• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends.  This makes it easier to access the data and
12 // provides a single place that needs to check it for validity.  All of these
13 // classes abort on error conditions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodeGenTarget.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/TableGen/Error.h"
24 #include "llvm/TableGen/Record.h"
25 #include <algorithm>
26 using namespace llvm;
27 
28 static cl::opt<unsigned>
29 AsmParserNum("asmparsernum", cl::init(0),
30              cl::desc("Make -gen-asm-parser emit assembly parser #N"));
31 
32 static cl::opt<unsigned>
33 AsmWriterNum("asmwriternum", cl::init(0),
34              cl::desc("Make -gen-asm-writer emit assembly writer #N"));
35 
36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
37 /// record corresponds to.
getValueType(Record * Rec)38 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
39   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
40 }
41 
getName(MVT::SimpleValueType T)42 std::string llvm::getName(MVT::SimpleValueType T) {
43   switch (T) {
44   case MVT::Other:   return "UNKNOWN";
45   case MVT::iPTR:    return "TLI.getPointerTy()";
46   case MVT::iPTRAny: return "TLI.getPointerTy()";
47   default: return getEnumName(T);
48   }
49 }
50 
getEnumName(MVT::SimpleValueType T)51 std::string llvm::getEnumName(MVT::SimpleValueType T) {
52   switch (T) {
53   case MVT::Other:    return "MVT::Other";
54   case MVT::i1:       return "MVT::i1";
55   case MVT::i8:       return "MVT::i8";
56   case MVT::i16:      return "MVT::i16";
57   case MVT::i32:      return "MVT::i32";
58   case MVT::i64:      return "MVT::i64";
59   case MVT::i128:     return "MVT::i128";
60   case MVT::iAny:     return "MVT::iAny";
61   case MVT::fAny:     return "MVT::fAny";
62   case MVT::vAny:     return "MVT::vAny";
63   case MVT::f16:      return "MVT::f16";
64   case MVT::f32:      return "MVT::f32";
65   case MVT::f64:      return "MVT::f64";
66   case MVT::f80:      return "MVT::f80";
67   case MVT::f128:     return "MVT::f128";
68   case MVT::ppcf128:  return "MVT::ppcf128";
69   case MVT::x86mmx:   return "MVT::x86mmx";
70   case MVT::Glue:     return "MVT::Glue";
71   case MVT::isVoid:   return "MVT::isVoid";
72   case MVT::v2i1:     return "MVT::v2i1";
73   case MVT::v4i1:     return "MVT::v4i1";
74   case MVT::v8i1:     return "MVT::v8i1";
75   case MVT::v16i1:    return "MVT::v16i1";
76   case MVT::v32i1:    return "MVT::v32i1";
77   case MVT::v64i1:    return "MVT::v64i1";
78   case MVT::v1i8:     return "MVT::v1i8";
79   case MVT::v2i8:     return "MVT::v2i8";
80   case MVT::v4i8:     return "MVT::v4i8";
81   case MVT::v8i8:     return "MVT::v8i8";
82   case MVT::v16i8:    return "MVT::v16i8";
83   case MVT::v32i8:    return "MVT::v32i8";
84   case MVT::v64i8:    return "MVT::v64i8";
85   case MVT::v1i16:    return "MVT::v1i16";
86   case MVT::v2i16:    return "MVT::v2i16";
87   case MVT::v4i16:    return "MVT::v4i16";
88   case MVT::v8i16:    return "MVT::v8i16";
89   case MVT::v16i16:   return "MVT::v16i16";
90   case MVT::v32i16:   return "MVT::v32i16";
91   case MVT::v1i32:    return "MVT::v1i32";
92   case MVT::v2i32:    return "MVT::v2i32";
93   case MVT::v4i32:    return "MVT::v4i32";
94   case MVT::v8i32:    return "MVT::v8i32";
95   case MVT::v16i32:   return "MVT::v16i32";
96   case MVT::v1i64:    return "MVT::v1i64";
97   case MVT::v2i64:    return "MVT::v2i64";
98   case MVT::v4i64:    return "MVT::v4i64";
99   case MVT::v8i64:    return "MVT::v8i64";
100   case MVT::v16i64:   return "MVT::v16i64";
101   case MVT::v2f16:    return "MVT::v2f16";
102   case MVT::v4f16:    return "MVT::v4f16";
103   case MVT::v8f16:    return "MVT::v8f16";
104   case MVT::v1f32:    return "MVT::v1f32";
105   case MVT::v2f32:    return "MVT::v2f32";
106   case MVT::v4f32:    return "MVT::v4f32";
107   case MVT::v8f32:    return "MVT::v8f32";
108   case MVT::v16f32:   return "MVT::v16f32";
109   case MVT::v1f64:    return "MVT::v1f64";
110   case MVT::v2f64:    return "MVT::v2f64";
111   case MVT::v4f64:    return "MVT::v4f64";
112   case MVT::v8f64:    return "MVT::v8f64";
113   case MVT::Metadata: return "MVT::Metadata";
114   case MVT::iPTR:     return "MVT::iPTR";
115   case MVT::iPTRAny:  return "MVT::iPTRAny";
116   case MVT::Untyped:  return "MVT::Untyped";
117   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
118   }
119 }
120 
121 /// getQualifiedName - Return the name of the specified record, with a
122 /// namespace qualifier if the record contains one.
123 ///
getQualifiedName(const Record * R)124 std::string llvm::getQualifiedName(const Record *R) {
125   std::string Namespace;
126   if (R->getValue("Namespace"))
127      Namespace = R->getValueAsString("Namespace");
128   if (Namespace.empty()) return R->getName();
129   return Namespace + "::" + R->getName();
130 }
131 
132 
133 /// getTarget - Return the current instance of the Target class.
134 ///
CodeGenTarget(RecordKeeper & records)135 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
136   : Records(records), RegBank(nullptr), SchedModels(nullptr) {
137   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
138   if (Targets.size() == 0)
139     PrintFatalError("ERROR: No 'Target' subclasses defined!");
140   if (Targets.size() != 1)
141     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
142   TargetRec = Targets[0];
143 }
144 
~CodeGenTarget()145 CodeGenTarget::~CodeGenTarget() {
146   DeleteContainerSeconds(Instructions);
147   delete RegBank;
148   delete SchedModels;
149 }
150 
getName() const151 const std::string &CodeGenTarget::getName() const {
152   return TargetRec->getName();
153 }
154 
getInstNamespace() const155 std::string CodeGenTarget::getInstNamespace() const {
156   for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
157     // Make sure not to pick up "TargetOpcode" by accidentally getting
158     // the namespace off the PHI instruction or something.
159     if ((*i)->Namespace != "TargetOpcode")
160       return (*i)->Namespace;
161   }
162 
163   return "";
164 }
165 
getInstructionSet() const166 Record *CodeGenTarget::getInstructionSet() const {
167   return TargetRec->getValueAsDef("InstructionSet");
168 }
169 
170 
171 /// getAsmParser - Return the AssemblyParser definition for this target.
172 ///
getAsmParser() const173 Record *CodeGenTarget::getAsmParser() const {
174   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
175   if (AsmParserNum >= LI.size())
176     PrintFatalError("Target does not have an AsmParser #" +
177                     Twine(AsmParserNum) + "!");
178   return LI[AsmParserNum];
179 }
180 
181 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
182 /// this target.
183 ///
getAsmParserVariant(unsigned i) const184 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
185   std::vector<Record*> LI =
186     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
187   if (i >= LI.size())
188     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
189                     "!");
190   return LI[i];
191 }
192 
193 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
194 /// available for this target.
195 ///
getAsmParserVariantCount() const196 unsigned CodeGenTarget::getAsmParserVariantCount() const {
197   std::vector<Record*> LI =
198     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
199   return LI.size();
200 }
201 
202 /// getAsmWriter - Return the AssemblyWriter definition for this target.
203 ///
getAsmWriter() const204 Record *CodeGenTarget::getAsmWriter() const {
205   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
206   if (AsmWriterNum >= LI.size())
207     PrintFatalError("Target does not have an AsmWriter #" +
208                     Twine(AsmWriterNum) + "!");
209   return LI[AsmWriterNum];
210 }
211 
getRegBank() const212 CodeGenRegBank &CodeGenTarget::getRegBank() const {
213   if (!RegBank)
214     RegBank = new CodeGenRegBank(Records);
215   return *RegBank;
216 }
217 
ReadRegAltNameIndices() const218 void CodeGenTarget::ReadRegAltNameIndices() const {
219   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
220   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
221 }
222 
223 /// getRegisterByName - If there is a register with the specific AsmName,
224 /// return it.
getRegisterByName(StringRef Name) const225 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
226   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
227   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
228   if (I == Regs.end())
229     return nullptr;
230   return I->second;
231 }
232 
233 std::vector<MVT::SimpleValueType> CodeGenTarget::
getRegisterVTs(Record * R) const234 getRegisterVTs(Record *R) const {
235   const CodeGenRegister *Reg = getRegBank().getReg(R);
236   std::vector<MVT::SimpleValueType> Result;
237   ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
238   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
239     const CodeGenRegisterClass &RC = *RCs[i];
240     if (RC.contains(Reg)) {
241       ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
242       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
243     }
244   }
245 
246   // Remove duplicates.
247   array_pod_sort(Result.begin(), Result.end());
248   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
249   return Result;
250 }
251 
252 
ReadLegalValueTypes() const253 void CodeGenTarget::ReadLegalValueTypes() const {
254   ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
255   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
256     for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri)
257       LegalValueTypes.push_back(RCs[i]->VTs[ri]);
258 
259   // Remove duplicates.
260   std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
261   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
262                                     LegalValueTypes.end()),
263                         LegalValueTypes.end());
264 }
265 
getSchedModels() const266 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
267   if (!SchedModels)
268     SchedModels = new CodeGenSchedModels(Records, *this);
269   return *SchedModels;
270 }
271 
ReadInstructions() const272 void CodeGenTarget::ReadInstructions() const {
273   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
274   if (Insts.size() <= 2)
275     PrintFatalError("No 'Instruction' subclasses defined!");
276 
277   // Parse the instructions defined in the .td file.
278   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
279     Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
280 }
281 
282 static const CodeGenInstruction *
GetInstByName(const char * Name,const DenseMap<const Record *,CodeGenInstruction * > & Insts,RecordKeeper & Records)283 GetInstByName(const char *Name,
284               const DenseMap<const Record*, CodeGenInstruction*> &Insts,
285               RecordKeeper &Records) {
286   const Record *Rec = Records.getDef(Name);
287 
288   DenseMap<const Record*, CodeGenInstruction*>::const_iterator
289     I = Insts.find(Rec);
290   if (!Rec || I == Insts.end())
291     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
292   return I->second;
293 }
294 
295 /// \brief Return all of the instructions defined by the target, ordered by
296 /// their enum value.
ComputeInstrsByEnum() const297 void CodeGenTarget::ComputeInstrsByEnum() const {
298   // The ordering here must match the ordering in TargetOpcodes.h.
299   static const char *const FixedInstrs[] = {
300       "PHI",          "INLINEASM",     "CFI_INSTRUCTION",  "EH_LABEL",
301       "GC_LABEL",     "KILL",          "EXTRACT_SUBREG",   "INSERT_SUBREG",
302       "IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE",
303       "REG_SEQUENCE", "COPY",          "BUNDLE",           "LIFETIME_START",
304       "LIFETIME_END", "STACKMAP",      "PATCHPOINT",       nullptr};
305   const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
306   for (const char *const *p = FixedInstrs; *p; ++p) {
307     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
308     assert(Instr && "Missing target independent instruction");
309     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
310     InstrsByEnum.push_back(Instr);
311   }
312   unsigned EndOfPredefines = InstrsByEnum.size();
313 
314   for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
315        I = Insts.begin(), E = Insts.end(); I != E; ++I) {
316     const CodeGenInstruction *CGI = I->second;
317     if (CGI->Namespace != "TargetOpcode")
318       InstrsByEnum.push_back(CGI);
319   }
320 
321   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
322 
323   // All of the instructions are now in random order based on the map iteration.
324   // Sort them by name.
325   std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
326             [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
327     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
328   });
329 }
330 
331 
332 /// isLittleEndianEncoding - Return whether this target encodes its instruction
333 /// in little-endian format, i.e. bits laid out in the order [0..n]
334 ///
isLittleEndianEncoding() const335 bool CodeGenTarget::isLittleEndianEncoding() const {
336   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
337 }
338 
339 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
340 /// encodings, reverse the bit order of all instructions.
reverseBitsForLittleEndianEncoding()341 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
342   if (!isLittleEndianEncoding())
343     return;
344 
345   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
346   for (std::vector<Record*>::iterator I = Insts.begin(), E = Insts.end();
347        I != E; ++I) {
348     Record *R = *I;
349     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
350         R->getValueAsBit("isPseudo"))
351       continue;
352 
353     BitsInit *BI = R->getValueAsBitsInit("Inst");
354 
355     unsigned numBits = BI->getNumBits();
356 
357     SmallVector<Init *, 16> NewBits(numBits);
358 
359     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
360       unsigned bitSwapIdx = numBits - bit - 1;
361       Init *OrigBit = BI->getBit(bit);
362       Init *BitSwap = BI->getBit(bitSwapIdx);
363       NewBits[bit]        = BitSwap;
364       NewBits[bitSwapIdx] = OrigBit;
365     }
366     if (numBits % 2) {
367       unsigned middle = (numBits + 1) / 2;
368       NewBits[middle] = BI->getBit(middle);
369     }
370 
371     BitsInit *NewBI = BitsInit::get(NewBits);
372 
373     // Update the bits in reversed order so that emitInstrOpBits will get the
374     // correct endianness.
375     R->getValue("Inst")->setValue(NewBI);
376   }
377 }
378 
379 /// guessInstructionProperties - Return true if it's OK to guess instruction
380 /// properties instead of raising an error.
381 ///
382 /// This is configurable as a temporary migration aid. It will eventually be
383 /// permanently false.
guessInstructionProperties() const384 bool CodeGenTarget::guessInstructionProperties() const {
385   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
386 }
387 
388 //===----------------------------------------------------------------------===//
389 // ComplexPattern implementation
390 //
ComplexPattern(Record * R)391 ComplexPattern::ComplexPattern(Record *R) {
392   Ty          = ::getValueType(R->getValueAsDef("Ty"));
393   NumOperands = R->getValueAsInt("NumOperands");
394   SelectFunc  = R->getValueAsString("SelectFunc");
395   RootNodes   = R->getValueAsListOfDefs("RootNodes");
396 
397   // Parse the properties.
398   Properties = 0;
399   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
400   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
401     if (PropList[i]->getName() == "SDNPHasChain") {
402       Properties |= 1 << SDNPHasChain;
403     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
404       Properties |= 1 << SDNPOptInGlue;
405     } else if (PropList[i]->getName() == "SDNPMayStore") {
406       Properties |= 1 << SDNPMayStore;
407     } else if (PropList[i]->getName() == "SDNPMayLoad") {
408       Properties |= 1 << SDNPMayLoad;
409     } else if (PropList[i]->getName() == "SDNPSideEffect") {
410       Properties |= 1 << SDNPSideEffect;
411     } else if (PropList[i]->getName() == "SDNPMemOperand") {
412       Properties |= 1 << SDNPMemOperand;
413     } else if (PropList[i]->getName() == "SDNPVariadic") {
414       Properties |= 1 << SDNPVariadic;
415     } else if (PropList[i]->getName() == "SDNPWantRoot") {
416       Properties |= 1 << SDNPWantRoot;
417     } else if (PropList[i]->getName() == "SDNPWantParent") {
418       Properties |= 1 << SDNPWantParent;
419     } else {
420       errs() << "Unsupported SD Node property '" << PropList[i]->getName()
421              << "' on ComplexPattern '" << R->getName() << "'!\n";
422       exit(1);
423     }
424 }
425 
426 //===----------------------------------------------------------------------===//
427 // CodeGenIntrinsic Implementation
428 //===----------------------------------------------------------------------===//
429 
LoadIntrinsics(const RecordKeeper & RC,bool TargetOnly)430 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
431                                                    bool TargetOnly) {
432   std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
433 
434   std::vector<CodeGenIntrinsic> Result;
435 
436   for (unsigned i = 0, e = I.size(); i != e; ++i) {
437     bool isTarget = I[i]->getValueAsBit("isTarget");
438     if (isTarget == TargetOnly)
439       Result.push_back(CodeGenIntrinsic(I[i]));
440   }
441   return Result;
442 }
443 
CodeGenIntrinsic(Record * R)444 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
445   TheDef = R;
446   std::string DefName = R->getName();
447   ModRef = ReadWriteMem;
448   isOverloaded = false;
449   isCommutative = false;
450   canThrow = false;
451   isNoReturn = false;
452   isNoDuplicate = false;
453 
454   if (DefName.size() <= 4 ||
455       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
456     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
457 
458   EnumName = std::string(DefName.begin()+4, DefName.end());
459 
460   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
461     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
462   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
463     MSBuiltinName = R->getValueAsString("MSBuiltinName");
464 
465   TargetPrefix = R->getValueAsString("TargetPrefix");
466   Name = R->getValueAsString("LLVMName");
467 
468   if (Name == "") {
469     // If an explicit name isn't specified, derive one from the DefName.
470     Name = "llvm.";
471 
472     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
473       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
474   } else {
475     // Verify it starts with "llvm.".
476     if (Name.size() <= 5 ||
477         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
478       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
479   }
480 
481   // If TargetPrefix is specified, make sure that Name starts with
482   // "llvm.<targetprefix>.".
483   if (!TargetPrefix.empty()) {
484     if (Name.size() < 6+TargetPrefix.size() ||
485         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
486         != (TargetPrefix + "."))
487       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
488         TargetPrefix + ".'!");
489   }
490 
491   // Parse the list of return types.
492   std::vector<MVT::SimpleValueType> OverloadedVTs;
493   ListInit *TypeList = R->getValueAsListInit("RetTypes");
494   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
495     Record *TyEl = TypeList->getElementAsRecord(i);
496     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
497     MVT::SimpleValueType VT;
498     if (TyEl->isSubClassOf("LLVMMatchType")) {
499       unsigned MatchTy = TyEl->getValueAsInt("Number");
500       assert(MatchTy < OverloadedVTs.size() &&
501              "Invalid matching number!");
502       VT = OverloadedVTs[MatchTy];
503       // It only makes sense to use the extended and truncated vector element
504       // variants with iAny types; otherwise, if the intrinsic is not
505       // overloaded, all the types can be specified directly.
506       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
507                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
508               VT == MVT::iAny || VT == MVT::vAny) &&
509              "Expected iAny or vAny type");
510     } else {
511       VT = getValueType(TyEl->getValueAsDef("VT"));
512     }
513     if (MVT(VT).isOverloaded()) {
514       OverloadedVTs.push_back(VT);
515       isOverloaded = true;
516     }
517 
518     // Reject invalid types.
519     if (VT == MVT::isVoid)
520       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
521 
522     IS.RetVTs.push_back(VT);
523     IS.RetTypeDefs.push_back(TyEl);
524   }
525 
526   // Parse the list of parameter types.
527   TypeList = R->getValueAsListInit("ParamTypes");
528   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
529     Record *TyEl = TypeList->getElementAsRecord(i);
530     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
531     MVT::SimpleValueType VT;
532     if (TyEl->isSubClassOf("LLVMMatchType")) {
533       unsigned MatchTy = TyEl->getValueAsInt("Number");
534       assert(MatchTy < OverloadedVTs.size() &&
535              "Invalid matching number!");
536       VT = OverloadedVTs[MatchTy];
537       // It only makes sense to use the extended and truncated vector element
538       // variants with iAny types; otherwise, if the intrinsic is not
539       // overloaded, all the types can be specified directly.
540       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
541                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
542               VT == MVT::iAny || VT == MVT::vAny) &&
543              "Expected iAny or vAny type");
544     } else
545       VT = getValueType(TyEl->getValueAsDef("VT"));
546 
547     if (MVT(VT).isOverloaded()) {
548       OverloadedVTs.push_back(VT);
549       isOverloaded = true;
550     }
551 
552     // Reject invalid types.
553     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
554       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
555 
556     IS.ParamVTs.push_back(VT);
557     IS.ParamTypeDefs.push_back(TyEl);
558   }
559 
560   // Parse the intrinsic properties.
561   ListInit *PropList = R->getValueAsListInit("Properties");
562   for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
563     Record *Property = PropList->getElementAsRecord(i);
564     assert(Property->isSubClassOf("IntrinsicProperty") &&
565            "Expected a property!");
566 
567     if (Property->getName() == "IntrNoMem")
568       ModRef = NoMem;
569     else if (Property->getName() == "IntrReadArgMem")
570       ModRef = ReadArgMem;
571     else if (Property->getName() == "IntrReadMem")
572       ModRef = ReadMem;
573     else if (Property->getName() == "IntrReadWriteArgMem")
574       ModRef = ReadWriteArgMem;
575     else if (Property->getName() == "Commutative")
576       isCommutative = true;
577     else if (Property->getName() == "Throws")
578       canThrow = true;
579     else if (Property->getName() == "IntrNoDuplicate")
580       isNoDuplicate = true;
581     else if (Property->getName() == "IntrNoReturn")
582       isNoReturn = true;
583     else if (Property->isSubClassOf("NoCapture")) {
584       unsigned ArgNo = Property->getValueAsInt("ArgNo");
585       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
586     } else if (Property->isSubClassOf("ReadOnly")) {
587       unsigned ArgNo = Property->getValueAsInt("ArgNo");
588       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
589     } else if (Property->isSubClassOf("ReadNone")) {
590       unsigned ArgNo = Property->getValueAsInt("ArgNo");
591       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
592     } else
593       llvm_unreachable("Unknown property!");
594   }
595 
596   // Sort the argument attributes for later benefit.
597   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
598 }
599