1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/GCMetadata.h"
27 #include "llvm/CodeGen/GCStrategy.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfo.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetFrameLowering.h"
55 #include "llvm/Target/TargetInstrInfo.h"
56 #include "llvm/Target/TargetIntrinsicInfo.h"
57 #include "llvm/Target/TargetLibraryInfo.h"
58 #include "llvm/Target/TargetLowering.h"
59 #include "llvm/Target/TargetOptions.h"
60 #include "llvm/Target/TargetSelectionDAGInfo.h"
61 #include <algorithm>
62 using namespace llvm;
63
64 #define DEBUG_TYPE "isel"
65
66 /// LimitFloatPrecision - Generate low-precision inline sequences for
67 /// some float libcalls (6, 8 or 12 bits).
68 static unsigned LimitFloatPrecision;
69
70 static cl::opt<unsigned, true>
71 LimitFPPrecision("limit-float-precision",
72 cl::desc("Generate low-precision inline sequences "
73 "for some float libcalls"),
74 cl::location(LimitFloatPrecision),
75 cl::init(0));
76
77 // Limit the width of DAG chains. This is important in general to prevent
78 // prevent DAG-based analysis from blowing up. For example, alias analysis and
79 // load clustering may not complete in reasonable time. It is difficult to
80 // recognize and avoid this situation within each individual analysis, and
81 // future analyses are likely to have the same behavior. Limiting DAG width is
82 // the safe approach, and will be especially important with global DAGs.
83 //
84 // MaxParallelChains default is arbitrarily high to avoid affecting
85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
86 // sequence over this should have been converted to llvm.memcpy by the
87 // frontend. It easy to induce this behavior with .ll code such as:
88 // %buffer = alloca [4096 x i8]
89 // %data = load [4096 x i8]* %argPtr
90 // store [4096 x i8] %data, [4096 x i8]* %buffer
91 static const unsigned MaxParallelChains = 64;
92
93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
94 const SDValue *Parts, unsigned NumParts,
95 MVT PartVT, EVT ValueVT, const Value *V);
96
97 /// getCopyFromParts - Create a value that contains the specified legal parts
98 /// combined into the value they represent. If the parts combine to a type
99 /// larger then ValueVT then AssertOp can be used to specify whether the extra
100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
101 /// (ISD::AssertSext).
getCopyFromParts(SelectionDAG & DAG,SDLoc DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,ISD::NodeType AssertOp=ISD::DELETED_NODE)102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
103 const SDValue *Parts,
104 unsigned NumParts, MVT PartVT, EVT ValueVT,
105 const Value *V,
106 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
107 if (ValueVT.isVector())
108 return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
109 PartVT, ValueVT, V);
110
111 assert(NumParts > 0 && "No parts to assemble!");
112 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
113 SDValue Val = Parts[0];
114
115 if (NumParts > 1) {
116 // Assemble the value from multiple parts.
117 if (ValueVT.isInteger()) {
118 unsigned PartBits = PartVT.getSizeInBits();
119 unsigned ValueBits = ValueVT.getSizeInBits();
120
121 // Assemble the power of 2 part.
122 unsigned RoundParts = NumParts & (NumParts - 1) ?
123 1 << Log2_32(NumParts) : NumParts;
124 unsigned RoundBits = PartBits * RoundParts;
125 EVT RoundVT = RoundBits == ValueBits ?
126 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
127 SDValue Lo, Hi;
128
129 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
130
131 if (RoundParts > 2) {
132 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
133 PartVT, HalfVT, V);
134 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
135 RoundParts / 2, PartVT, HalfVT, V);
136 } else {
137 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
138 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
139 }
140
141 if (TLI.isBigEndian())
142 std::swap(Lo, Hi);
143
144 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
145
146 if (RoundParts < NumParts) {
147 // Assemble the trailing non-power-of-2 part.
148 unsigned OddParts = NumParts - RoundParts;
149 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
150 Hi = getCopyFromParts(DAG, DL,
151 Parts + RoundParts, OddParts, PartVT, OddVT, V);
152
153 // Combine the round and odd parts.
154 Lo = Val;
155 if (TLI.isBigEndian())
156 std::swap(Lo, Hi);
157 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
158 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
159 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
160 DAG.getConstant(Lo.getValueType().getSizeInBits(),
161 TLI.getPointerTy()));
162 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
163 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
164 }
165 } else if (PartVT.isFloatingPoint()) {
166 // FP split into multiple FP parts (for ppcf128)
167 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
168 "Unexpected split");
169 SDValue Lo, Hi;
170 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
171 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
172 if (TLI.hasBigEndianPartOrdering(ValueVT))
173 std::swap(Lo, Hi);
174 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
175 } else {
176 // FP split into integer parts (soft fp)
177 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
178 !PartVT.isVector() && "Unexpected split");
179 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
180 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
181 }
182 }
183
184 // There is now one part, held in Val. Correct it to match ValueVT.
185 EVT PartEVT = Val.getValueType();
186
187 if (PartEVT == ValueVT)
188 return Val;
189
190 if (PartEVT.isInteger() && ValueVT.isInteger()) {
191 if (ValueVT.bitsLT(PartEVT)) {
192 // For a truncate, see if we have any information to
193 // indicate whether the truncated bits will always be
194 // zero or sign-extension.
195 if (AssertOp != ISD::DELETED_NODE)
196 Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
197 DAG.getValueType(ValueVT));
198 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
199 }
200 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
201 }
202
203 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
204 // FP_ROUND's are always exact here.
205 if (ValueVT.bitsLT(Val.getValueType()))
206 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
207 DAG.getTargetConstant(1, TLI.getPointerTy()));
208
209 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
210 }
211
212 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
213 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
214
215 llvm_unreachable("Unknown mismatch!");
216 }
217
diagnosePossiblyInvalidConstraint(LLVMContext & Ctx,const Value * V,const Twine & ErrMsg)218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
219 const Twine &ErrMsg) {
220 const Instruction *I = dyn_cast_or_null<Instruction>(V);
221 if (!V)
222 return Ctx.emitError(ErrMsg);
223
224 const char *AsmError = ", possible invalid constraint for vector type";
225 if (const CallInst *CI = dyn_cast<CallInst>(I))
226 if (isa<InlineAsm>(CI->getCalledValue()))
227 return Ctx.emitError(I, ErrMsg + AsmError);
228
229 return Ctx.emitError(I, ErrMsg);
230 }
231
232 /// getCopyFromPartsVector - Create a value that contains the specified legal
233 /// parts combined into the value they represent. If the parts combine to a
234 /// type larger then ValueVT then AssertOp can be used to specify whether the
235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
236 /// ValueVT (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,SDLoc DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V)237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
238 const SDValue *Parts, unsigned NumParts,
239 MVT PartVT, EVT ValueVT, const Value *V) {
240 assert(ValueVT.isVector() && "Not a vector value");
241 assert(NumParts > 0 && "No parts to assemble!");
242 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
243 SDValue Val = Parts[0];
244
245 // Handle a multi-element vector.
246 if (NumParts > 1) {
247 EVT IntermediateVT;
248 MVT RegisterVT;
249 unsigned NumIntermediates;
250 unsigned NumRegs =
251 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
252 NumIntermediates, RegisterVT);
253 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
254 NumParts = NumRegs; // Silence a compiler warning.
255 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
256 assert(RegisterVT == Parts[0].getSimpleValueType() &&
257 "Part type doesn't match part!");
258
259 // Assemble the parts into intermediate operands.
260 SmallVector<SDValue, 8> Ops(NumIntermediates);
261 if (NumIntermediates == NumParts) {
262 // If the register was not expanded, truncate or copy the value,
263 // as appropriate.
264 for (unsigned i = 0; i != NumParts; ++i)
265 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
266 PartVT, IntermediateVT, V);
267 } else if (NumParts > 0) {
268 // If the intermediate type was expanded, build the intermediate
269 // operands from the parts.
270 assert(NumParts % NumIntermediates == 0 &&
271 "Must expand into a divisible number of parts!");
272 unsigned Factor = NumParts / NumIntermediates;
273 for (unsigned i = 0; i != NumIntermediates; ++i)
274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
275 PartVT, IntermediateVT, V);
276 }
277
278 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
279 // intermediate operands.
280 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
281 : ISD::BUILD_VECTOR,
282 DL, ValueVT, Ops);
283 }
284
285 // There is now one part, held in Val. Correct it to match ValueVT.
286 EVT PartEVT = Val.getValueType();
287
288 if (PartEVT == ValueVT)
289 return Val;
290
291 if (PartEVT.isVector()) {
292 // If the element type of the source/dest vectors are the same, but the
293 // parts vector has more elements than the value vector, then we have a
294 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
295 // elements we want.
296 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
297 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
298 "Cannot narrow, it would be a lossy transformation");
299 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
300 DAG.getConstant(0, TLI.getVectorIdxTy()));
301 }
302
303 // Vector/Vector bitcast.
304 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306
307 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
308 "Cannot handle this kind of promotion");
309 // Promoted vector extract
310 bool Smaller = ValueVT.bitsLE(PartEVT);
311 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
312 DL, ValueVT, Val);
313
314 }
315
316 // Trivial bitcast if the types are the same size and the destination
317 // vector type is legal.
318 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
319 TLI.isTypeLegal(ValueVT))
320 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
321
322 // Handle cases such as i8 -> <1 x i1>
323 if (ValueVT.getVectorNumElements() != 1) {
324 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
325 "non-trivial scalar-to-vector conversion");
326 return DAG.getUNDEF(ValueVT);
327 }
328
329 if (ValueVT.getVectorNumElements() == 1 &&
330 ValueVT.getVectorElementType() != PartEVT) {
331 bool Smaller = ValueVT.bitsLE(PartEVT);
332 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
333 DL, ValueVT.getScalarType(), Val);
334 }
335
336 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
337 }
338
339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
340 SDValue Val, SDValue *Parts, unsigned NumParts,
341 MVT PartVT, const Value *V);
342
343 /// getCopyToParts - Create a series of nodes that contain the specified value
344 /// split into legal parts. If the parts contain more bits than Val, then, for
345 /// integers, ExtendKind can be used to specify how to generate the extra bits.
getCopyToParts(SelectionDAG & DAG,SDLoc DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
347 SDValue Val, SDValue *Parts, unsigned NumParts,
348 MVT PartVT, const Value *V,
349 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
350 EVT ValueVT = Val.getValueType();
351
352 // Handle the vector case separately.
353 if (ValueVT.isVector())
354 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
355
356 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
357 unsigned PartBits = PartVT.getSizeInBits();
358 unsigned OrigNumParts = NumParts;
359 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
360
361 if (NumParts == 0)
362 return;
363
364 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
365 EVT PartEVT = PartVT;
366 if (PartEVT == ValueVT) {
367 assert(NumParts == 1 && "No-op copy with multiple parts!");
368 Parts[0] = Val;
369 return;
370 }
371
372 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
373 // If the parts cover more bits than the value has, promote the value.
374 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
375 assert(NumParts == 1 && "Do not know what to promote to!");
376 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
377 } else {
378 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
379 ValueVT.isInteger() &&
380 "Unknown mismatch!");
381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
383 if (PartVT == MVT::x86mmx)
384 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
385 }
386 } else if (PartBits == ValueVT.getSizeInBits()) {
387 // Different types of the same size.
388 assert(NumParts == 1 && PartEVT != ValueVT);
389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
391 // If the parts cover less bits than value has, truncate the value.
392 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
393 ValueVT.isInteger() &&
394 "Unknown mismatch!");
395 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
396 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
397 if (PartVT == MVT::x86mmx)
398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
399 }
400
401 // The value may have changed - recompute ValueVT.
402 ValueVT = Val.getValueType();
403 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
404 "Failed to tile the value with PartVT!");
405
406 if (NumParts == 1) {
407 if (PartEVT != ValueVT)
408 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
409 "scalar-to-vector conversion failed");
410
411 Parts[0] = Val;
412 return;
413 }
414
415 // Expand the value into multiple parts.
416 if (NumParts & (NumParts - 1)) {
417 // The number of parts is not a power of 2. Split off and copy the tail.
418 assert(PartVT.isInteger() && ValueVT.isInteger() &&
419 "Do not know what to expand to!");
420 unsigned RoundParts = 1 << Log2_32(NumParts);
421 unsigned RoundBits = RoundParts * PartBits;
422 unsigned OddParts = NumParts - RoundParts;
423 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424 DAG.getIntPtrConstant(RoundBits));
425 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427 if (TLI.isBigEndian())
428 // The odd parts were reversed by getCopyToParts - unreverse them.
429 std::reverse(Parts + RoundParts, Parts + NumParts);
430
431 NumParts = RoundParts;
432 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434 }
435
436 // The number of parts is a power of 2. Repeatedly bisect the value using
437 // EXTRACT_ELEMENT.
438 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439 EVT::getIntegerVT(*DAG.getContext(),
440 ValueVT.getSizeInBits()),
441 Val);
442
443 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444 for (unsigned i = 0; i < NumParts; i += StepSize) {
445 unsigned ThisBits = StepSize * PartBits / 2;
446 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447 SDValue &Part0 = Parts[i];
448 SDValue &Part1 = Parts[i+StepSize/2];
449
450 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451 ThisVT, Part0, DAG.getIntPtrConstant(1));
452 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453 ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455 if (ThisBits == PartBits && ThisVT != PartVT) {
456 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458 }
459 }
460 }
461
462 if (TLI.isBigEndian())
463 std::reverse(Parts, Parts + OrigNumParts);
464 }
465
466
467 /// getCopyToPartsVector - Create a series of nodes that contain the specified
468 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,SDLoc DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V)469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
470 SDValue Val, SDValue *Parts, unsigned NumParts,
471 MVT PartVT, const Value *V) {
472 EVT ValueVT = Val.getValueType();
473 assert(ValueVT.isVector() && "Not a vector");
474 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476 if (NumParts == 1) {
477 EVT PartEVT = PartVT;
478 if (PartEVT == ValueVT) {
479 // Nothing to do.
480 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481 // Bitconvert vector->vector case.
482 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483 } else if (PartVT.isVector() &&
484 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486 EVT ElementVT = PartVT.getVectorElementType();
487 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
488 // undef elements.
489 SmallVector<SDValue, 16> Ops;
490 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492 ElementVT, Val, DAG.getConstant(i,
493 TLI.getVectorIdxTy())));
494
495 for (unsigned i = ValueVT.getVectorNumElements(),
496 e = PartVT.getVectorNumElements(); i != e; ++i)
497 Ops.push_back(DAG.getUNDEF(ElementVT));
498
499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
500
501 // FIXME: Use CONCAT for 2x -> 4x.
502
503 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
505 } else if (PartVT.isVector() &&
506 PartEVT.getVectorElementType().bitsGE(
507 ValueVT.getVectorElementType()) &&
508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
509
510 // Promoted vector extract
511 bool Smaller = PartEVT.bitsLE(ValueVT);
512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
513 DL, PartVT, Val);
514 } else{
515 // Vector -> scalar conversion.
516 assert(ValueVT.getVectorNumElements() == 1 &&
517 "Only trivial vector-to-scalar conversions should get here!");
518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
519 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
520
521 bool Smaller = ValueVT.bitsLE(PartVT);
522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
523 DL, PartVT, Val);
524 }
525
526 Parts[0] = Val;
527 return;
528 }
529
530 // Handle a multi-element vector.
531 EVT IntermediateVT;
532 MVT RegisterVT;
533 unsigned NumIntermediates;
534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
535 IntermediateVT,
536 NumIntermediates, RegisterVT);
537 unsigned NumElements = ValueVT.getVectorNumElements();
538
539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
540 NumParts = NumRegs; // Silence a compiler warning.
541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
542
543 // Split the vector into intermediate operands.
544 SmallVector<SDValue, 8> Ops(NumIntermediates);
545 for (unsigned i = 0; i != NumIntermediates; ++i) {
546 if (IntermediateVT.isVector())
547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
548 IntermediateVT, Val,
549 DAG.getConstant(i * (NumElements / NumIntermediates),
550 TLI.getVectorIdxTy()));
551 else
552 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
553 IntermediateVT, Val,
554 DAG.getConstant(i, TLI.getVectorIdxTy()));
555 }
556
557 // Split the intermediate operands into legal parts.
558 if (NumParts == NumIntermediates) {
559 // If the register was not expanded, promote or copy the value,
560 // as appropriate.
561 for (unsigned i = 0; i != NumParts; ++i)
562 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
563 } else if (NumParts > 0) {
564 // If the intermediate type was expanded, split each the value into
565 // legal parts.
566 assert(NumParts % NumIntermediates == 0 &&
567 "Must expand into a divisible number of parts!");
568 unsigned Factor = NumParts / NumIntermediates;
569 for (unsigned i = 0; i != NumIntermediates; ++i)
570 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
571 }
572 }
573
574 namespace {
575 /// RegsForValue - This struct represents the registers (physical or virtual)
576 /// that a particular set of values is assigned, and the type information
577 /// about the value. The most common situation is to represent one value at a
578 /// time, but struct or array values are handled element-wise as multiple
579 /// values. The splitting of aggregates is performed recursively, so that we
580 /// never have aggregate-typed registers. The values at this point do not
581 /// necessarily have legal types, so each value may require one or more
582 /// registers of some legal type.
583 ///
584 struct RegsForValue {
585 /// ValueVTs - The value types of the values, which may not be legal, and
586 /// may need be promoted or synthesized from one or more registers.
587 ///
588 SmallVector<EVT, 4> ValueVTs;
589
590 /// RegVTs - The value types of the registers. This is the same size as
591 /// ValueVTs and it records, for each value, what the type of the assigned
592 /// register or registers are. (Individual values are never synthesized
593 /// from more than one type of register.)
594 ///
595 /// With virtual registers, the contents of RegVTs is redundant with TLI's
596 /// getRegisterType member function, however when with physical registers
597 /// it is necessary to have a separate record of the types.
598 ///
599 SmallVector<MVT, 4> RegVTs;
600
601 /// Regs - This list holds the registers assigned to the values.
602 /// Each legal or promoted value requires one register, and each
603 /// expanded value requires multiple registers.
604 ///
605 SmallVector<unsigned, 4> Regs;
606
RegsForValue__anone88389a70111::RegsForValue607 RegsForValue() {}
608
RegsForValue__anone88389a70111::RegsForValue609 RegsForValue(const SmallVector<unsigned, 4> ®s,
610 MVT regvt, EVT valuevt)
611 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
612
RegsForValue__anone88389a70111::RegsForValue613 RegsForValue(LLVMContext &Context, const TargetLowering &tli,
614 unsigned Reg, Type *Ty) {
615 ComputeValueVTs(tli, Ty, ValueVTs);
616
617 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
618 EVT ValueVT = ValueVTs[Value];
619 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
620 MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
621 for (unsigned i = 0; i != NumRegs; ++i)
622 Regs.push_back(Reg + i);
623 RegVTs.push_back(RegisterVT);
624 Reg += NumRegs;
625 }
626 }
627
628 /// append - Add the specified values to this one.
append__anone88389a70111::RegsForValue629 void append(const RegsForValue &RHS) {
630 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
631 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
632 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
633 }
634
635 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
636 /// this value and returns the result as a ValueVTs value. This uses
637 /// Chain/Flag as the input and updates them for the output Chain/Flag.
638 /// If the Flag pointer is NULL, no flag is used.
639 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
640 SDLoc dl,
641 SDValue &Chain, SDValue *Flag,
642 const Value *V = nullptr) const;
643
644 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
645 /// specified value into the registers specified by this object. This uses
646 /// Chain/Flag as the input and updates them for the output Chain/Flag.
647 /// If the Flag pointer is NULL, no flag is used.
648 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
649 SDValue &Chain, SDValue *Flag, const Value *V) const;
650
651 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
652 /// operand list. This adds the code marker, matching input operand index
653 /// (if applicable), and includes the number of values added into it.
654 void AddInlineAsmOperands(unsigned Kind,
655 bool HasMatching, unsigned MatchingIdx,
656 SelectionDAG &DAG,
657 std::vector<SDValue> &Ops) const;
658 };
659 }
660
661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
662 /// this value and returns the result as a ValueVT value. This uses
663 /// Chain/Flag as the input and updates them for the output Chain/Flag.
664 /// If the Flag pointer is NULL, no flag is used.
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,SDLoc dl,SDValue & Chain,SDValue * Flag,const Value * V) const665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
666 FunctionLoweringInfo &FuncInfo,
667 SDLoc dl,
668 SDValue &Chain, SDValue *Flag,
669 const Value *V) const {
670 // A Value with type {} or [0 x %t] needs no registers.
671 if (ValueVTs.empty())
672 return SDValue();
673
674 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
675
676 // Assemble the legal parts into the final values.
677 SmallVector<SDValue, 4> Values(ValueVTs.size());
678 SmallVector<SDValue, 8> Parts;
679 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
680 // Copy the legal parts from the registers.
681 EVT ValueVT = ValueVTs[Value];
682 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
683 MVT RegisterVT = RegVTs[Value];
684
685 Parts.resize(NumRegs);
686 for (unsigned i = 0; i != NumRegs; ++i) {
687 SDValue P;
688 if (!Flag) {
689 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
690 } else {
691 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
692 *Flag = P.getValue(2);
693 }
694
695 Chain = P.getValue(1);
696 Parts[i] = P;
697
698 // If the source register was virtual and if we know something about it,
699 // add an assert node.
700 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
701 !RegisterVT.isInteger() || RegisterVT.isVector())
702 continue;
703
704 const FunctionLoweringInfo::LiveOutInfo *LOI =
705 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
706 if (!LOI)
707 continue;
708
709 unsigned RegSize = RegisterVT.getSizeInBits();
710 unsigned NumSignBits = LOI->NumSignBits;
711 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
712
713 if (NumZeroBits == RegSize) {
714 // The current value is a zero.
715 // Explicitly express that as it would be easier for
716 // optimizations to kick in.
717 Parts[i] = DAG.getConstant(0, RegisterVT);
718 continue;
719 }
720
721 // FIXME: We capture more information than the dag can represent. For
722 // now, just use the tightest assertzext/assertsext possible.
723 bool isSExt = true;
724 EVT FromVT(MVT::Other);
725 if (NumSignBits == RegSize)
726 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
727 else if (NumZeroBits >= RegSize-1)
728 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
729 else if (NumSignBits > RegSize-8)
730 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
731 else if (NumZeroBits >= RegSize-8)
732 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
733 else if (NumSignBits > RegSize-16)
734 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
735 else if (NumZeroBits >= RegSize-16)
736 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
737 else if (NumSignBits > RegSize-32)
738 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
739 else if (NumZeroBits >= RegSize-32)
740 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
741 else
742 continue;
743
744 // Add an assertion node.
745 assert(FromVT != MVT::Other);
746 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
747 RegisterVT, P, DAG.getValueType(FromVT));
748 }
749
750 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
751 NumRegs, RegisterVT, ValueVT, V);
752 Part += NumRegs;
753 Parts.clear();
754 }
755
756 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
757 }
758
759 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
760 /// specified value into the registers specified by this object. This uses
761 /// Chain/Flag as the input and updates them for the output Chain/Flag.
762 /// If the Flag pointer is NULL, no flag is used.
getCopyToRegs(SDValue Val,SelectionDAG & DAG,SDLoc dl,SDValue & Chain,SDValue * Flag,const Value * V) const763 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
764 SDValue &Chain, SDValue *Flag,
765 const Value *V) const {
766 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
767
768 // Get the list of the values's legal parts.
769 unsigned NumRegs = Regs.size();
770 SmallVector<SDValue, 8> Parts(NumRegs);
771 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
772 EVT ValueVT = ValueVTs[Value];
773 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
774 MVT RegisterVT = RegVTs[Value];
775 ISD::NodeType ExtendKind =
776 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
777
778 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
779 &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
780 Part += NumParts;
781 }
782
783 // Copy the parts into the registers.
784 SmallVector<SDValue, 8> Chains(NumRegs);
785 for (unsigned i = 0; i != NumRegs; ++i) {
786 SDValue Part;
787 if (!Flag) {
788 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
789 } else {
790 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
791 *Flag = Part.getValue(1);
792 }
793
794 Chains[i] = Part.getValue(0);
795 }
796
797 if (NumRegs == 1 || Flag)
798 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
799 // flagged to it. That is the CopyToReg nodes and the user are considered
800 // a single scheduling unit. If we create a TokenFactor and return it as
801 // chain, then the TokenFactor is both a predecessor (operand) of the
802 // user as well as a successor (the TF operands are flagged to the user).
803 // c1, f1 = CopyToReg
804 // c2, f2 = CopyToReg
805 // c3 = TokenFactor c1, c2
806 // ...
807 // = op c3, ..., f2
808 Chain = Chains[NumRegs-1];
809 else
810 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
811 }
812
813 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
814 /// operand list. This adds the code marker and includes the number of
815 /// values added into it.
AddInlineAsmOperands(unsigned Code,bool HasMatching,unsigned MatchingIdx,SelectionDAG & DAG,std::vector<SDValue> & Ops) const816 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
817 unsigned MatchingIdx,
818 SelectionDAG &DAG,
819 std::vector<SDValue> &Ops) const {
820 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
821
822 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
823 if (HasMatching)
824 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
825 else if (!Regs.empty() &&
826 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
827 // Put the register class of the virtual registers in the flag word. That
828 // way, later passes can recompute register class constraints for inline
829 // assembly as well as normal instructions.
830 // Don't do this for tied operands that can use the regclass information
831 // from the def.
832 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
833 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
834 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
835 }
836
837 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
838 Ops.push_back(Res);
839
840 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
841 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843 MVT RegisterVT = RegVTs[Value];
844 for (unsigned i = 0; i != NumRegs; ++i) {
845 assert(Reg < Regs.size() && "Mismatch in # registers expected");
846 unsigned TheReg = Regs[Reg++];
847 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
848
849 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
850 // If we clobbered the stack pointer, MFI should know about it.
851 assert(DAG.getMachineFunction().getFrameInfo()->
852 hasInlineAsmWithSPAdjust());
853 }
854 }
855 }
856 }
857
init(GCFunctionInfo * gfi,AliasAnalysis & aa,const TargetLibraryInfo * li)858 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
859 const TargetLibraryInfo *li) {
860 AA = &aa;
861 GFI = gfi;
862 LibInfo = li;
863 DL = DAG.getTarget().getDataLayout();
864 Context = DAG.getContext();
865 LPadToCallSiteMap.clear();
866 }
867
868 /// clear - Clear out the current SelectionDAG and the associated
869 /// state and prepare this SelectionDAGBuilder object to be used
870 /// for a new block. This doesn't clear out information about
871 /// additional blocks that are needed to complete switch lowering
872 /// or PHI node updating; that information is cleared out as it is
873 /// consumed.
clear()874 void SelectionDAGBuilder::clear() {
875 NodeMap.clear();
876 UnusedArgNodeMap.clear();
877 PendingLoads.clear();
878 PendingExports.clear();
879 CurInst = nullptr;
880 HasTailCall = false;
881 SDNodeOrder = LowestSDNodeOrder;
882 }
883
884 /// clearDanglingDebugInfo - Clear the dangling debug information
885 /// map. This function is separated from the clear so that debug
886 /// information that is dangling in a basic block can be properly
887 /// resolved in a different basic block. This allows the
888 /// SelectionDAG to resolve dangling debug information attached
889 /// to PHI nodes.
clearDanglingDebugInfo()890 void SelectionDAGBuilder::clearDanglingDebugInfo() {
891 DanglingDebugInfoMap.clear();
892 }
893
894 /// getRoot - Return the current virtual root of the Selection DAG,
895 /// flushing any PendingLoad items. This must be done before emitting
896 /// a store or any other node that may need to be ordered after any
897 /// prior load instructions.
898 ///
getRoot()899 SDValue SelectionDAGBuilder::getRoot() {
900 if (PendingLoads.empty())
901 return DAG.getRoot();
902
903 if (PendingLoads.size() == 1) {
904 SDValue Root = PendingLoads[0];
905 DAG.setRoot(Root);
906 PendingLoads.clear();
907 return Root;
908 }
909
910 // Otherwise, we have to make a token factor node.
911 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
912 PendingLoads);
913 PendingLoads.clear();
914 DAG.setRoot(Root);
915 return Root;
916 }
917
918 /// getControlRoot - Similar to getRoot, but instead of flushing all the
919 /// PendingLoad items, flush all the PendingExports items. It is necessary
920 /// to do this before emitting a terminator instruction.
921 ///
getControlRoot()922 SDValue SelectionDAGBuilder::getControlRoot() {
923 SDValue Root = DAG.getRoot();
924
925 if (PendingExports.empty())
926 return Root;
927
928 // Turn all of the CopyToReg chains into one factored node.
929 if (Root.getOpcode() != ISD::EntryToken) {
930 unsigned i = 0, e = PendingExports.size();
931 for (; i != e; ++i) {
932 assert(PendingExports[i].getNode()->getNumOperands() > 1);
933 if (PendingExports[i].getNode()->getOperand(0) == Root)
934 break; // Don't add the root if we already indirectly depend on it.
935 }
936
937 if (i == e)
938 PendingExports.push_back(Root);
939 }
940
941 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
942 PendingExports);
943 PendingExports.clear();
944 DAG.setRoot(Root);
945 return Root;
946 }
947
visit(const Instruction & I)948 void SelectionDAGBuilder::visit(const Instruction &I) {
949 // Set up outgoing PHI node register values before emitting the terminator.
950 if (isa<TerminatorInst>(&I))
951 HandlePHINodesInSuccessorBlocks(I.getParent());
952
953 ++SDNodeOrder;
954
955 CurInst = &I;
956
957 visit(I.getOpcode(), I);
958
959 if (!isa<TerminatorInst>(&I) && !HasTailCall)
960 CopyToExportRegsIfNeeded(&I);
961
962 CurInst = nullptr;
963 }
964
visitPHI(const PHINode &)965 void SelectionDAGBuilder::visitPHI(const PHINode &) {
966 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
967 }
968
visit(unsigned Opcode,const User & I)969 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
970 // Note: this doesn't use InstVisitor, because it has to work with
971 // ConstantExpr's in addition to instructions.
972 switch (Opcode) {
973 default: llvm_unreachable("Unknown instruction type encountered!");
974 // Build the switch statement using the Instruction.def file.
975 #define HANDLE_INST(NUM, OPCODE, CLASS) \
976 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
977 #include "llvm/IR/Instruction.def"
978 }
979 }
980
981 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
982 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)983 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
984 SDValue Val) {
985 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
986 if (DDI.getDI()) {
987 const DbgValueInst *DI = DDI.getDI();
988 DebugLoc dl = DDI.getdl();
989 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
990 MDNode *Variable = DI->getVariable();
991 uint64_t Offset = DI->getOffset();
992 // A dbg.value for an alloca is always indirect.
993 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
994 SDDbgValue *SDV;
995 if (Val.getNode()) {
996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) {
997 SDV = DAG.getDbgValue(Variable, Val.getNode(),
998 Val.getResNo(), IsIndirect,
999 Offset, dl, DbgSDNodeOrder);
1000 DAG.AddDbgValue(SDV, Val.getNode(), false);
1001 }
1002 } else
1003 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1004 DanglingDebugInfoMap[V] = DanglingDebugInfo();
1005 }
1006 }
1007
1008 /// getValue - Return an SDValue for the given Value.
getValue(const Value * V)1009 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1010 // If we already have an SDValue for this value, use it. It's important
1011 // to do this first, so that we don't create a CopyFromReg if we already
1012 // have a regular SDValue.
1013 SDValue &N = NodeMap[V];
1014 if (N.getNode()) return N;
1015
1016 // If there's a virtual register allocated and initialized for this
1017 // value, use it.
1018 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1019 if (It != FuncInfo.ValueMap.end()) {
1020 unsigned InReg = It->second;
1021 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1022 InReg, V->getType());
1023 SDValue Chain = DAG.getEntryNode();
1024 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1025 resolveDanglingDebugInfo(V, N);
1026 return N;
1027 }
1028
1029 // Otherwise create a new SDValue and remember it.
1030 SDValue Val = getValueImpl(V);
1031 NodeMap[V] = Val;
1032 resolveDanglingDebugInfo(V, Val);
1033 return Val;
1034 }
1035
1036 /// getNonRegisterValue - Return an SDValue for the given Value, but
1037 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)1038 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1039 // If we already have an SDValue for this value, use it.
1040 SDValue &N = NodeMap[V];
1041 if (N.getNode()) return N;
1042
1043 // Otherwise create a new SDValue and remember it.
1044 SDValue Val = getValueImpl(V);
1045 NodeMap[V] = Val;
1046 resolveDanglingDebugInfo(V, Val);
1047 return Val;
1048 }
1049
1050 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1051 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1052 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1053 const TargetLowering *TLI = TM.getTargetLowering();
1054
1055 if (const Constant *C = dyn_cast<Constant>(V)) {
1056 EVT VT = TLI->getValueType(V->getType(), true);
1057
1058 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1059 return DAG.getConstant(*CI, VT);
1060
1061 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1062 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1063
1064 if (isa<ConstantPointerNull>(C)) {
1065 unsigned AS = V->getType()->getPointerAddressSpace();
1066 return DAG.getConstant(0, TLI->getPointerTy(AS));
1067 }
1068
1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1070 return DAG.getConstantFP(*CFP, VT);
1071
1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1073 return DAG.getUNDEF(VT);
1074
1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1076 visit(CE->getOpcode(), *CE);
1077 SDValue N1 = NodeMap[V];
1078 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1079 return N1;
1080 }
1081
1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1083 SmallVector<SDValue, 4> Constants;
1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1085 OI != OE; ++OI) {
1086 SDNode *Val = getValue(*OI).getNode();
1087 // If the operand is an empty aggregate, there are no values.
1088 if (!Val) continue;
1089 // Add each leaf value from the operand to the Constants list
1090 // to form a flattened list of all the values.
1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1092 Constants.push_back(SDValue(Val, i));
1093 }
1094
1095 return DAG.getMergeValues(Constants, getCurSDLoc());
1096 }
1097
1098 if (const ConstantDataSequential *CDS =
1099 dyn_cast<ConstantDataSequential>(C)) {
1100 SmallVector<SDValue, 4> Ops;
1101 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1102 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1103 // Add each leaf value from the operand to the Constants list
1104 // to form a flattened list of all the values.
1105 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1106 Ops.push_back(SDValue(Val, i));
1107 }
1108
1109 if (isa<ArrayType>(CDS->getType()))
1110 return DAG.getMergeValues(Ops, getCurSDLoc());
1111 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1112 VT, Ops);
1113 }
1114
1115 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1116 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1117 "Unknown struct or array constant!");
1118
1119 SmallVector<EVT, 4> ValueVTs;
1120 ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1121 unsigned NumElts = ValueVTs.size();
1122 if (NumElts == 0)
1123 return SDValue(); // empty struct
1124 SmallVector<SDValue, 4> Constants(NumElts);
1125 for (unsigned i = 0; i != NumElts; ++i) {
1126 EVT EltVT = ValueVTs[i];
1127 if (isa<UndefValue>(C))
1128 Constants[i] = DAG.getUNDEF(EltVT);
1129 else if (EltVT.isFloatingPoint())
1130 Constants[i] = DAG.getConstantFP(0, EltVT);
1131 else
1132 Constants[i] = DAG.getConstant(0, EltVT);
1133 }
1134
1135 return DAG.getMergeValues(Constants, getCurSDLoc());
1136 }
1137
1138 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1139 return DAG.getBlockAddress(BA, VT);
1140
1141 VectorType *VecTy = cast<VectorType>(V->getType());
1142 unsigned NumElements = VecTy->getNumElements();
1143
1144 // Now that we know the number and type of the elements, get that number of
1145 // elements into the Ops array based on what kind of constant it is.
1146 SmallVector<SDValue, 16> Ops;
1147 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1148 for (unsigned i = 0; i != NumElements; ++i)
1149 Ops.push_back(getValue(CV->getOperand(i)));
1150 } else {
1151 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1152 EVT EltVT = TLI->getValueType(VecTy->getElementType());
1153
1154 SDValue Op;
1155 if (EltVT.isFloatingPoint())
1156 Op = DAG.getConstantFP(0, EltVT);
1157 else
1158 Op = DAG.getConstant(0, EltVT);
1159 Ops.assign(NumElements, Op);
1160 }
1161
1162 // Create a BUILD_VECTOR node.
1163 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1164 }
1165
1166 // If this is a static alloca, generate it as the frameindex instead of
1167 // computation.
1168 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169 DenseMap<const AllocaInst*, int>::iterator SI =
1170 FuncInfo.StaticAllocaMap.find(AI);
1171 if (SI != FuncInfo.StaticAllocaMap.end())
1172 return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1173 }
1174
1175 // If this is an instruction which fast-isel has deferred, select it now.
1176 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1179 SDValue Chain = DAG.getEntryNode();
1180 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1181 }
1182
1183 llvm_unreachable("Can't get register for value!");
1184 }
1185
visitRet(const ReturnInst & I)1186 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187 const TargetLowering *TLI = TM.getTargetLowering();
1188 SDValue Chain = getControlRoot();
1189 SmallVector<ISD::OutputArg, 8> Outs;
1190 SmallVector<SDValue, 8> OutVals;
1191
1192 if (!FuncInfo.CanLowerReturn) {
1193 unsigned DemoteReg = FuncInfo.DemoteRegister;
1194 const Function *F = I.getParent()->getParent();
1195
1196 // Emit a store of the return value through the virtual register.
1197 // Leave Outs empty so that LowerReturn won't try to load return
1198 // registers the usual way.
1199 SmallVector<EVT, 1> PtrValueVTs;
1200 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1201 PtrValueVTs);
1202
1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1204 SDValue RetOp = getValue(I.getOperand(0));
1205
1206 SmallVector<EVT, 4> ValueVTs;
1207 SmallVector<uint64_t, 4> Offsets;
1208 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1209 unsigned NumValues = ValueVTs.size();
1210
1211 SmallVector<SDValue, 4> Chains(NumValues);
1212 for (unsigned i = 0; i != NumValues; ++i) {
1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1214 RetPtr.getValueType(), RetPtr,
1215 DAG.getIntPtrConstant(Offsets[i]));
1216 Chains[i] =
1217 DAG.getStore(Chain, getCurSDLoc(),
1218 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1219 // FIXME: better loc info would be nice.
1220 Add, MachinePointerInfo(), false, false, 0);
1221 }
1222
1223 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1224 MVT::Other, Chains);
1225 } else if (I.getNumOperands() != 0) {
1226 SmallVector<EVT, 4> ValueVTs;
1227 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1228 unsigned NumValues = ValueVTs.size();
1229 if (NumValues) {
1230 SDValue RetOp = getValue(I.getOperand(0));
1231 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1232 EVT VT = ValueVTs[j];
1233
1234 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1235
1236 const Function *F = I.getParent()->getParent();
1237 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1238 Attribute::SExt))
1239 ExtendKind = ISD::SIGN_EXTEND;
1240 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1241 Attribute::ZExt))
1242 ExtendKind = ISD::ZERO_EXTEND;
1243
1244 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1245 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1246
1247 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1248 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1249 SmallVector<SDValue, 4> Parts(NumParts);
1250 getCopyToParts(DAG, getCurSDLoc(),
1251 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1252 &Parts[0], NumParts, PartVT, &I, ExtendKind);
1253
1254 // 'inreg' on function refers to return value
1255 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1256 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1257 Attribute::InReg))
1258 Flags.setInReg();
1259
1260 // Propagate extension type if any
1261 if (ExtendKind == ISD::SIGN_EXTEND)
1262 Flags.setSExt();
1263 else if (ExtendKind == ISD::ZERO_EXTEND)
1264 Flags.setZExt();
1265
1266 for (unsigned i = 0; i < NumParts; ++i) {
1267 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1268 VT, /*isfixed=*/true, 0, 0));
1269 OutVals.push_back(Parts[i]);
1270 }
1271 }
1272 }
1273 }
1274
1275 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1276 CallingConv::ID CallConv =
1277 DAG.getMachineFunction().getFunction()->getCallingConv();
1278 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1279 Outs, OutVals, getCurSDLoc(),
1280 DAG);
1281
1282 // Verify that the target's LowerReturn behaved as expected.
1283 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1284 "LowerReturn didn't return a valid chain!");
1285
1286 // Update the DAG with the new chain value resulting from return lowering.
1287 DAG.setRoot(Chain);
1288 }
1289
1290 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1291 /// created for it, emit nodes to copy the value into the virtual
1292 /// registers.
CopyToExportRegsIfNeeded(const Value * V)1293 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1294 // Skip empty types
1295 if (V->getType()->isEmptyTy())
1296 return;
1297
1298 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1299 if (VMI != FuncInfo.ValueMap.end()) {
1300 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1301 CopyValueToVirtualRegister(V, VMI->second);
1302 }
1303 }
1304
1305 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1306 /// the current basic block, add it to ValueMap now so that we'll get a
1307 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)1308 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1309 // No need to export constants.
1310 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1311
1312 // Already exported?
1313 if (FuncInfo.isExportedInst(V)) return;
1314
1315 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1316 CopyValueToVirtualRegister(V, Reg);
1317 }
1318
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)1319 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1320 const BasicBlock *FromBB) {
1321 // The operands of the setcc have to be in this block. We don't know
1322 // how to export them from some other block.
1323 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1324 // Can export from current BB.
1325 if (VI->getParent() == FromBB)
1326 return true;
1327
1328 // Is already exported, noop.
1329 return FuncInfo.isExportedInst(V);
1330 }
1331
1332 // If this is an argument, we can export it if the BB is the entry block or
1333 // if it is already exported.
1334 if (isa<Argument>(V)) {
1335 if (FromBB == &FromBB->getParent()->getEntryBlock())
1336 return true;
1337
1338 // Otherwise, can only export this if it is already exported.
1339 return FuncInfo.isExportedInst(V);
1340 }
1341
1342 // Otherwise, constants can always be exported.
1343 return true;
1344 }
1345
1346 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
getEdgeWeight(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const1347 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1348 const MachineBasicBlock *Dst) const {
1349 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1350 if (!BPI)
1351 return 0;
1352 const BasicBlock *SrcBB = Src->getBasicBlock();
1353 const BasicBlock *DstBB = Dst->getBasicBlock();
1354 return BPI->getEdgeWeight(SrcBB, DstBB);
1355 }
1356
1357 void SelectionDAGBuilder::
addSuccessorWithWeight(MachineBasicBlock * Src,MachineBasicBlock * Dst,uint32_t Weight)1358 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1359 uint32_t Weight /* = 0 */) {
1360 if (!Weight)
1361 Weight = getEdgeWeight(Src, Dst);
1362 Src->addSuccessor(Dst, Weight);
1363 }
1364
1365
InBlock(const Value * V,const BasicBlock * BB)1366 static bool InBlock(const Value *V, const BasicBlock *BB) {
1367 if (const Instruction *I = dyn_cast<Instruction>(V))
1368 return I->getParent() == BB;
1369 return true;
1370 }
1371
1372 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1373 /// This function emits a branch and is used at the leaves of an OR or an
1374 /// AND operator tree.
1375 ///
1376 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,uint32_t TWeight,uint32_t FWeight)1377 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1378 MachineBasicBlock *TBB,
1379 MachineBasicBlock *FBB,
1380 MachineBasicBlock *CurBB,
1381 MachineBasicBlock *SwitchBB,
1382 uint32_t TWeight,
1383 uint32_t FWeight) {
1384 const BasicBlock *BB = CurBB->getBasicBlock();
1385
1386 // If the leaf of the tree is a comparison, merge the condition into
1387 // the caseblock.
1388 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1389 // The operands of the cmp have to be in this block. We don't know
1390 // how to export them from some other block. If this is the first block
1391 // of the sequence, no exporting is needed.
1392 if (CurBB == SwitchBB ||
1393 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1394 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1395 ISD::CondCode Condition;
1396 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1397 Condition = getICmpCondCode(IC->getPredicate());
1398 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1399 Condition = getFCmpCondCode(FC->getPredicate());
1400 if (TM.Options.NoNaNsFPMath)
1401 Condition = getFCmpCodeWithoutNaN(Condition);
1402 } else {
1403 Condition = ISD::SETEQ; // silence warning.
1404 llvm_unreachable("Unknown compare instruction");
1405 }
1406
1407 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1408 TBB, FBB, CurBB, TWeight, FWeight);
1409 SwitchCases.push_back(CB);
1410 return;
1411 }
1412 }
1413
1414 // Create a CaseBlock record representing this branch.
1415 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1416 nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1417 SwitchCases.push_back(CB);
1418 }
1419
1420 /// Scale down both weights to fit into uint32_t.
ScaleWeights(uint64_t & NewTrue,uint64_t & NewFalse)1421 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1422 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1423 uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1424 NewTrue = NewTrue / Scale;
1425 NewFalse = NewFalse / Scale;
1426 }
1427
1428 /// FindMergedConditions - If Cond is an expression like
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,unsigned Opc,uint32_t TWeight,uint32_t FWeight)1429 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1430 MachineBasicBlock *TBB,
1431 MachineBasicBlock *FBB,
1432 MachineBasicBlock *CurBB,
1433 MachineBasicBlock *SwitchBB,
1434 unsigned Opc, uint32_t TWeight,
1435 uint32_t FWeight) {
1436 // If this node is not part of the or/and tree, emit it as a branch.
1437 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1438 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1439 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1440 BOp->getParent() != CurBB->getBasicBlock() ||
1441 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1442 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1443 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1444 TWeight, FWeight);
1445 return;
1446 }
1447
1448 // Create TmpBB after CurBB.
1449 MachineFunction::iterator BBI = CurBB;
1450 MachineFunction &MF = DAG.getMachineFunction();
1451 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1452 CurBB->getParent()->insert(++BBI, TmpBB);
1453
1454 if (Opc == Instruction::Or) {
1455 // Codegen X | Y as:
1456 // BB1:
1457 // jmp_if_X TBB
1458 // jmp TmpBB
1459 // TmpBB:
1460 // jmp_if_Y TBB
1461 // jmp FBB
1462 //
1463
1464 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1465 // The requirement is that
1466 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1467 // = TrueProb for orignal BB.
1468 // Assuming the orignal weights are A and B, one choice is to set BB1's
1469 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1470 // assumes that
1471 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1472 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1473 // TmpBB, but the math is more complicated.
1474
1475 uint64_t NewTrueWeight = TWeight;
1476 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1477 ScaleWeights(NewTrueWeight, NewFalseWeight);
1478 // Emit the LHS condition.
1479 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1480 NewTrueWeight, NewFalseWeight);
1481
1482 NewTrueWeight = TWeight;
1483 NewFalseWeight = 2 * (uint64_t)FWeight;
1484 ScaleWeights(NewTrueWeight, NewFalseWeight);
1485 // Emit the RHS condition into TmpBB.
1486 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1487 NewTrueWeight, NewFalseWeight);
1488 } else {
1489 assert(Opc == Instruction::And && "Unknown merge op!");
1490 // Codegen X & Y as:
1491 // BB1:
1492 // jmp_if_X TmpBB
1493 // jmp FBB
1494 // TmpBB:
1495 // jmp_if_Y TBB
1496 // jmp FBB
1497 //
1498 // This requires creation of TmpBB after CurBB.
1499
1500 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1501 // The requirement is that
1502 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1503 // = FalseProb for orignal BB.
1504 // Assuming the orignal weights are A and B, one choice is to set BB1's
1505 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1506 // assumes that
1507 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1508
1509 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1510 uint64_t NewFalseWeight = FWeight;
1511 ScaleWeights(NewTrueWeight, NewFalseWeight);
1512 // Emit the LHS condition.
1513 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1514 NewTrueWeight, NewFalseWeight);
1515
1516 NewTrueWeight = 2 * (uint64_t)TWeight;
1517 NewFalseWeight = FWeight;
1518 ScaleWeights(NewTrueWeight, NewFalseWeight);
1519 // Emit the RHS condition into TmpBB.
1520 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1521 NewTrueWeight, NewFalseWeight);
1522 }
1523 }
1524
1525 /// If the set of cases should be emitted as a series of branches, return true.
1526 /// If we should emit this as a bunch of and/or'd together conditions, return
1527 /// false.
1528 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)1529 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1530 if (Cases.size() != 2) return true;
1531
1532 // If this is two comparisons of the same values or'd or and'd together, they
1533 // will get folded into a single comparison, so don't emit two blocks.
1534 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1535 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1536 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1537 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1538 return false;
1539 }
1540
1541 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1542 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1543 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1544 Cases[0].CC == Cases[1].CC &&
1545 isa<Constant>(Cases[0].CmpRHS) &&
1546 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1547 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1548 return false;
1549 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1550 return false;
1551 }
1552
1553 return true;
1554 }
1555
visitBr(const BranchInst & I)1556 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1557 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1558
1559 // Update machine-CFG edges.
1560 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1561
1562 // Figure out which block is immediately after the current one.
1563 MachineBasicBlock *NextBlock = nullptr;
1564 MachineFunction::iterator BBI = BrMBB;
1565 if (++BBI != FuncInfo.MF->end())
1566 NextBlock = BBI;
1567
1568 if (I.isUnconditional()) {
1569 // Update machine-CFG edges.
1570 BrMBB->addSuccessor(Succ0MBB);
1571
1572 // If this is not a fall-through branch or optimizations are switched off,
1573 // emit the branch.
1574 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None)
1575 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1576 MVT::Other, getControlRoot(),
1577 DAG.getBasicBlock(Succ0MBB)));
1578
1579 return;
1580 }
1581
1582 // If this condition is one of the special cases we handle, do special stuff
1583 // now.
1584 const Value *CondVal = I.getCondition();
1585 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1586
1587 // If this is a series of conditions that are or'd or and'd together, emit
1588 // this as a sequence of branches instead of setcc's with and/or operations.
1589 // As long as jumps are not expensive, this should improve performance.
1590 // For example, instead of something like:
1591 // cmp A, B
1592 // C = seteq
1593 // cmp D, E
1594 // F = setle
1595 // or C, F
1596 // jnz foo
1597 // Emit:
1598 // cmp A, B
1599 // je foo
1600 // cmp D, E
1601 // jle foo
1602 //
1603 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1604 if (!TM.getTargetLowering()->isJumpExpensive() &&
1605 BOp->hasOneUse() &&
1606 (BOp->getOpcode() == Instruction::And ||
1607 BOp->getOpcode() == Instruction::Or)) {
1608 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1609 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1610 getEdgeWeight(BrMBB, Succ1MBB));
1611 // If the compares in later blocks need to use values not currently
1612 // exported from this block, export them now. This block should always
1613 // be the first entry.
1614 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1615
1616 // Allow some cases to be rejected.
1617 if (ShouldEmitAsBranches(SwitchCases)) {
1618 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1619 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1620 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1621 }
1622
1623 // Emit the branch for this block.
1624 visitSwitchCase(SwitchCases[0], BrMBB);
1625 SwitchCases.erase(SwitchCases.begin());
1626 return;
1627 }
1628
1629 // Okay, we decided not to do this, remove any inserted MBB's and clear
1630 // SwitchCases.
1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1632 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1633
1634 SwitchCases.clear();
1635 }
1636 }
1637
1638 // Create a CaseBlock record representing this branch.
1639 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1640 nullptr, Succ0MBB, Succ1MBB, BrMBB);
1641
1642 // Use visitSwitchCase to actually insert the fast branch sequence for this
1643 // cond branch.
1644 visitSwitchCase(CB, BrMBB);
1645 }
1646
1647 /// visitSwitchCase - Emits the necessary code to represent a single node in
1648 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)1649 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1650 MachineBasicBlock *SwitchBB) {
1651 SDValue Cond;
1652 SDValue CondLHS = getValue(CB.CmpLHS);
1653 SDLoc dl = getCurSDLoc();
1654
1655 // Build the setcc now.
1656 if (!CB.CmpMHS) {
1657 // Fold "(X == true)" to X and "(X == false)" to !X to
1658 // handle common cases produced by branch lowering.
1659 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1660 CB.CC == ISD::SETEQ)
1661 Cond = CondLHS;
1662 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1663 CB.CC == ISD::SETEQ) {
1664 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1665 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1666 } else
1667 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1668 } else {
1669 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1670
1671 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1672 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1673
1674 SDValue CmpOp = getValue(CB.CmpMHS);
1675 EVT VT = CmpOp.getValueType();
1676
1677 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1678 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1679 ISD::SETLE);
1680 } else {
1681 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1682 VT, CmpOp, DAG.getConstant(Low, VT));
1683 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1684 DAG.getConstant(High-Low, VT), ISD::SETULE);
1685 }
1686 }
1687
1688 // Update successor info
1689 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1690 // TrueBB and FalseBB are always different unless the incoming IR is
1691 // degenerate. This only happens when running llc on weird IR.
1692 if (CB.TrueBB != CB.FalseBB)
1693 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1694
1695 // Set NextBlock to be the MBB immediately after the current one, if any.
1696 // This is used to avoid emitting unnecessary branches to the next block.
1697 MachineBasicBlock *NextBlock = nullptr;
1698 MachineFunction::iterator BBI = SwitchBB;
1699 if (++BBI != FuncInfo.MF->end())
1700 NextBlock = BBI;
1701
1702 // If the lhs block is the next block, invert the condition so that we can
1703 // fall through to the lhs instead of the rhs block.
1704 if (CB.TrueBB == NextBlock) {
1705 std::swap(CB.TrueBB, CB.FalseBB);
1706 SDValue True = DAG.getConstant(1, Cond.getValueType());
1707 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1708 }
1709
1710 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1711 MVT::Other, getControlRoot(), Cond,
1712 DAG.getBasicBlock(CB.TrueBB));
1713
1714 // Insert the false branch. Do this even if it's a fall through branch,
1715 // this makes it easier to do DAG optimizations which require inverting
1716 // the branch condition.
1717 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1718 DAG.getBasicBlock(CB.FalseBB));
1719
1720 DAG.setRoot(BrCond);
1721 }
1722
1723 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(JumpTable & JT)1724 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1725 // Emit the code for the jump table
1726 assert(JT.Reg != -1U && "Should lower JT Header first!");
1727 EVT PTy = TM.getTargetLowering()->getPointerTy();
1728 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1729 JT.Reg, PTy);
1730 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1731 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1732 MVT::Other, Index.getValue(1),
1733 Table, Index);
1734 DAG.setRoot(BrJumpTable);
1735 }
1736
1737 /// visitJumpTableHeader - This function emits necessary code to produce index
1738 /// in the JumpTable from switch case.
visitJumpTableHeader(JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)1739 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1740 JumpTableHeader &JTH,
1741 MachineBasicBlock *SwitchBB) {
1742 // Subtract the lowest switch case value from the value being switched on and
1743 // conditional branch to default mbb if the result is greater than the
1744 // difference between smallest and largest cases.
1745 SDValue SwitchOp = getValue(JTH.SValue);
1746 EVT VT = SwitchOp.getValueType();
1747 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1748 DAG.getConstant(JTH.First, VT));
1749
1750 // The SDNode we just created, which holds the value being switched on minus
1751 // the smallest case value, needs to be copied to a virtual register so it
1752 // can be used as an index into the jump table in a subsequent basic block.
1753 // This value may be smaller or larger than the target's pointer type, and
1754 // therefore require extension or truncating.
1755 const TargetLowering *TLI = TM.getTargetLowering();
1756 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1757
1758 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1759 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1760 JumpTableReg, SwitchOp);
1761 JT.Reg = JumpTableReg;
1762
1763 // Emit the range check for the jump table, and branch to the default block
1764 // for the switch statement if the value being switched on exceeds the largest
1765 // case in the switch.
1766 SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1767 TLI->getSetCCResultType(*DAG.getContext(),
1768 Sub.getValueType()),
1769 Sub,
1770 DAG.getConstant(JTH.Last - JTH.First,VT),
1771 ISD::SETUGT);
1772
1773 // Set NextBlock to be the MBB immediately after the current one, if any.
1774 // This is used to avoid emitting unnecessary branches to the next block.
1775 MachineBasicBlock *NextBlock = nullptr;
1776 MachineFunction::iterator BBI = SwitchBB;
1777
1778 if (++BBI != FuncInfo.MF->end())
1779 NextBlock = BBI;
1780
1781 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1782 MVT::Other, CopyTo, CMP,
1783 DAG.getBasicBlock(JT.Default));
1784
1785 if (JT.MBB != NextBlock)
1786 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1787 DAG.getBasicBlock(JT.MBB));
1788
1789 DAG.setRoot(BrCond);
1790 }
1791
1792 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1793 /// tail spliced into a stack protector check success bb.
1794 ///
1795 /// For a high level explanation of how this fits into the stack protector
1796 /// generation see the comment on the declaration of class
1797 /// StackProtectorDescriptor.
visitSPDescriptorParent(StackProtectorDescriptor & SPD,MachineBasicBlock * ParentBB)1798 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1799 MachineBasicBlock *ParentBB) {
1800
1801 // First create the loads to the guard/stack slot for the comparison.
1802 const TargetLowering *TLI = TM.getTargetLowering();
1803 EVT PtrTy = TLI->getPointerTy();
1804
1805 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1806 int FI = MFI->getStackProtectorIndex();
1807
1808 const Value *IRGuard = SPD.getGuard();
1809 SDValue GuardPtr = getValue(IRGuard);
1810 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1811
1812 unsigned Align =
1813 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1814 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1815 GuardPtr, MachinePointerInfo(IRGuard, 0),
1816 true, false, false, Align);
1817
1818 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1819 StackSlotPtr,
1820 MachinePointerInfo::getFixedStack(FI),
1821 true, false, false, Align);
1822
1823 // Perform the comparison via a subtract/getsetcc.
1824 EVT VT = Guard.getValueType();
1825 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1826
1827 SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
1828 TLI->getSetCCResultType(*DAG.getContext(),
1829 Sub.getValueType()),
1830 Sub, DAG.getConstant(0, VT),
1831 ISD::SETNE);
1832
1833 // If the sub is not 0, then we know the guard/stackslot do not equal, so
1834 // branch to failure MBB.
1835 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1836 MVT::Other, StackSlot.getOperand(0),
1837 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1838 // Otherwise branch to success MBB.
1839 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1840 MVT::Other, BrCond,
1841 DAG.getBasicBlock(SPD.getSuccessMBB()));
1842
1843 DAG.setRoot(Br);
1844 }
1845
1846 /// Codegen the failure basic block for a stack protector check.
1847 ///
1848 /// A failure stack protector machine basic block consists simply of a call to
1849 /// __stack_chk_fail().
1850 ///
1851 /// For a high level explanation of how this fits into the stack protector
1852 /// generation see the comment on the declaration of class
1853 /// StackProtectorDescriptor.
1854 void
visitSPDescriptorFailure(StackProtectorDescriptor & SPD)1855 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1856 const TargetLowering *TLI = TM.getTargetLowering();
1857 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
1858 MVT::isVoid, nullptr, 0, false,
1859 getCurSDLoc(), false, false).second;
1860 DAG.setRoot(Chain);
1861 }
1862
1863 /// visitBitTestHeader - This function emits necessary code to produce value
1864 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)1865 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1866 MachineBasicBlock *SwitchBB) {
1867 // Subtract the minimum value
1868 SDValue SwitchOp = getValue(B.SValue);
1869 EVT VT = SwitchOp.getValueType();
1870 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1871 DAG.getConstant(B.First, VT));
1872
1873 // Check range
1874 const TargetLowering *TLI = TM.getTargetLowering();
1875 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1876 TLI->getSetCCResultType(*DAG.getContext(),
1877 Sub.getValueType()),
1878 Sub, DAG.getConstant(B.Range, VT),
1879 ISD::SETUGT);
1880
1881 // Determine the type of the test operands.
1882 bool UsePtrType = false;
1883 if (!TLI->isTypeLegal(VT))
1884 UsePtrType = true;
1885 else {
1886 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1887 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1888 // Switch table case range are encoded into series of masks.
1889 // Just use pointer type, it's guaranteed to fit.
1890 UsePtrType = true;
1891 break;
1892 }
1893 }
1894 if (UsePtrType) {
1895 VT = TLI->getPointerTy();
1896 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1897 }
1898
1899 B.RegVT = VT.getSimpleVT();
1900 B.Reg = FuncInfo.CreateReg(B.RegVT);
1901 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1902 B.Reg, Sub);
1903
1904 // Set NextBlock to be the MBB immediately after the current one, if any.
1905 // This is used to avoid emitting unnecessary branches to the next block.
1906 MachineBasicBlock *NextBlock = nullptr;
1907 MachineFunction::iterator BBI = SwitchBB;
1908 if (++BBI != FuncInfo.MF->end())
1909 NextBlock = BBI;
1910
1911 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1912
1913 addSuccessorWithWeight(SwitchBB, B.Default);
1914 addSuccessorWithWeight(SwitchBB, MBB);
1915
1916 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1917 MVT::Other, CopyTo, RangeCmp,
1918 DAG.getBasicBlock(B.Default));
1919
1920 if (MBB != NextBlock)
1921 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1922 DAG.getBasicBlock(MBB));
1923
1924 DAG.setRoot(BrRange);
1925 }
1926
1927 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,uint32_t BranchWeightToNext,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)1928 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1929 MachineBasicBlock* NextMBB,
1930 uint32_t BranchWeightToNext,
1931 unsigned Reg,
1932 BitTestCase &B,
1933 MachineBasicBlock *SwitchBB) {
1934 MVT VT = BB.RegVT;
1935 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1936 Reg, VT);
1937 SDValue Cmp;
1938 unsigned PopCount = CountPopulation_64(B.Mask);
1939 const TargetLowering *TLI = TM.getTargetLowering();
1940 if (PopCount == 1) {
1941 // Testing for a single bit; just compare the shift count with what it
1942 // would need to be to shift a 1 bit in that position.
1943 Cmp = DAG.getSetCC(getCurSDLoc(),
1944 TLI->getSetCCResultType(*DAG.getContext(), VT),
1945 ShiftOp,
1946 DAG.getConstant(countTrailingZeros(B.Mask), VT),
1947 ISD::SETEQ);
1948 } else if (PopCount == BB.Range) {
1949 // There is only one zero bit in the range, test for it directly.
1950 Cmp = DAG.getSetCC(getCurSDLoc(),
1951 TLI->getSetCCResultType(*DAG.getContext(), VT),
1952 ShiftOp,
1953 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1954 ISD::SETNE);
1955 } else {
1956 // Make desired shift
1957 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1958 DAG.getConstant(1, VT), ShiftOp);
1959
1960 // Emit bit tests and jumps
1961 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1962 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1963 Cmp = DAG.getSetCC(getCurSDLoc(),
1964 TLI->getSetCCResultType(*DAG.getContext(), VT),
1965 AndOp, DAG.getConstant(0, VT),
1966 ISD::SETNE);
1967 }
1968
1969 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1970 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1971 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1972 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1973
1974 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1975 MVT::Other, getControlRoot(),
1976 Cmp, DAG.getBasicBlock(B.TargetBB));
1977
1978 // Set NextBlock to be the MBB immediately after the current one, if any.
1979 // This is used to avoid emitting unnecessary branches to the next block.
1980 MachineBasicBlock *NextBlock = nullptr;
1981 MachineFunction::iterator BBI = SwitchBB;
1982 if (++BBI != FuncInfo.MF->end())
1983 NextBlock = BBI;
1984
1985 if (NextMBB != NextBlock)
1986 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1987 DAG.getBasicBlock(NextMBB));
1988
1989 DAG.setRoot(BrAnd);
1990 }
1991
visitInvoke(const InvokeInst & I)1992 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1993 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1994
1995 // Retrieve successors.
1996 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1997 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1998
1999 const Value *Callee(I.getCalledValue());
2000 const Function *Fn = dyn_cast<Function>(Callee);
2001 if (isa<InlineAsm>(Callee))
2002 visitInlineAsm(&I);
2003 else if (Fn && Fn->isIntrinsic()) {
2004 assert(Fn->getIntrinsicID() == Intrinsic::donothing);
2005 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2006 } else
2007 LowerCallTo(&I, getValue(Callee), false, LandingPad);
2008
2009 // If the value of the invoke is used outside of its defining block, make it
2010 // available as a virtual register.
2011 CopyToExportRegsIfNeeded(&I);
2012
2013 // Update successor info
2014 addSuccessorWithWeight(InvokeMBB, Return);
2015 addSuccessorWithWeight(InvokeMBB, LandingPad);
2016
2017 // Drop into normal successor.
2018 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2019 MVT::Other, getControlRoot(),
2020 DAG.getBasicBlock(Return)));
2021 }
2022
visitResume(const ResumeInst & RI)2023 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2024 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2025 }
2026
visitLandingPad(const LandingPadInst & LP)2027 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2028 assert(FuncInfo.MBB->isLandingPad() &&
2029 "Call to landingpad not in landing pad!");
2030
2031 MachineBasicBlock *MBB = FuncInfo.MBB;
2032 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2033 AddLandingPadInfo(LP, MMI, MBB);
2034
2035 // If there aren't registers to copy the values into (e.g., during SjLj
2036 // exceptions), then don't bother to create these DAG nodes.
2037 const TargetLowering *TLI = TM.getTargetLowering();
2038 if (TLI->getExceptionPointerRegister() == 0 &&
2039 TLI->getExceptionSelectorRegister() == 0)
2040 return;
2041
2042 SmallVector<EVT, 2> ValueVTs;
2043 ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
2044 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2045
2046 // Get the two live-in registers as SDValues. The physregs have already been
2047 // copied into virtual registers.
2048 SDValue Ops[2];
2049 Ops[0] = DAG.getZExtOrTrunc(
2050 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2051 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
2052 getCurSDLoc(), ValueVTs[0]);
2053 Ops[1] = DAG.getZExtOrTrunc(
2054 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2055 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
2056 getCurSDLoc(), ValueVTs[1]);
2057
2058 // Merge into one.
2059 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2060 DAG.getVTList(ValueVTs), Ops);
2061 setValue(&LP, Res);
2062 }
2063
2064 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2065 /// small case ranges).
handleSmallSwitchRange(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2066 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2067 CaseRecVector& WorkList,
2068 const Value* SV,
2069 MachineBasicBlock *Default,
2070 MachineBasicBlock *SwitchBB) {
2071 // Size is the number of Cases represented by this range.
2072 size_t Size = CR.Range.second - CR.Range.first;
2073 if (Size > 3)
2074 return false;
2075
2076 // Get the MachineFunction which holds the current MBB. This is used when
2077 // inserting any additional MBBs necessary to represent the switch.
2078 MachineFunction *CurMF = FuncInfo.MF;
2079
2080 // Figure out which block is immediately after the current one.
2081 MachineBasicBlock *NextBlock = nullptr;
2082 MachineFunction::iterator BBI = CR.CaseBB;
2083
2084 if (++BBI != FuncInfo.MF->end())
2085 NextBlock = BBI;
2086
2087 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2088 // If any two of the cases has the same destination, and if one value
2089 // is the same as the other, but has one bit unset that the other has set,
2090 // use bit manipulation to do two compares at once. For example:
2091 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2092 // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2093 // TODO: Handle cases where CR.CaseBB != SwitchBB.
2094 if (Size == 2 && CR.CaseBB == SwitchBB) {
2095 Case &Small = *CR.Range.first;
2096 Case &Big = *(CR.Range.second-1);
2097
2098 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2099 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2100 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2101
2102 // Check that there is only one bit different.
2103 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2104 (SmallValue | BigValue) == BigValue) {
2105 // Isolate the common bit.
2106 APInt CommonBit = BigValue & ~SmallValue;
2107 assert((SmallValue | CommonBit) == BigValue &&
2108 CommonBit.countPopulation() == 1 && "Not a common bit?");
2109
2110 SDValue CondLHS = getValue(SV);
2111 EVT VT = CondLHS.getValueType();
2112 SDLoc DL = getCurSDLoc();
2113
2114 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2115 DAG.getConstant(CommonBit, VT));
2116 SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2117 Or, DAG.getConstant(BigValue, VT),
2118 ISD::SETEQ);
2119
2120 // Update successor info.
2121 // Both Small and Big will jump to Small.BB, so we sum up the weights.
2122 addSuccessorWithWeight(SwitchBB, Small.BB,
2123 Small.ExtraWeight + Big.ExtraWeight);
2124 addSuccessorWithWeight(SwitchBB, Default,
2125 // The default destination is the first successor in IR.
2126 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2127
2128 // Insert the true branch.
2129 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2130 getControlRoot(), Cond,
2131 DAG.getBasicBlock(Small.BB));
2132
2133 // Insert the false branch.
2134 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2135 DAG.getBasicBlock(Default));
2136
2137 DAG.setRoot(BrCond);
2138 return true;
2139 }
2140 }
2141 }
2142
2143 // Order cases by weight so the most likely case will be checked first.
2144 uint32_t UnhandledWeights = 0;
2145 if (BPI) {
2146 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2147 uint32_t IWeight = I->ExtraWeight;
2148 UnhandledWeights += IWeight;
2149 for (CaseItr J = CR.Range.first; J < I; ++J) {
2150 uint32_t JWeight = J->ExtraWeight;
2151 if (IWeight > JWeight)
2152 std::swap(*I, *J);
2153 }
2154 }
2155 }
2156 // Rearrange the case blocks so that the last one falls through if possible.
2157 Case &BackCase = *(CR.Range.second-1);
2158 if (Size > 1 &&
2159 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2160 // The last case block won't fall through into 'NextBlock' if we emit the
2161 // branches in this order. See if rearranging a case value would help.
2162 // We start at the bottom as it's the case with the least weight.
2163 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2164 if (I->BB == NextBlock) {
2165 std::swap(*I, BackCase);
2166 break;
2167 }
2168 }
2169
2170 // Create a CaseBlock record representing a conditional branch to
2171 // the Case's target mbb if the value being switched on SV is equal
2172 // to C.
2173 MachineBasicBlock *CurBlock = CR.CaseBB;
2174 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2175 MachineBasicBlock *FallThrough;
2176 if (I != E-1) {
2177 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2178 CurMF->insert(BBI, FallThrough);
2179
2180 // Put SV in a virtual register to make it available from the new blocks.
2181 ExportFromCurrentBlock(SV);
2182 } else {
2183 // If the last case doesn't match, go to the default block.
2184 FallThrough = Default;
2185 }
2186
2187 const Value *RHS, *LHS, *MHS;
2188 ISD::CondCode CC;
2189 if (I->High == I->Low) {
2190 // This is just small small case range :) containing exactly 1 case
2191 CC = ISD::SETEQ;
2192 LHS = SV; RHS = I->High; MHS = nullptr;
2193 } else {
2194 CC = ISD::SETLE;
2195 LHS = I->Low; MHS = SV; RHS = I->High;
2196 }
2197
2198 // The false weight should be sum of all un-handled cases.
2199 UnhandledWeights -= I->ExtraWeight;
2200 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2201 /* me */ CurBlock,
2202 /* trueweight */ I->ExtraWeight,
2203 /* falseweight */ UnhandledWeights);
2204
2205 // If emitting the first comparison, just call visitSwitchCase to emit the
2206 // code into the current block. Otherwise, push the CaseBlock onto the
2207 // vector to be later processed by SDISel, and insert the node's MBB
2208 // before the next MBB.
2209 if (CurBlock == SwitchBB)
2210 visitSwitchCase(CB, SwitchBB);
2211 else
2212 SwitchCases.push_back(CB);
2213
2214 CurBlock = FallThrough;
2215 }
2216
2217 return true;
2218 }
2219
areJTsAllowed(const TargetLowering & TLI)2220 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2221 return TLI.supportJumpTables() &&
2222 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2223 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2224 }
2225
ComputeRange(const APInt & First,const APInt & Last)2226 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2227 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2228 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2229 return (LastExt - FirstExt + 1ULL);
2230 }
2231
2232 /// handleJTSwitchCase - Emit jumptable for current switch case range
handleJTSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2233 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2234 CaseRecVector &WorkList,
2235 const Value *SV,
2236 MachineBasicBlock *Default,
2237 MachineBasicBlock *SwitchBB) {
2238 Case& FrontCase = *CR.Range.first;
2239 Case& BackCase = *(CR.Range.second-1);
2240
2241 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2242 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2243
2244 APInt TSize(First.getBitWidth(), 0);
2245 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2246 TSize += I->size();
2247
2248 const TargetLowering *TLI = TM.getTargetLowering();
2249 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2250 return false;
2251
2252 APInt Range = ComputeRange(First, Last);
2253 // The density is TSize / Range. Require at least 40%.
2254 // It should not be possible for IntTSize to saturate for sane code, but make
2255 // sure we handle Range saturation correctly.
2256 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2257 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2258 if (IntTSize * 10 < IntRange * 4)
2259 return false;
2260
2261 DEBUG(dbgs() << "Lowering jump table\n"
2262 << "First entry: " << First << ". Last entry: " << Last << '\n'
2263 << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2264
2265 // Get the MachineFunction which holds the current MBB. This is used when
2266 // inserting any additional MBBs necessary to represent the switch.
2267 MachineFunction *CurMF = FuncInfo.MF;
2268
2269 // Figure out which block is immediately after the current one.
2270 MachineFunction::iterator BBI = CR.CaseBB;
2271 ++BBI;
2272
2273 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2274
2275 // Create a new basic block to hold the code for loading the address
2276 // of the jump table, and jumping to it. Update successor information;
2277 // we will either branch to the default case for the switch, or the jump
2278 // table.
2279 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2280 CurMF->insert(BBI, JumpTableBB);
2281
2282 addSuccessorWithWeight(CR.CaseBB, Default);
2283 addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2284
2285 // Build a vector of destination BBs, corresponding to each target
2286 // of the jump table. If the value of the jump table slot corresponds to
2287 // a case statement, push the case's BB onto the vector, otherwise, push
2288 // the default BB.
2289 std::vector<MachineBasicBlock*> DestBBs;
2290 APInt TEI = First;
2291 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2292 const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2293 const APInt &High = cast<ConstantInt>(I->High)->getValue();
2294
2295 if (Low.sle(TEI) && TEI.sle(High)) {
2296 DestBBs.push_back(I->BB);
2297 if (TEI==High)
2298 ++I;
2299 } else {
2300 DestBBs.push_back(Default);
2301 }
2302 }
2303
2304 // Calculate weight for each unique destination in CR.
2305 DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2306 if (FuncInfo.BPI)
2307 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2308 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2309 DestWeights.find(I->BB);
2310 if (Itr != DestWeights.end())
2311 Itr->second += I->ExtraWeight;
2312 else
2313 DestWeights[I->BB] = I->ExtraWeight;
2314 }
2315
2316 // Update successor info. Add one edge to each unique successor.
2317 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2318 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2319 E = DestBBs.end(); I != E; ++I) {
2320 if (!SuccsHandled[(*I)->getNumber()]) {
2321 SuccsHandled[(*I)->getNumber()] = true;
2322 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2323 DestWeights.find(*I);
2324 addSuccessorWithWeight(JumpTableBB, *I,
2325 Itr != DestWeights.end() ? Itr->second : 0);
2326 }
2327 }
2328
2329 // Create a jump table index for this jump table.
2330 unsigned JTEncoding = TLI->getJumpTableEncoding();
2331 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2332 ->createJumpTableIndex(DestBBs);
2333
2334 // Set the jump table information so that we can codegen it as a second
2335 // MachineBasicBlock
2336 JumpTable JT(-1U, JTI, JumpTableBB, Default);
2337 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2338 if (CR.CaseBB == SwitchBB)
2339 visitJumpTableHeader(JT, JTH, SwitchBB);
2340
2341 JTCases.push_back(JumpTableBlock(JTH, JT));
2342 return true;
2343 }
2344
2345 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2346 /// 2 subtrees.
handleBTSplitSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2347 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2348 CaseRecVector& WorkList,
2349 const Value* SV,
2350 MachineBasicBlock* Default,
2351 MachineBasicBlock* SwitchBB) {
2352 // Get the MachineFunction which holds the current MBB. This is used when
2353 // inserting any additional MBBs necessary to represent the switch.
2354 MachineFunction *CurMF = FuncInfo.MF;
2355
2356 // Figure out which block is immediately after the current one.
2357 MachineFunction::iterator BBI = CR.CaseBB;
2358 ++BBI;
2359
2360 Case& FrontCase = *CR.Range.first;
2361 Case& BackCase = *(CR.Range.second-1);
2362 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2363
2364 // Size is the number of Cases represented by this range.
2365 unsigned Size = CR.Range.second - CR.Range.first;
2366
2367 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2368 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2369 double FMetric = 0;
2370 CaseItr Pivot = CR.Range.first + Size/2;
2371
2372 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2373 // (heuristically) allow us to emit JumpTable's later.
2374 APInt TSize(First.getBitWidth(), 0);
2375 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2376 I!=E; ++I)
2377 TSize += I->size();
2378
2379 APInt LSize = FrontCase.size();
2380 APInt RSize = TSize-LSize;
2381 DEBUG(dbgs() << "Selecting best pivot: \n"
2382 << "First: " << First << ", Last: " << Last <<'\n'
2383 << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2384 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2385 J!=E; ++I, ++J) {
2386 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2387 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2388 APInt Range = ComputeRange(LEnd, RBegin);
2389 assert((Range - 2ULL).isNonNegative() &&
2390 "Invalid case distance");
2391 // Use volatile double here to avoid excess precision issues on some hosts,
2392 // e.g. that use 80-bit X87 registers.
2393 volatile double LDensity =
2394 (double)LSize.roundToDouble() /
2395 (LEnd - First + 1ULL).roundToDouble();
2396 volatile double RDensity =
2397 (double)RSize.roundToDouble() /
2398 (Last - RBegin + 1ULL).roundToDouble();
2399 volatile double Metric = Range.logBase2()*(LDensity+RDensity);
2400 // Should always split in some non-trivial place
2401 DEBUG(dbgs() <<"=>Step\n"
2402 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2403 << "LDensity: " << LDensity
2404 << ", RDensity: " << RDensity << '\n'
2405 << "Metric: " << Metric << '\n');
2406 if (FMetric < Metric) {
2407 Pivot = J;
2408 FMetric = Metric;
2409 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2410 }
2411
2412 LSize += J->size();
2413 RSize -= J->size();
2414 }
2415
2416 const TargetLowering *TLI = TM.getTargetLowering();
2417 if (areJTsAllowed(*TLI)) {
2418 // If our case is dense we *really* should handle it earlier!
2419 assert((FMetric > 0) && "Should handle dense range earlier!");
2420 } else {
2421 Pivot = CR.Range.first + Size/2;
2422 }
2423
2424 CaseRange LHSR(CR.Range.first, Pivot);
2425 CaseRange RHSR(Pivot, CR.Range.second);
2426 const Constant *C = Pivot->Low;
2427 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
2428
2429 // We know that we branch to the LHS if the Value being switched on is
2430 // less than the Pivot value, C. We use this to optimize our binary
2431 // tree a bit, by recognizing that if SV is greater than or equal to the
2432 // LHS's Case Value, and that Case Value is exactly one less than the
2433 // Pivot's Value, then we can branch directly to the LHS's Target,
2434 // rather than creating a leaf node for it.
2435 if ((LHSR.second - LHSR.first) == 1 &&
2436 LHSR.first->High == CR.GE &&
2437 cast<ConstantInt>(C)->getValue() ==
2438 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2439 TrueBB = LHSR.first->BB;
2440 } else {
2441 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2442 CurMF->insert(BBI, TrueBB);
2443 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2444
2445 // Put SV in a virtual register to make it available from the new blocks.
2446 ExportFromCurrentBlock(SV);
2447 }
2448
2449 // Similar to the optimization above, if the Value being switched on is
2450 // known to be less than the Constant CR.LT, and the current Case Value
2451 // is CR.LT - 1, then we can branch directly to the target block for
2452 // the current Case Value, rather than emitting a RHS leaf node for it.
2453 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2454 cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2455 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2456 FalseBB = RHSR.first->BB;
2457 } else {
2458 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2459 CurMF->insert(BBI, FalseBB);
2460 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2461
2462 // Put SV in a virtual register to make it available from the new blocks.
2463 ExportFromCurrentBlock(SV);
2464 }
2465
2466 // Create a CaseBlock record representing a conditional branch to
2467 // the LHS node if the value being switched on SV is less than C.
2468 // Otherwise, branch to LHS.
2469 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
2470
2471 if (CR.CaseBB == SwitchBB)
2472 visitSwitchCase(CB, SwitchBB);
2473 else
2474 SwitchCases.push_back(CB);
2475
2476 return true;
2477 }
2478
2479 /// handleBitTestsSwitchCase - if current case range has few destination and
2480 /// range span less, than machine word bitwidth, encode case range into series
2481 /// of masks and emit bit tests with these masks.
handleBitTestsSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2482 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2483 CaseRecVector& WorkList,
2484 const Value* SV,
2485 MachineBasicBlock* Default,
2486 MachineBasicBlock* SwitchBB) {
2487 const TargetLowering *TLI = TM.getTargetLowering();
2488 EVT PTy = TLI->getPointerTy();
2489 unsigned IntPtrBits = PTy.getSizeInBits();
2490
2491 Case& FrontCase = *CR.Range.first;
2492 Case& BackCase = *(CR.Range.second-1);
2493
2494 // Get the MachineFunction which holds the current MBB. This is used when
2495 // inserting any additional MBBs necessary to represent the switch.
2496 MachineFunction *CurMF = FuncInfo.MF;
2497
2498 // If target does not have legal shift left, do not emit bit tests at all.
2499 if (!TLI->isOperationLegal(ISD::SHL, PTy))
2500 return false;
2501
2502 size_t numCmps = 0;
2503 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2504 I!=E; ++I) {
2505 // Single case counts one, case range - two.
2506 numCmps += (I->Low == I->High ? 1 : 2);
2507 }
2508
2509 // Count unique destinations
2510 SmallSet<MachineBasicBlock*, 4> Dests;
2511 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2512 Dests.insert(I->BB);
2513 if (Dests.size() > 3)
2514 // Don't bother the code below, if there are too much unique destinations
2515 return false;
2516 }
2517 DEBUG(dbgs() << "Total number of unique destinations: "
2518 << Dests.size() << '\n'
2519 << "Total number of comparisons: " << numCmps << '\n');
2520
2521 // Compute span of values.
2522 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2523 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2524 APInt cmpRange = maxValue - minValue;
2525
2526 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2527 << "Low bound: " << minValue << '\n'
2528 << "High bound: " << maxValue << '\n');
2529
2530 if (cmpRange.uge(IntPtrBits) ||
2531 (!(Dests.size() == 1 && numCmps >= 3) &&
2532 !(Dests.size() == 2 && numCmps >= 5) &&
2533 !(Dests.size() >= 3 && numCmps >= 6)))
2534 return false;
2535
2536 DEBUG(dbgs() << "Emitting bit tests\n");
2537 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2538
2539 // Optimize the case where all the case values fit in a
2540 // word without having to subtract minValue. In this case,
2541 // we can optimize away the subtraction.
2542 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2543 cmpRange = maxValue;
2544 } else {
2545 lowBound = minValue;
2546 }
2547
2548 CaseBitsVector CasesBits;
2549 unsigned i, count = 0;
2550
2551 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2552 MachineBasicBlock* Dest = I->BB;
2553 for (i = 0; i < count; ++i)
2554 if (Dest == CasesBits[i].BB)
2555 break;
2556
2557 if (i == count) {
2558 assert((count < 3) && "Too much destinations to test!");
2559 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2560 count++;
2561 }
2562
2563 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2564 const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2565
2566 uint64_t lo = (lowValue - lowBound).getZExtValue();
2567 uint64_t hi = (highValue - lowBound).getZExtValue();
2568 CasesBits[i].ExtraWeight += I->ExtraWeight;
2569
2570 for (uint64_t j = lo; j <= hi; j++) {
2571 CasesBits[i].Mask |= 1ULL << j;
2572 CasesBits[i].Bits++;
2573 }
2574
2575 }
2576 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2577
2578 BitTestInfo BTC;
2579
2580 // Figure out which block is immediately after the current one.
2581 MachineFunction::iterator BBI = CR.CaseBB;
2582 ++BBI;
2583
2584 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2585
2586 DEBUG(dbgs() << "Cases:\n");
2587 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2588 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2589 << ", Bits: " << CasesBits[i].Bits
2590 << ", BB: " << CasesBits[i].BB << '\n');
2591
2592 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2593 CurMF->insert(BBI, CaseBB);
2594 BTC.push_back(BitTestCase(CasesBits[i].Mask,
2595 CaseBB,
2596 CasesBits[i].BB, CasesBits[i].ExtraWeight));
2597
2598 // Put SV in a virtual register to make it available from the new blocks.
2599 ExportFromCurrentBlock(SV);
2600 }
2601
2602 BitTestBlock BTB(lowBound, cmpRange, SV,
2603 -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2604 CR.CaseBB, Default, BTC);
2605
2606 if (CR.CaseBB == SwitchBB)
2607 visitBitTestHeader(BTB, SwitchBB);
2608
2609 BitTestCases.push_back(BTB);
2610
2611 return true;
2612 }
2613
2614 /// Clusterify - Transform simple list of Cases into list of CaseRange's
Clusterify(CaseVector & Cases,const SwitchInst & SI)2615 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2616 const SwitchInst& SI) {
2617 size_t numCmps = 0;
2618
2619 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2620 // Start with "simple" cases
2621 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2622 i != e; ++i) {
2623 const BasicBlock *SuccBB = i.getCaseSuccessor();
2624 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2625
2626 uint32_t ExtraWeight =
2627 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2628
2629 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2630 SMBB, ExtraWeight));
2631 }
2632 std::sort(Cases.begin(), Cases.end(), CaseCmp());
2633
2634 // Merge case into clusters
2635 if (Cases.size() >= 2)
2636 // Must recompute end() each iteration because it may be
2637 // invalidated by erase if we hold on to it
2638 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
2639 J != Cases.end(); ) {
2640 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2641 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2642 MachineBasicBlock* nextBB = J->BB;
2643 MachineBasicBlock* currentBB = I->BB;
2644
2645 // If the two neighboring cases go to the same destination, merge them
2646 // into a single case.
2647 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2648 I->High = J->High;
2649 I->ExtraWeight += J->ExtraWeight;
2650 J = Cases.erase(J);
2651 } else {
2652 I = J++;
2653 }
2654 }
2655
2656 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2657 if (I->Low != I->High)
2658 // A range counts double, since it requires two compares.
2659 ++numCmps;
2660 }
2661
2662 return numCmps;
2663 }
2664
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)2665 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2666 MachineBasicBlock *Last) {
2667 // Update JTCases.
2668 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2669 if (JTCases[i].first.HeaderBB == First)
2670 JTCases[i].first.HeaderBB = Last;
2671
2672 // Update BitTestCases.
2673 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2674 if (BitTestCases[i].Parent == First)
2675 BitTestCases[i].Parent = Last;
2676 }
2677
visitSwitch(const SwitchInst & SI)2678 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2679 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2680
2681 // Figure out which block is immediately after the current one.
2682 MachineBasicBlock *NextBlock = nullptr;
2683 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2684
2685 // If there is only the default destination, branch to it if it is not the
2686 // next basic block. Otherwise, just fall through.
2687 if (!SI.getNumCases()) {
2688 // Update machine-CFG edges.
2689
2690 // If this is not a fall-through branch, emit the branch.
2691 SwitchMBB->addSuccessor(Default);
2692 if (Default != NextBlock)
2693 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2694 MVT::Other, getControlRoot(),
2695 DAG.getBasicBlock(Default)));
2696
2697 return;
2698 }
2699
2700 // If there are any non-default case statements, create a vector of Cases
2701 // representing each one, and sort the vector so that we can efficiently
2702 // create a binary search tree from them.
2703 CaseVector Cases;
2704 size_t numCmps = Clusterify(Cases, SI);
2705 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2706 << ". Total compares: " << numCmps << '\n');
2707 (void)numCmps;
2708
2709 // Get the Value to be switched on and default basic blocks, which will be
2710 // inserted into CaseBlock records, representing basic blocks in the binary
2711 // search tree.
2712 const Value *SV = SI.getCondition();
2713
2714 // Push the initial CaseRec onto the worklist
2715 CaseRecVector WorkList;
2716 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
2717 CaseRange(Cases.begin(),Cases.end())));
2718
2719 while (!WorkList.empty()) {
2720 // Grab a record representing a case range to process off the worklist
2721 CaseRec CR = WorkList.back();
2722 WorkList.pop_back();
2723
2724 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2725 continue;
2726
2727 // If the range has few cases (two or less) emit a series of specific
2728 // tests.
2729 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2730 continue;
2731
2732 // If the switch has more than N blocks, and is at least 40% dense, and the
2733 // target supports indirect branches, then emit a jump table rather than
2734 // lowering the switch to a binary tree of conditional branches.
2735 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2736 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2737 continue;
2738
2739 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2740 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2741 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2742 }
2743 }
2744
visitIndirectBr(const IndirectBrInst & I)2745 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2746 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2747
2748 // Update machine-CFG edges with unique successors.
2749 SmallSet<BasicBlock*, 32> Done;
2750 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2751 BasicBlock *BB = I.getSuccessor(i);
2752 bool Inserted = Done.insert(BB);
2753 if (!Inserted)
2754 continue;
2755
2756 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2757 addSuccessorWithWeight(IndirectBrMBB, Succ);
2758 }
2759
2760 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2761 MVT::Other, getControlRoot(),
2762 getValue(I.getAddress())));
2763 }
2764
visitUnreachable(const UnreachableInst & I)2765 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2766 if (DAG.getTarget().Options.TrapUnreachable)
2767 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2768 }
2769
visitFSub(const User & I)2770 void SelectionDAGBuilder::visitFSub(const User &I) {
2771 // -0.0 - X --> fneg
2772 Type *Ty = I.getType();
2773 if (isa<Constant>(I.getOperand(0)) &&
2774 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2775 SDValue Op2 = getValue(I.getOperand(1));
2776 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2777 Op2.getValueType(), Op2));
2778 return;
2779 }
2780
2781 visitBinary(I, ISD::FSUB);
2782 }
2783
visitBinary(const User & I,unsigned OpCode)2784 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2785 SDValue Op1 = getValue(I.getOperand(0));
2786 SDValue Op2 = getValue(I.getOperand(1));
2787
2788 bool nuw = false;
2789 bool nsw = false;
2790 bool exact = false;
2791 if (const OverflowingBinaryOperator *OFBinOp =
2792 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2793 nuw = OFBinOp->hasNoUnsignedWrap();
2794 nsw = OFBinOp->hasNoSignedWrap();
2795 }
2796 if (const PossiblyExactOperator *ExactOp =
2797 dyn_cast<const PossiblyExactOperator>(&I))
2798 exact = ExactOp->isExact();
2799
2800 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2801 Op1, Op2, nuw, nsw, exact);
2802 setValue(&I, BinNodeValue);
2803 }
2804
visitShift(const User & I,unsigned Opcode)2805 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2806 SDValue Op1 = getValue(I.getOperand(0));
2807 SDValue Op2 = getValue(I.getOperand(1));
2808
2809 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2810
2811 // Coerce the shift amount to the right type if we can.
2812 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2813 unsigned ShiftSize = ShiftTy.getSizeInBits();
2814 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2815 SDLoc DL = getCurSDLoc();
2816
2817 // If the operand is smaller than the shift count type, promote it.
2818 if (ShiftSize > Op2Size)
2819 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2820
2821 // If the operand is larger than the shift count type but the shift
2822 // count type has enough bits to represent any shift value, truncate
2823 // it now. This is a common case and it exposes the truncate to
2824 // optimization early.
2825 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2826 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2827 // Otherwise we'll need to temporarily settle for some other convenient
2828 // type. Type legalization will make adjustments once the shiftee is split.
2829 else
2830 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2831 }
2832
2833 bool nuw = false;
2834 bool nsw = false;
2835 bool exact = false;
2836
2837 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2838
2839 if (const OverflowingBinaryOperator *OFBinOp =
2840 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2841 nuw = OFBinOp->hasNoUnsignedWrap();
2842 nsw = OFBinOp->hasNoSignedWrap();
2843 }
2844 if (const PossiblyExactOperator *ExactOp =
2845 dyn_cast<const PossiblyExactOperator>(&I))
2846 exact = ExactOp->isExact();
2847 }
2848
2849 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2850 nuw, nsw, exact);
2851 setValue(&I, Res);
2852 }
2853
visitSDiv(const User & I)2854 void SelectionDAGBuilder::visitSDiv(const User &I) {
2855 SDValue Op1 = getValue(I.getOperand(0));
2856 SDValue Op2 = getValue(I.getOperand(1));
2857
2858 // Turn exact SDivs into multiplications.
2859 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2860 // exact bit.
2861 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2862 !isa<ConstantSDNode>(Op1) &&
2863 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2864 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2865 getCurSDLoc(), DAG));
2866 else
2867 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2868 Op1, Op2));
2869 }
2870
visitICmp(const User & I)2871 void SelectionDAGBuilder::visitICmp(const User &I) {
2872 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2873 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2874 predicate = IC->getPredicate();
2875 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2876 predicate = ICmpInst::Predicate(IC->getPredicate());
2877 SDValue Op1 = getValue(I.getOperand(0));
2878 SDValue Op2 = getValue(I.getOperand(1));
2879 ISD::CondCode Opcode = getICmpCondCode(predicate);
2880
2881 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2882 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2883 }
2884
visitFCmp(const User & I)2885 void SelectionDAGBuilder::visitFCmp(const User &I) {
2886 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2887 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2888 predicate = FC->getPredicate();
2889 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2890 predicate = FCmpInst::Predicate(FC->getPredicate());
2891 SDValue Op1 = getValue(I.getOperand(0));
2892 SDValue Op2 = getValue(I.getOperand(1));
2893 ISD::CondCode Condition = getFCmpCondCode(predicate);
2894 if (TM.Options.NoNaNsFPMath)
2895 Condition = getFCmpCodeWithoutNaN(Condition);
2896 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2897 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2898 }
2899
visitSelect(const User & I)2900 void SelectionDAGBuilder::visitSelect(const User &I) {
2901 SmallVector<EVT, 4> ValueVTs;
2902 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2903 unsigned NumValues = ValueVTs.size();
2904 if (NumValues == 0) return;
2905
2906 SmallVector<SDValue, 4> Values(NumValues);
2907 SDValue Cond = getValue(I.getOperand(0));
2908 SDValue TrueVal = getValue(I.getOperand(1));
2909 SDValue FalseVal = getValue(I.getOperand(2));
2910 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2911 ISD::VSELECT : ISD::SELECT;
2912
2913 for (unsigned i = 0; i != NumValues; ++i)
2914 Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2915 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2916 Cond,
2917 SDValue(TrueVal.getNode(),
2918 TrueVal.getResNo() + i),
2919 SDValue(FalseVal.getNode(),
2920 FalseVal.getResNo() + i));
2921
2922 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2923 DAG.getVTList(ValueVTs), Values));
2924 }
2925
visitTrunc(const User & I)2926 void SelectionDAGBuilder::visitTrunc(const User &I) {
2927 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2928 SDValue N = getValue(I.getOperand(0));
2929 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2930 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2931 }
2932
visitZExt(const User & I)2933 void SelectionDAGBuilder::visitZExt(const User &I) {
2934 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2935 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2936 SDValue N = getValue(I.getOperand(0));
2937 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2938 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2939 }
2940
visitSExt(const User & I)2941 void SelectionDAGBuilder::visitSExt(const User &I) {
2942 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2943 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2944 SDValue N = getValue(I.getOperand(0));
2945 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2946 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2947 }
2948
visitFPTrunc(const User & I)2949 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2950 // FPTrunc is never a no-op cast, no need to check
2951 SDValue N = getValue(I.getOperand(0));
2952 const TargetLowering *TLI = TM.getTargetLowering();
2953 EVT DestVT = TLI->getValueType(I.getType());
2954 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2955 DestVT, N,
2956 DAG.getTargetConstant(0, TLI->getPointerTy())));
2957 }
2958
visitFPExt(const User & I)2959 void SelectionDAGBuilder::visitFPExt(const User &I) {
2960 // FPExt is never a no-op cast, no need to check
2961 SDValue N = getValue(I.getOperand(0));
2962 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2963 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2964 }
2965
visitFPToUI(const User & I)2966 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2967 // FPToUI is never a no-op cast, no need to check
2968 SDValue N = getValue(I.getOperand(0));
2969 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2970 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2971 }
2972
visitFPToSI(const User & I)2973 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2974 // FPToSI is never a no-op cast, no need to check
2975 SDValue N = getValue(I.getOperand(0));
2976 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2977 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2978 }
2979
visitUIToFP(const User & I)2980 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2981 // UIToFP is never a no-op cast, no need to check
2982 SDValue N = getValue(I.getOperand(0));
2983 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2984 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2985 }
2986
visitSIToFP(const User & I)2987 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2988 // SIToFP is never a no-op cast, no need to check
2989 SDValue N = getValue(I.getOperand(0));
2990 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2991 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2992 }
2993
visitPtrToInt(const User & I)2994 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2995 // What to do depends on the size of the integer and the size of the pointer.
2996 // We can either truncate, zero extend, or no-op, accordingly.
2997 SDValue N = getValue(I.getOperand(0));
2998 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2999 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3000 }
3001
visitIntToPtr(const User & I)3002 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3003 // What to do depends on the size of the integer and the size of the pointer.
3004 // We can either truncate, zero extend, or no-op, accordingly.
3005 SDValue N = getValue(I.getOperand(0));
3006 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
3007 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3008 }
3009
visitBitCast(const User & I)3010 void SelectionDAGBuilder::visitBitCast(const User &I) {
3011 SDValue N = getValue(I.getOperand(0));
3012 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
3013
3014 // BitCast assures us that source and destination are the same size so this is
3015 // either a BITCAST or a no-op.
3016 if (DestVT != N.getValueType())
3017 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
3018 DestVT, N)); // convert types.
3019 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3020 // might fold any kind of constant expression to an integer constant and that
3021 // is not what we are looking for. Only regcognize a bitcast of a genuine
3022 // constant integer as an opaque constant.
3023 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3024 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
3025 /*isOpaque*/true));
3026 else
3027 setValue(&I, N); // noop cast.
3028 }
3029
visitAddrSpaceCast(const User & I)3030 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3031 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3032 const Value *SV = I.getOperand(0);
3033 SDValue N = getValue(SV);
3034 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
3035
3036 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3037 unsigned DestAS = I.getType()->getPointerAddressSpace();
3038
3039 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3040 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3041
3042 setValue(&I, N);
3043 }
3044
visitInsertElement(const User & I)3045 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3046 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3047 SDValue InVec = getValue(I.getOperand(0));
3048 SDValue InVal = getValue(I.getOperand(1));
3049 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3050 getCurSDLoc(), TLI.getVectorIdxTy());
3051 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3052 TM.getTargetLowering()->getValueType(I.getType()),
3053 InVec, InVal, InIdx));
3054 }
3055
visitExtractElement(const User & I)3056 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3058 SDValue InVec = getValue(I.getOperand(0));
3059 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3060 getCurSDLoc(), TLI.getVectorIdxTy());
3061 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3062 TM.getTargetLowering()->getValueType(I.getType()),
3063 InVec, InIdx));
3064 }
3065
3066 // Utility for visitShuffleVector - Return true if every element in Mask,
3067 // beginning from position Pos and ending in Pos+Size, falls within the
3068 // specified sequential range [L, L+Pos). or is undef.
isSequentialInRange(const SmallVectorImpl<int> & Mask,unsigned Pos,unsigned Size,int Low)3069 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3070 unsigned Pos, unsigned Size, int Low) {
3071 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3072 if (Mask[i] >= 0 && Mask[i] != Low)
3073 return false;
3074 return true;
3075 }
3076
visitShuffleVector(const User & I)3077 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3078 SDValue Src1 = getValue(I.getOperand(0));
3079 SDValue Src2 = getValue(I.getOperand(1));
3080
3081 SmallVector<int, 8> Mask;
3082 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3083 unsigned MaskNumElts = Mask.size();
3084
3085 const TargetLowering *TLI = TM.getTargetLowering();
3086 EVT VT = TLI->getValueType(I.getType());
3087 EVT SrcVT = Src1.getValueType();
3088 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3089
3090 if (SrcNumElts == MaskNumElts) {
3091 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3092 &Mask[0]));
3093 return;
3094 }
3095
3096 // Normalize the shuffle vector since mask and vector length don't match.
3097 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3098 // Mask is longer than the source vectors and is a multiple of the source
3099 // vectors. We can use concatenate vector to make the mask and vectors
3100 // lengths match.
3101 if (SrcNumElts*2 == MaskNumElts) {
3102 // First check for Src1 in low and Src2 in high
3103 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3104 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3105 // The shuffle is concatenating two vectors together.
3106 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3107 VT, Src1, Src2));
3108 return;
3109 }
3110 // Then check for Src2 in low and Src1 in high
3111 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3112 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3113 // The shuffle is concatenating two vectors together.
3114 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3115 VT, Src2, Src1));
3116 return;
3117 }
3118 }
3119
3120 // Pad both vectors with undefs to make them the same length as the mask.
3121 unsigned NumConcat = MaskNumElts / SrcNumElts;
3122 bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3123 bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3124 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3125
3126 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3127 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3128 MOps1[0] = Src1;
3129 MOps2[0] = Src2;
3130
3131 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3132 getCurSDLoc(), VT, MOps1);
3133 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3134 getCurSDLoc(), VT, MOps2);
3135
3136 // Readjust mask for new input vector length.
3137 SmallVector<int, 8> MappedOps;
3138 for (unsigned i = 0; i != MaskNumElts; ++i) {
3139 int Idx = Mask[i];
3140 if (Idx >= (int)SrcNumElts)
3141 Idx -= SrcNumElts - MaskNumElts;
3142 MappedOps.push_back(Idx);
3143 }
3144
3145 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3146 &MappedOps[0]));
3147 return;
3148 }
3149
3150 if (SrcNumElts > MaskNumElts) {
3151 // Analyze the access pattern of the vector to see if we can extract
3152 // two subvectors and do the shuffle. The analysis is done by calculating
3153 // the range of elements the mask access on both vectors.
3154 int MinRange[2] = { static_cast<int>(SrcNumElts),
3155 static_cast<int>(SrcNumElts)};
3156 int MaxRange[2] = {-1, -1};
3157
3158 for (unsigned i = 0; i != MaskNumElts; ++i) {
3159 int Idx = Mask[i];
3160 unsigned Input = 0;
3161 if (Idx < 0)
3162 continue;
3163
3164 if (Idx >= (int)SrcNumElts) {
3165 Input = 1;
3166 Idx -= SrcNumElts;
3167 }
3168 if (Idx > MaxRange[Input])
3169 MaxRange[Input] = Idx;
3170 if (Idx < MinRange[Input])
3171 MinRange[Input] = Idx;
3172 }
3173
3174 // Check if the access is smaller than the vector size and can we find
3175 // a reasonable extract index.
3176 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
3177 // Extract.
3178 int StartIdx[2]; // StartIdx to extract from
3179 for (unsigned Input = 0; Input < 2; ++Input) {
3180 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3181 RangeUse[Input] = 0; // Unused
3182 StartIdx[Input] = 0;
3183 continue;
3184 }
3185
3186 // Find a good start index that is a multiple of the mask length. Then
3187 // see if the rest of the elements are in range.
3188 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3189 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3190 StartIdx[Input] + MaskNumElts <= SrcNumElts)
3191 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3192 }
3193
3194 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3195 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3196 return;
3197 }
3198 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3199 // Extract appropriate subvector and generate a vector shuffle
3200 for (unsigned Input = 0; Input < 2; ++Input) {
3201 SDValue &Src = Input == 0 ? Src1 : Src2;
3202 if (RangeUse[Input] == 0)
3203 Src = DAG.getUNDEF(VT);
3204 else
3205 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3206 Src, DAG.getConstant(StartIdx[Input],
3207 TLI->getVectorIdxTy()));
3208 }
3209
3210 // Calculate new mask.
3211 SmallVector<int, 8> MappedOps;
3212 for (unsigned i = 0; i != MaskNumElts; ++i) {
3213 int Idx = Mask[i];
3214 if (Idx >= 0) {
3215 if (Idx < (int)SrcNumElts)
3216 Idx -= StartIdx[0];
3217 else
3218 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3219 }
3220 MappedOps.push_back(Idx);
3221 }
3222
3223 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3224 &MappedOps[0]));
3225 return;
3226 }
3227 }
3228
3229 // We can't use either concat vectors or extract subvectors so fall back to
3230 // replacing the shuffle with extract and build vector.
3231 // to insert and build vector.
3232 EVT EltVT = VT.getVectorElementType();
3233 EVT IdxVT = TLI->getVectorIdxTy();
3234 SmallVector<SDValue,8> Ops;
3235 for (unsigned i = 0; i != MaskNumElts; ++i) {
3236 int Idx = Mask[i];
3237 SDValue Res;
3238
3239 if (Idx < 0) {
3240 Res = DAG.getUNDEF(EltVT);
3241 } else {
3242 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3243 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3244
3245 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3246 EltVT, Src, DAG.getConstant(Idx, IdxVT));
3247 }
3248
3249 Ops.push_back(Res);
3250 }
3251
3252 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
3253 }
3254
visitInsertValue(const InsertValueInst & I)3255 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3256 const Value *Op0 = I.getOperand(0);
3257 const Value *Op1 = I.getOperand(1);
3258 Type *AggTy = I.getType();
3259 Type *ValTy = Op1->getType();
3260 bool IntoUndef = isa<UndefValue>(Op0);
3261 bool FromUndef = isa<UndefValue>(Op1);
3262
3263 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3264
3265 const TargetLowering *TLI = TM.getTargetLowering();
3266 SmallVector<EVT, 4> AggValueVTs;
3267 ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3268 SmallVector<EVT, 4> ValValueVTs;
3269 ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3270
3271 unsigned NumAggValues = AggValueVTs.size();
3272 unsigned NumValValues = ValValueVTs.size();
3273 SmallVector<SDValue, 4> Values(NumAggValues);
3274
3275 SDValue Agg = getValue(Op0);
3276 unsigned i = 0;
3277 // Copy the beginning value(s) from the original aggregate.
3278 for (; i != LinearIndex; ++i)
3279 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3280 SDValue(Agg.getNode(), Agg.getResNo() + i);
3281 // Copy values from the inserted value(s).
3282 if (NumValValues) {
3283 SDValue Val = getValue(Op1);
3284 for (; i != LinearIndex + NumValValues; ++i)
3285 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3286 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3287 }
3288 // Copy remaining value(s) from the original aggregate.
3289 for (; i != NumAggValues; ++i)
3290 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3291 SDValue(Agg.getNode(), Agg.getResNo() + i);
3292
3293 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3294 DAG.getVTList(AggValueVTs), Values));
3295 }
3296
visitExtractValue(const ExtractValueInst & I)3297 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3298 const Value *Op0 = I.getOperand(0);
3299 Type *AggTy = Op0->getType();
3300 Type *ValTy = I.getType();
3301 bool OutOfUndef = isa<UndefValue>(Op0);
3302
3303 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3304
3305 const TargetLowering *TLI = TM.getTargetLowering();
3306 SmallVector<EVT, 4> ValValueVTs;
3307 ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3308
3309 unsigned NumValValues = ValValueVTs.size();
3310
3311 // Ignore a extractvalue that produces an empty object
3312 if (!NumValValues) {
3313 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3314 return;
3315 }
3316
3317 SmallVector<SDValue, 4> Values(NumValValues);
3318
3319 SDValue Agg = getValue(Op0);
3320 // Copy out the selected value(s).
3321 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3322 Values[i - LinearIndex] =
3323 OutOfUndef ?
3324 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3325 SDValue(Agg.getNode(), Agg.getResNo() + i);
3326
3327 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3328 DAG.getVTList(ValValueVTs), Values));
3329 }
3330
visitGetElementPtr(const User & I)3331 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3332 Value *Op0 = I.getOperand(0);
3333 // Note that the pointer operand may be a vector of pointers. Take the scalar
3334 // element which holds a pointer.
3335 Type *Ty = Op0->getType()->getScalarType();
3336 unsigned AS = Ty->getPointerAddressSpace();
3337 SDValue N = getValue(Op0);
3338
3339 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3340 OI != E; ++OI) {
3341 const Value *Idx = *OI;
3342 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3343 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3344 if (Field) {
3345 // N = N + Offset
3346 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3347 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3348 DAG.getConstant(Offset, N.getValueType()));
3349 }
3350
3351 Ty = StTy->getElementType(Field);
3352 } else {
3353 Ty = cast<SequentialType>(Ty)->getElementType();
3354
3355 // If this is a constant subscript, handle it quickly.
3356 const TargetLowering *TLI = TM.getTargetLowering();
3357 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3358 if (CI->isZero()) continue;
3359 uint64_t Offs =
3360 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3361 SDValue OffsVal;
3362 EVT PTy = TLI->getPointerTy(AS);
3363 unsigned PtrBits = PTy.getSizeInBits();
3364 if (PtrBits < 64)
3365 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3366 DAG.getConstant(Offs, MVT::i64));
3367 else
3368 OffsVal = DAG.getConstant(Offs, PTy);
3369
3370 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3371 OffsVal);
3372 continue;
3373 }
3374
3375 // N = N + Idx * ElementSize;
3376 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
3377 DL->getTypeAllocSize(Ty));
3378 SDValue IdxN = getValue(Idx);
3379
3380 // If the index is smaller or larger than intptr_t, truncate or extend
3381 // it.
3382 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3383
3384 // If this is a multiply by a power of two, turn it into a shl
3385 // immediately. This is a very common case.
3386 if (ElementSize != 1) {
3387 if (ElementSize.isPowerOf2()) {
3388 unsigned Amt = ElementSize.logBase2();
3389 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3390 N.getValueType(), IdxN,
3391 DAG.getConstant(Amt, IdxN.getValueType()));
3392 } else {
3393 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3394 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3395 N.getValueType(), IdxN, Scale);
3396 }
3397 }
3398
3399 N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3400 N.getValueType(), N, IdxN);
3401 }
3402 }
3403
3404 setValue(&I, N);
3405 }
3406
visitAlloca(const AllocaInst & I)3407 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3408 // If this is a fixed sized alloca in the entry block of the function,
3409 // allocate it statically on the stack.
3410 if (FuncInfo.StaticAllocaMap.count(&I))
3411 return; // getValue will auto-populate this.
3412
3413 Type *Ty = I.getAllocatedType();
3414 const TargetLowering *TLI = TM.getTargetLowering();
3415 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3416 unsigned Align =
3417 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3418 I.getAlignment());
3419
3420 SDValue AllocSize = getValue(I.getArraySize());
3421
3422 EVT IntPtr = TLI->getPointerTy();
3423 if (AllocSize.getValueType() != IntPtr)
3424 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3425
3426 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3427 AllocSize,
3428 DAG.getConstant(TySize, IntPtr));
3429
3430 // Handle alignment. If the requested alignment is less than or equal to
3431 // the stack alignment, ignore it. If the size is greater than or equal to
3432 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3433 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3434 if (Align <= StackAlign)
3435 Align = 0;
3436
3437 // Round the size of the allocation up to the stack alignment size
3438 // by add SA-1 to the size.
3439 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3440 AllocSize.getValueType(), AllocSize,
3441 DAG.getIntPtrConstant(StackAlign-1));
3442
3443 // Mask out the low bits for alignment purposes.
3444 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3445 AllocSize.getValueType(), AllocSize,
3446 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3447
3448 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3449 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3450 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
3451 setValue(&I, DSA);
3452 DAG.setRoot(DSA.getValue(1));
3453
3454 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3455 }
3456
visitLoad(const LoadInst & I)3457 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3458 if (I.isAtomic())
3459 return visitAtomicLoad(I);
3460
3461 const Value *SV = I.getOperand(0);
3462 SDValue Ptr = getValue(SV);
3463
3464 Type *Ty = I.getType();
3465
3466 bool isVolatile = I.isVolatile();
3467 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
3468 bool isInvariant = I.getMetadata("invariant.load") != nullptr;
3469 unsigned Alignment = I.getAlignment();
3470 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3471 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3472
3473 SmallVector<EVT, 4> ValueVTs;
3474 SmallVector<uint64_t, 4> Offsets;
3475 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3476 unsigned NumValues = ValueVTs.size();
3477 if (NumValues == 0)
3478 return;
3479
3480 SDValue Root;
3481 bool ConstantMemory = false;
3482 if (isVolatile || NumValues > MaxParallelChains)
3483 // Serialize volatile loads with other side effects.
3484 Root = getRoot();
3485 else if (AA->pointsToConstantMemory(
3486 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3487 // Do not serialize (non-volatile) loads of constant memory with anything.
3488 Root = DAG.getEntryNode();
3489 ConstantMemory = true;
3490 } else {
3491 // Do not serialize non-volatile loads against each other.
3492 Root = DAG.getRoot();
3493 }
3494
3495 const TargetLowering *TLI = TM.getTargetLowering();
3496 if (isVolatile)
3497 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3498
3499 SmallVector<SDValue, 4> Values(NumValues);
3500 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3501 NumValues));
3502 EVT PtrVT = Ptr.getValueType();
3503 unsigned ChainI = 0;
3504 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3505 // Serializing loads here may result in excessive register pressure, and
3506 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3507 // could recover a bit by hoisting nodes upward in the chain by recognizing
3508 // they are side-effect free or do not alias. The optimizer should really
3509 // avoid this case by converting large object/array copies to llvm.memcpy
3510 // (MaxParallelChains should always remain as failsafe).
3511 if (ChainI == MaxParallelChains) {
3512 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3513 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3514 makeArrayRef(Chains.data(), ChainI));
3515 Root = Chain;
3516 ChainI = 0;
3517 }
3518 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3519 PtrVT, Ptr,
3520 DAG.getConstant(Offsets[i], PtrVT));
3521 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3522 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3523 isNonTemporal, isInvariant, Alignment, TBAAInfo,
3524 Ranges);
3525
3526 Values[i] = L;
3527 Chains[ChainI] = L.getValue(1);
3528 }
3529
3530 if (!ConstantMemory) {
3531 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3532 makeArrayRef(Chains.data(), ChainI));
3533 if (isVolatile)
3534 DAG.setRoot(Chain);
3535 else
3536 PendingLoads.push_back(Chain);
3537 }
3538
3539 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3540 DAG.getVTList(ValueVTs), Values));
3541 }
3542
visitStore(const StoreInst & I)3543 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3544 if (I.isAtomic())
3545 return visitAtomicStore(I);
3546
3547 const Value *SrcV = I.getOperand(0);
3548 const Value *PtrV = I.getOperand(1);
3549
3550 SmallVector<EVT, 4> ValueVTs;
3551 SmallVector<uint64_t, 4> Offsets;
3552 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3553 unsigned NumValues = ValueVTs.size();
3554 if (NumValues == 0)
3555 return;
3556
3557 // Get the lowered operands. Note that we do this after
3558 // checking if NumResults is zero, because with zero results
3559 // the operands won't have values in the map.
3560 SDValue Src = getValue(SrcV);
3561 SDValue Ptr = getValue(PtrV);
3562
3563 SDValue Root = getRoot();
3564 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3565 NumValues));
3566 EVT PtrVT = Ptr.getValueType();
3567 bool isVolatile = I.isVolatile();
3568 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
3569 unsigned Alignment = I.getAlignment();
3570 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3571
3572 unsigned ChainI = 0;
3573 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3574 // See visitLoad comments.
3575 if (ChainI == MaxParallelChains) {
3576 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3577 makeArrayRef(Chains.data(), ChainI));
3578 Root = Chain;
3579 ChainI = 0;
3580 }
3581 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3582 DAG.getConstant(Offsets[i], PtrVT));
3583 SDValue St = DAG.getStore(Root, getCurSDLoc(),
3584 SDValue(Src.getNode(), Src.getResNo() + i),
3585 Add, MachinePointerInfo(PtrV, Offsets[i]),
3586 isVolatile, isNonTemporal, Alignment, TBAAInfo);
3587 Chains[ChainI] = St;
3588 }
3589
3590 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3591 makeArrayRef(Chains.data(), ChainI));
3592 DAG.setRoot(StoreNode);
3593 }
3594
InsertFenceForAtomic(SDValue Chain,AtomicOrdering Order,SynchronizationScope Scope,bool Before,SDLoc dl,SelectionDAG & DAG,const TargetLowering & TLI)3595 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3596 SynchronizationScope Scope,
3597 bool Before, SDLoc dl,
3598 SelectionDAG &DAG,
3599 const TargetLowering &TLI) {
3600 // Fence, if necessary
3601 if (Before) {
3602 if (Order == AcquireRelease || Order == SequentiallyConsistent)
3603 Order = Release;
3604 else if (Order == Acquire || Order == Monotonic || Order == Unordered)
3605 return Chain;
3606 } else {
3607 if (Order == AcquireRelease)
3608 Order = Acquire;
3609 else if (Order == Release || Order == Monotonic || Order == Unordered)
3610 return Chain;
3611 }
3612 SDValue Ops[3];
3613 Ops[0] = Chain;
3614 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3615 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3616 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
3617 }
3618
visitAtomicCmpXchg(const AtomicCmpXchgInst & I)3619 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3620 SDLoc dl = getCurSDLoc();
3621 AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3622 AtomicOrdering FailureOrder = I.getFailureOrdering();
3623 SynchronizationScope Scope = I.getSynchScope();
3624
3625 SDValue InChain = getRoot();
3626
3627 const TargetLowering *TLI = TM.getTargetLowering();
3628 if (TLI->getInsertFencesForAtomic())
3629 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl,
3630 DAG, *TLI);
3631
3632 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3633 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3634 SDValue L = DAG.getAtomicCmpSwap(
3635 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3636 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3637 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3638 0 /* Alignment */,
3639 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder,
3640 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope);
3641
3642 SDValue OutChain = L.getValue(2);
3643
3644 if (TLI->getInsertFencesForAtomic())
3645 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl,
3646 DAG, *TLI);
3647
3648 setValue(&I, L);
3649 DAG.setRoot(OutChain);
3650 }
3651
visitAtomicRMW(const AtomicRMWInst & I)3652 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3653 SDLoc dl = getCurSDLoc();
3654 ISD::NodeType NT;
3655 switch (I.getOperation()) {
3656 default: llvm_unreachable("Unknown atomicrmw operation");
3657 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3658 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
3659 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
3660 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
3661 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3662 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
3663 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
3664 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
3665 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
3666 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3667 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3668 }
3669 AtomicOrdering Order = I.getOrdering();
3670 SynchronizationScope Scope = I.getSynchScope();
3671
3672 SDValue InChain = getRoot();
3673
3674 const TargetLowering *TLI = TM.getTargetLowering();
3675 if (TLI->getInsertFencesForAtomic())
3676 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3677 DAG, *TLI);
3678
3679 SDValue L =
3680 DAG.getAtomic(NT, dl,
3681 getValue(I.getValOperand()).getSimpleValueType(),
3682 InChain,
3683 getValue(I.getPointerOperand()),
3684 getValue(I.getValOperand()),
3685 I.getPointerOperand(), 0 /* Alignment */,
3686 TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3687 Scope);
3688
3689 SDValue OutChain = L.getValue(1);
3690
3691 if (TLI->getInsertFencesForAtomic())
3692 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3693 DAG, *TLI);
3694
3695 setValue(&I, L);
3696 DAG.setRoot(OutChain);
3697 }
3698
visitFence(const FenceInst & I)3699 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3700 SDLoc dl = getCurSDLoc();
3701 const TargetLowering *TLI = TM.getTargetLowering();
3702 SDValue Ops[3];
3703 Ops[0] = getRoot();
3704 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3705 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3706 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3707 }
3708
visitAtomicLoad(const LoadInst & I)3709 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3710 SDLoc dl = getCurSDLoc();
3711 AtomicOrdering Order = I.getOrdering();
3712 SynchronizationScope Scope = I.getSynchScope();
3713
3714 SDValue InChain = getRoot();
3715
3716 const TargetLowering *TLI = TM.getTargetLowering();
3717 EVT VT = TLI->getValueType(I.getType());
3718
3719 if (I.getAlignment() < VT.getSizeInBits() / 8)
3720 report_fatal_error("Cannot generate unaligned atomic load");
3721
3722 MachineMemOperand *MMO =
3723 DAG.getMachineFunction().
3724 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3725 MachineMemOperand::MOVolatile |
3726 MachineMemOperand::MOLoad,
3727 VT.getStoreSize(),
3728 I.getAlignment() ? I.getAlignment() :
3729 DAG.getEVTAlignment(VT));
3730
3731 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3732 SDValue L =
3733 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3734 getValue(I.getPointerOperand()), MMO,
3735 TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3736 Scope);
3737
3738 SDValue OutChain = L.getValue(1);
3739
3740 if (TLI->getInsertFencesForAtomic())
3741 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3742 DAG, *TLI);
3743
3744 setValue(&I, L);
3745 DAG.setRoot(OutChain);
3746 }
3747
visitAtomicStore(const StoreInst & I)3748 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3749 SDLoc dl = getCurSDLoc();
3750
3751 AtomicOrdering Order = I.getOrdering();
3752 SynchronizationScope Scope = I.getSynchScope();
3753
3754 SDValue InChain = getRoot();
3755
3756 const TargetLowering *TLI = TM.getTargetLowering();
3757 EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3758
3759 if (I.getAlignment() < VT.getSizeInBits() / 8)
3760 report_fatal_error("Cannot generate unaligned atomic store");
3761
3762 if (TLI->getInsertFencesForAtomic())
3763 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3764 DAG, *TLI);
3765
3766 SDValue OutChain =
3767 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3768 InChain,
3769 getValue(I.getPointerOperand()),
3770 getValue(I.getValueOperand()),
3771 I.getPointerOperand(), I.getAlignment(),
3772 TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3773 Scope);
3774
3775 if (TLI->getInsertFencesForAtomic())
3776 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3777 DAG, *TLI);
3778
3779 DAG.setRoot(OutChain);
3780 }
3781
3782 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3783 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)3784 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3785 unsigned Intrinsic) {
3786 bool HasChain = !I.doesNotAccessMemory();
3787 bool OnlyLoad = HasChain && I.onlyReadsMemory();
3788
3789 // Build the operand list.
3790 SmallVector<SDValue, 8> Ops;
3791 if (HasChain) { // If this intrinsic has side-effects, chainify it.
3792 if (OnlyLoad) {
3793 // We don't need to serialize loads against other loads.
3794 Ops.push_back(DAG.getRoot());
3795 } else {
3796 Ops.push_back(getRoot());
3797 }
3798 }
3799
3800 // Info is set by getTgtMemInstrinsic
3801 TargetLowering::IntrinsicInfo Info;
3802 const TargetLowering *TLI = TM.getTargetLowering();
3803 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3804
3805 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3806 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3807 Info.opc == ISD::INTRINSIC_W_CHAIN)
3808 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3809
3810 // Add all operands of the call to the operand list.
3811 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3812 SDValue Op = getValue(I.getArgOperand(i));
3813 Ops.push_back(Op);
3814 }
3815
3816 SmallVector<EVT, 4> ValueVTs;
3817 ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3818
3819 if (HasChain)
3820 ValueVTs.push_back(MVT::Other);
3821
3822 SDVTList VTs = DAG.getVTList(ValueVTs);
3823
3824 // Create the node.
3825 SDValue Result;
3826 if (IsTgtIntrinsic) {
3827 // This is target intrinsic that touches memory
3828 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3829 VTs, Ops, Info.memVT,
3830 MachinePointerInfo(Info.ptrVal, Info.offset),
3831 Info.align, Info.vol,
3832 Info.readMem, Info.writeMem);
3833 } else if (!HasChain) {
3834 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3835 } else if (!I.getType()->isVoidTy()) {
3836 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3837 } else {
3838 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3839 }
3840
3841 if (HasChain) {
3842 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3843 if (OnlyLoad)
3844 PendingLoads.push_back(Chain);
3845 else
3846 DAG.setRoot(Chain);
3847 }
3848
3849 if (!I.getType()->isVoidTy()) {
3850 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3851 EVT VT = TLI->getValueType(PTy);
3852 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3853 }
3854
3855 setValue(&I, Result);
3856 }
3857 }
3858
3859 /// GetSignificand - Get the significand and build it into a floating-point
3860 /// number with exponent of 1:
3861 ///
3862 /// Op = (Op & 0x007fffff) | 0x3f800000;
3863 ///
3864 /// where Op is the hexadecimal representation of floating point value.
3865 static SDValue
GetSignificand(SelectionDAG & DAG,SDValue Op,SDLoc dl)3866 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3867 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3868 DAG.getConstant(0x007fffff, MVT::i32));
3869 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3870 DAG.getConstant(0x3f800000, MVT::i32));
3871 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3872 }
3873
3874 /// GetExponent - Get the exponent:
3875 ///
3876 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3877 ///
3878 /// where Op is the hexadecimal representation of floating point value.
3879 static SDValue
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,SDLoc dl)3880 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3881 SDLoc dl) {
3882 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3883 DAG.getConstant(0x7f800000, MVT::i32));
3884 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3885 DAG.getConstant(23, TLI.getPointerTy()));
3886 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3887 DAG.getConstant(127, MVT::i32));
3888 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3889 }
3890
3891 /// getF32Constant - Get 32-bit floating point constant.
3892 static SDValue
getF32Constant(SelectionDAG & DAG,unsigned Flt)3893 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3894 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3895 MVT::f32);
3896 }
3897
3898 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3899 /// limited-precision mode.
expandExp(SDLoc dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)3900 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3901 const TargetLowering &TLI) {
3902 if (Op.getValueType() == MVT::f32 &&
3903 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3904
3905 // Put the exponent in the right bit position for later addition to the
3906 // final result:
3907 //
3908 // #define LOG2OFe 1.4426950f
3909 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3910 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3911 getF32Constant(DAG, 0x3fb8aa3b));
3912 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3913
3914 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3915 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3916 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3917
3918 // IntegerPartOfX <<= 23;
3919 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3920 DAG.getConstant(23, TLI.getPointerTy()));
3921
3922 SDValue TwoToFracPartOfX;
3923 if (LimitFloatPrecision <= 6) {
3924 // For floating-point precision of 6:
3925 //
3926 // TwoToFractionalPartOfX =
3927 // 0.997535578f +
3928 // (0.735607626f + 0.252464424f * x) * x;
3929 //
3930 // error 0.0144103317, which is 6 bits
3931 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3932 getF32Constant(DAG, 0x3e814304));
3933 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3934 getF32Constant(DAG, 0x3f3c50c8));
3935 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3936 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3937 getF32Constant(DAG, 0x3f7f5e7e));
3938 } else if (LimitFloatPrecision <= 12) {
3939 // For floating-point precision of 12:
3940 //
3941 // TwoToFractionalPartOfX =
3942 // 0.999892986f +
3943 // (0.696457318f +
3944 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3945 //
3946 // 0.000107046256 error, which is 13 to 14 bits
3947 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3948 getF32Constant(DAG, 0x3da235e3));
3949 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3950 getF32Constant(DAG, 0x3e65b8f3));
3951 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3952 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3953 getF32Constant(DAG, 0x3f324b07));
3954 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3955 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3956 getF32Constant(DAG, 0x3f7ff8fd));
3957 } else { // LimitFloatPrecision <= 18
3958 // For floating-point precision of 18:
3959 //
3960 // TwoToFractionalPartOfX =
3961 // 0.999999982f +
3962 // (0.693148872f +
3963 // (0.240227044f +
3964 // (0.554906021e-1f +
3965 // (0.961591928e-2f +
3966 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3967 //
3968 // error 2.47208000*10^(-7), which is better than 18 bits
3969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3970 getF32Constant(DAG, 0x3924b03e));
3971 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3972 getF32Constant(DAG, 0x3ab24b87));
3973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3975 getF32Constant(DAG, 0x3c1d8c17));
3976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3977 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3978 getF32Constant(DAG, 0x3d634a1d));
3979 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3980 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3981 getF32Constant(DAG, 0x3e75fe14));
3982 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3983 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3984 getF32Constant(DAG, 0x3f317234));
3985 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3986 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3987 getF32Constant(DAG, 0x3f800000));
3988 }
3989
3990 // Add the exponent into the result in integer domain.
3991 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3992 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3993 DAG.getNode(ISD::ADD, dl, MVT::i32,
3994 t13, IntegerPartOfX));
3995 }
3996
3997 // No special expansion.
3998 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3999 }
4000
4001 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4002 /// limited-precision mode.
expandLog(SDLoc dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4003 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4004 const TargetLowering &TLI) {
4005 if (Op.getValueType() == MVT::f32 &&
4006 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4007 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4008
4009 // Scale the exponent by log(2) [0.69314718f].
4010 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4011 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4012 getF32Constant(DAG, 0x3f317218));
4013
4014 // Get the significand and build it into a floating-point number with
4015 // exponent of 1.
4016 SDValue X = GetSignificand(DAG, Op1, dl);
4017
4018 SDValue LogOfMantissa;
4019 if (LimitFloatPrecision <= 6) {
4020 // For floating-point precision of 6:
4021 //
4022 // LogofMantissa =
4023 // -1.1609546f +
4024 // (1.4034025f - 0.23903021f * x) * x;
4025 //
4026 // error 0.0034276066, which is better than 8 bits
4027 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4028 getF32Constant(DAG, 0xbe74c456));
4029 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4030 getF32Constant(DAG, 0x3fb3a2b1));
4031 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4032 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4033 getF32Constant(DAG, 0x3f949a29));
4034 } else if (LimitFloatPrecision <= 12) {
4035 // For floating-point precision of 12:
4036 //
4037 // LogOfMantissa =
4038 // -1.7417939f +
4039 // (2.8212026f +
4040 // (-1.4699568f +
4041 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4042 //
4043 // error 0.000061011436, which is 14 bits
4044 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4045 getF32Constant(DAG, 0xbd67b6d6));
4046 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4047 getF32Constant(DAG, 0x3ee4f4b8));
4048 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4049 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4050 getF32Constant(DAG, 0x3fbc278b));
4051 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4052 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4053 getF32Constant(DAG, 0x40348e95));
4054 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4055 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4056 getF32Constant(DAG, 0x3fdef31a));
4057 } else { // LimitFloatPrecision <= 18
4058 // For floating-point precision of 18:
4059 //
4060 // LogOfMantissa =
4061 // -2.1072184f +
4062 // (4.2372794f +
4063 // (-3.7029485f +
4064 // (2.2781945f +
4065 // (-0.87823314f +
4066 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4067 //
4068 // error 0.0000023660568, which is better than 18 bits
4069 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4070 getF32Constant(DAG, 0xbc91e5ac));
4071 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4072 getF32Constant(DAG, 0x3e4350aa));
4073 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4074 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4075 getF32Constant(DAG, 0x3f60d3e3));
4076 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4077 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4078 getF32Constant(DAG, 0x4011cdf0));
4079 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4080 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4081 getF32Constant(DAG, 0x406cfd1c));
4082 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4083 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4084 getF32Constant(DAG, 0x408797cb));
4085 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4086 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4087 getF32Constant(DAG, 0x4006dcab));
4088 }
4089
4090 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4091 }
4092
4093 // No special expansion.
4094 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4095 }
4096
4097 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4098 /// limited-precision mode.
expandLog2(SDLoc dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4099 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4100 const TargetLowering &TLI) {
4101 if (Op.getValueType() == MVT::f32 &&
4102 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4103 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4104
4105 // Get the exponent.
4106 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4107
4108 // Get the significand and build it into a floating-point number with
4109 // exponent of 1.
4110 SDValue X = GetSignificand(DAG, Op1, dl);
4111
4112 // Different possible minimax approximations of significand in
4113 // floating-point for various degrees of accuracy over [1,2].
4114 SDValue Log2ofMantissa;
4115 if (LimitFloatPrecision <= 6) {
4116 // For floating-point precision of 6:
4117 //
4118 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4119 //
4120 // error 0.0049451742, which is more than 7 bits
4121 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4122 getF32Constant(DAG, 0xbeb08fe0));
4123 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4124 getF32Constant(DAG, 0x40019463));
4125 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4126 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4127 getF32Constant(DAG, 0x3fd6633d));
4128 } else if (LimitFloatPrecision <= 12) {
4129 // For floating-point precision of 12:
4130 //
4131 // Log2ofMantissa =
4132 // -2.51285454f +
4133 // (4.07009056f +
4134 // (-2.12067489f +
4135 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4136 //
4137 // error 0.0000876136000, which is better than 13 bits
4138 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4139 getF32Constant(DAG, 0xbda7262e));
4140 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4141 getF32Constant(DAG, 0x3f25280b));
4142 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4143 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4144 getF32Constant(DAG, 0x4007b923));
4145 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4146 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4147 getF32Constant(DAG, 0x40823e2f));
4148 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4149 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4150 getF32Constant(DAG, 0x4020d29c));
4151 } else { // LimitFloatPrecision <= 18
4152 // For floating-point precision of 18:
4153 //
4154 // Log2ofMantissa =
4155 // -3.0400495f +
4156 // (6.1129976f +
4157 // (-5.3420409f +
4158 // (3.2865683f +
4159 // (-1.2669343f +
4160 // (0.27515199f -
4161 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4162 //
4163 // error 0.0000018516, which is better than 18 bits
4164 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4165 getF32Constant(DAG, 0xbcd2769e));
4166 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4167 getF32Constant(DAG, 0x3e8ce0b9));
4168 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4169 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4170 getF32Constant(DAG, 0x3fa22ae7));
4171 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4172 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4173 getF32Constant(DAG, 0x40525723));
4174 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4175 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4176 getF32Constant(DAG, 0x40aaf200));
4177 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4178 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4179 getF32Constant(DAG, 0x40c39dad));
4180 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4181 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4182 getF32Constant(DAG, 0x4042902c));
4183 }
4184
4185 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4186 }
4187
4188 // No special expansion.
4189 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4190 }
4191
4192 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4193 /// limited-precision mode.
expandLog10(SDLoc dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4194 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4195 const TargetLowering &TLI) {
4196 if (Op.getValueType() == MVT::f32 &&
4197 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4198 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4199
4200 // Scale the exponent by log10(2) [0.30102999f].
4201 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4202 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4203 getF32Constant(DAG, 0x3e9a209a));
4204
4205 // Get the significand and build it into a floating-point number with
4206 // exponent of 1.
4207 SDValue X = GetSignificand(DAG, Op1, dl);
4208
4209 SDValue Log10ofMantissa;
4210 if (LimitFloatPrecision <= 6) {
4211 // For floating-point precision of 6:
4212 //
4213 // Log10ofMantissa =
4214 // -0.50419619f +
4215 // (0.60948995f - 0.10380950f * x) * x;
4216 //
4217 // error 0.0014886165, which is 6 bits
4218 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4219 getF32Constant(DAG, 0xbdd49a13));
4220 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4221 getF32Constant(DAG, 0x3f1c0789));
4222 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4223 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4224 getF32Constant(DAG, 0x3f011300));
4225 } else if (LimitFloatPrecision <= 12) {
4226 // For floating-point precision of 12:
4227 //
4228 // Log10ofMantissa =
4229 // -0.64831180f +
4230 // (0.91751397f +
4231 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4232 //
4233 // error 0.00019228036, which is better than 12 bits
4234 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4235 getF32Constant(DAG, 0x3d431f31));
4236 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4237 getF32Constant(DAG, 0x3ea21fb2));
4238 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4239 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4240 getF32Constant(DAG, 0x3f6ae232));
4241 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4242 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4243 getF32Constant(DAG, 0x3f25f7c3));
4244 } else { // LimitFloatPrecision <= 18
4245 // For floating-point precision of 18:
4246 //
4247 // Log10ofMantissa =
4248 // -0.84299375f +
4249 // (1.5327582f +
4250 // (-1.0688956f +
4251 // (0.49102474f +
4252 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4253 //
4254 // error 0.0000037995730, which is better than 18 bits
4255 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4256 getF32Constant(DAG, 0x3c5d51ce));
4257 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4258 getF32Constant(DAG, 0x3e00685a));
4259 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4260 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4261 getF32Constant(DAG, 0x3efb6798));
4262 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4263 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4264 getF32Constant(DAG, 0x3f88d192));
4265 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4266 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4267 getF32Constant(DAG, 0x3fc4316c));
4268 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4269 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4270 getF32Constant(DAG, 0x3f57ce70));
4271 }
4272
4273 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4274 }
4275
4276 // No special expansion.
4277 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4278 }
4279
4280 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4281 /// limited-precision mode.
expandExp2(SDLoc dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4282 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4283 const TargetLowering &TLI) {
4284 if (Op.getValueType() == MVT::f32 &&
4285 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4286 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4287
4288 // FractionalPartOfX = x - (float)IntegerPartOfX;
4289 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4290 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4291
4292 // IntegerPartOfX <<= 23;
4293 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4294 DAG.getConstant(23, TLI.getPointerTy()));
4295
4296 SDValue TwoToFractionalPartOfX;
4297 if (LimitFloatPrecision <= 6) {
4298 // For floating-point precision of 6:
4299 //
4300 // TwoToFractionalPartOfX =
4301 // 0.997535578f +
4302 // (0.735607626f + 0.252464424f * x) * x;
4303 //
4304 // error 0.0144103317, which is 6 bits
4305 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4306 getF32Constant(DAG, 0x3e814304));
4307 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4308 getF32Constant(DAG, 0x3f3c50c8));
4309 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4310 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4311 getF32Constant(DAG, 0x3f7f5e7e));
4312 } else if (LimitFloatPrecision <= 12) {
4313 // For floating-point precision of 12:
4314 //
4315 // TwoToFractionalPartOfX =
4316 // 0.999892986f +
4317 // (0.696457318f +
4318 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4319 //
4320 // error 0.000107046256, which is 13 to 14 bits
4321 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4322 getF32Constant(DAG, 0x3da235e3));
4323 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4324 getF32Constant(DAG, 0x3e65b8f3));
4325 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4326 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4327 getF32Constant(DAG, 0x3f324b07));
4328 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4329 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4330 getF32Constant(DAG, 0x3f7ff8fd));
4331 } else { // LimitFloatPrecision <= 18
4332 // For floating-point precision of 18:
4333 //
4334 // TwoToFractionalPartOfX =
4335 // 0.999999982f +
4336 // (0.693148872f +
4337 // (0.240227044f +
4338 // (0.554906021e-1f +
4339 // (0.961591928e-2f +
4340 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4341 // error 2.47208000*10^(-7), which is better than 18 bits
4342 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4343 getF32Constant(DAG, 0x3924b03e));
4344 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4345 getF32Constant(DAG, 0x3ab24b87));
4346 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4347 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4348 getF32Constant(DAG, 0x3c1d8c17));
4349 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4350 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4351 getF32Constant(DAG, 0x3d634a1d));
4352 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4353 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4354 getF32Constant(DAG, 0x3e75fe14));
4355 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4356 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4357 getF32Constant(DAG, 0x3f317234));
4358 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4359 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4360 getF32Constant(DAG, 0x3f800000));
4361 }
4362
4363 // Add the exponent into the result in integer domain.
4364 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4365 TwoToFractionalPartOfX);
4366 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4367 DAG.getNode(ISD::ADD, dl, MVT::i32,
4368 t13, IntegerPartOfX));
4369 }
4370
4371 // No special expansion.
4372 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4373 }
4374
4375 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4376 /// limited-precision mode with x == 10.0f.
expandPow(SDLoc dl,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const TargetLowering & TLI)4377 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4378 SelectionDAG &DAG, const TargetLowering &TLI) {
4379 bool IsExp10 = false;
4380 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4381 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4382 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4383 APFloat Ten(10.0f);
4384 IsExp10 = LHSC->isExactlyValue(Ten);
4385 }
4386 }
4387
4388 if (IsExp10) {
4389 // Put the exponent in the right bit position for later addition to the
4390 // final result:
4391 //
4392 // #define LOG2OF10 3.3219281f
4393 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
4394 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4395 getF32Constant(DAG, 0x40549a78));
4396 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4397
4398 // FractionalPartOfX = x - (float)IntegerPartOfX;
4399 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4400 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4401
4402 // IntegerPartOfX <<= 23;
4403 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4404 DAG.getConstant(23, TLI.getPointerTy()));
4405
4406 SDValue TwoToFractionalPartOfX;
4407 if (LimitFloatPrecision <= 6) {
4408 // For floating-point precision of 6:
4409 //
4410 // twoToFractionalPartOfX =
4411 // 0.997535578f +
4412 // (0.735607626f + 0.252464424f * x) * x;
4413 //
4414 // error 0.0144103317, which is 6 bits
4415 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4416 getF32Constant(DAG, 0x3e814304));
4417 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4418 getF32Constant(DAG, 0x3f3c50c8));
4419 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4420 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4421 getF32Constant(DAG, 0x3f7f5e7e));
4422 } else if (LimitFloatPrecision <= 12) {
4423 // For floating-point precision of 12:
4424 //
4425 // TwoToFractionalPartOfX =
4426 // 0.999892986f +
4427 // (0.696457318f +
4428 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4429 //
4430 // error 0.000107046256, which is 13 to 14 bits
4431 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4432 getF32Constant(DAG, 0x3da235e3));
4433 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4434 getF32Constant(DAG, 0x3e65b8f3));
4435 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4436 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4437 getF32Constant(DAG, 0x3f324b07));
4438 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4439 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4440 getF32Constant(DAG, 0x3f7ff8fd));
4441 } else { // LimitFloatPrecision <= 18
4442 // For floating-point precision of 18:
4443 //
4444 // TwoToFractionalPartOfX =
4445 // 0.999999982f +
4446 // (0.693148872f +
4447 // (0.240227044f +
4448 // (0.554906021e-1f +
4449 // (0.961591928e-2f +
4450 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4451 // error 2.47208000*10^(-7), which is better than 18 bits
4452 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4453 getF32Constant(DAG, 0x3924b03e));
4454 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4455 getF32Constant(DAG, 0x3ab24b87));
4456 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4457 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4458 getF32Constant(DAG, 0x3c1d8c17));
4459 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4460 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4461 getF32Constant(DAG, 0x3d634a1d));
4462 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4463 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4464 getF32Constant(DAG, 0x3e75fe14));
4465 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4466 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4467 getF32Constant(DAG, 0x3f317234));
4468 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4469 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4470 getF32Constant(DAG, 0x3f800000));
4471 }
4472
4473 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4474 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4475 DAG.getNode(ISD::ADD, dl, MVT::i32,
4476 t13, IntegerPartOfX));
4477 }
4478
4479 // No special expansion.
4480 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4481 }
4482
4483
4484 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(SDLoc DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)4485 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4486 SelectionDAG &DAG) {
4487 // If RHS is a constant, we can expand this out to a multiplication tree,
4488 // otherwise we end up lowering to a call to __powidf2 (for example). When
4489 // optimizing for size, we only want to do this if the expansion would produce
4490 // a small number of multiplies, otherwise we do the full expansion.
4491 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4492 // Get the exponent as a positive value.
4493 unsigned Val = RHSC->getSExtValue();
4494 if ((int)Val < 0) Val = -Val;
4495
4496 // powi(x, 0) -> 1.0
4497 if (Val == 0)
4498 return DAG.getConstantFP(1.0, LHS.getValueType());
4499
4500 const Function *F = DAG.getMachineFunction().getFunction();
4501 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4502 Attribute::OptimizeForSize) ||
4503 // If optimizing for size, don't insert too many multiplies. This
4504 // inserts up to 5 multiplies.
4505 CountPopulation_32(Val)+Log2_32(Val) < 7) {
4506 // We use the simple binary decomposition method to generate the multiply
4507 // sequence. There are more optimal ways to do this (for example,
4508 // powi(x,15) generates one more multiply than it should), but this has
4509 // the benefit of being both really simple and much better than a libcall.
4510 SDValue Res; // Logically starts equal to 1.0
4511 SDValue CurSquare = LHS;
4512 while (Val) {
4513 if (Val & 1) {
4514 if (Res.getNode())
4515 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4516 else
4517 Res = CurSquare; // 1.0*CurSquare.
4518 }
4519
4520 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4521 CurSquare, CurSquare);
4522 Val >>= 1;
4523 }
4524
4525 // If the original was negative, invert the result, producing 1/(x*x*x).
4526 if (RHSC->getSExtValue() < 0)
4527 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4528 DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4529 return Res;
4530 }
4531 }
4532
4533 // Otherwise, expand to a libcall.
4534 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4535 }
4536
4537 // getTruncatedArgReg - Find underlying register used for an truncated
4538 // argument.
getTruncatedArgReg(const SDValue & N)4539 static unsigned getTruncatedArgReg(const SDValue &N) {
4540 if (N.getOpcode() != ISD::TRUNCATE)
4541 return 0;
4542
4543 const SDValue &Ext = N.getOperand(0);
4544 if (Ext.getOpcode() == ISD::AssertZext ||
4545 Ext.getOpcode() == ISD::AssertSext) {
4546 const SDValue &CFR = Ext.getOperand(0);
4547 if (CFR.getOpcode() == ISD::CopyFromReg)
4548 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4549 if (CFR.getOpcode() == ISD::TRUNCATE)
4550 return getTruncatedArgReg(CFR);
4551 }
4552 return 0;
4553 }
4554
4555 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4556 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4557 /// At the end of instruction selection, they will be inserted to the entry BB.
4558 bool
EmitFuncArgumentDbgValue(const Value * V,MDNode * Variable,int64_t Offset,bool IsIndirect,const SDValue & N)4559 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4560 int64_t Offset, bool IsIndirect,
4561 const SDValue &N) {
4562 const Argument *Arg = dyn_cast<Argument>(V);
4563 if (!Arg)
4564 return false;
4565
4566 MachineFunction &MF = DAG.getMachineFunction();
4567 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4568
4569 // Ignore inlined function arguments here.
4570 DIVariable DV(Variable);
4571 if (DV.isInlinedFnArgument(MF.getFunction()))
4572 return false;
4573
4574 Optional<MachineOperand> Op;
4575 // Some arguments' frame index is recorded during argument lowering.
4576 if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4577 Op = MachineOperand::CreateFI(FI);
4578
4579 if (!Op && N.getNode()) {
4580 unsigned Reg;
4581 if (N.getOpcode() == ISD::CopyFromReg)
4582 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4583 else
4584 Reg = getTruncatedArgReg(N);
4585 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4586 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4587 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4588 if (PR)
4589 Reg = PR;
4590 }
4591 if (Reg)
4592 Op = MachineOperand::CreateReg(Reg, false);
4593 }
4594
4595 if (!Op) {
4596 // Check if ValueMap has reg number.
4597 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4598 if (VMI != FuncInfo.ValueMap.end())
4599 Op = MachineOperand::CreateReg(VMI->second, false);
4600 }
4601
4602 if (!Op && N.getNode())
4603 // Check if frame index is available.
4604 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4605 if (FrameIndexSDNode *FINode =
4606 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4607 Op = MachineOperand::CreateFI(FINode->getIndex());
4608
4609 if (!Op)
4610 return false;
4611
4612 if (Op->isReg())
4613 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4614 TII->get(TargetOpcode::DBG_VALUE),
4615 IsIndirect,
4616 Op->getReg(), Offset, Variable));
4617 else
4618 FuncInfo.ArgDbgValues.push_back(
4619 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4620 .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4621
4622 return true;
4623 }
4624
4625 // VisualStudio defines setjmp as _setjmp
4626 #if defined(_MSC_VER) && defined(setjmp) && \
4627 !defined(setjmp_undefined_for_msvc)
4628 # pragma push_macro("setjmp")
4629 # undef setjmp
4630 # define setjmp_undefined_for_msvc
4631 #endif
4632
4633 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4634 /// we want to emit this as a call to a named external function, return the name
4635 /// otherwise lower it and return null.
4636 const char *
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)4637 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4638 const TargetLowering *TLI = TM.getTargetLowering();
4639 SDLoc sdl = getCurSDLoc();
4640 DebugLoc dl = getCurDebugLoc();
4641 SDValue Res;
4642
4643 switch (Intrinsic) {
4644 default:
4645 // By default, turn this into a target intrinsic node.
4646 visitTargetIntrinsic(I, Intrinsic);
4647 return nullptr;
4648 case Intrinsic::vastart: visitVAStart(I); return nullptr;
4649 case Intrinsic::vaend: visitVAEnd(I); return nullptr;
4650 case Intrinsic::vacopy: visitVACopy(I); return nullptr;
4651 case Intrinsic::returnaddress:
4652 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4653 getValue(I.getArgOperand(0))));
4654 return nullptr;
4655 case Intrinsic::frameaddress:
4656 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4657 getValue(I.getArgOperand(0))));
4658 return nullptr;
4659 case Intrinsic::read_register: {
4660 Value *Reg = I.getArgOperand(0);
4661 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg));
4662 EVT VT = TM.getTargetLowering()->getValueType(I.getType());
4663 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
4664 return nullptr;
4665 }
4666 case Intrinsic::write_register: {
4667 Value *Reg = I.getArgOperand(0);
4668 Value *RegValue = I.getArgOperand(1);
4669 SDValue Chain = getValue(RegValue).getOperand(0);
4670 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg));
4671 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4672 RegName, getValue(RegValue)));
4673 return nullptr;
4674 }
4675 case Intrinsic::setjmp:
4676 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4677 case Intrinsic::longjmp:
4678 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4679 case Intrinsic::memcpy: {
4680 // Assert for address < 256 since we support only user defined address
4681 // spaces.
4682 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4683 < 256 &&
4684 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4685 < 256 &&
4686 "Unknown address space");
4687 SDValue Op1 = getValue(I.getArgOperand(0));
4688 SDValue Op2 = getValue(I.getArgOperand(1));
4689 SDValue Op3 = getValue(I.getArgOperand(2));
4690 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4691 if (!Align)
4692 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4693 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4694 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4695 MachinePointerInfo(I.getArgOperand(0)),
4696 MachinePointerInfo(I.getArgOperand(1))));
4697 return nullptr;
4698 }
4699 case Intrinsic::memset: {
4700 // Assert for address < 256 since we support only user defined address
4701 // spaces.
4702 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4703 < 256 &&
4704 "Unknown address space");
4705 SDValue Op1 = getValue(I.getArgOperand(0));
4706 SDValue Op2 = getValue(I.getArgOperand(1));
4707 SDValue Op3 = getValue(I.getArgOperand(2));
4708 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4709 if (!Align)
4710 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4711 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4712 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4713 MachinePointerInfo(I.getArgOperand(0))));
4714 return nullptr;
4715 }
4716 case Intrinsic::memmove: {
4717 // Assert for address < 256 since we support only user defined address
4718 // spaces.
4719 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4720 < 256 &&
4721 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4722 < 256 &&
4723 "Unknown address space");
4724 SDValue Op1 = getValue(I.getArgOperand(0));
4725 SDValue Op2 = getValue(I.getArgOperand(1));
4726 SDValue Op3 = getValue(I.getArgOperand(2));
4727 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4728 if (!Align)
4729 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4730 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4731 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4732 MachinePointerInfo(I.getArgOperand(0)),
4733 MachinePointerInfo(I.getArgOperand(1))));
4734 return nullptr;
4735 }
4736 case Intrinsic::dbg_declare: {
4737 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4738 MDNode *Variable = DI.getVariable();
4739 const Value *Address = DI.getAddress();
4740 DIVariable DIVar(Variable);
4741 assert((!DIVar || DIVar.isVariable()) &&
4742 "Variable in DbgDeclareInst should be either null or a DIVariable.");
4743 if (!Address || !DIVar) {
4744 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4745 return nullptr;
4746 }
4747
4748 // Check if address has undef value.
4749 if (isa<UndefValue>(Address) ||
4750 (Address->use_empty() && !isa<Argument>(Address))) {
4751 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4752 return nullptr;
4753 }
4754
4755 SDValue &N = NodeMap[Address];
4756 if (!N.getNode() && isa<Argument>(Address))
4757 // Check unused arguments map.
4758 N = UnusedArgNodeMap[Address];
4759 SDDbgValue *SDV;
4760 if (N.getNode()) {
4761 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4762 Address = BCI->getOperand(0);
4763 // Parameters are handled specially.
4764 bool isParameter =
4765 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4766 isa<Argument>(Address));
4767
4768 const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4769
4770 if (isParameter && !AI) {
4771 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4772 if (FINode)
4773 // Byval parameter. We have a frame index at this point.
4774 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(),
4775 0, dl, SDNodeOrder);
4776 else {
4777 // Address is an argument, so try to emit its dbg value using
4778 // virtual register info from the FuncInfo.ValueMap.
4779 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N);
4780 return nullptr;
4781 }
4782 } else if (AI)
4783 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4784 true, 0, dl, SDNodeOrder);
4785 else {
4786 // Can't do anything with other non-AI cases yet.
4787 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4788 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4789 DEBUG(Address->dump());
4790 return nullptr;
4791 }
4792 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4793 } else {
4794 // If Address is an argument then try to emit its dbg value using
4795 // virtual register info from the FuncInfo.ValueMap.
4796 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) {
4797 // If variable is pinned by a alloca in dominating bb then
4798 // use StaticAllocaMap.
4799 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4800 if (AI->getParent() != DI.getParent()) {
4801 DenseMap<const AllocaInst*, int>::iterator SI =
4802 FuncInfo.StaticAllocaMap.find(AI);
4803 if (SI != FuncInfo.StaticAllocaMap.end()) {
4804 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second,
4805 0, dl, SDNodeOrder);
4806 DAG.AddDbgValue(SDV, nullptr, false);
4807 return nullptr;
4808 }
4809 }
4810 }
4811 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4812 }
4813 }
4814 return nullptr;
4815 }
4816 case Intrinsic::dbg_value: {
4817 const DbgValueInst &DI = cast<DbgValueInst>(I);
4818 DIVariable DIVar(DI.getVariable());
4819 assert((!DIVar || DIVar.isVariable()) &&
4820 "Variable in DbgValueInst should be either null or a DIVariable.");
4821 if (!DIVar)
4822 return nullptr;
4823
4824 MDNode *Variable = DI.getVariable();
4825 uint64_t Offset = DI.getOffset();
4826 const Value *V = DI.getValue();
4827 if (!V)
4828 return nullptr;
4829
4830 SDDbgValue *SDV;
4831 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4832 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4833 DAG.AddDbgValue(SDV, nullptr, false);
4834 } else {
4835 // Do not use getValue() in here; we don't want to generate code at
4836 // this point if it hasn't been done yet.
4837 SDValue N = NodeMap[V];
4838 if (!N.getNode() && isa<Argument>(V))
4839 // Check unused arguments map.
4840 N = UnusedArgNodeMap[V];
4841 if (N.getNode()) {
4842 // A dbg.value for an alloca is always indirect.
4843 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4844 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) {
4845 SDV = DAG.getDbgValue(Variable, N.getNode(),
4846 N.getResNo(), IsIndirect,
4847 Offset, dl, SDNodeOrder);
4848 DAG.AddDbgValue(SDV, N.getNode(), false);
4849 }
4850 } else if (!V->use_empty() ) {
4851 // Do not call getValue(V) yet, as we don't want to generate code.
4852 // Remember it for later.
4853 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4854 DanglingDebugInfoMap[V] = DDI;
4855 } else {
4856 // We may expand this to cover more cases. One case where we have no
4857 // data available is an unreferenced parameter.
4858 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4859 }
4860 }
4861
4862 // Build a debug info table entry.
4863 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4864 V = BCI->getOperand(0);
4865 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4866 // Don't handle byval struct arguments or VLAs, for example.
4867 if (!AI) {
4868 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n");
4869 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n");
4870 return nullptr;
4871 }
4872 DenseMap<const AllocaInst*, int>::iterator SI =
4873 FuncInfo.StaticAllocaMap.find(AI);
4874 if (SI == FuncInfo.StaticAllocaMap.end())
4875 return nullptr; // VLAs.
4876 return nullptr;
4877 }
4878
4879 case Intrinsic::eh_typeid_for: {
4880 // Find the type id for the given typeinfo.
4881 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4882 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4883 Res = DAG.getConstant(TypeID, MVT::i32);
4884 setValue(&I, Res);
4885 return nullptr;
4886 }
4887
4888 case Intrinsic::eh_return_i32:
4889 case Intrinsic::eh_return_i64:
4890 DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4891 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4892 MVT::Other,
4893 getControlRoot(),
4894 getValue(I.getArgOperand(0)),
4895 getValue(I.getArgOperand(1))));
4896 return nullptr;
4897 case Intrinsic::eh_unwind_init:
4898 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4899 return nullptr;
4900 case Intrinsic::eh_dwarf_cfa: {
4901 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4902 TLI->getPointerTy());
4903 SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4904 CfaArg.getValueType(),
4905 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4906 CfaArg.getValueType()),
4907 CfaArg);
4908 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4909 TLI->getPointerTy(),
4910 DAG.getConstant(0, TLI->getPointerTy()));
4911 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4912 FA, Offset));
4913 return nullptr;
4914 }
4915 case Intrinsic::eh_sjlj_callsite: {
4916 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4917 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4918 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4919 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4920
4921 MMI.setCurrentCallSite(CI->getZExtValue());
4922 return nullptr;
4923 }
4924 case Intrinsic::eh_sjlj_functioncontext: {
4925 // Get and store the index of the function context.
4926 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4927 AllocaInst *FnCtx =
4928 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4929 int FI = FuncInfo.StaticAllocaMap[FnCtx];
4930 MFI->setFunctionContextIndex(FI);
4931 return nullptr;
4932 }
4933 case Intrinsic::eh_sjlj_setjmp: {
4934 SDValue Ops[2];
4935 Ops[0] = getRoot();
4936 Ops[1] = getValue(I.getArgOperand(0));
4937 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4938 DAG.getVTList(MVT::i32, MVT::Other), Ops);
4939 setValue(&I, Op.getValue(0));
4940 DAG.setRoot(Op.getValue(1));
4941 return nullptr;
4942 }
4943 case Intrinsic::eh_sjlj_longjmp: {
4944 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4945 getRoot(), getValue(I.getArgOperand(0))));
4946 return nullptr;
4947 }
4948
4949 case Intrinsic::x86_mmx_pslli_w:
4950 case Intrinsic::x86_mmx_pslli_d:
4951 case Intrinsic::x86_mmx_pslli_q:
4952 case Intrinsic::x86_mmx_psrli_w:
4953 case Intrinsic::x86_mmx_psrli_d:
4954 case Intrinsic::x86_mmx_psrli_q:
4955 case Intrinsic::x86_mmx_psrai_w:
4956 case Intrinsic::x86_mmx_psrai_d: {
4957 SDValue ShAmt = getValue(I.getArgOperand(1));
4958 if (isa<ConstantSDNode>(ShAmt)) {
4959 visitTargetIntrinsic(I, Intrinsic);
4960 return nullptr;
4961 }
4962 unsigned NewIntrinsic = 0;
4963 EVT ShAmtVT = MVT::v2i32;
4964 switch (Intrinsic) {
4965 case Intrinsic::x86_mmx_pslli_w:
4966 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4967 break;
4968 case Intrinsic::x86_mmx_pslli_d:
4969 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4970 break;
4971 case Intrinsic::x86_mmx_pslli_q:
4972 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4973 break;
4974 case Intrinsic::x86_mmx_psrli_w:
4975 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4976 break;
4977 case Intrinsic::x86_mmx_psrli_d:
4978 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4979 break;
4980 case Intrinsic::x86_mmx_psrli_q:
4981 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4982 break;
4983 case Intrinsic::x86_mmx_psrai_w:
4984 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4985 break;
4986 case Intrinsic::x86_mmx_psrai_d:
4987 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4988 break;
4989 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4990 }
4991
4992 // The vector shift intrinsics with scalars uses 32b shift amounts but
4993 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4994 // to be zero.
4995 // We must do this early because v2i32 is not a legal type.
4996 SDValue ShOps[2];
4997 ShOps[0] = ShAmt;
4998 ShOps[1] = DAG.getConstant(0, MVT::i32);
4999 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5000 EVT DestVT = TLI->getValueType(I.getType());
5001 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5002 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5003 DAG.getConstant(NewIntrinsic, MVT::i32),
5004 getValue(I.getArgOperand(0)), ShAmt);
5005 setValue(&I, Res);
5006 return nullptr;
5007 }
5008 case Intrinsic::x86_avx_vinsertf128_pd_256:
5009 case Intrinsic::x86_avx_vinsertf128_ps_256:
5010 case Intrinsic::x86_avx_vinsertf128_si_256:
5011 case Intrinsic::x86_avx2_vinserti128: {
5012 EVT DestVT = TLI->getValueType(I.getType());
5013 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
5014 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
5015 ElVT.getVectorNumElements();
5016 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
5017 getValue(I.getArgOperand(0)),
5018 getValue(I.getArgOperand(1)),
5019 DAG.getConstant(Idx, TLI->getVectorIdxTy()));
5020 setValue(&I, Res);
5021 return nullptr;
5022 }
5023 case Intrinsic::x86_avx_vextractf128_pd_256:
5024 case Intrinsic::x86_avx_vextractf128_ps_256:
5025 case Intrinsic::x86_avx_vextractf128_si_256:
5026 case Intrinsic::x86_avx2_vextracti128: {
5027 EVT DestVT = TLI->getValueType(I.getType());
5028 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
5029 DestVT.getVectorNumElements();
5030 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
5031 getValue(I.getArgOperand(0)),
5032 DAG.getConstant(Idx, TLI->getVectorIdxTy()));
5033 setValue(&I, Res);
5034 return nullptr;
5035 }
5036 case Intrinsic::convertff:
5037 case Intrinsic::convertfsi:
5038 case Intrinsic::convertfui:
5039 case Intrinsic::convertsif:
5040 case Intrinsic::convertuif:
5041 case Intrinsic::convertss:
5042 case Intrinsic::convertsu:
5043 case Intrinsic::convertus:
5044 case Intrinsic::convertuu: {
5045 ISD::CvtCode Code = ISD::CVT_INVALID;
5046 switch (Intrinsic) {
5047 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5048 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
5049 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5050 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5051 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5052 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5053 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
5054 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
5055 case Intrinsic::convertus: Code = ISD::CVT_US; break;
5056 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
5057 }
5058 EVT DestVT = TLI->getValueType(I.getType());
5059 const Value *Op1 = I.getArgOperand(0);
5060 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5061 DAG.getValueType(DestVT),
5062 DAG.getValueType(getValue(Op1).getValueType()),
5063 getValue(I.getArgOperand(1)),
5064 getValue(I.getArgOperand(2)),
5065 Code);
5066 setValue(&I, Res);
5067 return nullptr;
5068 }
5069 case Intrinsic::powi:
5070 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5071 getValue(I.getArgOperand(1)), DAG));
5072 return nullptr;
5073 case Intrinsic::log:
5074 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5075 return nullptr;
5076 case Intrinsic::log2:
5077 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5078 return nullptr;
5079 case Intrinsic::log10:
5080 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5081 return nullptr;
5082 case Intrinsic::exp:
5083 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5084 return nullptr;
5085 case Intrinsic::exp2:
5086 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5087 return nullptr;
5088 case Intrinsic::pow:
5089 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5090 getValue(I.getArgOperand(1)), DAG, *TLI));
5091 return nullptr;
5092 case Intrinsic::sqrt:
5093 case Intrinsic::fabs:
5094 case Intrinsic::sin:
5095 case Intrinsic::cos:
5096 case Intrinsic::floor:
5097 case Intrinsic::ceil:
5098 case Intrinsic::trunc:
5099 case Intrinsic::rint:
5100 case Intrinsic::nearbyint:
5101 case Intrinsic::round: {
5102 unsigned Opcode;
5103 switch (Intrinsic) {
5104 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5105 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
5106 case Intrinsic::fabs: Opcode = ISD::FABS; break;
5107 case Intrinsic::sin: Opcode = ISD::FSIN; break;
5108 case Intrinsic::cos: Opcode = ISD::FCOS; break;
5109 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
5110 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
5111 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
5112 case Intrinsic::rint: Opcode = ISD::FRINT; break;
5113 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5114 case Intrinsic::round: Opcode = ISD::FROUND; break;
5115 }
5116
5117 setValue(&I, DAG.getNode(Opcode, sdl,
5118 getValue(I.getArgOperand(0)).getValueType(),
5119 getValue(I.getArgOperand(0))));
5120 return nullptr;
5121 }
5122 case Intrinsic::copysign:
5123 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5124 getValue(I.getArgOperand(0)).getValueType(),
5125 getValue(I.getArgOperand(0)),
5126 getValue(I.getArgOperand(1))));
5127 return nullptr;
5128 case Intrinsic::fma:
5129 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5130 getValue(I.getArgOperand(0)).getValueType(),
5131 getValue(I.getArgOperand(0)),
5132 getValue(I.getArgOperand(1)),
5133 getValue(I.getArgOperand(2))));
5134 return nullptr;
5135 case Intrinsic::fmuladd: {
5136 EVT VT = TLI->getValueType(I.getType());
5137 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5138 TLI->isFMAFasterThanFMulAndFAdd(VT)) {
5139 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5140 getValue(I.getArgOperand(0)).getValueType(),
5141 getValue(I.getArgOperand(0)),
5142 getValue(I.getArgOperand(1)),
5143 getValue(I.getArgOperand(2))));
5144 } else {
5145 SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5146 getValue(I.getArgOperand(0)).getValueType(),
5147 getValue(I.getArgOperand(0)),
5148 getValue(I.getArgOperand(1)));
5149 SDValue Add = DAG.getNode(ISD::FADD, sdl,
5150 getValue(I.getArgOperand(0)).getValueType(),
5151 Mul,
5152 getValue(I.getArgOperand(2)));
5153 setValue(&I, Add);
5154 }
5155 return nullptr;
5156 }
5157 case Intrinsic::convert_to_fp16:
5158 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
5159 MVT::i16, getValue(I.getArgOperand(0))));
5160 return nullptr;
5161 case Intrinsic::convert_from_fp16:
5162 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
5163 MVT::f32, getValue(I.getArgOperand(0))));
5164 return nullptr;
5165 case Intrinsic::pcmarker: {
5166 SDValue Tmp = getValue(I.getArgOperand(0));
5167 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5168 return nullptr;
5169 }
5170 case Intrinsic::readcyclecounter: {
5171 SDValue Op = getRoot();
5172 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5173 DAG.getVTList(MVT::i64, MVT::Other), Op);
5174 setValue(&I, Res);
5175 DAG.setRoot(Res.getValue(1));
5176 return nullptr;
5177 }
5178 case Intrinsic::bswap:
5179 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5180 getValue(I.getArgOperand(0)).getValueType(),
5181 getValue(I.getArgOperand(0))));
5182 return nullptr;
5183 case Intrinsic::cttz: {
5184 SDValue Arg = getValue(I.getArgOperand(0));
5185 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5186 EVT Ty = Arg.getValueType();
5187 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5188 sdl, Ty, Arg));
5189 return nullptr;
5190 }
5191 case Intrinsic::ctlz: {
5192 SDValue Arg = getValue(I.getArgOperand(0));
5193 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5194 EVT Ty = Arg.getValueType();
5195 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5196 sdl, Ty, Arg));
5197 return nullptr;
5198 }
5199 case Intrinsic::ctpop: {
5200 SDValue Arg = getValue(I.getArgOperand(0));
5201 EVT Ty = Arg.getValueType();
5202 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5203 return nullptr;
5204 }
5205 case Intrinsic::stacksave: {
5206 SDValue Op = getRoot();
5207 Res = DAG.getNode(ISD::STACKSAVE, sdl,
5208 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op);
5209 setValue(&I, Res);
5210 DAG.setRoot(Res.getValue(1));
5211 return nullptr;
5212 }
5213 case Intrinsic::stackrestore: {
5214 Res = getValue(I.getArgOperand(0));
5215 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5216 return nullptr;
5217 }
5218 case Intrinsic::stackprotector: {
5219 // Emit code into the DAG to store the stack guard onto the stack.
5220 MachineFunction &MF = DAG.getMachineFunction();
5221 MachineFrameInfo *MFI = MF.getFrameInfo();
5222 EVT PtrTy = TLI->getPointerTy();
5223
5224 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
5225 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5226
5227 int FI = FuncInfo.StaticAllocaMap[Slot];
5228 MFI->setStackProtectorIndex(FI);
5229
5230 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5231
5232 // Store the stack protector onto the stack.
5233 Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5234 MachinePointerInfo::getFixedStack(FI),
5235 true, false, 0);
5236 setValue(&I, Res);
5237 DAG.setRoot(Res);
5238 return nullptr;
5239 }
5240 case Intrinsic::objectsize: {
5241 // If we don't know by now, we're never going to know.
5242 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5243
5244 assert(CI && "Non-constant type in __builtin_object_size?");
5245
5246 SDValue Arg = getValue(I.getCalledValue());
5247 EVT Ty = Arg.getValueType();
5248
5249 if (CI->isZero())
5250 Res = DAG.getConstant(-1ULL, Ty);
5251 else
5252 Res = DAG.getConstant(0, Ty);
5253
5254 setValue(&I, Res);
5255 return nullptr;
5256 }
5257 case Intrinsic::annotation:
5258 case Intrinsic::ptr_annotation:
5259 // Drop the intrinsic, but forward the value
5260 setValue(&I, getValue(I.getOperand(0)));
5261 return nullptr;
5262 case Intrinsic::var_annotation:
5263 // Discard annotate attributes
5264 return nullptr;
5265
5266 case Intrinsic::init_trampoline: {
5267 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5268
5269 SDValue Ops[6];
5270 Ops[0] = getRoot();
5271 Ops[1] = getValue(I.getArgOperand(0));
5272 Ops[2] = getValue(I.getArgOperand(1));
5273 Ops[3] = getValue(I.getArgOperand(2));
5274 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5275 Ops[5] = DAG.getSrcValue(F);
5276
5277 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5278
5279 DAG.setRoot(Res);
5280 return nullptr;
5281 }
5282 case Intrinsic::adjust_trampoline: {
5283 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5284 TLI->getPointerTy(),
5285 getValue(I.getArgOperand(0))));
5286 return nullptr;
5287 }
5288 case Intrinsic::gcroot:
5289 if (GFI) {
5290 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5291 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5292
5293 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5294 GFI->addStackRoot(FI->getIndex(), TypeMap);
5295 }
5296 return nullptr;
5297 case Intrinsic::gcread:
5298 case Intrinsic::gcwrite:
5299 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5300 case Intrinsic::flt_rounds:
5301 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5302 return nullptr;
5303
5304 case Intrinsic::expect: {
5305 // Just replace __builtin_expect(exp, c) with EXP.
5306 setValue(&I, getValue(I.getArgOperand(0)));
5307 return nullptr;
5308 }
5309
5310 case Intrinsic::debugtrap:
5311 case Intrinsic::trap: {
5312 StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5313 if (TrapFuncName.empty()) {
5314 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5315 ISD::TRAP : ISD::DEBUGTRAP;
5316 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5317 return nullptr;
5318 }
5319 TargetLowering::ArgListTy Args;
5320
5321 TargetLowering::CallLoweringInfo CLI(DAG);
5322 CLI.setDebugLoc(sdl).setChain(getRoot())
5323 .setCallee(CallingConv::C, I.getType(),
5324 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()),
5325 std::move(Args), 0);
5326
5327 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5328 DAG.setRoot(Result.second);
5329 return nullptr;
5330 }
5331
5332 case Intrinsic::uadd_with_overflow:
5333 case Intrinsic::sadd_with_overflow:
5334 case Intrinsic::usub_with_overflow:
5335 case Intrinsic::ssub_with_overflow:
5336 case Intrinsic::umul_with_overflow:
5337 case Intrinsic::smul_with_overflow: {
5338 ISD::NodeType Op;
5339 switch (Intrinsic) {
5340 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5341 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5342 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5343 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5344 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5345 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5346 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5347 }
5348 SDValue Op1 = getValue(I.getArgOperand(0));
5349 SDValue Op2 = getValue(I.getArgOperand(1));
5350
5351 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5352 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5353 return nullptr;
5354 }
5355 case Intrinsic::prefetch: {
5356 SDValue Ops[5];
5357 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5358 Ops[0] = getRoot();
5359 Ops[1] = getValue(I.getArgOperand(0));
5360 Ops[2] = getValue(I.getArgOperand(1));
5361 Ops[3] = getValue(I.getArgOperand(2));
5362 Ops[4] = getValue(I.getArgOperand(3));
5363 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5364 DAG.getVTList(MVT::Other), Ops,
5365 EVT::getIntegerVT(*Context, 8),
5366 MachinePointerInfo(I.getArgOperand(0)),
5367 0, /* align */
5368 false, /* volatile */
5369 rw==0, /* read */
5370 rw==1)); /* write */
5371 return nullptr;
5372 }
5373 case Intrinsic::lifetime_start:
5374 case Intrinsic::lifetime_end: {
5375 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5376 // Stack coloring is not enabled in O0, discard region information.
5377 if (TM.getOptLevel() == CodeGenOpt::None)
5378 return nullptr;
5379
5380 SmallVector<Value *, 4> Allocas;
5381 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL);
5382
5383 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5384 E = Allocas.end(); Object != E; ++Object) {
5385 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5386
5387 // Could not find an Alloca.
5388 if (!LifetimeObject)
5389 continue;
5390
5391 int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5392
5393 SDValue Ops[2];
5394 Ops[0] = getRoot();
5395 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5396 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5397
5398 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5399 DAG.setRoot(Res);
5400 }
5401 return nullptr;
5402 }
5403 case Intrinsic::invariant_start:
5404 // Discard region information.
5405 setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5406 return nullptr;
5407 case Intrinsic::invariant_end:
5408 // Discard region information.
5409 return nullptr;
5410 case Intrinsic::stackprotectorcheck: {
5411 // Do not actually emit anything for this basic block. Instead we initialize
5412 // the stack protector descriptor and export the guard variable so we can
5413 // access it in FinishBasicBlock.
5414 const BasicBlock *BB = I.getParent();
5415 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5416 ExportFromCurrentBlock(SPDescriptor.getGuard());
5417
5418 // Flush our exports since we are going to process a terminator.
5419 (void)getControlRoot();
5420 return nullptr;
5421 }
5422 case Intrinsic::clear_cache:
5423 return TLI->getClearCacheBuiltinName();
5424 case Intrinsic::donothing:
5425 // ignore
5426 return nullptr;
5427 case Intrinsic::experimental_stackmap: {
5428 visitStackmap(I);
5429 return nullptr;
5430 }
5431 case Intrinsic::experimental_patchpoint_void:
5432 case Intrinsic::experimental_patchpoint_i64: {
5433 visitPatchpoint(I);
5434 return nullptr;
5435 }
5436 }
5437 }
5438
LowerCallTo(ImmutableCallSite CS,SDValue Callee,bool isTailCall,MachineBasicBlock * LandingPad)5439 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5440 bool isTailCall,
5441 MachineBasicBlock *LandingPad) {
5442 const TargetLowering *TLI = TM.getTargetLowering();
5443 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5444 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5445 Type *RetTy = FTy->getReturnType();
5446 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5447 MCSymbol *BeginLabel = nullptr;
5448
5449 TargetLowering::ArgListTy Args;
5450 TargetLowering::ArgListEntry Entry;
5451 Args.reserve(CS.arg_size());
5452
5453 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5454 i != e; ++i) {
5455 const Value *V = *i;
5456
5457 // Skip empty types
5458 if (V->getType()->isEmptyTy())
5459 continue;
5460
5461 SDValue ArgNode = getValue(V);
5462 Entry.Node = ArgNode; Entry.Ty = V->getType();
5463
5464 // Skip the first return-type Attribute to get to params.
5465 Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5466 Args.push_back(Entry);
5467 }
5468
5469 if (LandingPad) {
5470 // Insert a label before the invoke call to mark the try range. This can be
5471 // used to detect deletion of the invoke via the MachineModuleInfo.
5472 BeginLabel = MMI.getContext().CreateTempSymbol();
5473
5474 // For SjLj, keep track of which landing pads go with which invokes
5475 // so as to maintain the ordering of pads in the LSDA.
5476 unsigned CallSiteIndex = MMI.getCurrentCallSite();
5477 if (CallSiteIndex) {
5478 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5479 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5480
5481 // Now that the call site is handled, stop tracking it.
5482 MMI.setCurrentCallSite(0);
5483 }
5484
5485 // Both PendingLoads and PendingExports must be flushed here;
5486 // this call might not return.
5487 (void)getRoot();
5488 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5489 }
5490
5491 // Check if target-independent constraints permit a tail call here.
5492 // Target-dependent constraints are checked within TLI->LowerCallTo.
5493 if (isTailCall && !isInTailCallPosition(CS, DAG))
5494 isTailCall = false;
5495
5496 TargetLowering::CallLoweringInfo CLI(DAG);
5497 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5498 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall);
5499
5500 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5501 assert((isTailCall || Result.second.getNode()) &&
5502 "Non-null chain expected with non-tail call!");
5503 assert((Result.second.getNode() || !Result.first.getNode()) &&
5504 "Null value expected with tail call!");
5505 if (Result.first.getNode())
5506 setValue(CS.getInstruction(), Result.first);
5507
5508 if (!Result.second.getNode()) {
5509 // As a special case, a null chain means that a tail call has been emitted
5510 // and the DAG root is already updated.
5511 HasTailCall = true;
5512
5513 // Since there's no actual continuation from this block, nothing can be
5514 // relying on us setting vregs for them.
5515 PendingExports.clear();
5516 } else {
5517 DAG.setRoot(Result.second);
5518 }
5519
5520 if (LandingPad) {
5521 // Insert a label at the end of the invoke call to mark the try range. This
5522 // can be used to detect deletion of the invoke via the MachineModuleInfo.
5523 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5524 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5525
5526 // Inform MachineModuleInfo of range.
5527 MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5528 }
5529 }
5530
5531 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5532 /// value is equal or not-equal to zero.
IsOnlyUsedInZeroEqualityComparison(const Value * V)5533 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5534 for (const User *U : V->users()) {
5535 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5536 if (IC->isEquality())
5537 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5538 if (C->isNullValue())
5539 continue;
5540 // Unknown instruction.
5541 return false;
5542 }
5543 return true;
5544 }
5545
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,Type * LoadTy,SelectionDAGBuilder & Builder)5546 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5547 Type *LoadTy,
5548 SelectionDAGBuilder &Builder) {
5549
5550 // Check to see if this load can be trivially constant folded, e.g. if the
5551 // input is from a string literal.
5552 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5553 // Cast pointer to the type we really want to load.
5554 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5555 PointerType::getUnqual(LoadTy));
5556
5557 if (const Constant *LoadCst =
5558 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5559 Builder.DL))
5560 return Builder.getValue(LoadCst);
5561 }
5562
5563 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
5564 // still constant memory, the input chain can be the entry node.
5565 SDValue Root;
5566 bool ConstantMemory = false;
5567
5568 // Do not serialize (non-volatile) loads of constant memory with anything.
5569 if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5570 Root = Builder.DAG.getEntryNode();
5571 ConstantMemory = true;
5572 } else {
5573 // Do not serialize non-volatile loads against each other.
5574 Root = Builder.DAG.getRoot();
5575 }
5576
5577 SDValue Ptr = Builder.getValue(PtrVal);
5578 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5579 Ptr, MachinePointerInfo(PtrVal),
5580 false /*volatile*/,
5581 false /*nontemporal*/,
5582 false /*isinvariant*/, 1 /* align=1 */);
5583
5584 if (!ConstantMemory)
5585 Builder.PendingLoads.push_back(LoadVal.getValue(1));
5586 return LoadVal;
5587 }
5588
5589 /// processIntegerCallValue - Record the value for an instruction that
5590 /// produces an integer result, converting the type where necessary.
processIntegerCallValue(const Instruction & I,SDValue Value,bool IsSigned)5591 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5592 SDValue Value,
5593 bool IsSigned) {
5594 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
5595 if (IsSigned)
5596 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5597 else
5598 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5599 setValue(&I, Value);
5600 }
5601
5602 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5603 /// If so, return true and lower it, otherwise return false and it will be
5604 /// lowered like a normal call.
visitMemCmpCall(const CallInst & I)5605 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5606 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
5607 if (I.getNumArgOperands() != 3)
5608 return false;
5609
5610 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5611 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5612 !I.getArgOperand(2)->getType()->isIntegerTy() ||
5613 !I.getType()->isIntegerTy())
5614 return false;
5615
5616 const Value *Size = I.getArgOperand(2);
5617 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5618 if (CSize && CSize->getZExtValue() == 0) {
5619 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
5620 setValue(&I, DAG.getConstant(0, CallVT));
5621 return true;
5622 }
5623
5624 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5625 std::pair<SDValue, SDValue> Res =
5626 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5627 getValue(LHS), getValue(RHS), getValue(Size),
5628 MachinePointerInfo(LHS),
5629 MachinePointerInfo(RHS));
5630 if (Res.first.getNode()) {
5631 processIntegerCallValue(I, Res.first, true);
5632 PendingLoads.push_back(Res.second);
5633 return true;
5634 }
5635
5636 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
5637 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
5638 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5639 bool ActuallyDoIt = true;
5640 MVT LoadVT;
5641 Type *LoadTy;
5642 switch (CSize->getZExtValue()) {
5643 default:
5644 LoadVT = MVT::Other;
5645 LoadTy = nullptr;
5646 ActuallyDoIt = false;
5647 break;
5648 case 2:
5649 LoadVT = MVT::i16;
5650 LoadTy = Type::getInt16Ty(CSize->getContext());
5651 break;
5652 case 4:
5653 LoadVT = MVT::i32;
5654 LoadTy = Type::getInt32Ty(CSize->getContext());
5655 break;
5656 case 8:
5657 LoadVT = MVT::i64;
5658 LoadTy = Type::getInt64Ty(CSize->getContext());
5659 break;
5660 /*
5661 case 16:
5662 LoadVT = MVT::v4i32;
5663 LoadTy = Type::getInt32Ty(CSize->getContext());
5664 LoadTy = VectorType::get(LoadTy, 4);
5665 break;
5666 */
5667 }
5668
5669 // This turns into unaligned loads. We only do this if the target natively
5670 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5671 // we'll only produce a small number of byte loads.
5672
5673 // Require that we can find a legal MVT, and only do this if the target
5674 // supports unaligned loads of that type. Expanding into byte loads would
5675 // bloat the code.
5676 const TargetLowering *TLI = TM.getTargetLowering();
5677 if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5678 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5679 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5680 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5681 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5682 if (!TLI->isTypeLegal(LoadVT) ||
5683 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) ||
5684 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS))
5685 ActuallyDoIt = false;
5686 }
5687
5688 if (ActuallyDoIt) {
5689 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5690 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5691
5692 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5693 ISD::SETNE);
5694 processIntegerCallValue(I, Res, false);
5695 return true;
5696 }
5697 }
5698
5699
5700 return false;
5701 }
5702
5703 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5704 /// form. If so, return true and lower it, otherwise return false and it
5705 /// will be lowered like a normal call.
visitMemChrCall(const CallInst & I)5706 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5707 // Verify that the prototype makes sense. void *memchr(void *, int, size_t)
5708 if (I.getNumArgOperands() != 3)
5709 return false;
5710
5711 const Value *Src = I.getArgOperand(0);
5712 const Value *Char = I.getArgOperand(1);
5713 const Value *Length = I.getArgOperand(2);
5714 if (!Src->getType()->isPointerTy() ||
5715 !Char->getType()->isIntegerTy() ||
5716 !Length->getType()->isIntegerTy() ||
5717 !I.getType()->isPointerTy())
5718 return false;
5719
5720 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5721 std::pair<SDValue, SDValue> Res =
5722 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5723 getValue(Src), getValue(Char), getValue(Length),
5724 MachinePointerInfo(Src));
5725 if (Res.first.getNode()) {
5726 setValue(&I, Res.first);
5727 PendingLoads.push_back(Res.second);
5728 return true;
5729 }
5730
5731 return false;
5732 }
5733
5734 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5735 /// optimized form. If so, return true and lower it, otherwise return false
5736 /// and it will be lowered like a normal call.
visitStrCpyCall(const CallInst & I,bool isStpcpy)5737 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5738 // Verify that the prototype makes sense. char *strcpy(char *, char *)
5739 if (I.getNumArgOperands() != 2)
5740 return false;
5741
5742 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5743 if (!Arg0->getType()->isPointerTy() ||
5744 !Arg1->getType()->isPointerTy() ||
5745 !I.getType()->isPointerTy())
5746 return false;
5747
5748 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5749 std::pair<SDValue, SDValue> Res =
5750 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5751 getValue(Arg0), getValue(Arg1),
5752 MachinePointerInfo(Arg0),
5753 MachinePointerInfo(Arg1), isStpcpy);
5754 if (Res.first.getNode()) {
5755 setValue(&I, Res.first);
5756 DAG.setRoot(Res.second);
5757 return true;
5758 }
5759
5760 return false;
5761 }
5762
5763 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5764 /// If so, return true and lower it, otherwise return false and it will be
5765 /// lowered like a normal call.
visitStrCmpCall(const CallInst & I)5766 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5767 // Verify that the prototype makes sense. int strcmp(void*,void*)
5768 if (I.getNumArgOperands() != 2)
5769 return false;
5770
5771 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5772 if (!Arg0->getType()->isPointerTy() ||
5773 !Arg1->getType()->isPointerTy() ||
5774 !I.getType()->isIntegerTy())
5775 return false;
5776
5777 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5778 std::pair<SDValue, SDValue> Res =
5779 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5780 getValue(Arg0), getValue(Arg1),
5781 MachinePointerInfo(Arg0),
5782 MachinePointerInfo(Arg1));
5783 if (Res.first.getNode()) {
5784 processIntegerCallValue(I, Res.first, true);
5785 PendingLoads.push_back(Res.second);
5786 return true;
5787 }
5788
5789 return false;
5790 }
5791
5792 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5793 /// form. If so, return true and lower it, otherwise return false and it
5794 /// will be lowered like a normal call.
visitStrLenCall(const CallInst & I)5795 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5796 // Verify that the prototype makes sense. size_t strlen(char *)
5797 if (I.getNumArgOperands() != 1)
5798 return false;
5799
5800 const Value *Arg0 = I.getArgOperand(0);
5801 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5802 return false;
5803
5804 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5805 std::pair<SDValue, SDValue> Res =
5806 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5807 getValue(Arg0), MachinePointerInfo(Arg0));
5808 if (Res.first.getNode()) {
5809 processIntegerCallValue(I, Res.first, false);
5810 PendingLoads.push_back(Res.second);
5811 return true;
5812 }
5813
5814 return false;
5815 }
5816
5817 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5818 /// form. If so, return true and lower it, otherwise return false and it
5819 /// will be lowered like a normal call.
visitStrNLenCall(const CallInst & I)5820 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5821 // Verify that the prototype makes sense. size_t strnlen(char *, size_t)
5822 if (I.getNumArgOperands() != 2)
5823 return false;
5824
5825 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5826 if (!Arg0->getType()->isPointerTy() ||
5827 !Arg1->getType()->isIntegerTy() ||
5828 !I.getType()->isIntegerTy())
5829 return false;
5830
5831 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5832 std::pair<SDValue, SDValue> Res =
5833 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5834 getValue(Arg0), getValue(Arg1),
5835 MachinePointerInfo(Arg0));
5836 if (Res.first.getNode()) {
5837 processIntegerCallValue(I, Res.first, false);
5838 PendingLoads.push_back(Res.second);
5839 return true;
5840 }
5841
5842 return false;
5843 }
5844
5845 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5846 /// operation (as expected), translate it to an SDNode with the specified opcode
5847 /// and return true.
visitUnaryFloatCall(const CallInst & I,unsigned Opcode)5848 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5849 unsigned Opcode) {
5850 // Sanity check that it really is a unary floating-point call.
5851 if (I.getNumArgOperands() != 1 ||
5852 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5853 I.getType() != I.getArgOperand(0)->getType() ||
5854 !I.onlyReadsMemory())
5855 return false;
5856
5857 SDValue Tmp = getValue(I.getArgOperand(0));
5858 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5859 return true;
5860 }
5861
visitCall(const CallInst & I)5862 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5863 // Handle inline assembly differently.
5864 if (isa<InlineAsm>(I.getCalledValue())) {
5865 visitInlineAsm(&I);
5866 return;
5867 }
5868
5869 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5870 ComputeUsesVAFloatArgument(I, &MMI);
5871
5872 const char *RenameFn = nullptr;
5873 if (Function *F = I.getCalledFunction()) {
5874 if (F->isDeclaration()) {
5875 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5876 if (unsigned IID = II->getIntrinsicID(F)) {
5877 RenameFn = visitIntrinsicCall(I, IID);
5878 if (!RenameFn)
5879 return;
5880 }
5881 }
5882 if (unsigned IID = F->getIntrinsicID()) {
5883 RenameFn = visitIntrinsicCall(I, IID);
5884 if (!RenameFn)
5885 return;
5886 }
5887 }
5888
5889 // Check for well-known libc/libm calls. If the function is internal, it
5890 // can't be a library call.
5891 LibFunc::Func Func;
5892 if (!F->hasLocalLinkage() && F->hasName() &&
5893 LibInfo->getLibFunc(F->getName(), Func) &&
5894 LibInfo->hasOptimizedCodeGen(Func)) {
5895 switch (Func) {
5896 default: break;
5897 case LibFunc::copysign:
5898 case LibFunc::copysignf:
5899 case LibFunc::copysignl:
5900 if (I.getNumArgOperands() == 2 && // Basic sanity checks.
5901 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5902 I.getType() == I.getArgOperand(0)->getType() &&
5903 I.getType() == I.getArgOperand(1)->getType() &&
5904 I.onlyReadsMemory()) {
5905 SDValue LHS = getValue(I.getArgOperand(0));
5906 SDValue RHS = getValue(I.getArgOperand(1));
5907 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5908 LHS.getValueType(), LHS, RHS));
5909 return;
5910 }
5911 break;
5912 case LibFunc::fabs:
5913 case LibFunc::fabsf:
5914 case LibFunc::fabsl:
5915 if (visitUnaryFloatCall(I, ISD::FABS))
5916 return;
5917 break;
5918 case LibFunc::sin:
5919 case LibFunc::sinf:
5920 case LibFunc::sinl:
5921 if (visitUnaryFloatCall(I, ISD::FSIN))
5922 return;
5923 break;
5924 case LibFunc::cos:
5925 case LibFunc::cosf:
5926 case LibFunc::cosl:
5927 if (visitUnaryFloatCall(I, ISD::FCOS))
5928 return;
5929 break;
5930 case LibFunc::sqrt:
5931 case LibFunc::sqrtf:
5932 case LibFunc::sqrtl:
5933 case LibFunc::sqrt_finite:
5934 case LibFunc::sqrtf_finite:
5935 case LibFunc::sqrtl_finite:
5936 if (visitUnaryFloatCall(I, ISD::FSQRT))
5937 return;
5938 break;
5939 case LibFunc::floor:
5940 case LibFunc::floorf:
5941 case LibFunc::floorl:
5942 if (visitUnaryFloatCall(I, ISD::FFLOOR))
5943 return;
5944 break;
5945 case LibFunc::nearbyint:
5946 case LibFunc::nearbyintf:
5947 case LibFunc::nearbyintl:
5948 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5949 return;
5950 break;
5951 case LibFunc::ceil:
5952 case LibFunc::ceilf:
5953 case LibFunc::ceill:
5954 if (visitUnaryFloatCall(I, ISD::FCEIL))
5955 return;
5956 break;
5957 case LibFunc::rint:
5958 case LibFunc::rintf:
5959 case LibFunc::rintl:
5960 if (visitUnaryFloatCall(I, ISD::FRINT))
5961 return;
5962 break;
5963 case LibFunc::round:
5964 case LibFunc::roundf:
5965 case LibFunc::roundl:
5966 if (visitUnaryFloatCall(I, ISD::FROUND))
5967 return;
5968 break;
5969 case LibFunc::trunc:
5970 case LibFunc::truncf:
5971 case LibFunc::truncl:
5972 if (visitUnaryFloatCall(I, ISD::FTRUNC))
5973 return;
5974 break;
5975 case LibFunc::log2:
5976 case LibFunc::log2f:
5977 case LibFunc::log2l:
5978 if (visitUnaryFloatCall(I, ISD::FLOG2))
5979 return;
5980 break;
5981 case LibFunc::exp2:
5982 case LibFunc::exp2f:
5983 case LibFunc::exp2l:
5984 if (visitUnaryFloatCall(I, ISD::FEXP2))
5985 return;
5986 break;
5987 case LibFunc::memcmp:
5988 if (visitMemCmpCall(I))
5989 return;
5990 break;
5991 case LibFunc::memchr:
5992 if (visitMemChrCall(I))
5993 return;
5994 break;
5995 case LibFunc::strcpy:
5996 if (visitStrCpyCall(I, false))
5997 return;
5998 break;
5999 case LibFunc::stpcpy:
6000 if (visitStrCpyCall(I, true))
6001 return;
6002 break;
6003 case LibFunc::strcmp:
6004 if (visitStrCmpCall(I))
6005 return;
6006 break;
6007 case LibFunc::strlen:
6008 if (visitStrLenCall(I))
6009 return;
6010 break;
6011 case LibFunc::strnlen:
6012 if (visitStrNLenCall(I))
6013 return;
6014 break;
6015 }
6016 }
6017 }
6018
6019 SDValue Callee;
6020 if (!RenameFn)
6021 Callee = getValue(I.getCalledValue());
6022 else
6023 Callee = DAG.getExternalSymbol(RenameFn,
6024 TM.getTargetLowering()->getPointerTy());
6025
6026 // Check if we can potentially perform a tail call. More detailed checking is
6027 // be done within LowerCallTo, after more information about the call is known.
6028 LowerCallTo(&I, Callee, I.isTailCall());
6029 }
6030
6031 namespace {
6032
6033 /// AsmOperandInfo - This contains information for each constraint that we are
6034 /// lowering.
6035 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6036 public:
6037 /// CallOperand - If this is the result output operand or a clobber
6038 /// this is null, otherwise it is the incoming operand to the CallInst.
6039 /// This gets modified as the asm is processed.
6040 SDValue CallOperand;
6041
6042 /// AssignedRegs - If this is a register or register class operand, this
6043 /// contains the set of register corresponding to the operand.
6044 RegsForValue AssignedRegs;
6045
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)6046 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6047 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6048 }
6049
6050 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6051 /// corresponds to. If there is no Value* for this operand, it returns
6052 /// MVT::Other.
getCallOperandValEVT(LLVMContext & Context,const TargetLowering & TLI,const DataLayout * DL) const6053 EVT getCallOperandValEVT(LLVMContext &Context,
6054 const TargetLowering &TLI,
6055 const DataLayout *DL) const {
6056 if (!CallOperandVal) return MVT::Other;
6057
6058 if (isa<BasicBlock>(CallOperandVal))
6059 return TLI.getPointerTy();
6060
6061 llvm::Type *OpTy = CallOperandVal->getType();
6062
6063 // FIXME: code duplicated from TargetLowering::ParseConstraints().
6064 // If this is an indirect operand, the operand is a pointer to the
6065 // accessed type.
6066 if (isIndirect) {
6067 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6068 if (!PtrTy)
6069 report_fatal_error("Indirect operand for inline asm not a pointer!");
6070 OpTy = PtrTy->getElementType();
6071 }
6072
6073 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6074 if (StructType *STy = dyn_cast<StructType>(OpTy))
6075 if (STy->getNumElements() == 1)
6076 OpTy = STy->getElementType(0);
6077
6078 // If OpTy is not a single value, it may be a struct/union that we
6079 // can tile with integers.
6080 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6081 unsigned BitSize = DL->getTypeSizeInBits(OpTy);
6082 switch (BitSize) {
6083 default: break;
6084 case 1:
6085 case 8:
6086 case 16:
6087 case 32:
6088 case 64:
6089 case 128:
6090 OpTy = IntegerType::get(Context, BitSize);
6091 break;
6092 }
6093 }
6094
6095 return TLI.getValueType(OpTy, true);
6096 }
6097 };
6098
6099 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6100
6101 } // end anonymous namespace
6102
6103 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6104 /// specified operand. We prefer to assign virtual registers, to allow the
6105 /// register allocator to handle the assignment process. However, if the asm
6106 /// uses features that we can't model on machineinstrs, we have SDISel do the
6107 /// allocation. This produces generally horrible, but correct, code.
6108 ///
6109 /// OpInfo describes the operand.
6110 ///
GetRegistersForValue(SelectionDAG & DAG,const TargetLowering & TLI,SDLoc DL,SDISelAsmOperandInfo & OpInfo)6111 static void GetRegistersForValue(SelectionDAG &DAG,
6112 const TargetLowering &TLI,
6113 SDLoc DL,
6114 SDISelAsmOperandInfo &OpInfo) {
6115 LLVMContext &Context = *DAG.getContext();
6116
6117 MachineFunction &MF = DAG.getMachineFunction();
6118 SmallVector<unsigned, 4> Regs;
6119
6120 // If this is a constraint for a single physreg, or a constraint for a
6121 // register class, find it.
6122 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6123 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6124 OpInfo.ConstraintVT);
6125
6126 unsigned NumRegs = 1;
6127 if (OpInfo.ConstraintVT != MVT::Other) {
6128 // If this is a FP input in an integer register (or visa versa) insert a bit
6129 // cast of the input value. More generally, handle any case where the input
6130 // value disagrees with the register class we plan to stick this in.
6131 if (OpInfo.Type == InlineAsm::isInput &&
6132 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6133 // Try to convert to the first EVT that the reg class contains. If the
6134 // types are identical size, use a bitcast to convert (e.g. two differing
6135 // vector types).
6136 MVT RegVT = *PhysReg.second->vt_begin();
6137 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6138 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6139 RegVT, OpInfo.CallOperand);
6140 OpInfo.ConstraintVT = RegVT;
6141 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6142 // If the input is a FP value and we want it in FP registers, do a
6143 // bitcast to the corresponding integer type. This turns an f64 value
6144 // into i64, which can be passed with two i32 values on a 32-bit
6145 // machine.
6146 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6147 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6148 RegVT, OpInfo.CallOperand);
6149 OpInfo.ConstraintVT = RegVT;
6150 }
6151 }
6152
6153 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6154 }
6155
6156 MVT RegVT;
6157 EVT ValueVT = OpInfo.ConstraintVT;
6158
6159 // If this is a constraint for a specific physical register, like {r17},
6160 // assign it now.
6161 if (unsigned AssignedReg = PhysReg.first) {
6162 const TargetRegisterClass *RC = PhysReg.second;
6163 if (OpInfo.ConstraintVT == MVT::Other)
6164 ValueVT = *RC->vt_begin();
6165
6166 // Get the actual register value type. This is important, because the user
6167 // may have asked for (e.g.) the AX register in i32 type. We need to
6168 // remember that AX is actually i16 to get the right extension.
6169 RegVT = *RC->vt_begin();
6170
6171 // This is a explicit reference to a physical register.
6172 Regs.push_back(AssignedReg);
6173
6174 // If this is an expanded reference, add the rest of the regs to Regs.
6175 if (NumRegs != 1) {
6176 TargetRegisterClass::iterator I = RC->begin();
6177 for (; *I != AssignedReg; ++I)
6178 assert(I != RC->end() && "Didn't find reg!");
6179
6180 // Already added the first reg.
6181 --NumRegs; ++I;
6182 for (; NumRegs; --NumRegs, ++I) {
6183 assert(I != RC->end() && "Ran out of registers to allocate!");
6184 Regs.push_back(*I);
6185 }
6186 }
6187
6188 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6189 return;
6190 }
6191
6192 // Otherwise, if this was a reference to an LLVM register class, create vregs
6193 // for this reference.
6194 if (const TargetRegisterClass *RC = PhysReg.second) {
6195 RegVT = *RC->vt_begin();
6196 if (OpInfo.ConstraintVT == MVT::Other)
6197 ValueVT = RegVT;
6198
6199 // Create the appropriate number of virtual registers.
6200 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6201 for (; NumRegs; --NumRegs)
6202 Regs.push_back(RegInfo.createVirtualRegister(RC));
6203
6204 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6205 return;
6206 }
6207
6208 // Otherwise, we couldn't allocate enough registers for this.
6209 }
6210
6211 /// visitInlineAsm - Handle a call to an InlineAsm object.
6212 ///
visitInlineAsm(ImmutableCallSite CS)6213 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6214 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6215
6216 /// ConstraintOperands - Information about all of the constraints.
6217 SDISelAsmOperandInfoVector ConstraintOperands;
6218
6219 const TargetLowering *TLI = TM.getTargetLowering();
6220 TargetLowering::AsmOperandInfoVector
6221 TargetConstraints = TLI->ParseConstraints(CS);
6222
6223 bool hasMemory = false;
6224
6225 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
6226 unsigned ResNo = 0; // ResNo - The result number of the next output.
6227 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6228 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6229 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6230
6231 MVT OpVT = MVT::Other;
6232
6233 // Compute the value type for each operand.
6234 switch (OpInfo.Type) {
6235 case InlineAsm::isOutput:
6236 // Indirect outputs just consume an argument.
6237 if (OpInfo.isIndirect) {
6238 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6239 break;
6240 }
6241
6242 // The return value of the call is this value. As such, there is no
6243 // corresponding argument.
6244 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6245 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6246 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
6247 } else {
6248 assert(ResNo == 0 && "Asm only has one result!");
6249 OpVT = TLI->getSimpleValueType(CS.getType());
6250 }
6251 ++ResNo;
6252 break;
6253 case InlineAsm::isInput:
6254 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6255 break;
6256 case InlineAsm::isClobber:
6257 // Nothing to do.
6258 break;
6259 }
6260
6261 // If this is an input or an indirect output, process the call argument.
6262 // BasicBlocks are labels, currently appearing only in asm's.
6263 if (OpInfo.CallOperandVal) {
6264 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6265 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6266 } else {
6267 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6268 }
6269
6270 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL).
6271 getSimpleVT();
6272 }
6273
6274 OpInfo.ConstraintVT = OpVT;
6275
6276 // Indirect operand accesses access memory.
6277 if (OpInfo.isIndirect)
6278 hasMemory = true;
6279 else {
6280 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6281 TargetLowering::ConstraintType
6282 CType = TLI->getConstraintType(OpInfo.Codes[j]);
6283 if (CType == TargetLowering::C_Memory) {
6284 hasMemory = true;
6285 break;
6286 }
6287 }
6288 }
6289 }
6290
6291 SDValue Chain, Flag;
6292
6293 // We won't need to flush pending loads if this asm doesn't touch
6294 // memory and is nonvolatile.
6295 if (hasMemory || IA->hasSideEffects())
6296 Chain = getRoot();
6297 else
6298 Chain = DAG.getRoot();
6299
6300 // Second pass over the constraints: compute which constraint option to use
6301 // and assign registers to constraints that want a specific physreg.
6302 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6303 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6304
6305 // If this is an output operand with a matching input operand, look up the
6306 // matching input. If their types mismatch, e.g. one is an integer, the
6307 // other is floating point, or their sizes are different, flag it as an
6308 // error.
6309 if (OpInfo.hasMatchingInput()) {
6310 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6311
6312 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6313 std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6314 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6315 OpInfo.ConstraintVT);
6316 std::pair<unsigned, const TargetRegisterClass*> InputRC =
6317 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
6318 Input.ConstraintVT);
6319 if ((OpInfo.ConstraintVT.isInteger() !=
6320 Input.ConstraintVT.isInteger()) ||
6321 (MatchRC.second != InputRC.second)) {
6322 report_fatal_error("Unsupported asm: input constraint"
6323 " with a matching output constraint of"
6324 " incompatible type!");
6325 }
6326 Input.ConstraintVT = OpInfo.ConstraintVT;
6327 }
6328 }
6329
6330 // Compute the constraint code and ConstraintType to use.
6331 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6332
6333 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6334 OpInfo.Type == InlineAsm::isClobber)
6335 continue;
6336
6337 // If this is a memory input, and if the operand is not indirect, do what we
6338 // need to to provide an address for the memory input.
6339 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6340 !OpInfo.isIndirect) {
6341 assert((OpInfo.isMultipleAlternative ||
6342 (OpInfo.Type == InlineAsm::isInput)) &&
6343 "Can only indirectify direct input operands!");
6344
6345 // Memory operands really want the address of the value. If we don't have
6346 // an indirect input, put it in the constpool if we can, otherwise spill
6347 // it to a stack slot.
6348 // TODO: This isn't quite right. We need to handle these according to
6349 // the addressing mode that the constraint wants. Also, this may take
6350 // an additional register for the computation and we don't want that
6351 // either.
6352
6353 // If the operand is a float, integer, or vector constant, spill to a
6354 // constant pool entry to get its address.
6355 const Value *OpVal = OpInfo.CallOperandVal;
6356 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6357 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6358 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6359 TLI->getPointerTy());
6360 } else {
6361 // Otherwise, create a stack slot and emit a store to it before the
6362 // asm.
6363 Type *Ty = OpVal->getType();
6364 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6365 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6366 MachineFunction &MF = DAG.getMachineFunction();
6367 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6368 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6369 Chain = DAG.getStore(Chain, getCurSDLoc(),
6370 OpInfo.CallOperand, StackSlot,
6371 MachinePointerInfo::getFixedStack(SSFI),
6372 false, false, 0);
6373 OpInfo.CallOperand = StackSlot;
6374 }
6375
6376 // There is no longer a Value* corresponding to this operand.
6377 OpInfo.CallOperandVal = nullptr;
6378
6379 // It is now an indirect operand.
6380 OpInfo.isIndirect = true;
6381 }
6382
6383 // If this constraint is for a specific register, allocate it before
6384 // anything else.
6385 if (OpInfo.ConstraintType == TargetLowering::C_Register)
6386 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6387 }
6388
6389 // Second pass - Loop over all of the operands, assigning virtual or physregs
6390 // to register class operands.
6391 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6392 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6393
6394 // C_Register operands have already been allocated, Other/Memory don't need
6395 // to be.
6396 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6397 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6398 }
6399
6400 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6401 std::vector<SDValue> AsmNodeOperands;
6402 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
6403 AsmNodeOperands.push_back(
6404 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6405 TLI->getPointerTy()));
6406
6407 // If we have a !srcloc metadata node associated with it, we want to attach
6408 // this to the ultimately generated inline asm machineinstr. To do this, we
6409 // pass in the third operand as this (potentially null) inline asm MDNode.
6410 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6411 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6412
6413 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6414 // bits as operand 3.
6415 unsigned ExtraInfo = 0;
6416 if (IA->hasSideEffects())
6417 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6418 if (IA->isAlignStack())
6419 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6420 // Set the asm dialect.
6421 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6422
6423 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6424 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6425 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6426
6427 // Compute the constraint code and ConstraintType to use.
6428 TLI->ComputeConstraintToUse(OpInfo, SDValue());
6429
6430 // Ideally, we would only check against memory constraints. However, the
6431 // meaning of an other constraint can be target-specific and we can't easily
6432 // reason about it. Therefore, be conservative and set MayLoad/MayStore
6433 // for other constriants as well.
6434 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6435 OpInfo.ConstraintType == TargetLowering::C_Other) {
6436 if (OpInfo.Type == InlineAsm::isInput)
6437 ExtraInfo |= InlineAsm::Extra_MayLoad;
6438 else if (OpInfo.Type == InlineAsm::isOutput)
6439 ExtraInfo |= InlineAsm::Extra_MayStore;
6440 else if (OpInfo.Type == InlineAsm::isClobber)
6441 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6442 }
6443 }
6444
6445 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6446 TLI->getPointerTy()));
6447
6448 // Loop over all of the inputs, copying the operand values into the
6449 // appropriate registers and processing the output regs.
6450 RegsForValue RetValRegs;
6451
6452 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6453 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6454
6455 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6456 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6457
6458 switch (OpInfo.Type) {
6459 case InlineAsm::isOutput: {
6460 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6461 OpInfo.ConstraintType != TargetLowering::C_Register) {
6462 // Memory output, or 'other' output (e.g. 'X' constraint).
6463 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6464
6465 // Add information to the INLINEASM node to know about this output.
6466 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6467 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6468 TLI->getPointerTy()));
6469 AsmNodeOperands.push_back(OpInfo.CallOperand);
6470 break;
6471 }
6472
6473 // Otherwise, this is a register or register class output.
6474
6475 // Copy the output from the appropriate register. Find a register that
6476 // we can use.
6477 if (OpInfo.AssignedRegs.Regs.empty()) {
6478 LLVMContext &Ctx = *DAG.getContext();
6479 Ctx.emitError(CS.getInstruction(),
6480 "couldn't allocate output register for constraint '" +
6481 Twine(OpInfo.ConstraintCode) + "'");
6482 return;
6483 }
6484
6485 // If this is an indirect operand, store through the pointer after the
6486 // asm.
6487 if (OpInfo.isIndirect) {
6488 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6489 OpInfo.CallOperandVal));
6490 } else {
6491 // This is the result value of the call.
6492 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6493 // Concatenate this output onto the outputs list.
6494 RetValRegs.append(OpInfo.AssignedRegs);
6495 }
6496
6497 // Add information to the INLINEASM node to know that this register is
6498 // set.
6499 OpInfo.AssignedRegs
6500 .AddInlineAsmOperands(OpInfo.isEarlyClobber
6501 ? InlineAsm::Kind_RegDefEarlyClobber
6502 : InlineAsm::Kind_RegDef,
6503 false, 0, DAG, AsmNodeOperands);
6504 break;
6505 }
6506 case InlineAsm::isInput: {
6507 SDValue InOperandVal = OpInfo.CallOperand;
6508
6509 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
6510 // If this is required to match an output register we have already set,
6511 // just use its register.
6512 unsigned OperandNo = OpInfo.getMatchedOperand();
6513
6514 // Scan until we find the definition we already emitted of this operand.
6515 // When we find it, create a RegsForValue operand.
6516 unsigned CurOp = InlineAsm::Op_FirstOperand;
6517 for (; OperandNo; --OperandNo) {
6518 // Advance to the next operand.
6519 unsigned OpFlag =
6520 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6521 assert((InlineAsm::isRegDefKind(OpFlag) ||
6522 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6523 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6524 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6525 }
6526
6527 unsigned OpFlag =
6528 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6529 if (InlineAsm::isRegDefKind(OpFlag) ||
6530 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6531 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6532 if (OpInfo.isIndirect) {
6533 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6534 LLVMContext &Ctx = *DAG.getContext();
6535 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6536 " don't know how to handle tied "
6537 "indirect register inputs");
6538 return;
6539 }
6540
6541 RegsForValue MatchedRegs;
6542 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6543 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6544 MatchedRegs.RegVTs.push_back(RegVT);
6545 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6546 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6547 i != e; ++i) {
6548 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6549 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6550 else {
6551 LLVMContext &Ctx = *DAG.getContext();
6552 Ctx.emitError(CS.getInstruction(),
6553 "inline asm error: This value"
6554 " type register class is not natively supported!");
6555 return;
6556 }
6557 }
6558 // Use the produced MatchedRegs object to
6559 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6560 Chain, &Flag, CS.getInstruction());
6561 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6562 true, OpInfo.getMatchedOperand(),
6563 DAG, AsmNodeOperands);
6564 break;
6565 }
6566
6567 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6568 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6569 "Unexpected number of operands");
6570 // Add information to the INLINEASM node to know about this input.
6571 // See InlineAsm.h isUseOperandTiedToDef.
6572 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6573 OpInfo.getMatchedOperand());
6574 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6575 TLI->getPointerTy()));
6576 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6577 break;
6578 }
6579
6580 // Treat indirect 'X' constraint as memory.
6581 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6582 OpInfo.isIndirect)
6583 OpInfo.ConstraintType = TargetLowering::C_Memory;
6584
6585 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6586 std::vector<SDValue> Ops;
6587 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6588 Ops, DAG);
6589 if (Ops.empty()) {
6590 LLVMContext &Ctx = *DAG.getContext();
6591 Ctx.emitError(CS.getInstruction(),
6592 "invalid operand for inline asm constraint '" +
6593 Twine(OpInfo.ConstraintCode) + "'");
6594 return;
6595 }
6596
6597 // Add information to the INLINEASM node to know about this input.
6598 unsigned ResOpType =
6599 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6600 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6601 TLI->getPointerTy()));
6602 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6603 break;
6604 }
6605
6606 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6607 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6608 assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6609 "Memory operands expect pointer values");
6610
6611 // Add information to the INLINEASM node to know about this input.
6612 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6613 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6614 TLI->getPointerTy()));
6615 AsmNodeOperands.push_back(InOperandVal);
6616 break;
6617 }
6618
6619 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6620 OpInfo.ConstraintType == TargetLowering::C_Register) &&
6621 "Unknown constraint type!");
6622
6623 // TODO: Support this.
6624 if (OpInfo.isIndirect) {
6625 LLVMContext &Ctx = *DAG.getContext();
6626 Ctx.emitError(CS.getInstruction(),
6627 "Don't know how to handle indirect register inputs yet "
6628 "for constraint '" +
6629 Twine(OpInfo.ConstraintCode) + "'");
6630 return;
6631 }
6632
6633 // Copy the input into the appropriate registers.
6634 if (OpInfo.AssignedRegs.Regs.empty()) {
6635 LLVMContext &Ctx = *DAG.getContext();
6636 Ctx.emitError(CS.getInstruction(),
6637 "couldn't allocate input reg for constraint '" +
6638 Twine(OpInfo.ConstraintCode) + "'");
6639 return;
6640 }
6641
6642 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6643 Chain, &Flag, CS.getInstruction());
6644
6645 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6646 DAG, AsmNodeOperands);
6647 break;
6648 }
6649 case InlineAsm::isClobber: {
6650 // Add the clobbered value to the operand list, so that the register
6651 // allocator is aware that the physreg got clobbered.
6652 if (!OpInfo.AssignedRegs.Regs.empty())
6653 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6654 false, 0, DAG,
6655 AsmNodeOperands);
6656 break;
6657 }
6658 }
6659 }
6660
6661 // Finish up input operands. Set the input chain and add the flag last.
6662 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6663 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6664
6665 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6666 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6667 Flag = Chain.getValue(1);
6668
6669 // If this asm returns a register value, copy the result from that register
6670 // and set it as the value of the call.
6671 if (!RetValRegs.Regs.empty()) {
6672 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6673 Chain, &Flag, CS.getInstruction());
6674
6675 // FIXME: Why don't we do this for inline asms with MRVs?
6676 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6677 EVT ResultType = TLI->getValueType(CS.getType());
6678
6679 // If any of the results of the inline asm is a vector, it may have the
6680 // wrong width/num elts. This can happen for register classes that can
6681 // contain multiple different value types. The preg or vreg allocated may
6682 // not have the same VT as was expected. Convert it to the right type
6683 // with bit_convert.
6684 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6685 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6686 ResultType, Val);
6687
6688 } else if (ResultType != Val.getValueType() &&
6689 ResultType.isInteger() && Val.getValueType().isInteger()) {
6690 // If a result value was tied to an input value, the computed result may
6691 // have a wider width than the expected result. Extract the relevant
6692 // portion.
6693 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6694 }
6695
6696 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6697 }
6698
6699 setValue(CS.getInstruction(), Val);
6700 // Don't need to use this as a chain in this case.
6701 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6702 return;
6703 }
6704
6705 std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6706
6707 // Process indirect outputs, first output all of the flagged copies out of
6708 // physregs.
6709 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6710 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6711 const Value *Ptr = IndirectStoresToEmit[i].second;
6712 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6713 Chain, &Flag, IA);
6714 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6715 }
6716
6717 // Emit the non-flagged stores from the physregs.
6718 SmallVector<SDValue, 8> OutChains;
6719 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6720 SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6721 StoresToEmit[i].first,
6722 getValue(StoresToEmit[i].second),
6723 MachinePointerInfo(StoresToEmit[i].second),
6724 false, false, 0);
6725 OutChains.push_back(Val);
6726 }
6727
6728 if (!OutChains.empty())
6729 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6730
6731 DAG.setRoot(Chain);
6732 }
6733
visitVAStart(const CallInst & I)6734 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6735 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6736 MVT::Other, getRoot(),
6737 getValue(I.getArgOperand(0)),
6738 DAG.getSrcValue(I.getArgOperand(0))));
6739 }
6740
visitVAArg(const VAArgInst & I)6741 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6742 const TargetLowering *TLI = TM.getTargetLowering();
6743 const DataLayout &DL = *TLI->getDataLayout();
6744 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6745 getRoot(), getValue(I.getOperand(0)),
6746 DAG.getSrcValue(I.getOperand(0)),
6747 DL.getABITypeAlignment(I.getType()));
6748 setValue(&I, V);
6749 DAG.setRoot(V.getValue(1));
6750 }
6751
visitVAEnd(const CallInst & I)6752 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6753 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6754 MVT::Other, getRoot(),
6755 getValue(I.getArgOperand(0)),
6756 DAG.getSrcValue(I.getArgOperand(0))));
6757 }
6758
visitVACopy(const CallInst & I)6759 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6760 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6761 MVT::Other, getRoot(),
6762 getValue(I.getArgOperand(0)),
6763 getValue(I.getArgOperand(1)),
6764 DAG.getSrcValue(I.getArgOperand(0)),
6765 DAG.getSrcValue(I.getArgOperand(1))));
6766 }
6767
6768 /// \brief Lower an argument list according to the target calling convention.
6769 ///
6770 /// \return A tuple of <return-value, token-chain>
6771 ///
6772 /// This is a helper for lowering intrinsics that follow a target calling
6773 /// convention or require stack pointer adjustment. Only a subset of the
6774 /// intrinsic's operands need to participate in the calling convention.
6775 std::pair<SDValue, SDValue>
LowerCallOperands(const CallInst & CI,unsigned ArgIdx,unsigned NumArgs,SDValue Callee,bool useVoidTy)6776 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
6777 unsigned NumArgs, SDValue Callee,
6778 bool useVoidTy) {
6779 TargetLowering::ArgListTy Args;
6780 Args.reserve(NumArgs);
6781
6782 // Populate the argument list.
6783 // Attributes for args start at offset 1, after the return attribute.
6784 ImmutableCallSite CS(&CI);
6785 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6786 ArgI != ArgE; ++ArgI) {
6787 const Value *V = CI.getOperand(ArgI);
6788
6789 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6790
6791 TargetLowering::ArgListEntry Entry;
6792 Entry.Node = getValue(V);
6793 Entry.Ty = V->getType();
6794 Entry.setAttributes(&CS, AttrI);
6795 Args.push_back(Entry);
6796 }
6797
6798 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
6799 TargetLowering::CallLoweringInfo CLI(DAG);
6800 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6801 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
6802 .setDiscardResult(!CI.use_empty());
6803
6804 const TargetLowering *TLI = TM.getTargetLowering();
6805 return TLI->LowerCallTo(CLI);
6806 }
6807
6808 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6809 /// or patchpoint target node's operand list.
6810 ///
6811 /// Constants are converted to TargetConstants purely as an optimization to
6812 /// avoid constant materialization and register allocation.
6813 ///
6814 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6815 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6816 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6817 /// address materialization and register allocation, but may also be required
6818 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6819 /// alloca in the entry block, then the runtime may assume that the alloca's
6820 /// StackMap location can be read immediately after compilation and that the
6821 /// location is valid at any point during execution (this is similar to the
6822 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6823 /// only available in a register, then the runtime would need to trap when
6824 /// execution reaches the StackMap in order to read the alloca's location.
addStackMapLiveVars(const CallInst & CI,unsigned StartIdx,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)6825 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx,
6826 SmallVectorImpl<SDValue> &Ops,
6827 SelectionDAGBuilder &Builder) {
6828 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) {
6829 SDValue OpVal = Builder.getValue(CI.getArgOperand(i));
6830 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6831 Ops.push_back(
6832 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6833 Ops.push_back(
6834 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6835 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6836 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6837 Ops.push_back(
6838 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
6839 } else
6840 Ops.push_back(OpVal);
6841 }
6842 }
6843
6844 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
visitStackmap(const CallInst & CI)6845 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6846 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6847 // [live variables...])
6848
6849 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6850
6851 SDValue Chain, InFlag, Callee, NullPtr;
6852 SmallVector<SDValue, 32> Ops;
6853
6854 SDLoc DL = getCurSDLoc();
6855 Callee = getValue(CI.getCalledValue());
6856 NullPtr = DAG.getIntPtrConstant(0, true);
6857
6858 // The stackmap intrinsic only records the live variables (the arguemnts
6859 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6860 // intrinsic, this won't be lowered to a function call. This means we don't
6861 // have to worry about calling conventions and target specific lowering code.
6862 // Instead we perform the call lowering right here.
6863 //
6864 // chain, flag = CALLSEQ_START(chain, 0)
6865 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6866 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6867 //
6868 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6869 InFlag = Chain.getValue(1);
6870
6871 // Add the <id> and <numBytes> constants.
6872 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6873 Ops.push_back(DAG.getTargetConstant(
6874 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
6875 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6876 Ops.push_back(DAG.getTargetConstant(
6877 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
6878
6879 // Push live variables for the stack map.
6880 addStackMapLiveVars(CI, 2, Ops, *this);
6881
6882 // We are not pushing any register mask info here on the operands list,
6883 // because the stackmap doesn't clobber anything.
6884
6885 // Push the chain and the glue flag.
6886 Ops.push_back(Chain);
6887 Ops.push_back(InFlag);
6888
6889 // Create the STACKMAP node.
6890 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6891 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6892 Chain = SDValue(SM, 0);
6893 InFlag = Chain.getValue(1);
6894
6895 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6896
6897 // Stackmaps don't generate values, so nothing goes into the NodeMap.
6898
6899 // Set the root to the target-lowered call chain.
6900 DAG.setRoot(Chain);
6901
6902 // Inform the Frame Information that we have a stackmap in this function.
6903 FuncInfo.MF->getFrameInfo()->setHasStackMap();
6904 }
6905
6906 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
visitPatchpoint(const CallInst & CI)6907 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
6908 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6909 // i32 <numBytes>,
6910 // i8* <target>,
6911 // i32 <numArgs>,
6912 // [Args...],
6913 // [live variables...])
6914
6915 CallingConv::ID CC = CI.getCallingConv();
6916 bool isAnyRegCC = CC == CallingConv::AnyReg;
6917 bool hasDef = !CI.getType()->isVoidTy();
6918 SDValue Callee = getValue(CI.getOperand(2)); // <target>
6919
6920 // Get the real number of arguments participating in the call <numArgs>
6921 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos));
6922 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6923
6924 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6925 // Intrinsics include all meta-operands up to but not including CC.
6926 unsigned NumMetaOpers = PatchPointOpers::CCPos;
6927 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs &&
6928 "Not enough arguments provided to the patchpoint intrinsic");
6929
6930 // For AnyRegCC the arguments are lowered later on manually.
6931 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
6932 std::pair<SDValue, SDValue> Result =
6933 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC);
6934
6935 // Set the root to the target-lowered call chain.
6936 SDValue Chain = Result.second;
6937 DAG.setRoot(Chain);
6938
6939 SDNode *CallEnd = Chain.getNode();
6940 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6941 CallEnd = CallEnd->getOperand(0).getNode();
6942
6943 /// Get a call instruction from the call sequence chain.
6944 /// Tail calls are not allowed.
6945 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6946 "Expected a callseq node.");
6947 SDNode *Call = CallEnd->getOperand(0).getNode();
6948 bool hasGlue = Call->getGluedNode();
6949
6950 // Replace the target specific call node with the patchable intrinsic.
6951 SmallVector<SDValue, 8> Ops;
6952
6953 // Add the <id> and <numBytes> constants.
6954 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6955 Ops.push_back(DAG.getTargetConstant(
6956 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
6957 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6958 Ops.push_back(DAG.getTargetConstant(
6959 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
6960
6961 // Assume that the Callee is a constant address.
6962 // FIXME: handle function symbols in the future.
6963 Ops.push_back(
6964 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
6965 /*isTarget=*/true));
6966
6967 // Adjust <numArgs> to account for any arguments that have been passed on the
6968 // stack instead.
6969 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6970 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
6971 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
6972 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
6973
6974 // Add the calling convention
6975 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
6976
6977 // Add the arguments we omitted previously. The register allocator should
6978 // place these in any free register.
6979 if (isAnyRegCC)
6980 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6981 Ops.push_back(getValue(CI.getArgOperand(i)));
6982
6983 // Push the arguments from the call instruction up to the register mask.
6984 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
6985 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
6986 Ops.push_back(*i);
6987
6988 // Push live variables for the stack map.
6989 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this);
6990
6991 // Push the register mask info.
6992 if (hasGlue)
6993 Ops.push_back(*(Call->op_end()-2));
6994 else
6995 Ops.push_back(*(Call->op_end()-1));
6996
6997 // Push the chain (this is originally the first operand of the call, but
6998 // becomes now the last or second to last operand).
6999 Ops.push_back(*(Call->op_begin()));
7000
7001 // Push the glue flag (last operand).
7002 if (hasGlue)
7003 Ops.push_back(*(Call->op_end()-1));
7004
7005 SDVTList NodeTys;
7006 if (isAnyRegCC && hasDef) {
7007 // Create the return types based on the intrinsic definition
7008 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7009 SmallVector<EVT, 3> ValueVTs;
7010 ComputeValueVTs(TLI, CI.getType(), ValueVTs);
7011 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7012
7013 // There is always a chain and a glue type at the end
7014 ValueVTs.push_back(MVT::Other);
7015 ValueVTs.push_back(MVT::Glue);
7016 NodeTys = DAG.getVTList(ValueVTs);
7017 } else
7018 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7019
7020 // Replace the target specific call node with a PATCHPOINT node.
7021 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7022 getCurSDLoc(), NodeTys, Ops);
7023
7024 // Update the NodeMap.
7025 if (hasDef) {
7026 if (isAnyRegCC)
7027 setValue(&CI, SDValue(MN, 0));
7028 else
7029 setValue(&CI, Result.first);
7030 }
7031
7032 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7033 // call sequence. Furthermore the location of the chain and glue can change
7034 // when the AnyReg calling convention is used and the intrinsic returns a
7035 // value.
7036 if (isAnyRegCC && hasDef) {
7037 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7038 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7039 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7040 } else
7041 DAG.ReplaceAllUsesWith(Call, MN);
7042 DAG.DeleteNode(Call);
7043
7044 // Inform the Frame Information that we have a patchpoint in this function.
7045 FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7046 }
7047
7048 /// Returns an AttributeSet representing the attributes applied to the return
7049 /// value of the given call.
getReturnAttrs(TargetLowering::CallLoweringInfo & CLI)7050 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7051 SmallVector<Attribute::AttrKind, 2> Attrs;
7052 if (CLI.RetSExt)
7053 Attrs.push_back(Attribute::SExt);
7054 if (CLI.RetZExt)
7055 Attrs.push_back(Attribute::ZExt);
7056 if (CLI.IsInReg)
7057 Attrs.push_back(Attribute::InReg);
7058
7059 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7060 Attrs);
7061 }
7062
7063 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7064 /// implementation, which just calls LowerCall.
7065 /// FIXME: When all targets are
7066 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7067 std::pair<SDValue, SDValue>
LowerCallTo(TargetLowering::CallLoweringInfo & CLI) const7068 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7069 // Handle the incoming return values from the call.
7070 CLI.Ins.clear();
7071 Type *OrigRetTy = CLI.RetTy;
7072 SmallVector<EVT, 4> RetTys;
7073 SmallVector<uint64_t, 4> Offsets;
7074 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets);
7075
7076 SmallVector<ISD::OutputArg, 4> Outs;
7077 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this);
7078
7079 bool CanLowerReturn =
7080 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7081 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7082
7083 SDValue DemoteStackSlot;
7084 int DemoteStackIdx = -100;
7085 if (!CanLowerReturn) {
7086 // FIXME: equivalent assert?
7087 // assert(!CS.hasInAllocaArgument() &&
7088 // "sret demotion is incompatible with inalloca");
7089 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy);
7090 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy);
7091 MachineFunction &MF = CLI.DAG.getMachineFunction();
7092 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7093 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7094
7095 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy());
7096 ArgListEntry Entry;
7097 Entry.Node = DemoteStackSlot;
7098 Entry.Ty = StackSlotPtrType;
7099 Entry.isSExt = false;
7100 Entry.isZExt = false;
7101 Entry.isInReg = false;
7102 Entry.isSRet = true;
7103 Entry.isNest = false;
7104 Entry.isByVal = false;
7105 Entry.isReturned = false;
7106 Entry.Alignment = Align;
7107 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7108 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7109 } else {
7110 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7111 EVT VT = RetTys[I];
7112 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7113 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7114 for (unsigned i = 0; i != NumRegs; ++i) {
7115 ISD::InputArg MyFlags;
7116 MyFlags.VT = RegisterVT;
7117 MyFlags.ArgVT = VT;
7118 MyFlags.Used = CLI.IsReturnValueUsed;
7119 if (CLI.RetSExt)
7120 MyFlags.Flags.setSExt();
7121 if (CLI.RetZExt)
7122 MyFlags.Flags.setZExt();
7123 if (CLI.IsInReg)
7124 MyFlags.Flags.setInReg();
7125 CLI.Ins.push_back(MyFlags);
7126 }
7127 }
7128 }
7129
7130 // Handle all of the outgoing arguments.
7131 CLI.Outs.clear();
7132 CLI.OutVals.clear();
7133 ArgListTy &Args = CLI.getArgs();
7134 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7135 SmallVector<EVT, 4> ValueVTs;
7136 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7137 Type *FinalType = Args[i].Ty;
7138 if (Args[i].isByVal)
7139 FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7140 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7141 FinalType, CLI.CallConv, CLI.IsVarArg);
7142 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7143 ++Value) {
7144 EVT VT = ValueVTs[Value];
7145 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7146 SDValue Op = SDValue(Args[i].Node.getNode(),
7147 Args[i].Node.getResNo() + Value);
7148 ISD::ArgFlagsTy Flags;
7149 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
7150
7151 if (Args[i].isZExt)
7152 Flags.setZExt();
7153 if (Args[i].isSExt)
7154 Flags.setSExt();
7155 if (Args[i].isInReg)
7156 Flags.setInReg();
7157 if (Args[i].isSRet)
7158 Flags.setSRet();
7159 if (Args[i].isByVal)
7160 Flags.setByVal();
7161 if (Args[i].isInAlloca) {
7162 Flags.setInAlloca();
7163 // Set the byval flag for CCAssignFn callbacks that don't know about
7164 // inalloca. This way we can know how many bytes we should've allocated
7165 // and how many bytes a callee cleanup function will pop. If we port
7166 // inalloca to more targets, we'll have to add custom inalloca handling
7167 // in the various CC lowering callbacks.
7168 Flags.setByVal();
7169 }
7170 if (Args[i].isByVal || Args[i].isInAlloca) {
7171 PointerType *Ty = cast<PointerType>(Args[i].Ty);
7172 Type *ElementTy = Ty->getElementType();
7173 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7174 // For ByVal, alignment should come from FE. BE will guess if this
7175 // info is not there but there are cases it cannot get right.
7176 unsigned FrameAlign;
7177 if (Args[i].Alignment)
7178 FrameAlign = Args[i].Alignment;
7179 else
7180 FrameAlign = getByValTypeAlignment(ElementTy);
7181 Flags.setByValAlign(FrameAlign);
7182 }
7183 if (Args[i].isNest)
7184 Flags.setNest();
7185 if (NeedsRegBlock)
7186 Flags.setInConsecutiveRegs();
7187 Flags.setOrigAlign(OriginalAlignment);
7188
7189 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7190 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7191 SmallVector<SDValue, 4> Parts(NumParts);
7192 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7193
7194 if (Args[i].isSExt)
7195 ExtendKind = ISD::SIGN_EXTEND;
7196 else if (Args[i].isZExt)
7197 ExtendKind = ISD::ZERO_EXTEND;
7198
7199 // Conservatively only handle 'returned' on non-vectors for now
7200 if (Args[i].isReturned && !Op.getValueType().isVector()) {
7201 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7202 "unexpected use of 'returned'");
7203 // Before passing 'returned' to the target lowering code, ensure that
7204 // either the register MVT and the actual EVT are the same size or that
7205 // the return value and argument are extended in the same way; in these
7206 // cases it's safe to pass the argument register value unchanged as the
7207 // return register value (although it's at the target's option whether
7208 // to do so)
7209 // TODO: allow code generation to take advantage of partially preserved
7210 // registers rather than clobbering the entire register when the
7211 // parameter extension method is not compatible with the return
7212 // extension method
7213 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7214 (ExtendKind != ISD::ANY_EXTEND &&
7215 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7216 Flags.setReturned();
7217 }
7218
7219 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7220 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7221
7222 for (unsigned j = 0; j != NumParts; ++j) {
7223 // if it isn't first piece, alignment must be 1
7224 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7225 i < CLI.NumFixedArgs,
7226 i, j*Parts[j].getValueType().getStoreSize());
7227 if (NumParts > 1 && j == 0)
7228 MyFlags.Flags.setSplit();
7229 else if (j != 0)
7230 MyFlags.Flags.setOrigAlign(1);
7231
7232 // Only mark the end at the last register of the last value.
7233 if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1)
7234 MyFlags.Flags.setInConsecutiveRegsLast();
7235
7236 CLI.Outs.push_back(MyFlags);
7237 CLI.OutVals.push_back(Parts[j]);
7238 }
7239 }
7240 }
7241
7242 SmallVector<SDValue, 4> InVals;
7243 CLI.Chain = LowerCall(CLI, InVals);
7244
7245 // Verify that the target's LowerCall behaved as expected.
7246 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7247 "LowerCall didn't return a valid chain!");
7248 assert((!CLI.IsTailCall || InVals.empty()) &&
7249 "LowerCall emitted a return value for a tail call!");
7250 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7251 "LowerCall didn't emit the correct number of values!");
7252
7253 // For a tail call, the return value is merely live-out and there aren't
7254 // any nodes in the DAG representing it. Return a special value to
7255 // indicate that a tail call has been emitted and no more Instructions
7256 // should be processed in the current block.
7257 if (CLI.IsTailCall) {
7258 CLI.DAG.setRoot(CLI.Chain);
7259 return std::make_pair(SDValue(), SDValue());
7260 }
7261
7262 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7263 assert(InVals[i].getNode() &&
7264 "LowerCall emitted a null value!");
7265 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7266 "LowerCall emitted a value with the wrong type!");
7267 });
7268
7269 SmallVector<SDValue, 4> ReturnValues;
7270 if (!CanLowerReturn) {
7271 // The instruction result is the result of loading from the
7272 // hidden sret parameter.
7273 SmallVector<EVT, 1> PVTs;
7274 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7275
7276 ComputeValueVTs(*this, PtrRetTy, PVTs);
7277 assert(PVTs.size() == 1 && "Pointers should fit in one register");
7278 EVT PtrVT = PVTs[0];
7279
7280 unsigned NumValues = RetTys.size();
7281 ReturnValues.resize(NumValues);
7282 SmallVector<SDValue, 4> Chains(NumValues);
7283
7284 for (unsigned i = 0; i < NumValues; ++i) {
7285 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7286 CLI.DAG.getConstant(Offsets[i], PtrVT));
7287 SDValue L = CLI.DAG.getLoad(
7288 RetTys[i], CLI.DL, CLI.Chain, Add,
7289 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
7290 false, false, 1);
7291 ReturnValues[i] = L;
7292 Chains[i] = L.getValue(1);
7293 }
7294
7295 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7296 } else {
7297 // Collect the legal value parts into potentially illegal values
7298 // that correspond to the original function's return values.
7299 ISD::NodeType AssertOp = ISD::DELETED_NODE;
7300 if (CLI.RetSExt)
7301 AssertOp = ISD::AssertSext;
7302 else if (CLI.RetZExt)
7303 AssertOp = ISD::AssertZext;
7304 unsigned CurReg = 0;
7305 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7306 EVT VT = RetTys[I];
7307 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7308 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7309
7310 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7311 NumRegs, RegisterVT, VT, nullptr,
7312 AssertOp));
7313 CurReg += NumRegs;
7314 }
7315
7316 // For a function returning void, there is no return value. We can't create
7317 // such a node, so we just return a null return value in that case. In
7318 // that case, nothing will actually look at the value.
7319 if (ReturnValues.empty())
7320 return std::make_pair(SDValue(), CLI.Chain);
7321 }
7322
7323 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7324 CLI.DAG.getVTList(RetTys), ReturnValues);
7325 return std::make_pair(Res, CLI.Chain);
7326 }
7327
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const7328 void TargetLowering::LowerOperationWrapper(SDNode *N,
7329 SmallVectorImpl<SDValue> &Results,
7330 SelectionDAG &DAG) const {
7331 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7332 if (Res.getNode())
7333 Results.push_back(Res);
7334 }
7335
LowerOperation(SDValue Op,SelectionDAG & DAG) const7336 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7337 llvm_unreachable("LowerOperation not implemented for this target!");
7338 }
7339
7340 void
CopyValueToVirtualRegister(const Value * V,unsigned Reg)7341 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7342 SDValue Op = getNonRegisterValue(V);
7343 assert((Op.getOpcode() != ISD::CopyFromReg ||
7344 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7345 "Copy from a reg to the same reg!");
7346 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7347
7348 const TargetLowering *TLI = TM.getTargetLowering();
7349 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
7350 SDValue Chain = DAG.getEntryNode();
7351 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V);
7352 PendingExports.push_back(Chain);
7353 }
7354
7355 #include "llvm/CodeGen/SelectionDAGISel.h"
7356
7357 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7358 /// entry block, return true. This includes arguments used by switches, since
7359 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A,bool FastISel)7360 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7361 // With FastISel active, we may be splitting blocks, so force creation
7362 // of virtual registers for all non-dead arguments.
7363 if (FastISel)
7364 return A->use_empty();
7365
7366 const BasicBlock *Entry = A->getParent()->begin();
7367 for (const User *U : A->users())
7368 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7369 return false; // Use not in entry block.
7370
7371 return true;
7372 }
7373
LowerArguments(const Function & F)7374 void SelectionDAGISel::LowerArguments(const Function &F) {
7375 SelectionDAG &DAG = SDB->DAG;
7376 SDLoc dl = SDB->getCurSDLoc();
7377 const TargetLowering *TLI = getTargetLowering();
7378 const DataLayout *DL = TLI->getDataLayout();
7379 SmallVector<ISD::InputArg, 16> Ins;
7380
7381 if (!FuncInfo->CanLowerReturn) {
7382 // Put in an sret pointer parameter before all the other parameters.
7383 SmallVector<EVT, 1> ValueVTs;
7384 ComputeValueVTs(*getTargetLowering(),
7385 PointerType::getUnqual(F.getReturnType()), ValueVTs);
7386
7387 // NOTE: Assuming that a pointer will never break down to more than one VT
7388 // or one register.
7389 ISD::ArgFlagsTy Flags;
7390 Flags.setSRet();
7391 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7392 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
7393 Ins.push_back(RetArg);
7394 }
7395
7396 // Set up the incoming argument description vector.
7397 unsigned Idx = 1;
7398 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7399 I != E; ++I, ++Idx) {
7400 SmallVector<EVT, 4> ValueVTs;
7401 ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7402 bool isArgValueUsed = !I->use_empty();
7403 unsigned PartBase = 0;
7404 Type *FinalType = I->getType();
7405 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7406 FinalType = cast<PointerType>(FinalType)->getElementType();
7407 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7408 FinalType, F.getCallingConv(), F.isVarArg());
7409 for (unsigned Value = 0, NumValues = ValueVTs.size();
7410 Value != NumValues; ++Value) {
7411 EVT VT = ValueVTs[Value];
7412 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7413 ISD::ArgFlagsTy Flags;
7414 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
7415
7416 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7417 Flags.setZExt();
7418 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7419 Flags.setSExt();
7420 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7421 Flags.setInReg();
7422 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7423 Flags.setSRet();
7424 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7425 Flags.setByVal();
7426 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7427 Flags.setInAlloca();
7428 // Set the byval flag for CCAssignFn callbacks that don't know about
7429 // inalloca. This way we can know how many bytes we should've allocated
7430 // and how many bytes a callee cleanup function will pop. If we port
7431 // inalloca to more targets, we'll have to add custom inalloca handling
7432 // in the various CC lowering callbacks.
7433 Flags.setByVal();
7434 }
7435 if (Flags.isByVal() || Flags.isInAlloca()) {
7436 PointerType *Ty = cast<PointerType>(I->getType());
7437 Type *ElementTy = Ty->getElementType();
7438 Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7439 // For ByVal, alignment should be passed from FE. BE will guess if
7440 // this info is not there but there are cases it cannot get right.
7441 unsigned FrameAlign;
7442 if (F.getParamAlignment(Idx))
7443 FrameAlign = F.getParamAlignment(Idx);
7444 else
7445 FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7446 Flags.setByValAlign(FrameAlign);
7447 }
7448 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7449 Flags.setNest();
7450 if (NeedsRegBlock)
7451 Flags.setInConsecutiveRegs();
7452 Flags.setOrigAlign(OriginalAlignment);
7453
7454 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7455 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7456 for (unsigned i = 0; i != NumRegs; ++i) {
7457 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7458 Idx-1, PartBase+i*RegisterVT.getStoreSize());
7459 if (NumRegs > 1 && i == 0)
7460 MyFlags.Flags.setSplit();
7461 // if it isn't first piece, alignment must be 1
7462 else if (i > 0)
7463 MyFlags.Flags.setOrigAlign(1);
7464
7465 // Only mark the end at the last register of the last value.
7466 if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1)
7467 MyFlags.Flags.setInConsecutiveRegsLast();
7468
7469 Ins.push_back(MyFlags);
7470 }
7471 PartBase += VT.getStoreSize();
7472 }
7473 }
7474
7475 // Call the target to set up the argument values.
7476 SmallVector<SDValue, 8> InVals;
7477 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
7478 F.isVarArg(), Ins,
7479 dl, DAG, InVals);
7480
7481 // Verify that the target's LowerFormalArguments behaved as expected.
7482 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7483 "LowerFormalArguments didn't return a valid chain!");
7484 assert(InVals.size() == Ins.size() &&
7485 "LowerFormalArguments didn't emit the correct number of values!");
7486 DEBUG({
7487 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7488 assert(InVals[i].getNode() &&
7489 "LowerFormalArguments emitted a null value!");
7490 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7491 "LowerFormalArguments emitted a value with the wrong type!");
7492 }
7493 });
7494
7495 // Update the DAG with the new chain value resulting from argument lowering.
7496 DAG.setRoot(NewRoot);
7497
7498 // Set up the argument values.
7499 unsigned i = 0;
7500 Idx = 1;
7501 if (!FuncInfo->CanLowerReturn) {
7502 // Create a virtual register for the sret pointer, and put in a copy
7503 // from the sret argument into it.
7504 SmallVector<EVT, 1> ValueVTs;
7505 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7506 MVT VT = ValueVTs[0].getSimpleVT();
7507 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7508 ISD::NodeType AssertOp = ISD::DELETED_NODE;
7509 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7510 RegVT, VT, nullptr, AssertOp);
7511
7512 MachineFunction& MF = SDB->DAG.getMachineFunction();
7513 MachineRegisterInfo& RegInfo = MF.getRegInfo();
7514 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7515 FuncInfo->DemoteRegister = SRetReg;
7516 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
7517 SRetReg, ArgValue);
7518 DAG.setRoot(NewRoot);
7519
7520 // i indexes lowered arguments. Bump it past the hidden sret argument.
7521 // Idx indexes LLVM arguments. Don't touch it.
7522 ++i;
7523 }
7524
7525 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7526 ++I, ++Idx) {
7527 SmallVector<SDValue, 4> ArgValues;
7528 SmallVector<EVT, 4> ValueVTs;
7529 ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7530 unsigned NumValues = ValueVTs.size();
7531
7532 // If this argument is unused then remember its value. It is used to generate
7533 // debugging information.
7534 if (I->use_empty() && NumValues) {
7535 SDB->setUnusedArgValue(I, InVals[i]);
7536
7537 // Also remember any frame index for use in FastISel.
7538 if (FrameIndexSDNode *FI =
7539 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7540 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7541 }
7542
7543 for (unsigned Val = 0; Val != NumValues; ++Val) {
7544 EVT VT = ValueVTs[Val];
7545 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7546 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7547
7548 if (!I->use_empty()) {
7549 ISD::NodeType AssertOp = ISD::DELETED_NODE;
7550 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7551 AssertOp = ISD::AssertSext;
7552 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7553 AssertOp = ISD::AssertZext;
7554
7555 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7556 NumParts, PartVT, VT,
7557 nullptr, AssertOp));
7558 }
7559
7560 i += NumParts;
7561 }
7562
7563 // We don't need to do anything else for unused arguments.
7564 if (ArgValues.empty())
7565 continue;
7566
7567 // Note down frame index.
7568 if (FrameIndexSDNode *FI =
7569 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7570 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7571
7572 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7573 SDB->getCurSDLoc());
7574
7575 SDB->setValue(I, Res);
7576 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7577 if (LoadSDNode *LNode =
7578 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7579 if (FrameIndexSDNode *FI =
7580 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7581 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7582 }
7583
7584 // If this argument is live outside of the entry block, insert a copy from
7585 // wherever we got it to the vreg that other BB's will reference it as.
7586 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7587 // If we can, though, try to skip creating an unnecessary vreg.
7588 // FIXME: This isn't very clean... it would be nice to make this more
7589 // general. It's also subtly incompatible with the hacks FastISel
7590 // uses with vregs.
7591 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7592 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7593 FuncInfo->ValueMap[I] = Reg;
7594 continue;
7595 }
7596 }
7597 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7598 FuncInfo->InitializeRegForValue(I);
7599 SDB->CopyToExportRegsIfNeeded(I);
7600 }
7601 }
7602
7603 assert(i == InVals.size() && "Argument register count mismatch!");
7604
7605 // Finally, if the target has anything special to do, allow it to do so.
7606 // FIXME: this should insert code into the DAG!
7607 EmitFunctionEntryCode();
7608 }
7609
7610 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
7611 /// ensure constants are generated when needed. Remember the virtual registers
7612 /// that need to be added to the Machine PHI nodes as input. We cannot just
7613 /// directly add them, because expansion might result in multiple MBB's for one
7614 /// BB. As such, the start of the BB might correspond to a different MBB than
7615 /// the end.
7616 ///
7617 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)7618 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7619 const TerminatorInst *TI = LLVMBB->getTerminator();
7620
7621 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7622
7623 // Check successor nodes' PHI nodes that expect a constant to be available
7624 // from this block.
7625 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7626 const BasicBlock *SuccBB = TI->getSuccessor(succ);
7627 if (!isa<PHINode>(SuccBB->begin())) continue;
7628 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7629
7630 // If this terminator has multiple identical successors (common for
7631 // switches), only handle each succ once.
7632 if (!SuccsHandled.insert(SuccMBB)) continue;
7633
7634 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7635
7636 // At this point we know that there is a 1-1 correspondence between LLVM PHI
7637 // nodes and Machine PHI nodes, but the incoming operands have not been
7638 // emitted yet.
7639 for (BasicBlock::const_iterator I = SuccBB->begin();
7640 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7641 // Ignore dead phi's.
7642 if (PN->use_empty()) continue;
7643
7644 // Skip empty types
7645 if (PN->getType()->isEmptyTy())
7646 continue;
7647
7648 unsigned Reg;
7649 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7650
7651 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7652 unsigned &RegOut = ConstantsOut[C];
7653 if (RegOut == 0) {
7654 RegOut = FuncInfo.CreateRegs(C->getType());
7655 CopyValueToVirtualRegister(C, RegOut);
7656 }
7657 Reg = RegOut;
7658 } else {
7659 DenseMap<const Value *, unsigned>::iterator I =
7660 FuncInfo.ValueMap.find(PHIOp);
7661 if (I != FuncInfo.ValueMap.end())
7662 Reg = I->second;
7663 else {
7664 assert(isa<AllocaInst>(PHIOp) &&
7665 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7666 "Didn't codegen value into a register!??");
7667 Reg = FuncInfo.CreateRegs(PHIOp->getType());
7668 CopyValueToVirtualRegister(PHIOp, Reg);
7669 }
7670 }
7671
7672 // Remember that this register needs to added to the machine PHI node as
7673 // the input for this MBB.
7674 SmallVector<EVT, 4> ValueVTs;
7675 const TargetLowering *TLI = TM.getTargetLowering();
7676 ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
7677 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7678 EVT VT = ValueVTs[vti];
7679 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
7680 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7681 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7682 Reg += NumRegisters;
7683 }
7684 }
7685 }
7686
7687 ConstantsOut.clear();
7688 }
7689
7690 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7691 /// is 0.
7692 MachineBasicBlock *
7693 SelectionDAGBuilder::StackProtectorDescriptor::
AddSuccessorMBB(const BasicBlock * BB,MachineBasicBlock * ParentMBB,MachineBasicBlock * SuccMBB)7694 AddSuccessorMBB(const BasicBlock *BB,
7695 MachineBasicBlock *ParentMBB,
7696 MachineBasicBlock *SuccMBB) {
7697 // If SuccBB has not been created yet, create it.
7698 if (!SuccMBB) {
7699 MachineFunction *MF = ParentMBB->getParent();
7700 MachineFunction::iterator BBI = ParentMBB;
7701 SuccMBB = MF->CreateMachineBasicBlock(BB);
7702 MF->insert(++BBI, SuccMBB);
7703 }
7704 // Add it as a successor of ParentMBB.
7705 ParentMBB->addSuccessor(SuccMBB);
7706 return SuccMBB;
7707 }
7708