVT VT) const312 EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
313 if (!VT.isVector())
314 return MVT::i32;
315 return VT.changeVectorElementTypeToInteger();
316 }
317
isFMAFasterThanFMulAndFAdd(EVT VT) const318 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
319 VT = VT.getScalarType();
320
321 if (!VT.isSimple())
322 return false;
323
324 switch (VT.getSimpleVT().SimpleTy) {
325 case MVT::f32:
326 case MVT::f64:
327 return true;
328 case MVT::f128:
329 return false;
330 default:
331 break;
332 }
333
334 return false;
335 }
336
isFPImmLegal(const APFloat & Imm,EVT VT) const337 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
338 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
339 return Imm.isZero() || Imm.isNegZero();
340 }
341
allowsUnalignedMemoryAccesses(EVT VT,unsigned,bool * Fast) const342 bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
343 unsigned,
344 bool *Fast) const {
345 // Unaligned accesses should never be slower than the expanded version.
346 // We check specifically for aligned accesses in the few cases where
347 // they are required.
348 if (Fast)
349 *Fast = true;
350 return true;
351 }
352
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const353 bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
354 Type *Ty) const {
355 // Punt on globals for now, although they can be used in limited
356 // RELATIVE LONG cases.
357 if (AM.BaseGV)
358 return false;
359
360 // Require a 20-bit signed offset.
361 if (!isInt<20>(AM.BaseOffs))
362 return false;
363
364 // Indexing is OK but no scale factor can be applied.
365 return AM.Scale == 0 || AM.Scale == 1;
366 }
367
isTruncateFree(Type * FromType,Type * ToType) const368 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
369 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
370 return false;
371 unsigned FromBits = FromType->getPrimitiveSizeInBits();
372 unsigned ToBits = ToType->getPrimitiveSizeInBits();
373 return FromBits > ToBits;
374 }
375
isTruncateFree(EVT FromVT,EVT ToVT) const376 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
377 if (!FromVT.isInteger() || !ToVT.isInteger())
378 return false;
379 unsigned FromBits = FromVT.getSizeInBits();
380 unsigned ToBits = ToVT.getSizeInBits();
381 return FromBits > ToBits;
382 }
383
384 //===----------------------------------------------------------------------===//
385 // Inline asm support
386 //===----------------------------------------------------------------------===//
387
388 TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const389 SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
390 if (Constraint.size() == 1) {
391 switch (Constraint[0]) {
392 case 'a': // Address register
393 case 'd': // Data register (equivalent to 'r')
394 case 'f': // Floating-point register
395 case 'h': // High-part register
396 case 'r': // General-purpose register
397 return C_RegisterClass;
398
399 case 'Q': // Memory with base and unsigned 12-bit displacement
400 case 'R': // Likewise, plus an index
401 case 'S': // Memory with base and signed 20-bit displacement
402 case 'T': // Likewise, plus an index
403 case 'm': // Equivalent to 'T'.
404 return C_Memory;
405
406 case 'I': // Unsigned 8-bit constant
407 case 'J': // Unsigned 12-bit constant
408 case 'K': // Signed 16-bit constant
409 case 'L': // Signed 20-bit displacement (on all targets we support)
410 case 'M': // 0x7fffffff
411 return C_Other;
412
413 default:
414 break;
415 }
416 }
417 return TargetLowering::getConstraintType(Constraint);
418 }
419
420 TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const421 getSingleConstraintMatchWeight(AsmOperandInfo &info,
422 const char *constraint) const {
423 ConstraintWeight weight = CW_Invalid;
424 Value *CallOperandVal = info.CallOperandVal;
425 // If we don't have a value, we can't do a match,
426 // but allow it at the lowest weight.
427 if (!CallOperandVal)
428 return CW_Default;
429 Type *type = CallOperandVal->getType();
430 // Look at the constraint type.
431 switch (*constraint) {
432 default:
433 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
434 break;
435
436 case 'a': // Address register
437 case 'd': // Data register (equivalent to 'r')
438 case 'h': // High-part register
439 case 'r': // General-purpose register
440 if (CallOperandVal->getType()->isIntegerTy())
441 weight = CW_Register;
442 break;
443
444 case 'f': // Floating-point register
445 if (type->isFloatingPointTy())
446 weight = CW_Register;
447 break;
448
449 case 'I': // Unsigned 8-bit constant
450 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
451 if (isUInt<8>(C->getZExtValue()))
452 weight = CW_Constant;
453 break;
454
455 case 'J': // Unsigned 12-bit constant
456 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
457 if (isUInt<12>(C->getZExtValue()))
458 weight = CW_Constant;
459 break;
460
461 case 'K': // Signed 16-bit constant
462 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
463 if (isInt<16>(C->getSExtValue()))
464 weight = CW_Constant;
465 break;
466
467 case 'L': // Signed 20-bit displacement (on all targets we support)
468 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
469 if (isInt<20>(C->getSExtValue()))
470 weight = CW_Constant;
471 break;
472
473 case 'M': // 0x7fffffff
474 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
475 if (C->getZExtValue() == 0x7fffffff)
476 weight = CW_Constant;
477 break;
478 }
479 return weight;
480 }
481
482 // Parse a "{tNNN}" register constraint for which the register type "t"
483 // has already been verified. MC is the class associated with "t" and
484 // Map maps 0-based register numbers to LLVM register numbers.
485 static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(const std::string & Constraint,const TargetRegisterClass * RC,const unsigned * Map)486 parseRegisterNumber(const std::string &Constraint,
487 const TargetRegisterClass *RC, const unsigned *Map) {
488 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
489 if (isdigit(Constraint[2])) {
490 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
491 unsigned Index = atoi(Suffix.c_str());
492 if (Index < 16 && Map[Index])
493 return std::make_pair(Map[Index], RC);
494 }
495 return std::make_pair(0U, nullptr);
496 }
497
498 std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
getRegForInlineAsmConstraint(const std::string & Constraint,MVT VT) const499 getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
500 if (Constraint.size() == 1) {
501 // GCC Constraint Letters
502 switch (Constraint[0]) {
503 default: break;
504 case 'd': // Data register (equivalent to 'r')
505 case 'r': // General-purpose register
506 if (VT == MVT::i64)
507 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
508 else if (VT == MVT::i128)
509 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
510 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
511
512 case 'a': // Address register
513 if (VT == MVT::i64)
514 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
515 else if (VT == MVT::i128)
516 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
517 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
518
519 case 'h': // High-part register (an LLVM extension)
520 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
521
522 case 'f': // Floating-point register
523 if (VT == MVT::f64)
524 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
525 else if (VT == MVT::f128)
526 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
527 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
528 }
529 }
530 if (Constraint[0] == '{') {
531 // We need to override the default register parsing for GPRs and FPRs
532 // because the interpretation depends on VT. The internal names of
533 // the registers are also different from the external names
534 // (F0D and F0S instead of F0, etc.).
535 if (Constraint[1] == 'r') {
536 if (VT == MVT::i32)
537 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
538 SystemZMC::GR32Regs);
539 if (VT == MVT::i128)
540 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
541 SystemZMC::GR128Regs);
542 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
543 SystemZMC::GR64Regs);
544 }
545 if (Constraint[1] == 'f') {
546 if (VT == MVT::f32)
547 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
548 SystemZMC::FP32Regs);
549 if (VT == MVT::f128)
550 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
551 SystemZMC::FP128Regs);
552 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
553 SystemZMC::FP64Regs);
554 }
555 }
556 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
557 }
558
559 void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const560 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
561 std::vector<SDValue> &Ops,
562 SelectionDAG &DAG) const {
563 // Only support length 1 constraints for now.
564 if (Constraint.length() == 1) {
565 switch (Constraint[0]) {
566 case 'I': // Unsigned 8-bit constant
567 if (auto *C = dyn_cast<ConstantSDNode>(Op))
568 if (isUInt<8>(C->getZExtValue()))
569 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
570 Op.getValueType()));
571 return;
572
573 case 'J': // Unsigned 12-bit constant
574 if (auto *C = dyn_cast<ConstantSDNode>(Op))
575 if (isUInt<12>(C->getZExtValue()))
576 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
577 Op.getValueType()));
578 return;
579
580 case 'K': // Signed 16-bit constant
581 if (auto *C = dyn_cast<ConstantSDNode>(Op))
582 if (isInt<16>(C->getSExtValue()))
583 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
584 Op.getValueType()));
585 return;
586
587 case 'L': // Signed 20-bit displacement (on all targets we support)
588 if (auto *C = dyn_cast<ConstantSDNode>(Op))
589 if (isInt<20>(C->getSExtValue()))
590 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
591 Op.getValueType()));
592 return;
593
594 case 'M': // 0x7fffffff
595 if (auto *C = dyn_cast<ConstantSDNode>(Op))
596 if (C->getZExtValue() == 0x7fffffff)
597 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
598 Op.getValueType()));
599 return;
600 }
601 }
602 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
603 }
604
605 //===----------------------------------------------------------------------===//
606 // Calling conventions
607 //===----------------------------------------------------------------------===//
608
609 #include "SystemZGenCallingConv.inc"
610
allowTruncateForTailCall(Type * FromType,Type * ToType) const611 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
612 Type *ToType) const {
613 return isTruncateFree(FromType, ToType);
614 }
615
mayBeEmittedAsTailCall(CallInst * CI) const616 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
617 if (!CI->isTailCall())
618 return false;
619 return true;
620 }
621
622 // Value is a value that has been passed to us in the location described by VA
623 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
624 // any loads onto Chain.
convertLocVTToValVT(SelectionDAG & DAG,SDLoc DL,CCValAssign & VA,SDValue Chain,SDValue Value)625 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
626 CCValAssign &VA, SDValue Chain,
627 SDValue Value) {
628 // If the argument has been promoted from a smaller type, insert an
629 // assertion to capture this.
630 if (VA.getLocInfo() == CCValAssign::SExt)
631 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
632 DAG.getValueType(VA.getValVT()));
633 else if (VA.getLocInfo() == CCValAssign::ZExt)
634 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
635 DAG.getValueType(VA.getValVT()));
636
637 if (VA.isExtInLoc())
638 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
639 else if (VA.getLocInfo() == CCValAssign::Indirect)
640 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
641 MachinePointerInfo(), false, false, false, 0);
642 else
643 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
644 return Value;
645 }
646
647 // Value is a value of type VA.getValVT() that we need to copy into
648 // the location described by VA. Return a copy of Value converted to
649 // VA.getValVT(). The caller is responsible for handling indirect values.
convertValVTToLocVT(SelectionDAG & DAG,SDLoc DL,CCValAssign & VA,SDValue Value)650 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
651 CCValAssign &VA, SDValue Value) {
652 switch (VA.getLocInfo()) {
653 case CCValAssign::SExt:
654 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
655 case CCValAssign::ZExt:
656 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
657 case CCValAssign::AExt:
658 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
659 case CCValAssign::Full:
660 return Value;
661 default:
662 llvm_unreachable("Unhandled getLocInfo()");
663 }
664 }
665
666 SDValue SystemZTargetLowering::
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const667 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
668 const SmallVectorImpl<ISD::InputArg> &Ins,
669 SDLoc DL, SelectionDAG &DAG,
670 SmallVectorImpl<SDValue> &InVals) const {
671 MachineFunction &MF = DAG.getMachineFunction();
672 MachineFrameInfo *MFI = MF.getFrameInfo();
673 MachineRegisterInfo &MRI = MF.getRegInfo();
674 SystemZMachineFunctionInfo *FuncInfo =
675 MF.getInfo<SystemZMachineFunctionInfo>();
676 auto *TFL = static_cast<const SystemZFrameLowering *>(
677 DAG.getTarget().getFrameLowering());
678
679 // Assign locations to all of the incoming arguments.
680 SmallVector<CCValAssign, 16> ArgLocs;
681 CCState CCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), ArgLocs,
682 *DAG.getContext());
683 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
684
685 unsigned NumFixedGPRs = 0;
686 unsigned NumFixedFPRs = 0;
687 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
688 SDValue ArgValue;
689 CCValAssign &VA = ArgLocs[I];
690 EVT LocVT = VA.getLocVT();
691 if (VA.isRegLoc()) {
692 // Arguments passed in registers
693 const TargetRegisterClass *RC;
694 switch (LocVT.getSimpleVT().SimpleTy) {
695 default:
696 // Integers smaller than i64 should be promoted to i64.
697 llvm_unreachable("Unexpected argument type");
698 case MVT::i32:
699 NumFixedGPRs += 1;
700 RC = &SystemZ::GR32BitRegClass;
701 break;
702 case MVT::i64:
703 NumFixedGPRs += 1;
704 RC = &SystemZ::GR64BitRegClass;
705 break;
706 case MVT::f32:
707 NumFixedFPRs += 1;
708 RC = &SystemZ::FP32BitRegClass;
709 break;
710 case MVT::f64:
711 NumFixedFPRs += 1;
712 RC = &SystemZ::FP64BitRegClass;
713 break;
714 }
715
716 unsigned VReg = MRI.createVirtualRegister(RC);
717 MRI.addLiveIn(VA.getLocReg(), VReg);
718 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
719 } else {
720 assert(VA.isMemLoc() && "Argument not register or memory");
721
722 // Create the frame index object for this incoming parameter.
723 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
724 VA.getLocMemOffset(), true);
725
726 // Create the SelectionDAG nodes corresponding to a load
727 // from this parameter. Unpromoted ints and floats are
728 // passed as right-justified 8-byte values.
729 EVT PtrVT = getPointerTy();
730 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
731 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
732 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
733 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
734 MachinePointerInfo::getFixedStack(FI),
735 false, false, false, 0);
736 }
737
738 // Convert the value of the argument register into the value that's
739 // being passed.
740 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
741 }
742
743 if (IsVarArg) {
744 // Save the number of non-varargs registers for later use by va_start, etc.
745 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
746 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
747
748 // Likewise the address (in the form of a frame index) of where the
749 // first stack vararg would be. The 1-byte size here is arbitrary.
750 int64_t StackSize = CCInfo.getNextStackOffset();
751 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
752
753 // ...and a similar frame index for the caller-allocated save area
754 // that will be used to store the incoming registers.
755 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
756 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
757 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
758
759 // Store the FPR varargs in the reserved frame slots. (We store the
760 // GPRs as part of the prologue.)
761 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
762 SDValue MemOps[SystemZ::NumArgFPRs];
763 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
764 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
765 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
766 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
767 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
768 &SystemZ::FP64BitRegClass);
769 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
770 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
771 MachinePointerInfo::getFixedStack(FI),
772 false, false, 0);
773
774 }
775 // Join the stores, which are independent of one another.
776 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
777 makeArrayRef(&MemOps[NumFixedFPRs],
778 SystemZ::NumArgFPRs-NumFixedFPRs));
779 }
780 }
781
782 return Chain;
783 }
784
canUseSiblingCall(CCState ArgCCInfo,SmallVectorImpl<CCValAssign> & ArgLocs)785 static bool canUseSiblingCall(CCState ArgCCInfo,
786 SmallVectorImpl<CCValAssign> &ArgLocs) {
787 // Punt if there are any indirect or stack arguments, or if the call
788 // needs the call-saved argument register R6.
789 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
790 CCValAssign &VA = ArgLocs[I];
791 if (VA.getLocInfo() == CCValAssign::Indirect)
792 return false;
793 if (!VA.isRegLoc())
794 return false;
795 unsigned Reg = VA.getLocReg();
796 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
797 return false;
798 }
799 return true;
800 }
801
802 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const803 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
804 SmallVectorImpl<SDValue> &InVals) const {
805 SelectionDAG &DAG = CLI.DAG;
806 SDLoc &DL = CLI.DL;
807 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
808 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
809 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
810 SDValue Chain = CLI.Chain;
811 SDValue Callee = CLI.Callee;
812 bool &IsTailCall = CLI.IsTailCall;
813 CallingConv::ID CallConv = CLI.CallConv;
814 bool IsVarArg = CLI.IsVarArg;
815 MachineFunction &MF = DAG.getMachineFunction();
816 EVT PtrVT = getPointerTy();
817
818 // Analyze the operands of the call, assigning locations to each operand.
819 SmallVector<CCValAssign, 16> ArgLocs;
820 CCState ArgCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), ArgLocs,
821 *DAG.getContext());
822 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
823
824 // We don't support GuaranteedTailCallOpt, only automatically-detected
825 // sibling calls.
826 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
827 IsTailCall = false;
828
829 // Get a count of how many bytes are to be pushed on the stack.
830 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
831
832 // Mark the start of the call.
833 if (!IsTailCall)
834 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
835 DL);
836
837 // Copy argument values to their designated locations.
838 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
839 SmallVector<SDValue, 8> MemOpChains;
840 SDValue StackPtr;
841 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
842 CCValAssign &VA = ArgLocs[I];
843 SDValue ArgValue = OutVals[I];
844
845 if (VA.getLocInfo() == CCValAssign::Indirect) {
846 // Store the argument in a stack slot and pass its address.
847 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
848 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
849 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
850 MachinePointerInfo::getFixedStack(FI),
851 false, false, 0));
852 ArgValue = SpillSlot;
853 } else
854 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
855
856 if (VA.isRegLoc())
857 // Queue up the argument copies and emit them at the end.
858 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
859 else {
860 assert(VA.isMemLoc() && "Argument not register or memory");
861
862 // Work out the address of the stack slot. Unpromoted ints and
863 // floats are passed as right-justified 8-byte values.
864 if (!StackPtr.getNode())
865 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
866 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
867 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
868 Offset += 4;
869 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
870 DAG.getIntPtrConstant(Offset));
871
872 // Emit the store.
873 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
874 MachinePointerInfo(),
875 false, false, 0));
876 }
877 }
878
879 // Join the stores, which are independent of one another.
880 if (!MemOpChains.empty())
881 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
882
883 // Accept direct calls by converting symbolic call addresses to the
884 // associated Target* opcodes. Force %r1 to be used for indirect
885 // tail calls.
886 SDValue Glue;
887 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
888 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
889 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
890 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
891 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
892 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
893 } else if (IsTailCall) {
894 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
895 Glue = Chain.getValue(1);
896 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
897 }
898
899 // Build a sequence of copy-to-reg nodes, chained and glued together.
900 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
901 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
902 RegsToPass[I].second, Glue);
903 Glue = Chain.getValue(1);
904 }
905
906 // The first call operand is the chain and the second is the target address.
907 SmallVector<SDValue, 8> Ops;
908 Ops.push_back(Chain);
909 Ops.push_back(Callee);
910
911 // Add argument registers to the end of the list so that they are
912 // known live into the call.
913 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
914 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
915 RegsToPass[I].second.getValueType()));
916
917 // Add a register mask operand representing the call-preserved registers.
918 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
919 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
920 assert(Mask && "Missing call preserved mask for calling convention");
921 Ops.push_back(DAG.getRegisterMask(Mask));
922
923 // Glue the call to the argument copies, if any.
924 if (Glue.getNode())
925 Ops.push_back(Glue);
926
927 // Emit the call.
928 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
929 if (IsTailCall)
930 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
931 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
932 Glue = Chain.getValue(1);
933
934 // Mark the end of the call, which is glued to the call itself.
935 Chain = DAG.getCALLSEQ_END(Chain,
936 DAG.getConstant(NumBytes, PtrVT, true),
937 DAG.getConstant(0, PtrVT, true),
938 Glue, DL);
939 Glue = Chain.getValue(1);
940
941 // Assign locations to each value returned by this call.
942 SmallVector<CCValAssign, 16> RetLocs;
943 CCState RetCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), RetLocs,
944 *DAG.getContext());
945 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
946
947 // Copy all of the result registers out of their specified physreg.
948 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
949 CCValAssign &VA = RetLocs[I];
950
951 // Copy the value out, gluing the copy to the end of the call sequence.
952 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
953 VA.getLocVT(), Glue);
954 Chain = RetValue.getValue(1);
955 Glue = RetValue.getValue(2);
956
957 // Convert the value of the return register into the value that's
958 // being returned.
959 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
960 }
961
962 return Chain;
963 }
964
965 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc DL,SelectionDAG & DAG) const966 SystemZTargetLowering::LowerReturn(SDValue Chain,
967 CallingConv::ID CallConv, bool IsVarArg,
968 const SmallVectorImpl<ISD::OutputArg> &Outs,
969 const SmallVectorImpl<SDValue> &OutVals,
970 SDLoc DL, SelectionDAG &DAG) const {
971 MachineFunction &MF = DAG.getMachineFunction();
972
973 // Assign locations to each returned value.
974 SmallVector<CCValAssign, 16> RetLocs;
975 CCState RetCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), RetLocs,
976 *DAG.getContext());
977 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
978
979 // Quick exit for void returns
980 if (RetLocs.empty())
981 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
982
983 // Copy the result values into the output registers.
984 SDValue Glue;
985 SmallVector<SDValue, 4> RetOps;
986 RetOps.push_back(Chain);
987 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
988 CCValAssign &VA = RetLocs[I];
989 SDValue RetValue = OutVals[I];
990
991 // Make the return register live on exit.
992 assert(VA.isRegLoc() && "Can only return in registers!");
993
994 // Promote the value as required.
995 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
996
997 // Chain and glue the copies together.
998 unsigned Reg = VA.getLocReg();
999 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1000 Glue = Chain.getValue(1);
1001 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1002 }
1003
1004 // Update chain and glue.
1005 RetOps[0] = Chain;
1006 if (Glue.getNode())
1007 RetOps.push_back(Glue);
1008
1009 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1010 }
1011
1012 SDValue SystemZTargetLowering::
prepareVolatileOrAtomicLoad(SDValue Chain,SDLoc DL,SelectionDAG & DAG) const1013 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
1014 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1015 }
1016
1017 // CC is a comparison that will be implemented using an integer or
1018 // floating-point comparison. Return the condition code mask for
1019 // a branch on true. In the integer case, CCMASK_CMP_UO is set for
1020 // unsigned comparisons and clear for signed ones. In the floating-point
1021 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
CCMaskForCondCode(ISD::CondCode CC)1022 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1023 #define CONV(X) \
1024 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1025 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1026 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1027
1028 switch (CC) {
1029 default:
1030 llvm_unreachable("Invalid integer condition!");
1031
1032 CONV(EQ);
1033 CONV(NE);
1034 CONV(GT);
1035 CONV(GE);
1036 CONV(LT);
1037 CONV(LE);
1038
1039 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1040 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1041 }
1042 #undef CONV
1043 }
1044
1045 // Return a sequence for getting a 1 from an IPM result when CC has a
1046 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1047 // The handling of CC values outside CCValid doesn't matter.
getIPMConversion(unsigned CCValid,unsigned CCMask)1048 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1049 // Deal with cases where the result can be taken directly from a bit
1050 // of the IPM result.
1051 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1052 return IPMConversion(0, 0, SystemZ::IPM_CC);
1053 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1054 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1055
1056 // Deal with cases where we can add a value to force the sign bit
1057 // to contain the right value. Putting the bit in 31 means we can
1058 // use SRL rather than RISBG(L), and also makes it easier to get a
1059 // 0/-1 value, so it has priority over the other tests below.
1060 //
1061 // These sequences rely on the fact that the upper two bits of the
1062 // IPM result are zero.
1063 uint64_t TopBit = uint64_t(1) << 31;
1064 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1065 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1066 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1067 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1068 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1069 | SystemZ::CCMASK_1
1070 | SystemZ::CCMASK_2)))
1071 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1072 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1073 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1074 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1075 | SystemZ::CCMASK_2
1076 | SystemZ::CCMASK_3)))
1077 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1078
1079 // Next try inverting the value and testing a bit. 0/1 could be
1080 // handled this way too, but we dealt with that case above.
1081 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1082 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1083
1084 // Handle cases where adding a value forces a non-sign bit to contain
1085 // the right value.
1086 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1087 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1088 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1089 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1090
1091 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1092 // can be done by inverting the low CC bit and applying one of the
1093 // sign-based extractions above.
1094 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1095 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1096 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1097 return IPMConversion(1 << SystemZ::IPM_CC,
1098 TopBit - (3 << SystemZ::IPM_CC), 31);
1099 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1100 | SystemZ::CCMASK_1
1101 | SystemZ::CCMASK_3)))
1102 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1103 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1104 | SystemZ::CCMASK_2
1105 | SystemZ::CCMASK_3)))
1106 return IPMConversion(1 << SystemZ::IPM_CC,
1107 TopBit - (1 << SystemZ::IPM_CC), 31);
1108
1109 llvm_unreachable("Unexpected CC combination");
1110 }
1111
1112 // If C can be converted to a comparison against zero, adjust the operands
1113 // as necessary.
adjustZeroCmp(SelectionDAG & DAG,Comparison & C)1114 static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
1115 if (C.ICmpType == SystemZICMP::UnsignedOnly)
1116 return;
1117
1118 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1119 if (!ConstOp1)
1120 return;
1121
1122 int64_t Value = ConstOp1->getSExtValue();
1123 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1124 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1125 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1126 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1127 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1128 C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
1129 }
1130 }
1131
1132 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1133 // adjust the operands as necessary.
adjustSubwordCmp(SelectionDAG & DAG,Comparison & C)1134 static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
1135 // For us to make any changes, it must a comparison between a single-use
1136 // load and a constant.
1137 if (!C.Op0.hasOneUse() ||
1138 C.Op0.getOpcode() != ISD::LOAD ||
1139 C.Op1.getOpcode() != ISD::Constant)
1140 return;
1141
1142 // We must have an 8- or 16-bit load.
1143 auto *Load = cast<LoadSDNode>(C.Op0);
1144 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1145 if (NumBits != 8 && NumBits != 16)
1146 return;
1147
1148 // The load must be an extending one and the constant must be within the
1149 // range of the unextended value.
1150 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1151 uint64_t Value = ConstOp1->getZExtValue();
1152 uint64_t Mask = (1 << NumBits) - 1;
1153 if (Load->getExtensionType() == ISD::SEXTLOAD) {
1154 // Make sure that ConstOp1 is in range of C.Op0.
1155 int64_t SignedValue = ConstOp1->getSExtValue();
1156 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1157 return;
1158 if (C.ICmpType != SystemZICMP::SignedOnly) {
1159 // Unsigned comparison between two sign-extended values is equivalent
1160 // to unsigned comparison between two zero-extended values.
1161 Value &= Mask;
1162 } else if (NumBits == 8) {
1163 // Try to treat the comparison as unsigned, so that we can use CLI.
1164 // Adjust CCMask and Value as necessary.
1165 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1166 // Test whether the high bit of the byte is set.
1167 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1168 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1169 // Test whether the high bit of the byte is clear.
1170 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1171 else
1172 // No instruction exists for this combination.
1173 return;
1174 C.ICmpType = SystemZICMP::UnsignedOnly;
1175 }
1176 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1177 if (Value > Mask)
1178 return;
1179 assert(C.ICmpType == SystemZICMP::Any &&
1180 "Signedness shouldn't matter here.");
1181 } else
1182 return;
1183
1184 // Make sure that the first operand is an i32 of the right extension type.
1185 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1186 ISD::SEXTLOAD :
1187 ISD::ZEXTLOAD);
1188 if (C.Op0.getValueType() != MVT::i32 ||
1189 Load->getExtensionType() != ExtType)
1190 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1191 Load->getChain(), Load->getBasePtr(),
1192 Load->getPointerInfo(), Load->getMemoryVT(),
1193 Load->isVolatile(), Load->isNonTemporal(),
1194 Load->getAlignment());
1195
1196 // Make sure that the second operand is an i32 with the right value.
1197 if (C.Op1.getValueType() != MVT::i32 ||
1198 Value != ConstOp1->getZExtValue())
1199 C.Op1 = DAG.getConstant(Value, MVT::i32);
1200 }
1201
1202 // Return true if Op is either an unextended load, or a load suitable
1203 // for integer register-memory comparisons of type ICmpType.
isNaturalMemoryOperand(SDValue Op,unsigned ICmpType)1204 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1205 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1206 if (Load) {
1207 // There are no instructions to compare a register with a memory byte.
1208 if (Load->getMemoryVT() == MVT::i8)
1209 return false;
1210 // Otherwise decide on extension type.
1211 switch (Load->getExtensionType()) {
1212 case ISD::NON_EXTLOAD:
1213 return true;
1214 case ISD::SEXTLOAD:
1215 return ICmpType != SystemZICMP::UnsignedOnly;
1216 case ISD::ZEXTLOAD:
1217 return ICmpType != SystemZICMP::SignedOnly;
1218 default:
1219 break;
1220 }
1221 }
1222 return false;
1223 }
1224
1225 // Return true if it is better to swap the operands of C.
shouldSwapCmpOperands(const Comparison & C)1226 static bool shouldSwapCmpOperands(const Comparison &C) {
1227 // Leave f128 comparisons alone, since they have no memory forms.
1228 if (C.Op0.getValueType() == MVT::f128)
1229 return false;
1230
1231 // Always keep a floating-point constant second, since comparisons with
1232 // zero can use LOAD TEST and comparisons with other constants make a
1233 // natural memory operand.
1234 if (isa<ConstantFPSDNode>(C.Op1))
1235 return false;
1236
1237 // Never swap comparisons with zero since there are many ways to optimize
1238 // those later.
1239 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1240 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1241 return false;
1242
1243 // Also keep natural memory operands second if the loaded value is
1244 // only used here. Several comparisons have memory forms.
1245 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1246 return false;
1247
1248 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1249 // In that case we generally prefer the memory to be second.
1250 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1251 // The only exceptions are when the second operand is a constant and
1252 // we can use things like CHHSI.
1253 if (!ConstOp1)
1254 return true;
1255 // The unsigned memory-immediate instructions can handle 16-bit
1256 // unsigned integers.
1257 if (C.ICmpType != SystemZICMP::SignedOnly &&
1258 isUInt<16>(ConstOp1->getZExtValue()))
1259 return false;
1260 // The signed memory-immediate instructions can handle 16-bit
1261 // signed integers.
1262 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1263 isInt<16>(ConstOp1->getSExtValue()))
1264 return false;
1265 return true;
1266 }
1267
1268 // Try to promote the use of CGFR and CLGFR.
1269 unsigned Opcode0 = C.Op0.getOpcode();
1270 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1271 return true;
1272 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1273 return true;
1274 if (C.ICmpType != SystemZICMP::SignedOnly &&
1275 Opcode0 == ISD::AND &&
1276 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1277 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1278 return true;
1279
1280 return false;
1281 }
1282
1283 // Return a version of comparison CC mask CCMask in which the LT and GT
1284 // actions are swapped.
reverseCCMask(unsigned CCMask)1285 static unsigned reverseCCMask(unsigned CCMask) {
1286 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1287 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1288 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1289 (CCMask & SystemZ::CCMASK_CMP_UO));
1290 }
1291
1292 // Check whether C tests for equality between X and Y and whether X - Y
1293 // or Y - X is also computed. In that case it's better to compare the
1294 // result of the subtraction against zero.
adjustForSubtraction(SelectionDAG & DAG,Comparison & C)1295 static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
1296 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1297 C.CCMask == SystemZ::CCMASK_CMP_NE) {
1298 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1299 SDNode *N = *I;
1300 if (N->getOpcode() == ISD::SUB &&
1301 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1302 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1303 C.Op0 = SDValue(N, 0);
1304 C.Op1 = DAG.getConstant(0, N->getValueType(0));
1305 return;
1306 }
1307 }
1308 }
1309 }
1310
1311 // Check whether C compares a floating-point value with zero and if that
1312 // floating-point value is also negated. In this case we can use the
1313 // negation to set CC, so avoiding separate LOAD AND TEST and
1314 // LOAD (NEGATIVE/COMPLEMENT) instructions.
adjustForFNeg(Comparison & C)1315 static void adjustForFNeg(Comparison &C) {
1316 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1317 if (C1 && C1->isZero()) {
1318 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1319 SDNode *N = *I;
1320 if (N->getOpcode() == ISD::FNEG) {
1321 C.Op0 = SDValue(N, 0);
1322 C.CCMask = reverseCCMask(C.CCMask);
1323 return;
1324 }
1325 }
1326 }
1327 }
1328
1329 // Check whether C compares (shl X, 32) with 0 and whether X is
1330 // also sign-extended. In that case it is better to test the result
1331 // of the sign extension using LTGFR.
1332 //
1333 // This case is important because InstCombine transforms a comparison
1334 // with (sext (trunc X)) into a comparison with (shl X, 32).
adjustForLTGFR(Comparison & C)1335 static void adjustForLTGFR(Comparison &C) {
1336 // Check for a comparison between (shl X, 32) and 0.
1337 if (C.Op0.getOpcode() == ISD::SHL &&
1338 C.Op0.getValueType() == MVT::i64 &&
1339 C.Op1.getOpcode() == ISD::Constant &&
1340 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1341 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1342 if (C1 && C1->getZExtValue() == 32) {
1343 SDValue ShlOp0 = C.Op0.getOperand(0);
1344 // See whether X has any SIGN_EXTEND_INREG uses.
1345 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1346 SDNode *N = *I;
1347 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1348 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1349 C.Op0 = SDValue(N, 0);
1350 return;
1351 }
1352 }
1353 }
1354 }
1355 }
1356
1357 // If C compares the truncation of an extending load, try to compare
1358 // the untruncated value instead. This exposes more opportunities to
1359 // reuse CC.
adjustICmpTruncate(SelectionDAG & DAG,Comparison & C)1360 static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
1361 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1362 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1363 C.Op1.getOpcode() == ISD::Constant &&
1364 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1365 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1366 if (L->getMemoryVT().getStoreSizeInBits()
1367 <= C.Op0.getValueType().getSizeInBits()) {
1368 unsigned Type = L->getExtensionType();
1369 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1370 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1371 C.Op0 = C.Op0.getOperand(0);
1372 C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
1373 }
1374 }
1375 }
1376 }
1377
1378 // Return true if shift operation N has an in-range constant shift value.
1379 // Store it in ShiftVal if so.
isSimpleShift(SDValue N,unsigned & ShiftVal)1380 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1381 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1382 if (!Shift)
1383 return false;
1384
1385 uint64_t Amount = Shift->getZExtValue();
1386 if (Amount >= N.getValueType().getSizeInBits())
1387 return false;
1388
1389 ShiftVal = Amount;
1390 return true;
1391 }
1392
1393 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
1394 // instruction and whether the CC value is descriptive enough to handle
1395 // a comparison of type Opcode between the AND result and CmpVal.
1396 // CCMask says which comparison result is being tested and BitSize is
1397 // the number of bits in the operands. If TEST UNDER MASK can be used,
1398 // return the corresponding CC mask, otherwise return 0.
getTestUnderMaskCond(unsigned BitSize,unsigned CCMask,uint64_t Mask,uint64_t CmpVal,unsigned ICmpType)1399 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1400 uint64_t Mask, uint64_t CmpVal,
1401 unsigned ICmpType) {
1402 assert(Mask != 0 && "ANDs with zero should have been removed by now");
1403
1404 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1405 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1406 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1407 return 0;
1408
1409 // Work out the masks for the lowest and highest bits.
1410 unsigned HighShift = 63 - countLeadingZeros(Mask);
1411 uint64_t High = uint64_t(1) << HighShift;
1412 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1413
1414 // Signed ordered comparisons are effectively unsigned if the sign
1415 // bit is dropped.
1416 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1417
1418 // Check for equality comparisons with 0, or the equivalent.
1419 if (CmpVal == 0) {
1420 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1421 return SystemZ::CCMASK_TM_ALL_0;
1422 if (CCMask == SystemZ::CCMASK_CMP_NE)
1423 return SystemZ::CCMASK_TM_SOME_1;
1424 }
1425 if (EffectivelyUnsigned && CmpVal <= Low) {
1426 if (CCMask == SystemZ::CCMASK_CMP_LT)
1427 return SystemZ::CCMASK_TM_ALL_0;
1428 if (CCMask == SystemZ::CCMASK_CMP_GE)
1429 return SystemZ::CCMASK_TM_SOME_1;
1430 }
1431 if (EffectivelyUnsigned && CmpVal < Low) {
1432 if (CCMask == SystemZ::CCMASK_CMP_LE)
1433 return SystemZ::CCMASK_TM_ALL_0;
1434 if (CCMask == SystemZ::CCMASK_CMP_GT)
1435 return SystemZ::CCMASK_TM_SOME_1;
1436 }
1437
1438 // Check for equality comparisons with the mask, or the equivalent.
1439 if (CmpVal == Mask) {
1440 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1441 return SystemZ::CCMASK_TM_ALL_1;
1442 if (CCMask == SystemZ::CCMASK_CMP_NE)
1443 return SystemZ::CCMASK_TM_SOME_0;
1444 }
1445 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1446 if (CCMask == SystemZ::CCMASK_CMP_GT)
1447 return SystemZ::CCMASK_TM_ALL_1;
1448 if (CCMask == SystemZ::CCMASK_CMP_LE)
1449 return SystemZ::CCMASK_TM_SOME_0;
1450 }
1451 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1452 if (CCMask == SystemZ::CCMASK_CMP_GE)
1453 return SystemZ::CCMASK_TM_ALL_1;
1454 if (CCMask == SystemZ::CCMASK_CMP_LT)
1455 return SystemZ::CCMASK_TM_SOME_0;
1456 }
1457
1458 // Check for ordered comparisons with the top bit.
1459 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1460 if (CCMask == SystemZ::CCMASK_CMP_LE)
1461 return SystemZ::CCMASK_TM_MSB_0;
1462 if (CCMask == SystemZ::CCMASK_CMP_GT)
1463 return SystemZ::CCMASK_TM_MSB_1;
1464 }
1465 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1466 if (CCMask == SystemZ::CCMASK_CMP_LT)
1467 return SystemZ::CCMASK_TM_MSB_0;
1468 if (CCMask == SystemZ::CCMASK_CMP_GE)
1469 return SystemZ::CCMASK_TM_MSB_1;
1470 }
1471
1472 // If there are just two bits, we can do equality checks for Low and High
1473 // as well.
1474 if (Mask == Low + High) {
1475 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1476 return SystemZ::CCMASK_TM_MIXED_MSB_0;
1477 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1478 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1479 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1480 return SystemZ::CCMASK_TM_MIXED_MSB_1;
1481 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1482 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1483 }
1484
1485 // Looks like we've exhausted our options.
1486 return 0;
1487 }
1488
1489 // See whether C can be implemented as a TEST UNDER MASK instruction.
1490 // Update the arguments with the TM version if so.
adjustForTestUnderMask(SelectionDAG & DAG,Comparison & C)1491 static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
1492 // Check that we have a comparison with a constant.
1493 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1494 if (!ConstOp1)
1495 return;
1496 uint64_t CmpVal = ConstOp1->getZExtValue();
1497
1498 // Check whether the nonconstant input is an AND with a constant mask.
1499 Comparison NewC(C);
1500 uint64_t MaskVal;
1501 ConstantSDNode *Mask = nullptr;
1502 if (C.Op0.getOpcode() == ISD::AND) {
1503 NewC.Op0 = C.Op0.getOperand(0);
1504 NewC.Op1 = C.Op0.getOperand(1);
1505 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1506 if (!Mask)
1507 return;
1508 MaskVal = Mask->getZExtValue();
1509 } else {
1510 // There is no instruction to compare with a 64-bit immediate
1511 // so use TMHH instead if possible. We need an unsigned ordered
1512 // comparison with an i64 immediate.
1513 if (NewC.Op0.getValueType() != MVT::i64 ||
1514 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1515 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1516 NewC.ICmpType == SystemZICMP::SignedOnly)
1517 return;
1518 // Convert LE and GT comparisons into LT and GE.
1519 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
1520 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
1521 if (CmpVal == uint64_t(-1))
1522 return;
1523 CmpVal += 1;
1524 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1525 }
1526 // If the low N bits of Op1 are zero than the low N bits of Op0 can
1527 // be masked off without changing the result.
1528 MaskVal = -(CmpVal & -CmpVal);
1529 NewC.ICmpType = SystemZICMP::UnsignedOnly;
1530 }
1531
1532 // Check whether the combination of mask, comparison value and comparison
1533 // type are suitable.
1534 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
1535 unsigned NewCCMask, ShiftVal;
1536 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1537 NewC.Op0.getOpcode() == ISD::SHL &&
1538 isSimpleShift(NewC.Op0, ShiftVal) &&
1539 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1540 MaskVal >> ShiftVal,
1541 CmpVal >> ShiftVal,
1542 SystemZICMP::Any))) {
1543 NewC.Op0 = NewC.Op0.getOperand(0);
1544 MaskVal >>= ShiftVal;
1545 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1546 NewC.Op0.getOpcode() == ISD::SRL &&
1547 isSimpleShift(NewC.Op0, ShiftVal) &&
1548 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1549 MaskVal << ShiftVal,
1550 CmpVal << ShiftVal,
1551 SystemZICMP::UnsignedOnly))) {
1552 NewC.Op0 = NewC.Op0.getOperand(0);
1553 MaskVal <<= ShiftVal;
1554 } else {
1555 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
1556 NewC.ICmpType);
1557 if (!NewCCMask)
1558 return;
1559 }
1560
1561 // Go ahead and make the change.
1562 C.Opcode = SystemZISD::TM;
1563 C.Op0 = NewC.Op0;
1564 if (Mask && Mask->getZExtValue() == MaskVal)
1565 C.Op1 = SDValue(Mask, 0);
1566 else
1567 C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
1568 C.CCValid = SystemZ::CCMASK_TM;
1569 C.CCMask = NewCCMask;
1570 }
1571
1572 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
getCmp(SelectionDAG & DAG,SDValue CmpOp0,SDValue CmpOp1,ISD::CondCode Cond)1573 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1574 ISD::CondCode Cond) {
1575 Comparison C(CmpOp0, CmpOp1);
1576 C.CCMask = CCMaskForCondCode(Cond);
1577 if (C.Op0.getValueType().isFloatingPoint()) {
1578 C.CCValid = SystemZ::CCMASK_FCMP;
1579 C.Opcode = SystemZISD::FCMP;
1580 adjustForFNeg(C);
1581 } else {
1582 C.CCValid = SystemZ::CCMASK_ICMP;
1583 C.Opcode = SystemZISD::ICMP;
1584 // Choose the type of comparison. Equality and inequality tests can
1585 // use either signed or unsigned comparisons. The choice also doesn't
1586 // matter if both sign bits are known to be clear. In those cases we
1587 // want to give the main isel code the freedom to choose whichever
1588 // form fits best.
1589 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1590 C.CCMask == SystemZ::CCMASK_CMP_NE ||
1591 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
1592 C.ICmpType = SystemZICMP::Any;
1593 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
1594 C.ICmpType = SystemZICMP::UnsignedOnly;
1595 else
1596 C.ICmpType = SystemZICMP::SignedOnly;
1597 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
1598 adjustZeroCmp(DAG, C);
1599 adjustSubwordCmp(DAG, C);
1600 adjustForSubtraction(DAG, C);
1601 adjustForLTGFR(C);
1602 adjustICmpTruncate(DAG, C);
1603 }
1604
1605 if (shouldSwapCmpOperands(C)) {
1606 std::swap(C.Op0, C.Op1);
1607 C.CCMask = reverseCCMask(C.CCMask);
1608 }
1609
1610 adjustForTestUnderMask(DAG, C);
1611 return C;
1612 }
1613
1614 // Emit the comparison instruction described by C.
emitCmp(SelectionDAG & DAG,SDLoc DL,Comparison & C)1615 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1616 if (C.Opcode == SystemZISD::ICMP)
1617 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
1618 DAG.getConstant(C.ICmpType, MVT::i32));
1619 if (C.Opcode == SystemZISD::TM) {
1620 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1621 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1622 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
1623 DAG.getConstant(RegisterOnly, MVT::i32));
1624 }
1625 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
1626 }
1627
1628 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
1629 // 64 bits. Extend is the extension type to use. Store the high part
1630 // in Hi and the low part in Lo.
lowerMUL_LOHI32(SelectionDAG & DAG,SDLoc DL,unsigned Extend,SDValue Op0,SDValue Op1,SDValue & Hi,SDValue & Lo)1631 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1632 unsigned Extend, SDValue Op0, SDValue Op1,
1633 SDValue &Hi, SDValue &Lo) {
1634 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1635 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1636 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1637 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1638 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1639 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1640 }
1641
1642 // Lower a binary operation that produces two VT results, one in each
1643 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
1644 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1645 // on the extended Op0 and (unextended) Op1. Store the even register result
1646 // in Even and the odd register result in Odd.
lowerGR128Binary(SelectionDAG & DAG,SDLoc DL,EVT VT,unsigned Extend,unsigned Opcode,SDValue Op0,SDValue Op1,SDValue & Even,SDValue & Odd)1647 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1648 unsigned Extend, unsigned Opcode,
1649 SDValue Op0, SDValue Op1,
1650 SDValue &Even, SDValue &Odd) {
1651 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1652 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1653 SDValue(In128, 0), Op1);
1654 bool Is32Bit = is32Bit(VT);
1655 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1656 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
1657 }
1658
1659 // Return an i32 value that is 1 if the CC value produced by Glue is
1660 // in the mask CCMask and 0 otherwise. CC is known to have a value
1661 // in CCValid, so other values can be ignored.
emitSETCC(SelectionDAG & DAG,SDLoc DL,SDValue Glue,unsigned CCValid,unsigned CCMask)1662 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
1663 unsigned CCValid, unsigned CCMask) {
1664 IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
1665 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1666
1667 if (Conversion.XORValue)
1668 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
1669 DAG.getConstant(Conversion.XORValue, MVT::i32));
1670
1671 if (Conversion.AddValue)
1672 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
1673 DAG.getConstant(Conversion.AddValue, MVT::i32));
1674
1675 // The SHR/AND sequence should get optimized to an RISBG.
1676 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
1677 DAG.getConstant(Conversion.Bit, MVT::i32));
1678 if (Conversion.Bit != 31)
1679 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
1680 DAG.getConstant(1, MVT::i32));
1681 return Result;
1682 }
1683
lowerSETCC(SDValue Op,SelectionDAG & DAG) const1684 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
1685 SelectionDAG &DAG) const {
1686 SDValue CmpOp0 = Op.getOperand(0);
1687 SDValue CmpOp1 = Op.getOperand(1);
1688 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1689 SDLoc DL(Op);
1690
1691 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1692 SDValue Glue = emitCmp(DAG, DL, C);
1693 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
1694 }
1695
lowerBR_CC(SDValue Op,SelectionDAG & DAG) const1696 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1697 SDValue Chain = Op.getOperand(0);
1698 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1699 SDValue CmpOp0 = Op.getOperand(2);
1700 SDValue CmpOp1 = Op.getOperand(3);
1701 SDValue Dest = Op.getOperand(4);
1702 SDLoc DL(Op);
1703
1704 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1705 SDValue Glue = emitCmp(DAG, DL, C);
1706 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1707 Chain, DAG.getConstant(C.CCValid, MVT::i32),
1708 DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
1709 }
1710
1711 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
1712 // allowing Pos and Neg to be wider than CmpOp.
isAbsolute(SDValue CmpOp,SDValue Pos,SDValue Neg)1713 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
1714 return (Neg.getOpcode() == ISD::SUB &&
1715 Neg.getOperand(0).getOpcode() == ISD::Constant &&
1716 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
1717 Neg.getOperand(1) == Pos &&
1718 (Pos == CmpOp ||
1719 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
1720 Pos.getOperand(0) == CmpOp)));
1721 }
1722
1723 // Return the absolute or negative absolute of Op; IsNegative decides which.
getAbsolute(SelectionDAG & DAG,SDLoc DL,SDValue Op,bool IsNegative)1724 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
1725 bool IsNegative) {
1726 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
1727 if (IsNegative)
1728 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
1729 DAG.getConstant(0, Op.getValueType()), Op);
1730 return Op;
1731 }
1732
lowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const1733 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1734 SelectionDAG &DAG) const {
1735 SDValue CmpOp0 = Op.getOperand(0);
1736 SDValue CmpOp1 = Op.getOperand(1);
1737 SDValue TrueOp = Op.getOperand(2);
1738 SDValue FalseOp = Op.getOperand(3);
1739 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1740 SDLoc DL(Op);
1741
1742 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1743
1744 // Check for absolute and negative-absolute selections, including those
1745 // where the comparison value is sign-extended (for LPGFR and LNGFR).
1746 // This check supplements the one in DAGCombiner.
1747 if (C.Opcode == SystemZISD::ICMP &&
1748 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
1749 C.CCMask != SystemZ::CCMASK_CMP_NE &&
1750 C.Op1.getOpcode() == ISD::Constant &&
1751 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1752 if (isAbsolute(C.Op0, TrueOp, FalseOp))
1753 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
1754 if (isAbsolute(C.Op0, FalseOp, TrueOp))
1755 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
1756 }
1757
1758 SDValue Glue = emitCmp(DAG, DL, C);
1759
1760 // Special case for handling -1/0 results. The shifts we use here
1761 // should get optimized with the IPM conversion sequence.
1762 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
1763 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
1764 if (TrueC && FalseC) {
1765 int64_t TrueVal = TrueC->getSExtValue();
1766 int64_t FalseVal = FalseC->getSExtValue();
1767 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
1768 // Invert the condition if we want -1 on false.
1769 if (TrueVal == 0)
1770 C.CCMask ^= C.CCValid;
1771 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
1772 EVT VT = Op.getValueType();
1773 // Extend the result to VT. Upper bits are ignored.
1774 if (!is32Bit(VT))
1775 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
1776 // Sign-extend from the low bit.
1777 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
1778 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
1779 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
1780 }
1781 }
1782
1783 SmallVector<SDValue, 5> Ops;
1784 Ops.push_back(TrueOp);
1785 Ops.push_back(FalseOp);
1786 Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32));
1787 Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32));
1788 Ops.push_back(Glue);
1789
1790 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1791 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
1792 }
1793
lowerGlobalAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const1794 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1795 SelectionDAG &DAG) const {
1796 SDLoc DL(Node);
1797 const GlobalValue *GV = Node->getGlobal();
1798 int64_t Offset = Node->getOffset();
1799 EVT PtrVT = getPointerTy();
1800 Reloc::Model RM = DAG.getTarget().getRelocationModel();
1801 CodeModel::Model CM = DAG.getTarget().getCodeModel();
1802
1803 SDValue Result;
1804 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1805 // Assign anchors at 1<<12 byte boundaries.
1806 uint64_t Anchor = Offset & ~uint64_t(0xfff);
1807 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1808 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1809
1810 // The offset can be folded into the address if it is aligned to a halfword.
1811 Offset -= Anchor;
1812 if (Offset != 0 && (Offset & 1) == 0) {
1813 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1814 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
1815 Offset = 0;
1816 }
1817 } else {
1818 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1819 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1820 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1821 MachinePointerInfo::getGOT(), false, false, false, 0);
1822 }
1823
1824 // If there was a non-zero offset that we didn't fold, create an explicit
1825 // addition for it.
1826 if (Offset != 0)
1827 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1828 DAG.getConstant(Offset, PtrVT));
1829
1830 return Result;
1831 }
1832
lowerGlobalTLSAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const1833 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1834 SelectionDAG &DAG) const {
1835 SDLoc DL(Node);
1836 const GlobalValue *GV = Node->getGlobal();
1837 EVT PtrVT = getPointerTy();
1838 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
1839
1840 if (model != TLSModel::LocalExec)
1841 llvm_unreachable("only local-exec TLS mode supported");
1842
1843 // The high part of the thread pointer is in access register 0.
1844 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1845 DAG.getConstant(0, MVT::i32));
1846 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1847
1848 // The low part of the thread pointer is in access register 1.
1849 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1850 DAG.getConstant(1, MVT::i32));
1851 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1852
1853 // Merge them into a single 64-bit address.
1854 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1855 DAG.getConstant(32, PtrVT));
1856 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1857
1858 // Get the offset of GA from the thread pointer.
1859 SystemZConstantPoolValue *CPV =
1860 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1861
1862 // Force the offset into the constant pool and load it from there.
1863 SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1864 SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1865 CPAddr, MachinePointerInfo::getConstantPool(),
1866 false, false, false, 0);
1867
1868 // Add the base and offset together.
1869 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1870 }
1871
lowerBlockAddress(BlockAddressSDNode * Node,SelectionDAG & DAG) const1872 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1873 SelectionDAG &DAG) const {
1874 SDLoc DL(Node);
1875 const BlockAddress *BA = Node->getBlockAddress();
1876 int64_t Offset = Node->getOffset();
1877 EVT PtrVT = getPointerTy();
1878
1879 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1880 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1881 return Result;
1882 }
1883
lowerJumpTable(JumpTableSDNode * JT,SelectionDAG & DAG) const1884 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1885 SelectionDAG &DAG) const {
1886 SDLoc DL(JT);
1887 EVT PtrVT = getPointerTy();
1888 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1889
1890 // Use LARL to load the address of the table.
1891 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1892 }
1893
lowerConstantPool(ConstantPoolSDNode * CP,SelectionDAG & DAG) const1894 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1895 SelectionDAG &DAG) const {
1896 SDLoc DL(CP);
1897 EVT PtrVT = getPointerTy();
1898
1899 SDValue Result;
1900 if (CP->isMachineConstantPoolEntry())
1901 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1902 CP->getAlignment());
1903 else
1904 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1905 CP->getAlignment(), CP->getOffset());
1906
1907 // Use LARL to load the address of the constant pool entry.
1908 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1909 }
1910
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const1911 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1912 SelectionDAG &DAG) const {
1913 SDLoc DL(Op);
1914 SDValue In = Op.getOperand(0);
1915 EVT InVT = In.getValueType();
1916 EVT ResVT = Op.getValueType();
1917
1918 if (InVT == MVT::i32 && ResVT == MVT::f32) {
1919 SDValue In64;
1920 if (Subtarget.hasHighWord()) {
1921 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
1922 MVT::i64);
1923 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1924 MVT::i64, SDValue(U64, 0), In);
1925 } else {
1926 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1927 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
1928 DAG.getConstant(32, MVT::i64));
1929 }
1930 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
1931 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
1932 DL, MVT::f32, Out64);
1933 }
1934 if (InVT == MVT::f32 && ResVT == MVT::i32) {
1935 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1936 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1937 MVT::f64, SDValue(U64, 0), In);
1938 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
1939 if (Subtarget.hasHighWord())
1940 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
1941 MVT::i32, Out64);
1942 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
1943 DAG.getConstant(32, MVT::i64));
1944 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1945 }
1946 llvm_unreachable("Unexpected bitcast combination");
1947 }
1948
lowerVASTART(SDValue Op,SelectionDAG & DAG) const1949 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1950 SelectionDAG &DAG) const {
1951 MachineFunction &MF = DAG.getMachineFunction();
1952 SystemZMachineFunctionInfo *FuncInfo =
1953 MF.getInfo<SystemZMachineFunctionInfo>();
1954 EVT PtrVT = getPointerTy();
1955
1956 SDValue Chain = Op.getOperand(0);
1957 SDValue Addr = Op.getOperand(1);
1958 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1959 SDLoc DL(Op);
1960
1961 // The initial values of each field.
1962 const unsigned NumFields = 4;
1963 SDValue Fields[NumFields] = {
1964 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1965 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1966 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1967 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1968 };
1969
1970 // Store each field into its respective slot.
1971 SDValue MemOps[NumFields];
1972 unsigned Offset = 0;
1973 for (unsigned I = 0; I < NumFields; ++I) {
1974 SDValue FieldAddr = Addr;
1975 if (Offset != 0)
1976 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1977 DAG.getIntPtrConstant(Offset));
1978 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1979 MachinePointerInfo(SV, Offset),
1980 false, false, 0);
1981 Offset += 8;
1982 }
1983 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1984 }
1985
lowerVACOPY(SDValue Op,SelectionDAG & DAG) const1986 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1987 SelectionDAG &DAG) const {
1988 SDValue Chain = Op.getOperand(0);
1989 SDValue DstPtr = Op.getOperand(1);
1990 SDValue SrcPtr = Op.getOperand(2);
1991 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1992 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1993 SDLoc DL(Op);
1994
1995 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1996 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1997 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1998 }
1999
2000 SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const2001 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2002 SDValue Chain = Op.getOperand(0);
2003 SDValue Size = Op.getOperand(1);
2004 SDLoc DL(Op);
2005
2006 unsigned SPReg = getStackPointerRegisterToSaveRestore();
2007
2008 // Get a reference to the stack pointer.
2009 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2010
2011 // Get the new stack pointer value.
2012 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
2013
2014 // Copy the new stack pointer back.
2015 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2016
2017 // The allocated data lives above the 160 bytes allocated for the standard
2018 // frame, plus any outgoing stack arguments. We don't know how much that
2019 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2020 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2021 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2022
2023 SDValue Ops[2] = { Result, Chain };
2024 return DAG.getMergeValues(Ops, DL);
2025 }
2026
lowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const2027 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2028 SelectionDAG &DAG) const {
2029 EVT VT = Op.getValueType();
2030 SDLoc DL(Op);
2031 SDValue Ops[2];
2032 if (is32Bit(VT))
2033 // Just do a normal 64-bit multiplication and extract the results.
2034 // We define this so that it can be used for constant division.
2035 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2036 Op.getOperand(1), Ops[1], Ops[0]);
2037 else {
2038 // Do a full 128-bit multiplication based on UMUL_LOHI64:
2039 //
2040 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2041 //
2042 // but using the fact that the upper halves are either all zeros
2043 // or all ones:
2044 //
2045 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2046 //
2047 // and grouping the right terms together since they are quicker than the
2048 // multiplication:
2049 //
2050 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2051 SDValue C63 = DAG.getConstant(63, MVT::i64);
2052 SDValue LL = Op.getOperand(0);
2053 SDValue RL = Op.getOperand(1);
2054 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2055 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2056 // UMUL_LOHI64 returns the low result in the odd register and the high
2057 // result in the even register. SMUL_LOHI is defined to return the
2058 // low half first, so the results are in reverse order.
2059 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2060 LL, RL, Ops[1], Ops[0]);
2061 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2062 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2063 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2064 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2065 }
2066 return DAG.getMergeValues(Ops, DL);
2067 }
2068
lowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const2069 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2070 SelectionDAG &DAG) const {
2071 EVT VT = Op.getValueType();
2072 SDLoc DL(Op);
2073 SDValue Ops[2];
2074 if (is32Bit(VT))
2075 // Just do a normal 64-bit multiplication and extract the results.
2076 // We define this so that it can be used for constant division.
2077 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2078 Op.getOperand(1), Ops[1], Ops[0]);
2079 else
2080 // UMUL_LOHI64 returns the low result in the odd register and the high
2081 // result in the even register. UMUL_LOHI is defined to return the
2082 // low half first, so the results are in reverse order.
2083 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2084 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2085 return DAG.getMergeValues(Ops, DL);
2086 }
2087
lowerSDIVREM(SDValue Op,SelectionDAG & DAG) const2088 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2089 SelectionDAG &DAG) const {
2090 SDValue Op0 = Op.getOperand(0);
2091 SDValue Op1 = Op.getOperand(1);
2092 EVT VT = Op.getValueType();
2093 SDLoc DL(Op);
2094 unsigned Opcode;
2095
2096 // We use DSGF for 32-bit division.
2097 if (is32Bit(VT)) {
2098 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
2099 Opcode = SystemZISD::SDIVREM32;
2100 } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2101 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
2102 Opcode = SystemZISD::SDIVREM32;
2103 } else
2104 Opcode = SystemZISD::SDIVREM64;
2105
2106 // DSG(F) takes a 64-bit dividend, so the even register in the GR128
2107 // input is "don't care". The instruction returns the remainder in
2108 // the even register and the quotient in the odd register.
2109 SDValue Ops[2];
2110 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
2111 Op0, Op1, Ops[1], Ops[0]);
2112 return DAG.getMergeValues(Ops, DL);
2113 }
2114
lowerUDIVREM(SDValue Op,SelectionDAG & DAG) const2115 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
2116 SelectionDAG &DAG) const {
2117 EVT VT = Op.getValueType();
2118 SDLoc DL(Op);
2119
2120 // DL(G) uses a double-width dividend, so we need to clear the even
2121 // register in the GR128 input. The instruction returns the remainder
2122 // in the even register and the quotient in the odd register.
2123 SDValue Ops[2];
2124 if (is32Bit(VT))
2125 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
2126 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2127 else
2128 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
2129 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2130 return DAG.getMergeValues(Ops, DL);
2131 }
2132
lowerOR(SDValue Op,SelectionDAG & DAG) const2133 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
2134 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
2135
2136 // Get the known-zero masks for each operand.
2137 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
2138 APInt KnownZero[2], KnownOne[2];
2139 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
2140 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
2141
2142 // See if the upper 32 bits of one operand and the lower 32 bits of the
2143 // other are known zero. They are the low and high operands respectively.
2144 uint64_t Masks[] = { KnownZero[0].getZExtValue(),
2145 KnownZero[1].getZExtValue() };
2146 unsigned High, Low;
2147 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
2148 High = 1, Low = 0;
2149 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
2150 High = 0, Low = 1;
2151 else
2152 return Op;
2153
2154 SDValue LowOp = Ops[Low];
2155 SDValue HighOp = Ops[High];
2156
2157 // If the high part is a constant, we're better off using IILH.
2158 if (HighOp.getOpcode() == ISD::Constant)
2159 return Op;
2160
2161 // If the low part is a constant that is outside the range of LHI,
2162 // then we're better off using IILF.
2163 if (LowOp.getOpcode() == ISD::Constant) {
2164 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
2165 if (!isInt<16>(Value))
2166 return Op;
2167 }
2168
2169 // Check whether the high part is an AND that doesn't change the
2170 // high 32 bits and just masks out low bits. We can skip it if so.
2171 if (HighOp.getOpcode() == ISD::AND &&
2172 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
2173 SDValue HighOp0 = HighOp.getOperand(0);
2174 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
2175 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
2176 HighOp = HighOp0;
2177 }
2178
2179 // Take advantage of the fact that all GR32 operations only change the
2180 // low 32 bits by truncating Low to an i32 and inserting it directly
2181 // using a subreg. The interesting cases are those where the truncation
2182 // can be folded.
2183 SDLoc DL(Op);
2184 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
2185 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
2186 MVT::i64, HighOp, Low32);
2187 }
2188
2189 // Op is an atomic load. Lower it into a normal volatile load.
lowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const2190 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
2191 SelectionDAG &DAG) const {
2192 auto *Node = cast<AtomicSDNode>(Op.getNode());
2193 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
2194 Node->getChain(), Node->getBasePtr(),
2195 Node->getMemoryVT(), Node->getMemOperand());
2196 }
2197
2198 // Op is an atomic store. Lower it into a normal volatile store followed
2199 // by a serialization.
lowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const2200 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
2201 SelectionDAG &DAG) const {
2202 auto *Node = cast<AtomicSDNode>(Op.getNode());
2203 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
2204 Node->getBasePtr(), Node->getMemoryVT(),
2205 Node->getMemOperand());
2206 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
2207 Chain), 0);
2208 }
2209
2210 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
2211 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
lowerATOMIC_LOAD_OP(SDValue Op,SelectionDAG & DAG,unsigned Opcode) const2212 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
2213 SelectionDAG &DAG,
2214 unsigned Opcode) const {
2215 auto *Node = cast<AtomicSDNode>(Op.getNode());
2216
2217 // 32-bit operations need no code outside the main loop.
2218 EVT NarrowVT = Node->getMemoryVT();
2219 EVT WideVT = MVT::i32;
2220 if (NarrowVT == WideVT)
2221 return Op;
2222
2223 int64_t BitSize = NarrowVT.getSizeInBits();
2224 SDValue ChainIn = Node->getChain();
2225 SDValue Addr = Node->getBasePtr();
2226 SDValue Src2 = Node->getVal();
2227 MachineMemOperand *MMO = Node->getMemOperand();
2228 SDLoc DL(Node);
2229 EVT PtrVT = Addr.getValueType();
2230
2231 // Convert atomic subtracts of constants into additions.
2232 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
2233 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
2234 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
2235 Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
2236 }
2237
2238 // Get the address of the containing word.
2239 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2240 DAG.getConstant(-4, PtrVT));
2241
2242 // Get the number of bits that the word must be rotated left in order
2243 // to bring the field to the top bits of a GR32.
2244 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2245 DAG.getConstant(3, PtrVT));
2246 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2247
2248 // Get the complementing shift amount, for rotating a field in the top
2249 // bits back to its proper position.
2250 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2251 DAG.getConstant(0, WideVT), BitShift);
2252
2253 // Extend the source operand to 32 bits and prepare it for the inner loop.
2254 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
2255 // operations require the source to be shifted in advance. (This shift
2256 // can be folded if the source is constant.) For AND and NAND, the lower
2257 // bits must be set, while for other opcodes they should be left clear.
2258 if (Opcode != SystemZISD::ATOMIC_SWAPW)
2259 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
2260 DAG.getConstant(32 - BitSize, WideVT));
2261 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
2262 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
2263 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
2264 DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
2265
2266 // Construct the ATOMIC_LOADW_* node.
2267 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2268 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
2269 DAG.getConstant(BitSize, WideVT) };
2270 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
2271 NarrowVT, MMO);
2272
2273 // Rotate the result of the final CS so that the field is in the lower
2274 // bits of a GR32, then truncate it.
2275 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
2276 DAG.getConstant(BitSize, WideVT));
2277 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
2278
2279 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
2280 return DAG.getMergeValues(RetOps, DL);
2281 }
2282
2283 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
2284 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
2285 // operations into additions.
lowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const2286 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
2287 SelectionDAG &DAG) const {
2288 auto *Node = cast<AtomicSDNode>(Op.getNode());
2289 EVT MemVT = Node->getMemoryVT();
2290 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
2291 // A full-width operation.
2292 assert(Op.getValueType() == MemVT && "Mismatched VTs");
2293 SDValue Src2 = Node->getVal();
2294 SDValue NegSrc2;
2295 SDLoc DL(Src2);
2296
2297 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
2298 // Use an addition if the operand is constant and either LAA(G) is
2299 // available or the negative value is in the range of A(G)FHI.
2300 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
2301 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
2302 NegSrc2 = DAG.getConstant(Value, MemVT);
2303 } else if (Subtarget.hasInterlockedAccess1())
2304 // Use LAA(G) if available.
2305 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
2306 Src2);
2307
2308 if (NegSrc2.getNode())
2309 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
2310 Node->getChain(), Node->getBasePtr(), NegSrc2,
2311 Node->getMemOperand(), Node->getOrdering(),
2312 Node->getSynchScope());
2313
2314 // Use the node as-is.
2315 return Op;
2316 }
2317
2318 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2319 }
2320
2321 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
2322 // into a fullword ATOMIC_CMP_SWAPW operation.
lowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const2323 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
2324 SelectionDAG &DAG) const {
2325 auto *Node = cast<AtomicSDNode>(Op.getNode());
2326
2327 // We have native support for 32-bit compare and swap.
2328 EVT NarrowVT = Node->getMemoryVT();
2329 EVT WideVT = MVT::i32;
2330 if (NarrowVT == WideVT)
2331 return Op;
2332
2333 int64_t BitSize = NarrowVT.getSizeInBits();
2334 SDValue ChainIn = Node->getOperand(0);
2335 SDValue Addr = Node->getOperand(1);
2336 SDValue CmpVal = Node->getOperand(2);
2337 SDValue SwapVal = Node->getOperand(3);
2338 MachineMemOperand *MMO = Node->getMemOperand();
2339 SDLoc DL(Node);
2340 EVT PtrVT = Addr.getValueType();
2341
2342 // Get the address of the containing word.
2343 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2344 DAG.getConstant(-4, PtrVT));
2345
2346 // Get the number of bits that the word must be rotated left in order
2347 // to bring the field to the top bits of a GR32.
2348 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2349 DAG.getConstant(3, PtrVT));
2350 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2351
2352 // Get the complementing shift amount, for rotating a field in the top
2353 // bits back to its proper position.
2354 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2355 DAG.getConstant(0, WideVT), BitShift);
2356
2357 // Construct the ATOMIC_CMP_SWAPW node.
2358 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2359 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
2360 NegBitShift, DAG.getConstant(BitSize, WideVT) };
2361 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
2362 VTList, Ops, NarrowVT, MMO);
2363 return AtomicOp;
2364 }
2365
lowerSTACKSAVE(SDValue Op,SelectionDAG & DAG) const2366 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
2367 SelectionDAG &DAG) const {
2368 MachineFunction &MF = DAG.getMachineFunction();
2369 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2370 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
2371 SystemZ::R15D, Op.getValueType());
2372 }
2373
lowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const2374 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
2375 SelectionDAG &DAG) const {
2376 MachineFunction &MF = DAG.getMachineFunction();
2377 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2378 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
2379 SystemZ::R15D, Op.getOperand(1));
2380 }
2381
lowerPREFETCH(SDValue Op,SelectionDAG & DAG) const2382 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
2383 SelectionDAG &DAG) const {
2384 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2385 if (!IsData)
2386 // Just preserve the chain.
2387 return Op.getOperand(0);
2388
2389 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2390 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
2391 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
2392 SDValue Ops[] = {
2393 Op.getOperand(0),
2394 DAG.getConstant(Code, MVT::i32),
2395 Op.getOperand(1)
2396 };
2397 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
2398 Node->getVTList(), Ops,
2399 Node->getMemoryVT(), Node->getMemOperand());
2400 }
2401
LowerOperation(SDValue Op,SelectionDAG & DAG) const2402 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
2403 SelectionDAG &DAG) const {
2404 switch (Op.getOpcode()) {
2405 case ISD::BR_CC:
2406 return lowerBR_CC(Op, DAG);
2407 case ISD::SELECT_CC:
2408 return lowerSELECT_CC(Op, DAG);
2409 case ISD::SETCC:
2410 return lowerSETCC(Op, DAG);
2411 case ISD::GlobalAddress:
2412 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
2413 case ISD::GlobalTLSAddress:
2414 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
2415 case ISD::BlockAddress:
2416 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
2417 case ISD::JumpTable:
2418 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
2419 case ISD::ConstantPool:
2420 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
2421 case ISD::BITCAST:
2422 return lowerBITCAST(Op, DAG);
2423 case ISD::VASTART:
2424 return lowerVASTART(Op, DAG);
2425 case ISD::VACOPY:
2426 return lowerVACOPY(Op, DAG);
2427 case ISD::DYNAMIC_STACKALLOC:
2428 return lowerDYNAMIC_STACKALLOC(Op, DAG);
2429 case ISD::SMUL_LOHI:
2430 return lowerSMUL_LOHI(Op, DAG);
2431 case ISD::UMUL_LOHI:
2432 return lowerUMUL_LOHI(Op, DAG);
2433 case ISD::SDIVREM:
2434 return lowerSDIVREM(Op, DAG);
2435 case ISD::UDIVREM:
2436 return lowerUDIVREM(Op, DAG);
2437 case ISD::OR:
2438 return lowerOR(Op, DAG);
2439 case ISD::ATOMIC_SWAP:
2440 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2441 case ISD::ATOMIC_STORE:
2442 return lowerATOMIC_STORE(Op, DAG);
2443 case ISD::ATOMIC_LOAD:
2444 return lowerATOMIC_LOAD(Op, DAG);
2445 case ISD::ATOMIC_LOAD_ADD:
2446 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
2447 case ISD::ATOMIC_LOAD_SUB:
2448 return lowerATOMIC_LOAD_SUB(Op, DAG);
2449 case ISD::ATOMIC_LOAD_AND:
2450 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
2451 case ISD::ATOMIC_LOAD_OR:
2452 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
2453 case ISD::ATOMIC_LOAD_XOR:
2454 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
2455 case ISD::ATOMIC_LOAD_NAND:
2456 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
2457 case ISD::ATOMIC_LOAD_MIN:
2458 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
2459 case ISD::ATOMIC_LOAD_MAX:
2460 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
2461 case ISD::ATOMIC_LOAD_UMIN:
2462 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2463 case ISD::ATOMIC_LOAD_UMAX:
2464 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2465 case ISD::ATOMIC_CMP_SWAP:
2466 return lowerATOMIC_CMP_SWAP(Op, DAG);
2467 case ISD::STACKSAVE:
2468 return lowerSTACKSAVE(Op, DAG);
2469 case ISD::STACKRESTORE:
2470 return lowerSTACKRESTORE(Op, DAG);
2471 case ISD::PREFETCH:
2472 return lowerPREFETCH(Op, DAG);
2473 default:
2474 llvm_unreachable("Unexpected node to lower");
2475 }
2476 }
2477
getTargetNodeName(unsigned Opcode) const2478 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2479 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2480 switch (Opcode) {
2481 OPCODE(RET_FLAG);
2482 OPCODE(CALL);
2483 OPCODE(SIBCALL);
2484 OPCODE(PCREL_WRAPPER);
2485 OPCODE(PCREL_OFFSET);
2486 OPCODE(IABS);
2487 OPCODE(ICMP);
2488 OPCODE(FCMP);
2489 OPCODE(TM);
2490 OPCODE(BR_CCMASK);
2491 OPCODE(SELECT_CCMASK);
2492 OPCODE(ADJDYNALLOC);
2493 OPCODE(EXTRACT_ACCESS);
2494 OPCODE(UMUL_LOHI64);
2495 OPCODE(SDIVREM64);
2496 OPCODE(UDIVREM32);
2497 OPCODE(UDIVREM64);
2498 OPCODE(MVC);
2499 OPCODE(MVC_LOOP);
2500 OPCODE(NC);
2501 OPCODE(NC_LOOP);
2502 OPCODE(OC);
2503 OPCODE(OC_LOOP);
2504 OPCODE(XC);
2505 OPCODE(XC_LOOP);
2506 OPCODE(CLC);
2507 OPCODE(CLC_LOOP);
2508 OPCODE(STRCMP);
2509 OPCODE(STPCPY);
2510 OPCODE(SEARCH_STRING);
2511 OPCODE(IPM);
2512 OPCODE(SERIALIZE);
2513 OPCODE(ATOMIC_SWAPW);
2514 OPCODE(ATOMIC_LOADW_ADD);
2515 OPCODE(ATOMIC_LOADW_SUB);
2516 OPCODE(ATOMIC_LOADW_AND);
2517 OPCODE(ATOMIC_LOADW_OR);
2518 OPCODE(ATOMIC_LOADW_XOR);
2519 OPCODE(ATOMIC_LOADW_NAND);
2520 OPCODE(ATOMIC_LOADW_MIN);
2521 OPCODE(ATOMIC_LOADW_MAX);
2522 OPCODE(ATOMIC_LOADW_UMIN);
2523 OPCODE(ATOMIC_LOADW_UMAX);
2524 OPCODE(ATOMIC_CMP_SWAPW);
2525 OPCODE(PREFETCH);
2526 }
2527 return nullptr;
2528 #undef OPCODE
2529 }
2530
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2531 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
2532 DAGCombinerInfo &DCI) const {
2533 SelectionDAG &DAG = DCI.DAG;
2534 unsigned Opcode = N->getOpcode();
2535 if (Opcode == ISD::SIGN_EXTEND) {
2536 // Convert (sext (ashr (shl X, C1), C2)) to
2537 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
2538 // cheap as narrower ones.
2539 SDValue N0 = N->getOperand(0);
2540 EVT VT = N->getValueType(0);
2541 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
2542 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2543 SDValue Inner = N0.getOperand(0);
2544 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
2545 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
2546 unsigned Extra = (VT.getSizeInBits() -
2547 N0.getValueType().getSizeInBits());
2548 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
2549 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
2550 EVT ShiftVT = N0.getOperand(1).getValueType();
2551 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
2552 Inner.getOperand(0));
2553 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
2554 DAG.getConstant(NewShlAmt, ShiftVT));
2555 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
2556 DAG.getConstant(NewSraAmt, ShiftVT));
2557 }
2558 }
2559 }
2560 }
2561 return SDValue();
2562 }
2563
2564 //===----------------------------------------------------------------------===//
2565 // Custom insertion
2566 //===----------------------------------------------------------------------===//
2567
2568 // Create a new basic block after MBB.
emitBlockAfter(MachineBasicBlock * MBB)2569 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2570 MachineFunction &MF = *MBB->getParent();
2571 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2572 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
2573 return NewMBB;
2574 }
2575
2576 // Split MBB after MI and return the new block (the one that contains
2577 // instructions after MI).
splitBlockAfter(MachineInstr * MI,MachineBasicBlock * MBB)2578 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2579 MachineBasicBlock *MBB) {
2580 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2581 NewMBB->splice(NewMBB->begin(), MBB,
2582 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
2583 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2584 return NewMBB;
2585 }
2586
2587 // Split MBB before MI and return the new block (the one that contains MI).
splitBlockBefore(MachineInstr * MI,MachineBasicBlock * MBB)2588 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2589 MachineBasicBlock *MBB) {
2590 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2591 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2592 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2593 return NewMBB;
2594 }
2595
2596 // Force base value Base into a register before MI. Return the register.
forceReg(MachineInstr * MI,MachineOperand & Base,const SystemZInstrInfo * TII)2597 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2598 const SystemZInstrInfo *TII) {
2599 if (Base.isReg())
2600 return Base.getReg();
2601
2602 MachineBasicBlock *MBB = MI->getParent();
2603 MachineFunction &MF = *MBB->getParent();
2604 MachineRegisterInfo &MRI = MF.getRegInfo();
2605
2606 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2607 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2608 .addOperand(Base).addImm(0).addReg(0);
2609 return Reg;
2610 }
2611
2612 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2613 MachineBasicBlock *
emitSelect(MachineInstr * MI,MachineBasicBlock * MBB) const2614 SystemZTargetLowering::emitSelect(MachineInstr *MI,
2615 MachineBasicBlock *MBB) const {
2616 const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
2617 MBB->getParent()->getTarget().getInstrInfo());
2618
2619 unsigned DestReg = MI->getOperand(0).getReg();
2620 unsigned TrueReg = MI->getOperand(1).getReg();
2621 unsigned FalseReg = MI->getOperand(2).getReg();
2622 unsigned CCValid = MI->getOperand(3).getImm();
2623 unsigned CCMask = MI->getOperand(4).getImm();
2624 DebugLoc DL = MI->getDebugLoc();
2625
2626 MachineBasicBlock *StartMBB = MBB;
2627 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
2628 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2629
2630 // StartMBB:
2631 // BRC CCMask, JoinMBB
2632 // # fallthrough to FalseMBB
2633 MBB = StartMBB;
2634 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2635 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2636 MBB->addSuccessor(JoinMBB);
2637 MBB->addSuccessor(FalseMBB);
2638
2639 // FalseMBB:
2640 // # fallthrough to JoinMBB
2641 MBB = FalseMBB;
2642 MBB->addSuccessor(JoinMBB);
2643
2644 // JoinMBB:
2645 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2646 // ...
2647 MBB = JoinMBB;
2648 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
2649 .addReg(TrueReg).addMBB(StartMBB)
2650 .addReg(FalseReg).addMBB(FalseMBB);
2651
2652 MI->eraseFromParent();
2653 return JoinMBB;
2654 }
2655
2656 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2657 // StoreOpcode is the store to use and Invert says whether the store should
2658 // happen when the condition is false rather than true. If a STORE ON
2659 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
2660 MachineBasicBlock *
emitCondStore(MachineInstr * MI,MachineBasicBlock * MBB,unsigned StoreOpcode,unsigned STOCOpcode,bool Invert) const2661 SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2662 MachineBasicBlock *MBB,
2663 unsigned StoreOpcode, unsigned STOCOpcode,
2664 bool Invert) const {
2665 const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
2666 MBB->getParent()->getTarget().getInstrInfo());
2667
2668 unsigned SrcReg = MI->getOperand(0).getReg();
2669 MachineOperand Base = MI->getOperand(1);
2670 int64_t Disp = MI->getOperand(2).getImm();
2671 unsigned IndexReg = MI->getOperand(3).getReg();
2672 unsigned CCValid = MI->getOperand(4).getImm();
2673 unsigned CCMask = MI->getOperand(5).getImm();
2674 DebugLoc DL = MI->getDebugLoc();
2675
2676 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2677
2678 // Use STOCOpcode if possible. We could use different store patterns in
2679 // order to avoid matching the index register, but the performance trade-offs
2680 // might be more complicated in that case.
2681 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
2682 if (Invert)
2683 CCMask ^= CCValid;
2684 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
2685 .addReg(SrcReg).addOperand(Base).addImm(Disp)
2686 .addImm(CCValid).addImm(CCMask);
2687 MI->eraseFromParent();
2688 return MBB;
2689 }
2690
2691 // Get the condition needed to branch around the store.
2692 if (!Invert)
2693 CCMask ^= CCValid;
2694
2695 MachineBasicBlock *StartMBB = MBB;
2696 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
2697 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2698
2699 // StartMBB:
2700 // BRC CCMask, JoinMBB
2701 // # fallthrough to FalseMBB
2702 MBB = StartMBB;
2703 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2704 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2705 MBB->addSuccessor(JoinMBB);
2706 MBB->addSuccessor(FalseMBB);
2707
2708 // FalseMBB:
2709 // store %SrcReg, %Disp(%Index,%Base)
2710 // # fallthrough to JoinMBB
2711 MBB = FalseMBB;
2712 BuildMI(MBB, DL, TII->get(StoreOpcode))
2713 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2714 MBB->addSuccessor(JoinMBB);
2715
2716 MI->eraseFromParent();
2717 return JoinMBB;
2718 }
2719
2720 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2721 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
2722 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2723 // BitSize is the width of the field in bits, or 0 if this is a partword
2724 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2725 // is one of the operands. Invert says whether the field should be
2726 // inverted after performing BinOpcode (e.g. for NAND).
2727 MachineBasicBlock *
emitAtomicLoadBinary(MachineInstr * MI,MachineBasicBlock * MBB,unsigned BinOpcode,unsigned BitSize,bool Invert) const2728 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2729 MachineBasicBlock *MBB,
2730 unsigned BinOpcode,
2731 unsigned BitSize,
2732 bool Invert) const {
2733 MachineFunction &MF = *MBB->getParent();
2734 const SystemZInstrInfo *TII =
2735 static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
2736 MachineRegisterInfo &MRI = MF.getRegInfo();
2737 bool IsSubWord = (BitSize < 32);
2738
2739 // Extract the operands. Base can be a register or a frame index.
2740 // Src2 can be a register or immediate.
2741 unsigned Dest = MI->getOperand(0).getReg();
2742 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2743 int64_t Disp = MI->getOperand(2).getImm();
2744 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
2745 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2746 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2747 DebugLoc DL = MI->getDebugLoc();
2748 if (IsSubWord)
2749 BitSize = MI->getOperand(6).getImm();
2750
2751 // Subword operations use 32-bit registers.
2752 const TargetRegisterClass *RC = (BitSize <= 32 ?
2753 &SystemZ::GR32BitRegClass :
2754 &SystemZ::GR64BitRegClass);
2755 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2756 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2757
2758 // Get the right opcodes for the displacement.
2759 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2760 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2761 assert(LOpcode && CSOpcode && "Displacement out of range");
2762
2763 // Create virtual registers for temporary results.
2764 unsigned OrigVal = MRI.createVirtualRegister(RC);
2765 unsigned OldVal = MRI.createVirtualRegister(RC);
2766 unsigned NewVal = (BinOpcode || IsSubWord ?
2767 MRI.createVirtualRegister(RC) : Src2.getReg());
2768 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2769 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2770
2771 // Insert a basic block for the main loop.
2772 MachineBasicBlock *StartMBB = MBB;
2773 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2774 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2775
2776 // StartMBB:
2777 // ...
2778 // %OrigVal = L Disp(%Base)
2779 // # fall through to LoopMMB
2780 MBB = StartMBB;
2781 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2782 .addOperand(Base).addImm(Disp).addReg(0);
2783 MBB->addSuccessor(LoopMBB);
2784
2785 // LoopMBB:
2786 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2787 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2788 // %RotatedNewVal = OP %RotatedOldVal, %Src2
2789 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2790 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2791 // JNE LoopMBB
2792 // # fall through to DoneMMB
2793 MBB = LoopMBB;
2794 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2795 .addReg(OrigVal).addMBB(StartMBB)
2796 .addReg(Dest).addMBB(LoopMBB);
2797 if (IsSubWord)
2798 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2799 .addReg(OldVal).addReg(BitShift).addImm(0);
2800 if (Invert) {
2801 // Perform the operation normally and then invert every bit of the field.
2802 unsigned Tmp = MRI.createVirtualRegister(RC);
2803 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2804 .addReg(RotatedOldVal).addOperand(Src2);
2805 if (BitSize < 32)
2806 // XILF with the upper BitSize bits set.
2807 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2808 .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2809 else if (BitSize == 32)
2810 // XILF with every bit set.
2811 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2812 .addReg(Tmp).addImm(~uint32_t(0));
2813 else {
2814 // Use LCGR and add -1 to the result, which is more compact than
2815 // an XILF, XILH pair.
2816 unsigned Tmp2 = MRI.createVirtualRegister(RC);
2817 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2818 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2819 .addReg(Tmp2).addImm(-1);
2820 }
2821 } else if (BinOpcode)
2822 // A simply binary operation.
2823 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2824 .addReg(RotatedOldVal).addOperand(Src2);
2825 else if (IsSubWord)
2826 // Use RISBG to rotate Src2 into position and use it to replace the
2827 // field in RotatedOldVal.
2828 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2829 .addReg(RotatedOldVal).addReg(Src2.getReg())
2830 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2831 if (IsSubWord)
2832 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2833 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2834 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2835 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2836 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2837 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2838 MBB->addSuccessor(LoopMBB);
2839 MBB->addSuccessor(DoneMBB);
2840
2841 MI->eraseFromParent();
2842 return DoneMBB;
2843 }
2844
2845 // Implement EmitInstrWithCustomInserter for pseudo
2846 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
2847 // instruction that should be used to compare the current field with the
2848 // minimum or maximum value. KeepOldMask is the BRC condition-code mask
2849 // for when the current field should be kept. BitSize is the width of
2850 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2851 MachineBasicBlock *
emitAtomicLoadMinMax(MachineInstr * MI,MachineBasicBlock * MBB,unsigned CompareOpcode,unsigned KeepOldMask,unsigned BitSize) const2852 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2853 MachineBasicBlock *MBB,
2854 unsigned CompareOpcode,
2855 unsigned KeepOldMask,
2856 unsigned BitSize) const {
2857 MachineFunction &MF = *MBB->getParent();
2858 const SystemZInstrInfo *TII =
2859 static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
2860 MachineRegisterInfo &MRI = MF.getRegInfo();
2861 bool IsSubWord = (BitSize < 32);
2862
2863 // Extract the operands. Base can be a register or a frame index.
2864 unsigned Dest = MI->getOperand(0).getReg();
2865 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2866 int64_t Disp = MI->getOperand(2).getImm();
2867 unsigned Src2 = MI->getOperand(3).getReg();
2868 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2869 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2870 DebugLoc DL = MI->getDebugLoc();
2871 if (IsSubWord)
2872 BitSize = MI->getOperand(6).getImm();
2873
2874 // Subword operations use 32-bit registers.
2875 const TargetRegisterClass *RC = (BitSize <= 32 ?
2876 &SystemZ::GR32BitRegClass :
2877 &SystemZ::GR64BitRegClass);
2878 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2879 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2880
2881 // Get the right opcodes for the displacement.
2882 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2883 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2884 assert(LOpcode && CSOpcode && "Displacement out of range");
2885
2886 // Create virtual registers for temporary results.
2887 unsigned OrigVal = MRI.createVirtualRegister(RC);
2888 unsigned OldVal = MRI.createVirtualRegister(RC);
2889 unsigned NewVal = MRI.createVirtualRegister(RC);
2890 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2891 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2892 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2893
2894 // Insert 3 basic blocks for the loop.
2895 MachineBasicBlock *StartMBB = MBB;
2896 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2897 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2898 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2899 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2900
2901 // StartMBB:
2902 // ...
2903 // %OrigVal = L Disp(%Base)
2904 // # fall through to LoopMMB
2905 MBB = StartMBB;
2906 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2907 .addOperand(Base).addImm(Disp).addReg(0);
2908 MBB->addSuccessor(LoopMBB);
2909
2910 // LoopMBB:
2911 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2912 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2913 // CompareOpcode %RotatedOldVal, %Src2
2914 // BRC KeepOldMask, UpdateMBB
2915 MBB = LoopMBB;
2916 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2917 .addReg(OrigVal).addMBB(StartMBB)
2918 .addReg(Dest).addMBB(UpdateMBB);
2919 if (IsSubWord)
2920 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2921 .addReg(OldVal).addReg(BitShift).addImm(0);
2922 BuildMI(MBB, DL, TII->get(CompareOpcode))
2923 .addReg(RotatedOldVal).addReg(Src2);
2924 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2925 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2926 MBB->addSuccessor(UpdateMBB);
2927 MBB->addSuccessor(UseAltMBB);
2928
2929 // UseAltMBB:
2930 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2931 // # fall through to UpdateMMB
2932 MBB = UseAltMBB;
2933 if (IsSubWord)
2934 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2935 .addReg(RotatedOldVal).addReg(Src2)
2936 .addImm(32).addImm(31 + BitSize).addImm(0);
2937 MBB->addSuccessor(UpdateMBB);
2938
2939 // UpdateMBB:
2940 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2941 // [ %RotatedAltVal, UseAltMBB ]
2942 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2943 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2944 // JNE LoopMBB
2945 // # fall through to DoneMMB
2946 MBB = UpdateMBB;
2947 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2948 .addReg(RotatedOldVal).addMBB(LoopMBB)
2949 .addReg(RotatedAltVal).addMBB(UseAltMBB);
2950 if (IsSubWord)
2951 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2952 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2953 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2954 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2955 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2956 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2957 MBB->addSuccessor(LoopMBB);
2958 MBB->addSuccessor(DoneMBB);
2959
2960 MI->eraseFromParent();
2961 return DoneMBB;
2962 }
2963
2964 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2965 // instruction MI.
2966 MachineBasicBlock *
emitAtomicCmpSwapW(MachineInstr * MI,MachineBasicBlock * MBB) const2967 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2968 MachineBasicBlock *MBB) const {
2969 MachineFunction &MF = *MBB->getParent();
2970 const SystemZInstrInfo *TII =
2971 static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
2972 MachineRegisterInfo &MRI = MF.getRegInfo();
2973
2974 // Extract the operands. Base can be a register or a frame index.
2975 unsigned Dest = MI->getOperand(0).getReg();
2976 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2977 int64_t Disp = MI->getOperand(2).getImm();
2978 unsigned OrigCmpVal = MI->getOperand(3).getReg();
2979 unsigned OrigSwapVal = MI->getOperand(4).getReg();
2980 unsigned BitShift = MI->getOperand(5).getReg();
2981 unsigned NegBitShift = MI->getOperand(6).getReg();
2982 int64_t BitSize = MI->getOperand(7).getImm();
2983 DebugLoc DL = MI->getDebugLoc();
2984
2985 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2986
2987 // Get the right opcodes for the displacement.
2988 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
2989 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2990 assert(LOpcode && CSOpcode && "Displacement out of range");
2991
2992 // Create virtual registers for temporary results.
2993 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
2994 unsigned OldVal = MRI.createVirtualRegister(RC);
2995 unsigned CmpVal = MRI.createVirtualRegister(RC);
2996 unsigned SwapVal = MRI.createVirtualRegister(RC);
2997 unsigned StoreVal = MRI.createVirtualRegister(RC);
2998 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
2999 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
3000 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
3001
3002 // Insert 2 basic blocks for the loop.
3003 MachineBasicBlock *StartMBB = MBB;
3004 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3005 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3006 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
3007
3008 // StartMBB:
3009 // ...
3010 // %OrigOldVal = L Disp(%Base)
3011 // # fall through to LoopMMB
3012 MBB = StartMBB;
3013 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
3014 .addOperand(Base).addImm(Disp).addReg(0);
3015 MBB->addSuccessor(LoopMBB);
3016
3017 // LoopMBB:
3018 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
3019 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
3020 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
3021 // %Dest = RLL %OldVal, BitSize(%BitShift)
3022 // ^^ The low BitSize bits contain the field
3023 // of interest.
3024 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
3025 // ^^ Replace the upper 32-BitSize bits of the
3026 // comparison value with those that we loaded,
3027 // so that we can use a full word comparison.
3028 // CR %Dest, %RetryCmpVal
3029 // JNE DoneMBB
3030 // # Fall through to SetMBB
3031 MBB = LoopMBB;
3032 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
3033 .addReg(OrigOldVal).addMBB(StartMBB)
3034 .addReg(RetryOldVal).addMBB(SetMBB);
3035 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
3036 .addReg(OrigCmpVal).addMBB(StartMBB)
3037 .addReg(RetryCmpVal).addMBB(SetMBB);
3038 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
3039 .addReg(OrigSwapVal).addMBB(StartMBB)
3040 .addReg(RetrySwapVal).addMBB(SetMBB);
3041 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
3042 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
3043 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
3044 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3045 BuildMI(MBB, DL, TII->get(SystemZ::CR))
3046 .addReg(Dest).addReg(RetryCmpVal);
3047 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3048 .addImm(SystemZ::CCMASK_ICMP)
3049 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
3050 MBB->addSuccessor(DoneMBB);
3051 MBB->addSuccessor(SetMBB);
3052
3053 // SetMBB:
3054 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
3055 // ^^ Replace the upper 32-BitSize bits of the new
3056 // value with those that we loaded.
3057 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
3058 // ^^ Rotate the new field to its proper position.
3059 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
3060 // JNE LoopMBB
3061 // # fall through to ExitMMB
3062 MBB = SetMBB;
3063 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
3064 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3065 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
3066 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
3067 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
3068 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
3069 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3070 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
3071 MBB->addSuccessor(LoopMBB);
3072 MBB->addSuccessor(DoneMBB);
3073
3074 MI->eraseFromParent();
3075 return DoneMBB;
3076 }
3077
3078 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
3079 // if the high register of the GR128 value must be cleared or false if
3080 // it's "don't care". SubReg is subreg_l32 when extending a GR32
3081 // and subreg_l64 when extending a GR64.
3082 MachineBasicBlock *
emitExt128(MachineInstr * MI,MachineBasicBlock * MBB,bool ClearEven,unsigned SubReg) const3083 SystemZTargetLowering::emitExt128(MachineInstr *MI,
3084 MachineBasicBlock *MBB,
3085 bool ClearEven, unsigned SubReg) const {
3086 MachineFunction &MF = *MBB->getParent();
3087 const SystemZInstrInfo *TII =
3088 static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
3089 MachineRegisterInfo &MRI = MF.getRegInfo();
3090 DebugLoc DL = MI->getDebugLoc();
3091
3092 unsigned Dest = MI->getOperand(0).getReg();
3093 unsigned Src = MI->getOperand(1).getReg();
3094 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3095
3096 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
3097 if (ClearEven) {
3098 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3099 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
3100
3101 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
3102 .addImm(0);
3103 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
3104 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
3105 In128 = NewIn128;
3106 }
3107 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
3108 .addReg(In128).addReg(Src).addImm(SubReg);
3109
3110 MI->eraseFromParent();
3111 return MBB;
3112 }
3113
3114 MachineBasicBlock *
emitMemMemWrapper(MachineInstr * MI,MachineBasicBlock * MBB,unsigned Opcode) const3115 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
3116 MachineBasicBlock *MBB,
3117 unsigned Opcode) const {
3118 MachineFunction &MF = *MBB->getParent();
3119 const SystemZInstrInfo *TII =
3120 static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
3121 MachineRegisterInfo &MRI = MF.getRegInfo();
3122 DebugLoc DL = MI->getDebugLoc();
3123
3124 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
3125 uint64_t DestDisp = MI->getOperand(1).getImm();
3126 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
3127 uint64_t SrcDisp = MI->getOperand(3).getImm();
3128 uint64_t Length = MI->getOperand(4).getImm();
3129
3130 // When generating more than one CLC, all but the last will need to
3131 // branch to the end when a difference is found.
3132 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
3133 splitBlockAfter(MI, MBB) : nullptr);
3134
3135 // Check for the loop form, in which operand 5 is the trip count.
3136 if (MI->getNumExplicitOperands() > 5) {
3137 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
3138
3139 uint64_t StartCountReg = MI->getOperand(5).getReg();
3140 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
3141 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
3142 forceReg(MI, DestBase, TII));
3143
3144 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
3145 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
3146 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
3147 MRI.createVirtualRegister(RC));
3148 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
3149 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
3150 MRI.createVirtualRegister(RC));
3151
3152 RC = &SystemZ::GR64BitRegClass;
3153 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
3154 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
3155
3156 MachineBasicBlock *StartMBB = MBB;
3157 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3158 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3159 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
3160
3161 // StartMBB:
3162 // # fall through to LoopMMB
3163 MBB->addSuccessor(LoopMBB);
3164
3165 // LoopMBB:
3166 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
3167 // [ %NextDestReg, NextMBB ]
3168 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
3169 // [ %NextSrcReg, NextMBB ]
3170 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
3171 // [ %NextCountReg, NextMBB ]
3172 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
3173 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
3174 // ( JLH EndMBB )
3175 //
3176 // The prefetch is used only for MVC. The JLH is used only for CLC.
3177 MBB = LoopMBB;
3178
3179 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
3180 .addReg(StartDestReg).addMBB(StartMBB)
3181 .addReg(NextDestReg).addMBB(NextMBB);
3182 if (!HaveSingleBase)
3183 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
3184 .addReg(StartSrcReg).addMBB(StartMBB)
3185 .addReg(NextSrcReg).addMBB(NextMBB);
3186 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
3187 .addReg(StartCountReg).addMBB(StartMBB)
3188 .addReg(NextCountReg).addMBB(NextMBB);
3189 if (Opcode == SystemZ::MVC)
3190 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
3191 .addImm(SystemZ::PFD_WRITE)
3192 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
3193 BuildMI(MBB, DL, TII->get(Opcode))
3194 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
3195 .addReg(ThisSrcReg).addImm(SrcDisp);
3196 if (EndMBB) {
3197 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3198 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3199 .addMBB(EndMBB);
3200 MBB->addSuccessor(EndMBB);
3201 MBB->addSuccessor(NextMBB);
3202 }
3203
3204 // NextMBB:
3205 // %NextDestReg = LA 256(%ThisDestReg)
3206 // %NextSrcReg = LA 256(%ThisSrcReg)
3207 // %NextCountReg = AGHI %ThisCountReg, -1
3208 // CGHI %NextCountReg, 0
3209 // JLH LoopMBB
3210 // # fall through to DoneMMB
3211 //
3212 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
3213 MBB = NextMBB;
3214
3215 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
3216 .addReg(ThisDestReg).addImm(256).addReg(0);
3217 if (!HaveSingleBase)
3218 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
3219 .addReg(ThisSrcReg).addImm(256).addReg(0);
3220 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
3221 .addReg(ThisCountReg).addImm(-1);
3222 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
3223 .addReg(NextCountReg).addImm(0);
3224 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3225 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3226 .addMBB(LoopMBB);
3227 MBB->addSuccessor(LoopMBB);
3228 MBB->addSuccessor(DoneMBB);
3229
3230 DestBase = MachineOperand::CreateReg(NextDestReg, false);
3231 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
3232 Length &= 255;
3233 MBB = DoneMBB;
3234 }
3235 // Handle any remaining bytes with straight-line code.
3236 while (Length > 0) {
3237 uint64_t ThisLength = std::min(Length, uint64_t(256));
3238 // The previous iteration might have created out-of-range displacements.
3239 // Apply them using LAY if so.
3240 if (!isUInt<12>(DestDisp)) {
3241 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3242 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3243 .addOperand(DestBase).addImm(DestDisp).addReg(0);
3244 DestBase = MachineOperand::CreateReg(Reg, false);
3245 DestDisp = 0;
3246 }
3247 if (!isUInt<12>(SrcDisp)) {
3248 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3249 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3250 .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
3251 SrcBase = MachineOperand::CreateReg(Reg, false);
3252 SrcDisp = 0;
3253 }
3254 BuildMI(*MBB, MI, DL, TII->get(Opcode))
3255 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
3256 .addOperand(SrcBase).addImm(SrcDisp);
3257 DestDisp += ThisLength;
3258 SrcDisp += ThisLength;
3259 Length -= ThisLength;
3260 // If there's another CLC to go, branch to the end if a difference
3261 // was found.
3262 if (EndMBB && Length > 0) {
3263 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
3264 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3265 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3266 .addMBB(EndMBB);
3267 MBB->addSuccessor(EndMBB);
3268 MBB->addSuccessor(NextMBB);
3269 MBB = NextMBB;
3270 }
3271 }
3272 if (EndMBB) {
3273 MBB->addSuccessor(EndMBB);
3274 MBB = EndMBB;
3275 MBB->addLiveIn(SystemZ::CC);
3276 }
3277
3278 MI->eraseFromParent();
3279 return MBB;
3280 }
3281
3282 // Decompose string pseudo-instruction MI into a loop that continually performs
3283 // Opcode until CC != 3.
3284 MachineBasicBlock *
emitStringWrapper(MachineInstr * MI,MachineBasicBlock * MBB,unsigned Opcode) const3285 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
3286 MachineBasicBlock *MBB,
3287 unsigned Opcode) const {
3288 MachineFunction &MF = *MBB->getParent();
3289 const SystemZInstrInfo *TII =
3290 static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
3291 MachineRegisterInfo &MRI = MF.getRegInfo();
3292 DebugLoc DL = MI->getDebugLoc();
3293
3294 uint64_t End1Reg = MI->getOperand(0).getReg();
3295 uint64_t Start1Reg = MI->getOperand(1).getReg();
3296 uint64_t Start2Reg = MI->getOperand(2).getReg();
3297 uint64_t CharReg = MI->getOperand(3).getReg();
3298
3299 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
3300 uint64_t This1Reg = MRI.createVirtualRegister(RC);
3301 uint64_t This2Reg = MRI.createVirtualRegister(RC);
3302 uint64_t End2Reg = MRI.createVirtualRegister(RC);
3303
3304 MachineBasicBlock *StartMBB = MBB;
3305 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3306 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3307
3308 // StartMBB:
3309 // # fall through to LoopMMB
3310 MBB->addSuccessor(LoopMBB);
3311
3312 // LoopMBB:
3313 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
3314 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
3315 // R0L = %CharReg
3316 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
3317 // JO LoopMBB
3318 // # fall through to DoneMMB
3319 //
3320 // The load of R0L can be hoisted by post-RA LICM.
3321 MBB = LoopMBB;
3322
3323 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
3324 .addReg(Start1Reg).addMBB(StartMBB)
3325 .addReg(End1Reg).addMBB(LoopMBB);
3326 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
3327 .addReg(Start2Reg).addMBB(StartMBB)
3328 .addReg(End2Reg).addMBB(LoopMBB);
3329 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
3330 BuildMI(MBB, DL, TII->get(Opcode))
3331 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
3332 .addReg(This1Reg).addReg(This2Reg);
3333 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3334 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
3335 MBB->addSuccessor(LoopMBB);
3336 MBB->addSuccessor(DoneMBB);
3337
3338 DoneMBB->addLiveIn(SystemZ::CC);
3339
3340 MI->eraseFromParent();
3341 return DoneMBB;
3342 }
3343
3344 MachineBasicBlock *SystemZTargetLowering::
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const3345 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
3346 switch (MI->getOpcode()) {
3347 case SystemZ::Select32Mux:
3348 case SystemZ::Select32:
3349 case SystemZ::SelectF32:
3350 case SystemZ::Select64:
3351 case SystemZ::SelectF64:
3352 case SystemZ::SelectF128:
3353 return emitSelect(MI, MBB);
3354
3355 case SystemZ::CondStore8Mux:
3356 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
3357 case SystemZ::CondStore8MuxInv:
3358 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
3359 case SystemZ::CondStore16Mux:
3360 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
3361 case SystemZ::CondStore16MuxInv:
3362 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
3363 case SystemZ::CondStore8:
3364 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
3365 case SystemZ::CondStore8Inv:
3366 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
3367 case SystemZ::CondStore16:
3368 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
3369 case SystemZ::CondStore16Inv:
3370 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
3371 case SystemZ::CondStore32:
3372 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
3373 case SystemZ::CondStore32Inv:
3374 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
3375 case SystemZ::CondStore64:
3376 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
3377 case SystemZ::CondStore64Inv:
3378 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
3379 case SystemZ::CondStoreF32:
3380 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
3381 case SystemZ::CondStoreF32Inv:
3382 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
3383 case SystemZ::CondStoreF64:
3384 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
3385 case SystemZ::CondStoreF64Inv:
3386 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
3387
3388 case SystemZ::AEXT128_64:
3389 return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
3390 case SystemZ::ZEXT128_32:
3391 return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
3392 case SystemZ::ZEXT128_64:
3393 return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
3394
3395 case SystemZ::ATOMIC_SWAPW:
3396 return emitAtomicLoadBinary(MI, MBB, 0, 0);
3397 case SystemZ::ATOMIC_SWAP_32:
3398 return emitAtomicLoadBinary(MI, MBB, 0, 32);
3399 case SystemZ::ATOMIC_SWAP_64:
3400 return emitAtomicLoadBinary(MI, MBB, 0, 64);
3401
3402 case SystemZ::ATOMIC_LOADW_AR:
3403 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
3404 case SystemZ::ATOMIC_LOADW_AFI:
3405 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
3406 case SystemZ::ATOMIC_LOAD_AR:
3407 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
3408 case SystemZ::ATOMIC_LOAD_AHI:
3409 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
3410 case SystemZ::ATOMIC_LOAD_AFI:
3411 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
3412 case SystemZ::ATOMIC_LOAD_AGR:
3413 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
3414 case SystemZ::ATOMIC_LOAD_AGHI:
3415 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
3416 case SystemZ::ATOMIC_LOAD_AGFI:
3417 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
3418
3419 case SystemZ::ATOMIC_LOADW_SR:
3420 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
3421 case SystemZ::ATOMIC_LOAD_SR:
3422 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
3423 case SystemZ::ATOMIC_LOAD_SGR:
3424 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
3425
3426 case SystemZ::ATOMIC_LOADW_NR:
3427 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
3428 case SystemZ::ATOMIC_LOADW_NILH:
3429 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
3430 case SystemZ::ATOMIC_LOAD_NR:
3431 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
3432 case SystemZ::ATOMIC_LOAD_NILL:
3433 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
3434 case SystemZ::ATOMIC_LOAD_NILH:
3435 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
3436 case SystemZ::ATOMIC_LOAD_NILF:
3437 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
3438 case SystemZ::ATOMIC_LOAD_NGR:
3439 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
3440 case SystemZ::ATOMIC_LOAD_NILL64:
3441 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
3442 case SystemZ::ATOMIC_LOAD_NILH64:
3443 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
3444 case SystemZ::ATOMIC_LOAD_NIHL64:
3445 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
3446 case SystemZ::ATOMIC_LOAD_NIHH64:
3447 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
3448 case SystemZ::ATOMIC_LOAD_NILF64:
3449 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
3450 case SystemZ::ATOMIC_LOAD_NIHF64:
3451 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
3452
3453 case SystemZ::ATOMIC_LOADW_OR:
3454 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
3455 case SystemZ::ATOMIC_LOADW_OILH:
3456 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
3457 case SystemZ::ATOMIC_LOAD_OR:
3458 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
3459 case SystemZ::ATOMIC_LOAD_OILL:
3460 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
3461 case SystemZ::ATOMIC_LOAD_OILH:
3462 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
3463 case SystemZ::ATOMIC_LOAD_OILF:
3464 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
3465 case SystemZ::ATOMIC_LOAD_OGR:
3466 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
3467 case SystemZ::ATOMIC_LOAD_OILL64:
3468 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
3469 case SystemZ::ATOMIC_LOAD_OILH64:
3470 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
3471 case SystemZ::ATOMIC_LOAD_OIHL64:
3472 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
3473 case SystemZ::ATOMIC_LOAD_OIHH64:
3474 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
3475 case SystemZ::ATOMIC_LOAD_OILF64:
3476 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
3477 case SystemZ::ATOMIC_LOAD_OIHF64:
3478 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
3479
3480 case SystemZ::ATOMIC_LOADW_XR:
3481 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3482 case SystemZ::ATOMIC_LOADW_XILF:
3483 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
3484 case SystemZ::ATOMIC_LOAD_XR:
3485 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
3486 case SystemZ::ATOMIC_LOAD_XILF:
3487 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
3488 case SystemZ::ATOMIC_LOAD_XGR:
3489 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
3490 case SystemZ::ATOMIC_LOAD_XILF64:
3491 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
3492 case SystemZ::ATOMIC_LOAD_XIHF64:
3493 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
3494
3495 case SystemZ::ATOMIC_LOADW_NRi:
3496 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3497 case SystemZ::ATOMIC_LOADW_NILHi:
3498 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
3499 case SystemZ::ATOMIC_LOAD_NRi:
3500 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
3501 case SystemZ::ATOMIC_LOAD_NILLi:
3502 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3503 case SystemZ::ATOMIC_LOAD_NILHi:
3504 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3505 case SystemZ::ATOMIC_LOAD_NILFi:
3506 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
3507 case SystemZ::ATOMIC_LOAD_NGRi:
3508 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3509 case SystemZ::ATOMIC_LOAD_NILL64i:
3510 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3511 case SystemZ::ATOMIC_LOAD_NILH64i:
3512 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
3513 case SystemZ::ATOMIC_LOAD_NIHL64i:
3514 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
3515 case SystemZ::ATOMIC_LOAD_NIHH64i:
3516 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
3517 case SystemZ::ATOMIC_LOAD_NILF64i:
3518 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
3519 case SystemZ::ATOMIC_LOAD_NIHF64i:
3520 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
3521
3522 case SystemZ::ATOMIC_LOADW_MIN:
3523 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3524 SystemZ::CCMASK_CMP_LE, 0);
3525 case SystemZ::ATOMIC_LOAD_MIN_32:
3526 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3527 SystemZ::CCMASK_CMP_LE, 32);
3528 case SystemZ::ATOMIC_LOAD_MIN_64:
3529 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3530 SystemZ::CCMASK_CMP_LE, 64);
3531
3532 case SystemZ::ATOMIC_LOADW_MAX:
3533 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3534 SystemZ::CCMASK_CMP_GE, 0);
3535 case SystemZ::ATOMIC_LOAD_MAX_32:
3536 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3537 SystemZ::CCMASK_CMP_GE, 32);
3538 case SystemZ::ATOMIC_LOAD_MAX_64:
3539 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3540 SystemZ::CCMASK_CMP_GE, 64);
3541
3542 case SystemZ::ATOMIC_LOADW_UMIN:
3543 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3544 SystemZ::CCMASK_CMP_LE, 0);
3545 case SystemZ::ATOMIC_LOAD_UMIN_32:
3546 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3547 SystemZ::CCMASK_CMP_LE, 32);
3548 case SystemZ::ATOMIC_LOAD_UMIN_64:
3549 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3550 SystemZ::CCMASK_CMP_LE, 64);
3551
3552 case SystemZ::ATOMIC_LOADW_UMAX:
3553 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3554 SystemZ::CCMASK_CMP_GE, 0);
3555 case SystemZ::ATOMIC_LOAD_UMAX_32:
3556 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3557 SystemZ::CCMASK_CMP_GE, 32);
3558 case SystemZ::ATOMIC_LOAD_UMAX_64:
3559 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3560 SystemZ::CCMASK_CMP_GE, 64);
3561
3562 case SystemZ::ATOMIC_CMP_SWAPW:
3563 return emitAtomicCmpSwapW(MI, MBB);
3564 case SystemZ::MVCSequence:
3565 case SystemZ::MVCLoop:
3566 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
3567 case SystemZ::NCSequence:
3568 case SystemZ::NCLoop:
3569 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3570 case SystemZ::OCSequence:
3571 case SystemZ::OCLoop:
3572 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3573 case SystemZ::XCSequence:
3574 case SystemZ::XCLoop:
3575 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
3576 case SystemZ::CLCSequence:
3577 case SystemZ::CLCLoop:
3578 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
3579 case SystemZ::CLSTLoop:
3580 return emitStringWrapper(MI, MBB, SystemZ::CLST);
3581 case SystemZ::MVSTLoop:
3582 return emitStringWrapper(MI, MBB, SystemZ::MVST);
3583 case SystemZ::SRSTLoop:
3584 return emitStringWrapper(MI, MBB, SystemZ::SRST);
3585 default:
3586 llvm_unreachable("Unexpected instr type to insert");
3587 }
3588 }
3589