1 /*
2 *******************************************************************************
3 * Copyright (C) 2013-2014, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 *******************************************************************************
6 * collationbuilder.cpp
7 *
8 * (replaced the former ucol_bld.cpp)
9 *
10 * created on: 2013may06
11 * created by: Markus W. Scherer
12 */
13
14 #ifdef DEBUG_COLLATION_BUILDER
15 #include <stdio.h>
16 #endif
17
18 #include "unicode/utypes.h"
19
20 #if !UCONFIG_NO_COLLATION
21
22 #include "unicode/caniter.h"
23 #include "unicode/normalizer2.h"
24 #include "unicode/tblcoll.h"
25 #include "unicode/parseerr.h"
26 #include "unicode/uchar.h"
27 #include "unicode/ucol.h"
28 #include "unicode/unistr.h"
29 #include "unicode/usetiter.h"
30 #include "unicode/utf16.h"
31 #include "unicode/uversion.h"
32 #include "cmemory.h"
33 #include "collation.h"
34 #include "collationbuilder.h"
35 #include "collationdata.h"
36 #include "collationdatabuilder.h"
37 #include "collationfastlatin.h"
38 #include "collationroot.h"
39 #include "collationrootelements.h"
40 #include "collationruleparser.h"
41 #include "collationsettings.h"
42 #include "collationtailoring.h"
43 #include "collationweights.h"
44 #include "normalizer2impl.h"
45 #include "uassert.h"
46 #include "ucol_imp.h"
47 #include "utf16collationiterator.h"
48
49 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
50
51 U_NAMESPACE_BEGIN
52
53 namespace {
54
55 class BundleImporter : public CollationRuleParser::Importer {
56 public:
BundleImporter()57 BundleImporter() : rules(NULL) {}
58 virtual ~BundleImporter();
59 virtual const UnicodeString *getRules(
60 const char *localeID, const char *collationType,
61 const char *&errorReason, UErrorCode &errorCode);
62
63 private:
64 UnicodeString *rules;
65 };
66
~BundleImporter()67 BundleImporter::~BundleImporter() {
68 delete rules;
69 }
70
71 const UnicodeString *
getRules(const char * localeID,const char * collationType,const char * &,UErrorCode & errorCode)72 BundleImporter::getRules(
73 const char *localeID, const char *collationType,
74 const char *& /*errorReason*/, UErrorCode &errorCode) {
75 delete rules;
76 return rules = CollationLoader::loadRules(localeID, collationType, errorCode);
77 }
78
79 } // namespace
80
81 // RuleBasedCollator implementation ---------------------------------------- ***
82
83 // These methods are here, rather than in rulebasedcollator.cpp,
84 // for modularization:
85 // Most code using Collator does not need to build a Collator from rules.
86 // By moving these constructors and helper methods to a separate file,
87 // most code will not have a static dependency on the builder code.
88
RuleBasedCollator()89 RuleBasedCollator::RuleBasedCollator()
90 : data(NULL),
91 settings(NULL),
92 tailoring(NULL),
93 validLocale(""),
94 explicitlySetAttributes(0),
95 actualLocaleIsSameAsValid(FALSE) {
96 }
97
RuleBasedCollator(const UnicodeString & rules,UErrorCode & errorCode)98 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode)
99 : data(NULL),
100 settings(NULL),
101 tailoring(NULL),
102 validLocale(""),
103 explicitlySetAttributes(0),
104 actualLocaleIsSameAsValid(FALSE) {
105 internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, NULL, NULL, errorCode);
106 }
107
RuleBasedCollator(const UnicodeString & rules,ECollationStrength strength,UErrorCode & errorCode)108 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength,
109 UErrorCode &errorCode)
110 : data(NULL),
111 settings(NULL),
112 tailoring(NULL),
113 validLocale(""),
114 explicitlySetAttributes(0),
115 actualLocaleIsSameAsValid(FALSE) {
116 internalBuildTailoring(rules, strength, UCOL_DEFAULT, NULL, NULL, errorCode);
117 }
118
RuleBasedCollator(const UnicodeString & rules,UColAttributeValue decompositionMode,UErrorCode & errorCode)119 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
120 UColAttributeValue decompositionMode,
121 UErrorCode &errorCode)
122 : data(NULL),
123 settings(NULL),
124 tailoring(NULL),
125 validLocale(""),
126 explicitlySetAttributes(0),
127 actualLocaleIsSameAsValid(FALSE) {
128 internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, NULL, NULL, errorCode);
129 }
130
RuleBasedCollator(const UnicodeString & rules,ECollationStrength strength,UColAttributeValue decompositionMode,UErrorCode & errorCode)131 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
132 ECollationStrength strength,
133 UColAttributeValue decompositionMode,
134 UErrorCode &errorCode)
135 : data(NULL),
136 settings(NULL),
137 tailoring(NULL),
138 validLocale(""),
139 explicitlySetAttributes(0),
140 actualLocaleIsSameAsValid(FALSE) {
141 internalBuildTailoring(rules, strength, decompositionMode, NULL, NULL, errorCode);
142 }
143
RuleBasedCollator(const UnicodeString & rules,UParseError & parseError,UnicodeString & reason,UErrorCode & errorCode)144 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
145 UParseError &parseError, UnicodeString &reason,
146 UErrorCode &errorCode)
147 : data(NULL),
148 settings(NULL),
149 tailoring(NULL),
150 validLocale(""),
151 explicitlySetAttributes(0),
152 actualLocaleIsSameAsValid(FALSE) {
153 internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode);
154 }
155
156 void
internalBuildTailoring(const UnicodeString & rules,int32_t strength,UColAttributeValue decompositionMode,UParseError * outParseError,UnicodeString * outReason,UErrorCode & errorCode)157 RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules,
158 int32_t strength,
159 UColAttributeValue decompositionMode,
160 UParseError *outParseError, UnicodeString *outReason,
161 UErrorCode &errorCode) {
162 const CollationTailoring *base = CollationRoot::getRoot(errorCode);
163 if(U_FAILURE(errorCode)) { return; }
164 if(outReason != NULL) { outReason->remove(); }
165 CollationBuilder builder(base, errorCode);
166 UVersionInfo noVersion = { 0, 0, 0, 0 };
167 BundleImporter importer;
168 LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion,
169 &importer,
170 outParseError, errorCode));
171 if(U_FAILURE(errorCode)) {
172 const char *reason = builder.getErrorReason();
173 if(reason != NULL && outReason != NULL) {
174 *outReason = UnicodeString(reason, -1, US_INV);
175 }
176 return;
177 }
178 t->actualLocale.setToBogus();
179 adoptTailoring(t.orphan());
180 // Set attributes after building the collator,
181 // to keep the default settings consistent with the rule string.
182 if(strength != UCOL_DEFAULT) {
183 setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode);
184 }
185 if(decompositionMode != UCOL_DEFAULT) {
186 setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode);
187 }
188 }
189
190 // CollationBuilder implementation ----------------------------------------- ***
191
CollationBuilder(const CollationTailoring * b,UErrorCode & errorCode)192 CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode)
193 : nfd(*Normalizer2::getNFDInstance(errorCode)),
194 fcd(*Normalizer2Factory::getFCDInstance(errorCode)),
195 nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
196 base(b),
197 baseData(b->data),
198 rootElements(b->data->rootElements, b->data->rootElementsLength),
199 variableTop(0),
200 dataBuilder(new CollationDataBuilder(errorCode)), fastLatinEnabled(TRUE),
201 errorReason(NULL),
202 cesLength(0),
203 rootPrimaryIndexes(errorCode), nodes(errorCode) {
204 nfcImpl.ensureCanonIterData(errorCode);
205 if(U_FAILURE(errorCode)) {
206 errorReason = "CollationBuilder fields initialization failed";
207 return;
208 }
209 if(dataBuilder == NULL) {
210 errorCode = U_MEMORY_ALLOCATION_ERROR;
211 return;
212 }
213 dataBuilder->initForTailoring(baseData, errorCode);
214 if(U_FAILURE(errorCode)) {
215 errorReason = "CollationBuilder initialization failed";
216 }
217 }
218
~CollationBuilder()219 CollationBuilder::~CollationBuilder() {
220 delete dataBuilder;
221 }
222
223 CollationTailoring *
parseAndBuild(const UnicodeString & ruleString,const UVersionInfo rulesVersion,CollationRuleParser::Importer * importer,UParseError * outParseError,UErrorCode & errorCode)224 CollationBuilder::parseAndBuild(const UnicodeString &ruleString,
225 const UVersionInfo rulesVersion,
226 CollationRuleParser::Importer *importer,
227 UParseError *outParseError,
228 UErrorCode &errorCode) {
229 if(U_FAILURE(errorCode)) { return NULL; }
230 if(baseData->rootElements == NULL) {
231 errorCode = U_MISSING_RESOURCE_ERROR;
232 errorReason = "missing root elements data, tailoring not supported";
233 return NULL;
234 }
235 LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings));
236 if(tailoring.isNull() || tailoring->isBogus()) {
237 errorCode = U_MEMORY_ALLOCATION_ERROR;
238 return NULL;
239 }
240 CollationRuleParser parser(baseData, errorCode);
241 if(U_FAILURE(errorCode)) { return NULL; }
242 // Note: This always bases &[last variable] and &[first regular]
243 // on the root collator's maxVariable/variableTop.
244 // If we wanted this to change after [maxVariable x], then we would keep
245 // the tailoring.settings pointer here and read its variableTop when we need it.
246 // See http://unicode.org/cldr/trac/ticket/6070
247 variableTop = base->settings->variableTop;
248 parser.setSink(this);
249 parser.setImporter(importer);
250 CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings);
251 parser.parse(ruleString, ownedSettings, outParseError, errorCode);
252 errorReason = parser.getErrorReason();
253 if(U_FAILURE(errorCode)) { return NULL; }
254 if(dataBuilder->hasMappings()) {
255 makeTailoredCEs(errorCode);
256 closeOverComposites(errorCode);
257 finalizeCEs(errorCode);
258 // Copy all of ASCII, and Latin-1 letters, into each tailoring.
259 optimizeSet.add(0, 0x7f);
260 optimizeSet.add(0xc0, 0xff);
261 // Hangul is decomposed on the fly during collation,
262 // and the tailoring data is always built with HANGUL_TAG specials.
263 optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
264 dataBuilder->optimize(optimizeSet, errorCode);
265 tailoring->ensureOwnedData(errorCode);
266 if(U_FAILURE(errorCode)) { return NULL; }
267 if(fastLatinEnabled) { dataBuilder->enableFastLatin(); }
268 dataBuilder->build(*tailoring->ownedData, errorCode);
269 tailoring->builder = dataBuilder;
270 dataBuilder = NULL;
271 } else {
272 tailoring->data = baseData;
273 }
274 if(U_FAILURE(errorCode)) { return NULL; }
275 ownedSettings.fastLatinOptions = CollationFastLatin::getOptions(
276 tailoring->data, ownedSettings,
277 ownedSettings.fastLatinPrimaries, LENGTHOF(ownedSettings.fastLatinPrimaries));
278 tailoring->rules = ruleString;
279 tailoring->rules.getTerminatedBuffer(); // ensure NUL-termination
280 tailoring->setVersion(base->version, rulesVersion);
281 return tailoring.orphan();
282 }
283
284 void
addReset(int32_t strength,const UnicodeString & str,const char * & parserErrorReason,UErrorCode & errorCode)285 CollationBuilder::addReset(int32_t strength, const UnicodeString &str,
286 const char *&parserErrorReason, UErrorCode &errorCode) {
287 if(U_FAILURE(errorCode)) { return; }
288 U_ASSERT(!str.isEmpty());
289 if(str.charAt(0) == CollationRuleParser::POS_LEAD) {
290 ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode);
291 cesLength = 1;
292 if(U_FAILURE(errorCode)) { return; }
293 U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0);
294 } else {
295 // normal reset to a character or string
296 UnicodeString nfdString = nfd.normalize(str, errorCode);
297 if(U_FAILURE(errorCode)) {
298 parserErrorReason = "normalizing the reset position";
299 return;
300 }
301 cesLength = dataBuilder->getCEs(nfdString, ces, 0);
302 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
303 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
304 parserErrorReason = "reset position maps to too many collation elements (more than 31)";
305 return;
306 }
307 }
308 if(strength == UCOL_IDENTICAL) { return; } // simple reset-at-position
309
310 // &[before strength]position
311 U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY);
312 int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
313 if(U_FAILURE(errorCode)) { return; }
314
315 int64_t node = nodes.elementAti(index);
316 // If the index is for a "weaker" tailored node,
317 // then skip backwards over this and further "weaker" nodes.
318 while(strengthFromNode(node) > strength) {
319 index = previousIndexFromNode(node);
320 node = nodes.elementAti(index);
321 }
322
323 // Find or insert a node whose index we will put into a temporary CE.
324 if(strengthFromNode(node) == strength && isTailoredNode(node)) {
325 // Reset to just before this same-strength tailored node.
326 index = previousIndexFromNode(node);
327 } else if(strength == UCOL_PRIMARY) {
328 // root primary node (has no previous index)
329 uint32_t p = weight32FromNode(node);
330 if(p == 0) {
331 errorCode = U_UNSUPPORTED_ERROR;
332 parserErrorReason = "reset primary-before ignorable not possible";
333 return;
334 }
335 if(p <= rootElements.getFirstPrimary()) {
336 // There is no primary gap between ignorables and the space-first-primary.
337 errorCode = U_UNSUPPORTED_ERROR;
338 parserErrorReason = "reset primary-before first non-ignorable not supported";
339 return;
340 }
341 if(p == Collation::FIRST_TRAILING_PRIMARY) {
342 // We do not support tailoring to an unassigned-implicit CE.
343 errorCode = U_UNSUPPORTED_ERROR;
344 parserErrorReason = "reset primary-before [first trailing] not supported";
345 return;
346 }
347 p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p));
348 index = findOrInsertNodeForPrimary(p, errorCode);
349 // Go to the last node in this list:
350 // Tailor after the last node between adjacent root nodes.
351 for(;;) {
352 node = nodes.elementAti(index);
353 int32_t nextIndex = nextIndexFromNode(node);
354 if(nextIndex == 0) { break; }
355 index = nextIndex;
356 }
357 } else {
358 // &[before 2] or &[before 3]
359 index = findCommonNode(index, UCOL_SECONDARY);
360 if(strength >= UCOL_TERTIARY) {
361 index = findCommonNode(index, UCOL_TERTIARY);
362 }
363 node = nodes.elementAti(index);
364 if(strengthFromNode(node) == strength) {
365 // Found a same-strength node with an explicit weight.
366 uint32_t weight16 = weight16FromNode(node);
367 if(weight16 == 0) {
368 errorCode = U_UNSUPPORTED_ERROR;
369 if(strength == UCOL_SECONDARY) {
370 parserErrorReason = "reset secondary-before secondary ignorable not possible";
371 } else {
372 parserErrorReason = "reset tertiary-before completely ignorable not possible";
373 }
374 return;
375 }
376 U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16);
377 int32_t previousIndex = previousIndexFromNode(node);
378 if(weight16 == Collation::COMMON_WEIGHT16) {
379 // Reset to just before this same-strength common-weight node.
380 index = previousIndex;
381 } else {
382 // A non-common weight is only possible from a root CE.
383 // Find the higher-level weights, which must all be explicit,
384 // and then find the preceding weight for this level.
385 uint32_t previousWeight16 = 0;
386 int32_t previousWeightIndex = -1;
387 int32_t i = index;
388 if(strength == UCOL_SECONDARY) {
389 uint32_t p;
390 do {
391 i = previousIndexFromNode(node);
392 node = nodes.elementAti(i);
393 if(strengthFromNode(node) == UCOL_SECONDARY && !isTailoredNode(node) &&
394 previousWeightIndex < 0) {
395 previousWeightIndex = i;
396 previousWeight16 = weight16FromNode(node);
397 }
398 } while(strengthFromNode(node) > UCOL_PRIMARY);
399 U_ASSERT(!isTailoredNode(node));
400 p = weight32FromNode(node);
401 weight16 = rootElements.getSecondaryBefore(p, weight16);
402 } else {
403 uint32_t p, s;
404 do {
405 i = previousIndexFromNode(node);
406 node = nodes.elementAti(i);
407 if(strengthFromNode(node) == UCOL_TERTIARY && !isTailoredNode(node) &&
408 previousWeightIndex < 0) {
409 previousWeightIndex = i;
410 previousWeight16 = weight16FromNode(node);
411 }
412 } while(strengthFromNode(node) > UCOL_SECONDARY);
413 U_ASSERT(!isTailoredNode(node));
414 if(strengthFromNode(node) == UCOL_SECONDARY) {
415 s = weight16FromNode(node);
416 do {
417 i = previousIndexFromNode(node);
418 node = nodes.elementAti(i);
419 } while(strengthFromNode(node) > UCOL_PRIMARY);
420 U_ASSERT(!isTailoredNode(node));
421 } else {
422 U_ASSERT(!nodeHasBefore2(node));
423 s = Collation::COMMON_WEIGHT16;
424 }
425 p = weight32FromNode(node);
426 weight16 = rootElements.getTertiaryBefore(p, s, weight16);
427 U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0);
428 }
429 // Find or insert the new explicit weight before the current one.
430 if(previousWeightIndex >= 0 && weight16 == previousWeight16) {
431 // Tailor after the last node between adjacent root nodes.
432 index = previousIndex;
433 } else {
434 node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
435 index = insertNodeBetween(previousIndex, index, node, errorCode);
436 }
437 }
438 } else {
439 // Found a stronger node with implied strength-common weight.
440 int64_t hasBefore3 = 0;
441 if(strength == UCOL_SECONDARY) {
442 U_ASSERT(!nodeHasBefore2(node));
443 // Move the HAS_BEFORE3 flag from the parent node
444 // to the new secondary common node.
445 hasBefore3 = node & HAS_BEFORE3;
446 node = (node & ~(int64_t)HAS_BEFORE3) | HAS_BEFORE2;
447 } else {
448 U_ASSERT(!nodeHasBefore3(node));
449 node |= HAS_BEFORE3;
450 }
451 nodes.setElementAt(node, index);
452 int32_t nextIndex = nextIndexFromNode(node);
453 // Insert default nodes with weights 02 and 05, reset to the 02 node.
454 node = nodeFromWeight16(BEFORE_WEIGHT16) | nodeFromStrength(strength);
455 index = insertNodeBetween(index, nextIndex, node, errorCode);
456 node = nodeFromWeight16(Collation::COMMON_WEIGHT16) | hasBefore3 |
457 nodeFromStrength(strength);
458 insertNodeBetween(index, nextIndex, node, errorCode);
459 }
460 // Strength of the temporary CE = strength of its reset position.
461 // Code above raises an error if the before-strength is stronger.
462 strength = ceStrength(ces[cesLength - 1]);
463 }
464 if(U_FAILURE(errorCode)) {
465 parserErrorReason = "inserting reset position for &[before n]";
466 return;
467 }
468 ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
469 }
470
471 int64_t
getSpecialResetPosition(const UnicodeString & str,const char * & parserErrorReason,UErrorCode & errorCode)472 CollationBuilder::getSpecialResetPosition(const UnicodeString &str,
473 const char *&parserErrorReason, UErrorCode &errorCode) {
474 U_ASSERT(str.length() == 2);
475 int64_t ce;
476 int32_t strength = UCOL_PRIMARY;
477 UBool isBoundary = FALSE;
478 UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE;
479 U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING);
480 switch(pos) {
481 case CollationRuleParser::FIRST_TERTIARY_IGNORABLE:
482 // Quaternary CEs are not supported.
483 // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
484 return 0;
485 case CollationRuleParser::LAST_TERTIARY_IGNORABLE:
486 return 0;
487 case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: {
488 // Look for a tailored tertiary node after [0, 0, 0].
489 int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode);
490 if(U_FAILURE(errorCode)) { return 0; }
491 int64_t node = nodes.elementAti(index);
492 if((index = nextIndexFromNode(node)) != 0) {
493 node = nodes.elementAti(index);
494 U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY);
495 if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) {
496 return tempCEFromIndexAndStrength(index, UCOL_TERTIARY);
497 }
498 }
499 return rootElements.getFirstTertiaryCE();
500 // No need to look for nodeHasAnyBefore() on a tertiary node.
501 }
502 case CollationRuleParser::LAST_SECONDARY_IGNORABLE:
503 ce = rootElements.getLastTertiaryCE();
504 strength = UCOL_TERTIARY;
505 break;
506 case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: {
507 // Look for a tailored secondary node after [0, 0, *].
508 int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode);
509 if(U_FAILURE(errorCode)) { return 0; }
510 int64_t node = nodes.elementAti(index);
511 while((index = nextIndexFromNode(node)) != 0) {
512 node = nodes.elementAti(index);
513 strength = strengthFromNode(node);
514 if(strength < UCOL_SECONDARY) { break; }
515 if(strength == UCOL_SECONDARY) {
516 if(isTailoredNode(node)) {
517 if(nodeHasBefore3(node)) {
518 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
519 U_ASSERT(isTailoredNode(nodes.elementAti(index)));
520 }
521 return tempCEFromIndexAndStrength(index, UCOL_SECONDARY);
522 } else {
523 break;
524 }
525 }
526 }
527 ce = rootElements.getFirstSecondaryCE();
528 strength = UCOL_SECONDARY;
529 break;
530 }
531 case CollationRuleParser::LAST_PRIMARY_IGNORABLE:
532 ce = rootElements.getLastSecondaryCE();
533 strength = UCOL_SECONDARY;
534 break;
535 case CollationRuleParser::FIRST_VARIABLE:
536 ce = rootElements.getFirstPrimaryCE();
537 isBoundary = TRUE; // FractionalUCA.txt: FDD1 00A0, SPACE first primary
538 break;
539 case CollationRuleParser::LAST_VARIABLE:
540 ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
541 break;
542 case CollationRuleParser::FIRST_REGULAR:
543 ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
544 isBoundary = TRUE; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
545 break;
546 case CollationRuleParser::LAST_REGULAR:
547 // Use the Hani-first-primary rather than the actual last "regular" CE before it,
548 // for backward compatibility with behavior before the introduction of
549 // script-first-primary CEs in the root collator.
550 ce = rootElements.firstCEWithPrimaryAtLeast(
551 baseData->getFirstPrimaryForGroup(USCRIPT_HAN));
552 break;
553 case CollationRuleParser::FIRST_IMPLICIT: {
554 uint32_t ce32 = baseData->getCE32(0x4e00);
555 U_ASSERT(Collation::hasCE32Tag(ce32, Collation::OFFSET_TAG));
556 ce = baseData->getCEFromOffsetCE32(0x4e00, ce32);
557 break;
558 }
559 case CollationRuleParser::LAST_IMPLICIT:
560 // We do not support tailoring to an unassigned-implicit CE.
561 errorCode = U_UNSUPPORTED_ERROR;
562 parserErrorReason = "reset to [last implicit] not supported";
563 return 0;
564 case CollationRuleParser::FIRST_TRAILING:
565 ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
566 isBoundary = TRUE; // trailing first primary (there is no mapping for it)
567 break;
568 case CollationRuleParser::LAST_TRAILING:
569 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
570 parserErrorReason = "LDML forbids tailoring to U+FFFF";
571 return 0;
572 default:
573 U_ASSERT(FALSE);
574 return 0;
575 }
576
577 int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode);
578 if(U_FAILURE(errorCode)) { return 0; }
579 int64_t node = nodes.elementAti(index);
580 if((pos & 1) == 0) {
581 // even pos = [first xyz]
582 if(!nodeHasAnyBefore(node) && isBoundary) {
583 // A <group> first primary boundary is artificially added to FractionalUCA.txt.
584 // It is reachable via its special contraction, but is not normally used.
585 // Find the first character tailored after the boundary CE,
586 // or the first real root CE after it.
587 if((index = nextIndexFromNode(node)) != 0) {
588 // If there is a following node, then it must be tailored
589 // because there are no root CEs with a boundary primary
590 // and non-common secondary/tertiary weights.
591 node = nodes.elementAti(index);
592 U_ASSERT(isTailoredNode(node));
593 ce = tempCEFromIndexAndStrength(index, strength);
594 } else {
595 U_ASSERT(strength == UCOL_PRIMARY);
596 uint32_t p = (uint32_t)(ce >> 32);
597 int32_t pIndex = rootElements.findPrimary(p);
598 UBool isCompressible = baseData->isCompressiblePrimary(p);
599 p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
600 ce = Collation::makeCE(p);
601 index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode);
602 if(U_FAILURE(errorCode)) { return 0; }
603 node = nodes.elementAti(index);
604 }
605 }
606 if(nodeHasAnyBefore(node)) {
607 // Get the first node that was tailored before this one at a weaker strength.
608 if(nodeHasBefore2(node)) {
609 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
610 node = nodes.elementAti(index);
611 }
612 if(nodeHasBefore3(node)) {
613 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
614 }
615 U_ASSERT(isTailoredNode(nodes.elementAti(index)));
616 ce = tempCEFromIndexAndStrength(index, strength);
617 }
618 } else {
619 // odd pos = [last xyz]
620 // Find the last node that was tailored after the [last xyz]
621 // at a strength no greater than the position's strength.
622 for(;;) {
623 int32_t nextIndex = nextIndexFromNode(node);
624 if(nextIndex == 0) { break; }
625 int64_t nextNode = nodes.elementAti(nextIndex);
626 if(strengthFromNode(nextNode) < strength) { break; }
627 index = nextIndex;
628 node = nextNode;
629 }
630 // Do not make a temporary CE for a root node.
631 // This last node might be the node for the root CE itself,
632 // or a node with a common secondary or tertiary weight.
633 if(isTailoredNode(node)) {
634 ce = tempCEFromIndexAndStrength(index, strength);
635 }
636 }
637 return ce;
638 }
639
640 void
addRelation(int32_t strength,const UnicodeString & prefix,const UnicodeString & str,const UnicodeString & extension,const char * & parserErrorReason,UErrorCode & errorCode)641 CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix,
642 const UnicodeString &str, const UnicodeString &extension,
643 const char *&parserErrorReason, UErrorCode &errorCode) {
644 if(U_FAILURE(errorCode)) { return; }
645 UnicodeString nfdPrefix;
646 if(!prefix.isEmpty()) {
647 nfd.normalize(prefix, nfdPrefix, errorCode);
648 if(U_FAILURE(errorCode)) {
649 parserErrorReason = "normalizing the relation prefix";
650 return;
651 }
652 }
653 UnicodeString nfdString = nfd.normalize(str, errorCode);
654 if(U_FAILURE(errorCode)) {
655 parserErrorReason = "normalizing the relation string";
656 return;
657 }
658
659 // The runtime code decomposes Hangul syllables on the fly,
660 // with recursive processing but without making the Jamo pieces visible for matching.
661 // It does not work with certain types of contextual mappings.
662 int32_t nfdLength = nfdString.length();
663 if(nfdLength >= 2) {
664 UChar c = nfdString.charAt(0);
665 if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) {
666 // While handling a Hangul syllable, contractions starting with Jamo L or V
667 // would not see the following Jamo of that syllable.
668 errorCode = U_UNSUPPORTED_ERROR;
669 parserErrorReason = "contractions starting with conjoining Jamo L or V not supported";
670 return;
671 }
672 c = nfdString.charAt(nfdLength - 1);
673 if(Hangul::isJamoL(c) ||
674 (Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) {
675 // A contraction ending with Jamo L or L+V would require
676 // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
677 // or decomposing a following Hangul syllable on the fly, during contraction matching.
678 errorCode = U_UNSUPPORTED_ERROR;
679 parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported";
680 return;
681 }
682 // A Hangul syllable completely inside a contraction is ok.
683 }
684 // Note: If there is a prefix, then the parser checked that
685 // both the prefix and the string beging with NFC boundaries (not Jamo V or T).
686 // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
687 // (While handling a Hangul syllable, prefixes on Jamo V or T
688 // would not see the previous Jamo of that syllable.)
689
690 if(strength != UCOL_IDENTICAL) {
691 // Find the node index after which we insert the new tailored node.
692 int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
693 U_ASSERT(cesLength > 0);
694 int64_t ce = ces[cesLength - 1];
695 if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) {
696 // There is no primary gap between ignorables and the space-first-primary.
697 errorCode = U_UNSUPPORTED_ERROR;
698 parserErrorReason = "tailoring primary after ignorables not supported";
699 return;
700 }
701 if(strength == UCOL_QUATERNARY && ce == 0) {
702 // The CE data structure does not support non-zero quaternary weights
703 // on tertiary ignorables.
704 errorCode = U_UNSUPPORTED_ERROR;
705 parserErrorReason = "tailoring quaternary after tertiary ignorables not supported";
706 return;
707 }
708 // Insert the new tailored node.
709 index = insertTailoredNodeAfter(index, strength, errorCode);
710 if(U_FAILURE(errorCode)) {
711 parserErrorReason = "modifying collation elements";
712 return;
713 }
714 // Strength of the temporary CE:
715 // The new relation may yield a stronger CE but not a weaker one.
716 int32_t tempStrength = ceStrength(ce);
717 if(strength < tempStrength) { tempStrength = strength; }
718 ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
719 }
720
721 setCaseBits(nfdString, parserErrorReason, errorCode);
722 if(U_FAILURE(errorCode)) { return; }
723
724 int32_t cesLengthBeforeExtension = cesLength;
725 if(!extension.isEmpty()) {
726 UnicodeString nfdExtension = nfd.normalize(extension, errorCode);
727 if(U_FAILURE(errorCode)) {
728 parserErrorReason = "normalizing the relation extension";
729 return;
730 }
731 cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength);
732 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
733 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
734 parserErrorReason =
735 "extension string adds too many collation elements (more than 31 total)";
736 return;
737 }
738 }
739 uint32_t ce32 = Collation::UNASSIGNED_CE32;
740 if((prefix != nfdPrefix || str != nfdString) &&
741 !ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) {
742 // Map from the original input to the CEs.
743 // We do this in case the canonical closure is incomplete,
744 // so that it is possible to explicitly provide the missing mappings.
745 ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode);
746 }
747 addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
748 if(U_FAILURE(errorCode)) {
749 parserErrorReason = "writing collation elements";
750 return;
751 }
752 cesLength = cesLengthBeforeExtension;
753 }
754
755 int32_t
findOrInsertNodeForCEs(int32_t strength,const char * & parserErrorReason,UErrorCode & errorCode)756 CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason,
757 UErrorCode &errorCode) {
758 if(U_FAILURE(errorCode)) { return 0; }
759 U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY);
760
761 // Find the last CE that is at least as "strong" as the requested difference.
762 // Note: Stronger is smaller (UCOL_PRIMARY=0).
763 int64_t ce;
764 for(;; --cesLength) {
765 if(cesLength == 0) {
766 ce = ces[0] = 0;
767 cesLength = 1;
768 break;
769 } else {
770 ce = ces[cesLength - 1];
771 }
772 if(ceStrength(ce) <= strength) { break; }
773 }
774
775 if(isTempCE(ce)) {
776 // No need to findCommonNode() here for lower levels
777 // because insertTailoredNodeAfter() will do that anyway.
778 return indexFromTempCE(ce);
779 }
780
781 // root CE
782 if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) {
783 errorCode = U_UNSUPPORTED_ERROR;
784 parserErrorReason = "tailoring relative to an unassigned code point not supported";
785 return 0;
786 }
787 return findOrInsertNodeForRootCE(ce, strength, errorCode);
788 }
789
790 int32_t
findOrInsertNodeForRootCE(int64_t ce,int32_t strength,UErrorCode & errorCode)791 CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) {
792 if(U_FAILURE(errorCode)) { return 0; }
793 U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE);
794
795 // Find or insert the node for each of the root CE's weights,
796 // down to the requested level/strength.
797 // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
798 U_ASSERT((ce & 0xc0) == 0);
799 int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32) , errorCode);
800 if(strength >= UCOL_SECONDARY) {
801 uint32_t lower32 = (uint32_t)ce;
802 index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode);
803 if(strength >= UCOL_TERTIARY) {
804 index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK,
805 UCOL_TERTIARY, errorCode);
806 }
807 }
808 return index;
809 }
810
811 namespace {
812
813 /**
814 * Like Java Collections.binarySearch(List, key, Comparator).
815 *
816 * @return the index>=0 where the item was found,
817 * or the index<0 for inserting the string at ~index in sorted order
818 * (index into rootPrimaryIndexes)
819 */
820 int32_t
binarySearchForRootPrimaryNode(const int32_t * rootPrimaryIndexes,int32_t length,const int64_t * nodes,uint32_t p)821 binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length,
822 const int64_t *nodes, uint32_t p) {
823 if(length == 0) { return ~0; }
824 int32_t start = 0;
825 int32_t limit = length;
826 for (;;) {
827 int32_t i = (start + limit) / 2;
828 int64_t node = nodes[rootPrimaryIndexes[i]];
829 uint32_t nodePrimary = (uint32_t)(node >> 32); // weight32FromNode(node)
830 if (p == nodePrimary) {
831 return i;
832 } else if (p < nodePrimary) {
833 if (i == start) {
834 return ~start; // insert s before i
835 }
836 limit = i;
837 } else {
838 if (i == start) {
839 return ~(start + 1); // insert s after i
840 }
841 start = i;
842 }
843 }
844 }
845
846 } // namespace
847
848 int32_t
findOrInsertNodeForPrimary(uint32_t p,UErrorCode & errorCode)849 CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) {
850 if(U_FAILURE(errorCode)) { return 0; }
851
852 int32_t rootIndex = binarySearchForRootPrimaryNode(
853 rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
854 if(rootIndex >= 0) {
855 return rootPrimaryIndexes.elementAti(rootIndex);
856 } else {
857 // Start a new list of nodes with this primary.
858 int32_t index = nodes.size();
859 nodes.addElement(nodeFromWeight32(p), errorCode);
860 rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode);
861 return index;
862 }
863 }
864
865 int32_t
findOrInsertWeakNode(int32_t index,uint32_t weight16,int32_t level,UErrorCode & errorCode)866 CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) {
867 if(U_FAILURE(errorCode)) { return 0; }
868 U_ASSERT(0 <= index && index < nodes.size());
869
870 U_ASSERT(weight16 == 0 || weight16 >= Collation::COMMON_WEIGHT16);
871 // Only reset-before inserts common weights.
872 if(weight16 == Collation::COMMON_WEIGHT16) {
873 return findCommonNode(index, level);
874 }
875 // Find the root CE's weight for this level.
876 // Postpone insertion if not found:
877 // Insert the new root node before the next stronger node,
878 // or before the next root node with the same strength and a larger weight.
879 int64_t node = nodes.elementAti(index);
880 int32_t nextIndex;
881 while((nextIndex = nextIndexFromNode(node)) != 0) {
882 node = nodes.elementAti(nextIndex);
883 int32_t nextStrength = strengthFromNode(node);
884 if(nextStrength <= level) {
885 // Insert before a stronger node.
886 if(nextStrength < level) { break; }
887 // nextStrength == level
888 if(!isTailoredNode(node)) {
889 uint32_t nextWeight16 = weight16FromNode(node);
890 if(nextWeight16 == weight16) {
891 // Found the node for the root CE up to this level.
892 return nextIndex;
893 }
894 // Insert before a node with a larger same-strength weight.
895 if(nextWeight16 > weight16) { break; }
896 }
897 }
898 // Skip the next node.
899 index = nextIndex;
900 }
901 node = nodeFromWeight16(weight16) | nodeFromStrength(level);
902 return insertNodeBetween(index, nextIndex, node, errorCode);
903 }
904
905 int32_t
insertTailoredNodeAfter(int32_t index,int32_t strength,UErrorCode & errorCode)906 CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) {
907 if(U_FAILURE(errorCode)) { return 0; }
908 U_ASSERT(0 <= index && index < nodes.size());
909 if(strength >= UCOL_SECONDARY) {
910 index = findCommonNode(index, UCOL_SECONDARY);
911 if(strength >= UCOL_TERTIARY) {
912 index = findCommonNode(index, UCOL_TERTIARY);
913 }
914 }
915 // Postpone insertion:
916 // Insert the new node before the next one with a strength at least as strong.
917 int64_t node = nodes.elementAti(index);
918 int32_t nextIndex;
919 while((nextIndex = nextIndexFromNode(node)) != 0) {
920 node = nodes.elementAti(nextIndex);
921 if(strengthFromNode(node) <= strength) { break; }
922 // Skip the next node which has a weaker (larger) strength than the new one.
923 index = nextIndex;
924 }
925 node = IS_TAILORED | nodeFromStrength(strength);
926 return insertNodeBetween(index, nextIndex, node, errorCode);
927 }
928
929 int32_t
insertNodeBetween(int32_t index,int32_t nextIndex,int64_t node,UErrorCode & errorCode)930 CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node,
931 UErrorCode &errorCode) {
932 if(U_FAILURE(errorCode)) { return 0; }
933 U_ASSERT(previousIndexFromNode(node) == 0);
934 U_ASSERT(nextIndexFromNode(node) == 0);
935 U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
936 // Append the new node and link it to the existing nodes.
937 int32_t newIndex = nodes.size();
938 node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
939 nodes.addElement(node, errorCode);
940 if(U_FAILURE(errorCode)) { return 0; }
941 // nodes[index].nextIndex = newIndex
942 node = nodes.elementAti(index);
943 nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
944 // nodes[nextIndex].previousIndex = newIndex
945 if(nextIndex != 0) {
946 node = nodes.elementAti(nextIndex);
947 nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
948 }
949 return newIndex;
950 }
951
952 int32_t
findCommonNode(int32_t index,int32_t strength) const953 CollationBuilder::findCommonNode(int32_t index, int32_t strength) const {
954 U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY);
955 int64_t node = nodes.elementAti(index);
956 if(strengthFromNode(node) >= strength) {
957 // The current node is no stronger.
958 return index;
959 }
960 if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
961 // The current node implies the strength-common weight.
962 return index;
963 }
964 index = nextIndexFromNode(node);
965 node = nodes.elementAti(index);
966 U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength &&
967 weight16FromNode(node) == BEFORE_WEIGHT16);
968 // Skip to the explicit common node.
969 do {
970 index = nextIndexFromNode(node);
971 node = nodes.elementAti(index);
972 U_ASSERT(strengthFromNode(node) >= strength);
973 } while(isTailoredNode(node) || strengthFromNode(node) > strength);
974 U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16);
975 return index;
976 }
977
978 void
setCaseBits(const UnicodeString & nfdString,const char * & parserErrorReason,UErrorCode & errorCode)979 CollationBuilder::setCaseBits(const UnicodeString &nfdString,
980 const char *&parserErrorReason, UErrorCode &errorCode) {
981 if(U_FAILURE(errorCode)) { return; }
982 int32_t numTailoredPrimaries = 0;
983 for(int32_t i = 0; i < cesLength; ++i) {
984 if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; }
985 }
986 // We should not be able to get too many case bits because
987 // cesLength<=31==MAX_EXPANSION_LENGTH.
988 // 31 pairs of case bits fit into an int64_t without setting its sign bit.
989 U_ASSERT(numTailoredPrimaries <= 31);
990
991 int64_t cases = 0;
992 if(numTailoredPrimaries > 0) {
993 const UChar *s = nfdString.getBuffer();
994 UTF16CollationIterator baseCEs(baseData, FALSE, s, s, s + nfdString.length());
995 int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1;
996 if(U_FAILURE(errorCode)) {
997 parserErrorReason = "fetching root CEs for tailored string";
998 return;
999 }
1000 U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE);
1001
1002 uint32_t lastCase = 0;
1003 int32_t numBasePrimaries = 0;
1004 for(int32_t i = 0; i < baseCEsLength; ++i) {
1005 int64_t ce = baseCEs.getCE(i);
1006 if((ce >> 32) != 0) {
1007 ++numBasePrimaries;
1008 uint32_t c = ((uint32_t)ce >> 14) & 3;
1009 U_ASSERT(c == 0 || c == 2); // lowercase or uppercase, no mixed case in any base CE
1010 if(numBasePrimaries < numTailoredPrimaries) {
1011 cases |= (int64_t)c << ((numBasePrimaries - 1) * 2);
1012 } else if(numBasePrimaries == numTailoredPrimaries) {
1013 lastCase = c;
1014 } else if(c != lastCase) {
1015 // There are more base primary CEs than tailored primaries.
1016 // Set mixed case if the case bits of the remainder differ.
1017 lastCase = 1;
1018 // Nothing more can change.
1019 break;
1020 }
1021 }
1022 }
1023 if(numBasePrimaries >= numTailoredPrimaries) {
1024 cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2);
1025 }
1026 }
1027
1028 for(int32_t i = 0; i < cesLength; ++i) {
1029 int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff); // clear old case bits
1030 int32_t strength = ceStrength(ce);
1031 if(strength == UCOL_PRIMARY) {
1032 ce |= (cases & 3) << 14;
1033 cases >>= 2;
1034 } else if(strength == UCOL_TERTIARY) {
1035 // Tertiary CEs must have uppercase bits.
1036 // See the LDML spec, and comments in class CollationCompare.
1037 ce |= 0x8000;
1038 }
1039 // Tertiary ignorable CEs must have 0 case bits.
1040 // We set 0 case bits for secondary CEs too
1041 // since currently only U+0345 is cased and maps to a secondary CE,
1042 // and it is lowercase. Other secondaries are uncased.
1043 // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
1044 ces[i] = ce;
1045 }
1046 }
1047
1048 void
suppressContractions(const UnicodeSet & set,const char * & parserErrorReason,UErrorCode & errorCode)1049 CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason,
1050 UErrorCode &errorCode) {
1051 if(U_FAILURE(errorCode)) { return; }
1052 dataBuilder->suppressContractions(set, errorCode);
1053 if(U_FAILURE(errorCode)) {
1054 parserErrorReason = "application of [suppressContractions [set]] failed";
1055 }
1056 }
1057
1058 void
optimize(const UnicodeSet & set,const char * &,UErrorCode & errorCode)1059 CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */,
1060 UErrorCode &errorCode) {
1061 if(U_FAILURE(errorCode)) { return; }
1062 optimizeSet.addAll(set);
1063 }
1064
1065 uint32_t
addWithClosure(const UnicodeString & nfdPrefix,const UnicodeString & nfdString,const int64_t newCEs[],int32_t newCEsLength,uint32_t ce32,UErrorCode & errorCode)1066 CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1067 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1068 UErrorCode &errorCode) {
1069 // Map from the NFD input to the CEs.
1070 ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1071 ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1072 addTailComposites(nfdPrefix, nfdString, errorCode);
1073 return ce32;
1074 }
1075
1076 uint32_t
addOnlyClosure(const UnicodeString & nfdPrefix,const UnicodeString & nfdString,const int64_t newCEs[],int32_t newCEsLength,uint32_t ce32,UErrorCode & errorCode)1077 CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1078 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1079 UErrorCode &errorCode) {
1080 if(U_FAILURE(errorCode)) { return ce32; }
1081
1082 // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
1083 if(nfdPrefix.isEmpty()) {
1084 CanonicalIterator stringIter(nfdString, errorCode);
1085 if(U_FAILURE(errorCode)) { return ce32; }
1086 UnicodeString prefix;
1087 for(;;) {
1088 UnicodeString str = stringIter.next();
1089 if(str.isBogus()) { break; }
1090 if(ignoreString(str, errorCode) || str == nfdString) { continue; }
1091 ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1092 if(U_FAILURE(errorCode)) { return ce32; }
1093 }
1094 } else {
1095 CanonicalIterator prefixIter(nfdPrefix, errorCode);
1096 CanonicalIterator stringIter(nfdString, errorCode);
1097 if(U_FAILURE(errorCode)) { return ce32; }
1098 for(;;) {
1099 UnicodeString prefix = prefixIter.next();
1100 if(prefix.isBogus()) { break; }
1101 if(ignorePrefix(prefix, errorCode)) { continue; }
1102 UBool samePrefix = prefix == nfdPrefix;
1103 for(;;) {
1104 UnicodeString str = stringIter.next();
1105 if(str.isBogus()) { break; }
1106 if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; }
1107 ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1108 if(U_FAILURE(errorCode)) { return ce32; }
1109 }
1110 stringIter.reset();
1111 }
1112 }
1113 return ce32;
1114 }
1115
1116 void
addTailComposites(const UnicodeString & nfdPrefix,const UnicodeString & nfdString,UErrorCode & errorCode)1117 CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1118 UErrorCode &errorCode) {
1119 if(U_FAILURE(errorCode)) { return; }
1120
1121 // Look for the last starter in the NFD string.
1122 UChar32 lastStarter;
1123 int32_t indexAfterLastStarter = nfdString.length();
1124 for(;;) {
1125 if(indexAfterLastStarter == 0) { return; } // no starter at all
1126 lastStarter = nfdString.char32At(indexAfterLastStarter - 1);
1127 if(nfd.getCombiningClass(lastStarter) == 0) { break; }
1128 indexAfterLastStarter -= U16_LENGTH(lastStarter);
1129 }
1130 // No closure to Hangul syllables since we decompose them on the fly.
1131 if(Hangul::isJamoL(lastStarter)) { return; }
1132
1133 // Are there any composites whose decomposition starts with the lastStarter?
1134 // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
1135 // We might find some more equivalent mappings here if it did.
1136 UnicodeSet composites;
1137 if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
1138
1139 UnicodeString decomp;
1140 UnicodeString newNFDString, newString;
1141 int64_t newCEs[Collation::MAX_EXPANSION_LENGTH];
1142 UnicodeSetIterator iter(composites);
1143 while(iter.next()) {
1144 U_ASSERT(!iter.isString());
1145 UChar32 composite = iter.getCodepoint();
1146 nfd.getDecomposition(composite, decomp);
1147 if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
1148 newNFDString, newString, errorCode)) {
1149 continue;
1150 }
1151 int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0);
1152 if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) {
1153 // Ignore mappings that we cannot store.
1154 continue;
1155 }
1156 // Note: It is possible that the newCEs do not make use of the mapping
1157 // for which we are adding the tail composites, in which case we might be adding
1158 // unnecessary mappings.
1159 // For example, when we add tail composites for ae^ (^=combining circumflex),
1160 // UCA discontiguous-contraction matching does not find any matches
1161 // for ae_^ (_=any combining diacritic below) *unless* there is also
1162 // a contraction mapping for ae.
1163 // Thus, if there is no ae contraction, then the ae^ mapping is ignored
1164 // while fetching the newCEs for ae_^.
1165 // TODO: Try to detect this effectively.
1166 // (Alternatively, print a warning when prefix contractions are missing.)
1167
1168 // We do not need an explicit mapping for the NFD strings.
1169 // It is fine if the NFD input collates like this via a sequence of mappings.
1170 // It also saves a little bit of space, and may reduce the set of characters with contractions.
1171 uint32_t ce32 = addIfDifferent(nfdPrefix, newString,
1172 newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode);
1173 if(ce32 != Collation::UNASSIGNED_CE32) {
1174 // was different, was added
1175 addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode);
1176 }
1177 }
1178 }
1179
1180 UBool
mergeCompositeIntoString(const UnicodeString & nfdString,int32_t indexAfterLastStarter,UChar32 composite,const UnicodeString & decomp,UnicodeString & newNFDString,UnicodeString & newString,UErrorCode & errorCode) const1181 CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString,
1182 int32_t indexAfterLastStarter,
1183 UChar32 composite, const UnicodeString &decomp,
1184 UnicodeString &newNFDString, UnicodeString &newString,
1185 UErrorCode &errorCode) const {
1186 if(U_FAILURE(errorCode)) { return FALSE; }
1187 U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0));
1188 int32_t lastStarterLength = decomp.moveIndex32(0, 1);
1189 if(lastStarterLength == decomp.length()) {
1190 // Singleton decompositions should be found by addWithClosure()
1191 // and the CanonicalIterator, so we can ignore them here.
1192 return FALSE;
1193 }
1194 if(nfdString.compare(indexAfterLastStarter, 0x7fffffff,
1195 decomp, lastStarterLength, 0x7fffffff) == 0) {
1196 // same strings, nothing new to be found here
1197 return FALSE;
1198 }
1199
1200 // Make new FCD strings that combine a composite, or its decomposition,
1201 // into the nfdString's last starter and the combining marks following it.
1202 // Make an NFD version, and a version with the composite.
1203 newNFDString.setTo(nfdString, 0, indexAfterLastStarter);
1204 newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite);
1205
1206 // The following is related to discontiguous contraction matching,
1207 // but builds only FCD strings (or else returns FALSE).
1208 int32_t sourceIndex = indexAfterLastStarter;
1209 int32_t decompIndex = lastStarterLength;
1210 // Small optimization: We keep the source character across loop iterations
1211 // because we do not always consume it,
1212 // and then need not fetch it again nor look up its combining class again.
1213 UChar32 sourceChar = U_SENTINEL;
1214 // The cc variables need to be declared before the loop so that at the end
1215 // they are set to the last combining classes seen.
1216 uint8_t sourceCC = 0;
1217 uint8_t decompCC = 0;
1218 for(;;) {
1219 if(sourceChar < 0) {
1220 if(sourceIndex >= nfdString.length()) { break; }
1221 sourceChar = nfdString.char32At(sourceIndex);
1222 sourceCC = nfd.getCombiningClass(sourceChar);
1223 U_ASSERT(sourceCC != 0);
1224 }
1225 // We consume a decomposition character in each iteration.
1226 if(decompIndex >= decomp.length()) { break; }
1227 UChar32 decompChar = decomp.char32At(decompIndex);
1228 decompCC = nfd.getCombiningClass(decompChar);
1229 // Compare the two characters and their combining classes.
1230 if(decompCC == 0) {
1231 // Unable to merge because the source contains a non-zero combining mark
1232 // but the composite's decomposition contains another starter.
1233 // The strings would not be equivalent.
1234 return FALSE;
1235 } else if(sourceCC < decompCC) {
1236 // Composite + sourceChar would not be FCD.
1237 return FALSE;
1238 } else if(decompCC < sourceCC) {
1239 newNFDString.append(decompChar);
1240 decompIndex += U16_LENGTH(decompChar);
1241 } else if(decompChar != sourceChar) {
1242 // Blocked because same combining class.
1243 return FALSE;
1244 } else { // match: decompChar == sourceChar
1245 newNFDString.append(decompChar);
1246 decompIndex += U16_LENGTH(decompChar);
1247 sourceIndex += U16_LENGTH(decompChar);
1248 sourceChar = U_SENTINEL;
1249 }
1250 }
1251 // We are at the end of at least one of the two inputs.
1252 if(sourceChar >= 0) { // more characters from nfdString but not from decomp
1253 if(sourceCC < decompCC) {
1254 // Appending the next source character to the composite would not be FCD.
1255 return FALSE;
1256 }
1257 newNFDString.append(nfdString, sourceIndex, 0x7fffffff);
1258 newString.append(nfdString, sourceIndex, 0x7fffffff);
1259 } else if(decompIndex < decomp.length()) { // more characters from decomp, not from nfdString
1260 newNFDString.append(decomp, decompIndex, 0x7fffffff);
1261 }
1262 U_ASSERT(nfd.isNormalized(newNFDString, errorCode));
1263 U_ASSERT(fcd.isNormalized(newString, errorCode));
1264 U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString); // canonically equivalent
1265 return TRUE;
1266 }
1267
1268 UBool
ignorePrefix(const UnicodeString & s,UErrorCode & errorCode) const1269 CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const {
1270 // Do not map non-FCD prefixes.
1271 return !isFCD(s, errorCode);
1272 }
1273
1274 UBool
ignoreString(const UnicodeString & s,UErrorCode & errorCode) const1275 CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const {
1276 // Do not map non-FCD strings.
1277 // Do not map strings that start with Hangul syllables: We decompose those on the fly.
1278 return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0));
1279 }
1280
1281 UBool
isFCD(const UnicodeString & s,UErrorCode & errorCode) const1282 CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const {
1283 return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode);
1284 }
1285
1286 void
closeOverComposites(UErrorCode & errorCode)1287 CollationBuilder::closeOverComposites(UErrorCode &errorCode) {
1288 UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode); // Java: static final
1289 if(U_FAILURE(errorCode)) { return; }
1290 // Hangul is decomposed on the fly during collation.
1291 composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
1292 UnicodeString prefix; // empty
1293 UnicodeString nfdString;
1294 UnicodeSetIterator iter(composites);
1295 while(iter.next()) {
1296 U_ASSERT(!iter.isString());
1297 nfd.getDecomposition(iter.getCodepoint(), nfdString);
1298 cesLength = dataBuilder->getCEs(nfdString, ces, 0);
1299 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
1300 // Too many CEs from the decomposition (unusual), ignore this composite.
1301 // We could add a capacity parameter to getCEs() and reallocate if necessary.
1302 // However, this can only really happen in contrived cases.
1303 continue;
1304 }
1305 const UnicodeString &composite(iter.getString());
1306 addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode);
1307 }
1308 }
1309
1310 uint32_t
addIfDifferent(const UnicodeString & prefix,const UnicodeString & str,const int64_t newCEs[],int32_t newCEsLength,uint32_t ce32,UErrorCode & errorCode)1311 CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str,
1312 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1313 UErrorCode &errorCode) {
1314 if(U_FAILURE(errorCode)) { return ce32; }
1315 int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH];
1316 int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0);
1317 if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
1318 if(ce32 == Collation::UNASSIGNED_CE32) {
1319 ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode);
1320 }
1321 dataBuilder->addCE32(prefix, str, ce32, errorCode);
1322 }
1323 return ce32;
1324 }
1325
1326 UBool
sameCEs(const int64_t ces1[],int32_t ces1Length,const int64_t ces2[],int32_t ces2Length)1327 CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length,
1328 const int64_t ces2[], int32_t ces2Length) {
1329 if(ces1Length != ces2Length) {
1330 return FALSE;
1331 }
1332 U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH);
1333 for(int32_t i = 0; i < ces1Length; ++i) {
1334 if(ces1[i] != ces2[i]) { return FALSE; }
1335 }
1336 return TRUE;
1337 }
1338
1339 #ifdef DEBUG_COLLATION_BUILDER
1340
1341 uint32_t
alignWeightRight(uint32_t w)1342 alignWeightRight(uint32_t w) {
1343 if(w != 0) {
1344 while((w & 0xff) == 0) { w >>= 8; }
1345 }
1346 return w;
1347 }
1348
1349 #endif
1350
1351 void
makeTailoredCEs(UErrorCode & errorCode)1352 CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) {
1353 if(U_FAILURE(errorCode)) { return; }
1354
1355 CollationWeights primaries, secondaries, tertiaries;
1356 int64_t *nodesArray = nodes.getBuffer();
1357
1358 for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
1359 int32_t i = rootPrimaryIndexes.elementAti(rpi);
1360 int64_t node = nodesArray[i];
1361 uint32_t p = weight32FromNode(node);
1362 uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16;
1363 uint32_t t = s;
1364 uint32_t q = 0;
1365 UBool pIsTailored = FALSE;
1366 UBool sIsTailored = FALSE;
1367 UBool tIsTailored = FALSE;
1368 #ifdef DEBUG_COLLATION_BUILDER
1369 printf("\nprimary %lx\n", (long)alignWeightRight(p));
1370 #endif
1371 int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
1372 int32_t nextIndex = nextIndexFromNode(node);
1373 while(nextIndex != 0) {
1374 i = nextIndex;
1375 node = nodesArray[i];
1376 nextIndex = nextIndexFromNode(node);
1377 int32_t strength = strengthFromNode(node);
1378 if(strength == UCOL_QUATERNARY) {
1379 U_ASSERT(isTailoredNode(node));
1380 #ifdef DEBUG_COLLATION_BUILDER
1381 printf(" quat+ ");
1382 #endif
1383 if(q == 3) {
1384 errorCode = U_BUFFER_OVERFLOW_ERROR;
1385 errorReason = "quaternary tailoring gap too small";
1386 return;
1387 }
1388 ++q;
1389 } else {
1390 if(strength == UCOL_TERTIARY) {
1391 if(isTailoredNode(node)) {
1392 #ifdef DEBUG_COLLATION_BUILDER
1393 printf(" ter+ ");
1394 #endif
1395 if(!tIsTailored) {
1396 // First tailored tertiary node for [p, s].
1397 int32_t tCount = countTailoredNodes(nodesArray, nextIndex,
1398 UCOL_TERTIARY) + 1;
1399 uint32_t tLimit;
1400 if(t == 0) {
1401 // Gap at the beginning of the tertiary CE range.
1402 t = rootElements.getTertiaryBoundary() - 0x100;
1403 tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK;
1404 } else if(t == BEFORE_WEIGHT16) {
1405 tLimit = Collation::COMMON_WEIGHT16;
1406 } else if(!pIsTailored && !sIsTailored) {
1407 // p and s are root weights.
1408 tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
1409 } else {
1410 // [p, s] is tailored.
1411 U_ASSERT(t == Collation::COMMON_WEIGHT16);
1412 tLimit = rootElements.getTertiaryBoundary();
1413 }
1414 U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0);
1415 tertiaries.initForTertiary();
1416 if(!tertiaries.allocWeights(t, tLimit, tCount)) {
1417 errorCode = U_BUFFER_OVERFLOW_ERROR;
1418 errorReason = "tertiary tailoring gap too small";
1419 return;
1420 }
1421 tIsTailored = TRUE;
1422 }
1423 t = tertiaries.nextWeight();
1424 U_ASSERT(t != 0xffffffff);
1425 } else {
1426 t = weight16FromNode(node);
1427 tIsTailored = FALSE;
1428 #ifdef DEBUG_COLLATION_BUILDER
1429 printf(" ter %lx\n", (long)alignWeightRight(t));
1430 #endif
1431 }
1432 } else {
1433 if(strength == UCOL_SECONDARY) {
1434 if(isTailoredNode(node)) {
1435 #ifdef DEBUG_COLLATION_BUILDER
1436 printf(" sec+ ");
1437 #endif
1438 if(!sIsTailored) {
1439 // First tailored secondary node for p.
1440 int32_t sCount = countTailoredNodes(nodesArray, nextIndex,
1441 UCOL_SECONDARY) + 1;
1442 uint32_t sLimit;
1443 if(s == 0) {
1444 // Gap at the beginning of the secondary CE range.
1445 s = rootElements.getSecondaryBoundary() - 0x100;
1446 sLimit = rootElements.getFirstSecondaryCE() >> 16;
1447 } else if(s == BEFORE_WEIGHT16) {
1448 sLimit = Collation::COMMON_WEIGHT16;
1449 } else if(!pIsTailored) {
1450 // p is a root primary.
1451 sLimit = rootElements.getSecondaryAfter(pIndex, s);
1452 } else {
1453 // p is a tailored primary.
1454 U_ASSERT(s == Collation::COMMON_WEIGHT16);
1455 sLimit = rootElements.getSecondaryBoundary();
1456 }
1457 if(s == Collation::COMMON_WEIGHT16) {
1458 // Do not tailor into the getSortKey() range of
1459 // compressed common secondaries.
1460 s = rootElements.getLastCommonSecondary();
1461 }
1462 secondaries.initForSecondary();
1463 if(!secondaries.allocWeights(s, sLimit, sCount)) {
1464 errorCode = U_BUFFER_OVERFLOW_ERROR;
1465 errorReason = "secondary tailoring gap too small";
1466 return;
1467 }
1468 sIsTailored = TRUE;
1469 }
1470 s = secondaries.nextWeight();
1471 U_ASSERT(s != 0xffffffff);
1472 } else {
1473 s = weight16FromNode(node);
1474 sIsTailored = FALSE;
1475 #ifdef DEBUG_COLLATION_BUILDER
1476 printf(" sec %lx\n", (long)alignWeightRight(s));
1477 #endif
1478 }
1479 } else /* UCOL_PRIMARY */ {
1480 U_ASSERT(isTailoredNode(node));
1481 #ifdef DEBUG_COLLATION_BUILDER
1482 printf("pri+ ");
1483 #endif
1484 if(!pIsTailored) {
1485 // First tailored primary node in this list.
1486 int32_t pCount = countTailoredNodes(nodesArray, nextIndex,
1487 UCOL_PRIMARY) + 1;
1488 UBool isCompressible = baseData->isCompressiblePrimary(p);
1489 uint32_t pLimit =
1490 rootElements.getPrimaryAfter(p, pIndex, isCompressible);
1491 primaries.initForPrimary(isCompressible);
1492 if(!primaries.allocWeights(p, pLimit, pCount)) {
1493 errorCode = U_BUFFER_OVERFLOW_ERROR; // TODO: introduce a more specific UErrorCode?
1494 errorReason = "primary tailoring gap too small";
1495 return;
1496 }
1497 pIsTailored = TRUE;
1498 }
1499 p = primaries.nextWeight();
1500 U_ASSERT(p != 0xffffffff);
1501 s = Collation::COMMON_WEIGHT16;
1502 sIsTailored = FALSE;
1503 }
1504 t = s == 0 ? 0 : Collation::COMMON_WEIGHT16;
1505 tIsTailored = FALSE;
1506 }
1507 q = 0;
1508 }
1509 if(isTailoredNode(node)) {
1510 nodesArray[i] = Collation::makeCE(p, s, t, q);
1511 #ifdef DEBUG_COLLATION_BUILDER
1512 printf("%016llx\n", (long long)nodesArray[i]);
1513 #endif
1514 }
1515 }
1516 }
1517 }
1518
1519 int32_t
countTailoredNodes(const int64_t * nodesArray,int32_t i,int32_t strength)1520 CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) {
1521 int32_t count = 0;
1522 for(;;) {
1523 if(i == 0) { break; }
1524 int64_t node = nodesArray[i];
1525 if(strengthFromNode(node) < strength) { break; }
1526 if(strengthFromNode(node) == strength) {
1527 if(isTailoredNode(node)) {
1528 ++count;
1529 } else {
1530 break;
1531 }
1532 }
1533 i = nextIndexFromNode(node);
1534 }
1535 return count;
1536 }
1537
1538 class CEFinalizer : public CollationDataBuilder::CEModifier {
1539 public:
CEFinalizer(const int64_t * ces)1540 CEFinalizer(const int64_t *ces) : finalCEs(ces) {}
1541 virtual ~CEFinalizer();
modifyCE32(uint32_t ce32) const1542 virtual int64_t modifyCE32(uint32_t ce32) const {
1543 U_ASSERT(!Collation::isSpecialCE32(ce32));
1544 if(CollationBuilder::isTempCE32(ce32)) {
1545 // retain case bits
1546 return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
1547 } else {
1548 return Collation::NO_CE;
1549 }
1550 }
modifyCE(int64_t ce) const1551 virtual int64_t modifyCE(int64_t ce) const {
1552 if(CollationBuilder::isTempCE(ce)) {
1553 // retain case bits
1554 return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000);
1555 } else {
1556 return Collation::NO_CE;
1557 }
1558 }
1559
1560 private:
1561 const int64_t *finalCEs;
1562 };
1563
~CEFinalizer()1564 CEFinalizer::~CEFinalizer() {}
1565
1566 void
finalizeCEs(UErrorCode & errorCode)1567 CollationBuilder::finalizeCEs(UErrorCode &errorCode) {
1568 if(U_FAILURE(errorCode)) { return; }
1569 LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(errorCode));
1570 if(newBuilder.isNull()) {
1571 errorCode = U_MEMORY_ALLOCATION_ERROR;
1572 return;
1573 }
1574 newBuilder->initForTailoring(baseData, errorCode);
1575 CEFinalizer finalizer(nodes.getBuffer());
1576 newBuilder->copyFrom(*dataBuilder, finalizer, errorCode);
1577 if(U_FAILURE(errorCode)) { return; }
1578 delete dataBuilder;
1579 dataBuilder = newBuilder.orphan();
1580 }
1581
1582 int32_t
ceStrength(int64_t ce)1583 CollationBuilder::ceStrength(int64_t ce) {
1584 return
1585 isTempCE(ce) ? strengthFromTempCE(ce) :
1586 (ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY :
1587 ((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY :
1588 ce != 0 ? UCOL_TERTIARY :
1589 UCOL_IDENTICAL;
1590 }
1591
1592 U_NAMESPACE_END
1593
1594 U_NAMESPACE_USE
1595
1596 U_CAPI UCollator * U_EXPORT2
ucol_openRules(const UChar * rules,int32_t rulesLength,UColAttributeValue normalizationMode,UCollationStrength strength,UParseError * parseError,UErrorCode * pErrorCode)1597 ucol_openRules(const UChar *rules, int32_t rulesLength,
1598 UColAttributeValue normalizationMode, UCollationStrength strength,
1599 UParseError *parseError, UErrorCode *pErrorCode) {
1600 if(U_FAILURE(*pErrorCode)) { return NULL; }
1601 if(rules == NULL && rulesLength != 0) {
1602 *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
1603 return NULL;
1604 }
1605 RuleBasedCollator *coll = new RuleBasedCollator();
1606 if(coll == NULL) {
1607 *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
1608 return NULL;
1609 }
1610 UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength);
1611 coll->internalBuildTailoring(r, strength, normalizationMode, parseError, NULL, *pErrorCode);
1612 if(U_FAILURE(*pErrorCode)) {
1613 delete coll;
1614 return NULL;
1615 }
1616 return coll->toUCollator();
1617 }
1618
1619 static const int32_t internalBufferSize = 512;
1620
1621 // The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
1622 // because it calls UnicodeSet "builder" code that depends on all Unicode properties,
1623 // and the rest of the collation "runtime" code only depends on normalization.
1624 // This function is not related to the collation builder,
1625 // but it did not seem worth moving it into its own .cpp file,
1626 // nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
1627 U_CAPI int32_t U_EXPORT2
ucol_getUnsafeSet(const UCollator * coll,USet * unsafe,UErrorCode * status)1628 ucol_getUnsafeSet( const UCollator *coll,
1629 USet *unsafe,
1630 UErrorCode *status)
1631 {
1632 UChar buffer[internalBufferSize];
1633 int32_t len = 0;
1634
1635 uset_clear(unsafe);
1636
1637 // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
1638 static const UChar cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
1639 0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
1640
1641 // add chars that fail the fcd check
1642 uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status);
1643
1644 // add lead/trail surrogates
1645 // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
1646 // not when testing code *points*)
1647 uset_addRange(unsafe, 0xd800, 0xdfff);
1648
1649 USet *contractions = uset_open(0,0);
1650
1651 int32_t i = 0, j = 0;
1652 ucol_getContractionsAndExpansions(coll, contractions, NULL, FALSE, status);
1653 int32_t contsSize = uset_size(contractions);
1654 UChar32 c = 0;
1655 // Contraction set consists only of strings
1656 // to get unsafe code points, we need to
1657 // break the strings apart and add them to the unsafe set
1658 for(i = 0; i < contsSize; i++) {
1659 len = uset_getItem(contractions, i, NULL, NULL, buffer, internalBufferSize, status);
1660 if(len > 0) {
1661 j = 0;
1662 while(j < len) {
1663 U16_NEXT(buffer, j, len, c);
1664 if(j < len) {
1665 uset_add(unsafe, c);
1666 }
1667 }
1668 }
1669 }
1670
1671 uset_close(contractions);
1672
1673 return uset_size(unsafe);
1674 }
1675
1676 #endif // !UCONFIG_NO_COLLATION
1677