1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBasedAliasAnalysis pass, which implements
11 // metadata-based TBAA.
12 //
13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
15 // a type system of a higher level language. This can be used to implement
16 // typical C/C++ TBAA, but it can also be used to implement custom alias
17 // analysis behavior for other languages.
18 //
19 // We now support two types of metadata format: scalar TBAA and struct-path
20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22 // can be dropped.
23 //
24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25 // three fields, e.g.:
26 // !0 = metadata !{ metadata !"an example type tree" }
27 // !1 = metadata !{ metadata !"int", metadata !0 }
28 // !2 = metadata !{ metadata !"float", metadata !0 }
29 // !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
30 //
31 // The first field is an identity field. It can be any value, usually
32 // an MDString, which uniquely identifies the type. The most important
33 // name in the tree is the name of the root node. Two trees with
34 // different root node names are entirely disjoint, even if they
35 // have leaves with common names.
36 //
37 // The second field identifies the type's parent node in the tree, or
38 // is null or omitted for a root node. A type is considered to alias
39 // all of its descendants and all of its ancestors in the tree. Also,
40 // a type is considered to alias all types in other trees, so that
41 // bitcode produced from multiple front-ends is handled conservatively.
42 //
43 // If the third field is present, it's an integer which if equal to 1
44 // indicates that the type is "constant" (meaning pointsToConstantMemory
45 // should return true; see
46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 //
48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
49 // "!tbaa" are called path tag nodes.
50 //
51 // The path tag node has 4 fields with the last field being optional.
52 //
53 // The first field is the base type node, it can be a struct type node
54 // or a scalar type node. The second field is the access type node, it
55 // must be a scalar type node. The third field is the offset into the base type.
56 // The last field has the same meaning as the last field of our scalar TBAA:
57 // it's an integer which if equal to 1 indicates that the access is "constant".
58 //
59 // The struct type node has a name and a list of pairs, one pair for each member
60 // of the struct. The first element of each pair is a type node (a struct type
61 // node or a sclar type node), specifying the type of the member, the second
62 // element of each pair is the offset of the member.
63 //
64 // Given an example
65 // typedef struct {
66 // short s;
67 // } A;
68 // typedef struct {
69 // uint16_t s;
70 // A a;
71 // } B;
72 //
73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
75 // type short) and the offset is 4.
76 //
77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
79 // !2 = metadata !{metadata !"short", metadata !1} // Scalar type node
80 // !3 = metadata !{metadata !"A", metadata !2, i64 0} // Struct type node
81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
82 // // Struct type node
83 // !5 = metadata !{metadata !4, metadata !2, i64 4} // Path tag node
84 //
85 // The struct type nodes and the scalar type nodes form a type DAG.
86 // Root (!0)
87 // char (!1) -- edge to Root
88 // short (!2) -- edge to char
89 // A (!3) -- edge with offset 0 to short
90 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 //
92 // To check if two tags (tagX and tagY) can alias, we start from the base type
93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
94 // the offset until we reach the base type of tagY or until we reach the Root
95 // node.
96 // If we reach the base type of tagY, compare the adjusted offset with
97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // otherwise.
99 // If we reach the Root node, perform the above starting from base type of tagY
100 // to see if we reach base type of tagX.
101 //
102 // If they have different roots, they're part of different potentially
103 // unrelated type systems, so we return Alias to be conservative.
104 // If neither node is an ancestor of the other and they have the same root,
105 // then we say NoAlias.
106 //
107 // TODO: The current metadata format doesn't support struct
108 // fields. For example:
109 // struct X {
110 // double d;
111 // int i;
112 // };
113 // void foo(struct X *x, struct X *y, double *p) {
114 // *x = *y;
115 // *p = 0.0;
116 // }
117 // Struct X has a double member, so the store to *x can alias the store to *p.
118 // Currently it's not possible to precisely describe all the things struct X
119 // aliases, so struct assignments must use conservative TBAA nodes. There's
120 // no scheme for attaching metadata to @llvm.memcpy yet either.
121 //
122 //===----------------------------------------------------------------------===//
123
124 #include "llvm/Analysis/Passes.h"
125 #include "llvm/Analysis/AliasAnalysis.h"
126 #include "llvm/IR/Constants.h"
127 #include "llvm/IR/LLVMContext.h"
128 #include "llvm/IR/Metadata.h"
129 #include "llvm/IR/Module.h"
130 #include "llvm/Pass.h"
131 #include "llvm/Support/CommandLine.h"
132 using namespace llvm;
133
134 // A handy option for disabling TBAA functionality. The same effect can also be
135 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
136 // more convenient.
137 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
138
139 namespace {
140 /// TBAANode - This is a simple wrapper around an MDNode which provides a
141 /// higher-level interface by hiding the details of how alias analysis
142 /// information is encoded in its operands.
143 class TBAANode {
144 const MDNode *Node;
145
146 public:
TBAANode()147 TBAANode() : Node(nullptr) {}
TBAANode(const MDNode * N)148 explicit TBAANode(const MDNode *N) : Node(N) {}
149
150 /// getNode - Get the MDNode for this TBAANode.
getNode() const151 const MDNode *getNode() const { return Node; }
152
153 /// getParent - Get this TBAANode's Alias tree parent.
getParent() const154 TBAANode getParent() const {
155 if (Node->getNumOperands() < 2)
156 return TBAANode();
157 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
158 if (!P)
159 return TBAANode();
160 // Ok, this node has a valid parent. Return it.
161 return TBAANode(P);
162 }
163
164 /// TypeIsImmutable - Test if this TBAANode represents a type for objects
165 /// which are not modified (by any means) in the context where this
166 /// AliasAnalysis is relevant.
TypeIsImmutable() const167 bool TypeIsImmutable() const {
168 if (Node->getNumOperands() < 3)
169 return false;
170 ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(2));
171 if (!CI)
172 return false;
173 return CI->getValue()[0];
174 }
175 };
176
177 /// This is a simple wrapper around an MDNode which provides a
178 /// higher-level interface by hiding the details of how alias analysis
179 /// information is encoded in its operands.
180 class TBAAStructTagNode {
181 /// This node should be created with createTBAAStructTagNode.
182 const MDNode *Node;
183
184 public:
TBAAStructTagNode(const MDNode * N)185 explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
186
187 /// Get the MDNode for this TBAAStructTagNode.
getNode() const188 const MDNode *getNode() const { return Node; }
189
getBaseType() const190 const MDNode *getBaseType() const {
191 return dyn_cast_or_null<MDNode>(Node->getOperand(0));
192 }
getAccessType() const193 const MDNode *getAccessType() const {
194 return dyn_cast_or_null<MDNode>(Node->getOperand(1));
195 }
getOffset() const196 uint64_t getOffset() const {
197 return cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
198 }
199 /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
200 /// objects which are not modified (by any means) in the context where this
201 /// AliasAnalysis is relevant.
TypeIsImmutable() const202 bool TypeIsImmutable() const {
203 if (Node->getNumOperands() < 4)
204 return false;
205 ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(3));
206 if (!CI)
207 return false;
208 return CI->getValue()[0];
209 }
210 };
211
212 /// This is a simple wrapper around an MDNode which provides a
213 /// higher-level interface by hiding the details of how alias analysis
214 /// information is encoded in its operands.
215 class TBAAStructTypeNode {
216 /// This node should be created with createTBAAStructTypeNode.
217 const MDNode *Node;
218
219 public:
TBAAStructTypeNode()220 TBAAStructTypeNode() : Node(nullptr) {}
TBAAStructTypeNode(const MDNode * N)221 explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
222
223 /// Get the MDNode for this TBAAStructTypeNode.
getNode() const224 const MDNode *getNode() const { return Node; }
225
226 /// Get this TBAAStructTypeNode's field in the type DAG with
227 /// given offset. Update the offset to be relative to the field type.
getParent(uint64_t & Offset) const228 TBAAStructTypeNode getParent(uint64_t &Offset) const {
229 // Parent can be omitted for the root node.
230 if (Node->getNumOperands() < 2)
231 return TBAAStructTypeNode();
232
233 // Fast path for a scalar type node and a struct type node with a single
234 // field.
235 if (Node->getNumOperands() <= 3) {
236 uint64_t Cur = Node->getNumOperands() == 2 ? 0 :
237 cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
238 Offset -= Cur;
239 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
240 if (!P)
241 return TBAAStructTypeNode();
242 return TBAAStructTypeNode(P);
243 }
244
245 // Assume the offsets are in order. We return the previous field if
246 // the current offset is bigger than the given offset.
247 unsigned TheIdx = 0;
248 for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
249 uint64_t Cur = cast<ConstantInt>(Node->getOperand(Idx + 1))->
250 getZExtValue();
251 if (Cur > Offset) {
252 assert(Idx >= 3 &&
253 "TBAAStructTypeNode::getParent should have an offset match!");
254 TheIdx = Idx - 2;
255 break;
256 }
257 }
258 // Move along the last field.
259 if (TheIdx == 0)
260 TheIdx = Node->getNumOperands() - 2;
261 uint64_t Cur = cast<ConstantInt>(Node->getOperand(TheIdx + 1))->
262 getZExtValue();
263 Offset -= Cur;
264 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
265 if (!P)
266 return TBAAStructTypeNode();
267 return TBAAStructTypeNode(P);
268 }
269 };
270 }
271
272 namespace {
273 /// TypeBasedAliasAnalysis - This is a simple alias analysis
274 /// implementation that uses TypeBased to answer queries.
275 class TypeBasedAliasAnalysis : public ImmutablePass,
276 public AliasAnalysis {
277 public:
278 static char ID; // Class identification, replacement for typeinfo
TypeBasedAliasAnalysis()279 TypeBasedAliasAnalysis() : ImmutablePass(ID) {
280 initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
281 }
282
initializePass()283 void initializePass() override {
284 InitializeAliasAnalysis(this);
285 }
286
287 /// getAdjustedAnalysisPointer - This method is used when a pass implements
288 /// an analysis interface through multiple inheritance. If needed, it
289 /// should override this to adjust the this pointer as needed for the
290 /// specified pass info.
getAdjustedAnalysisPointer(const void * PI)291 void *getAdjustedAnalysisPointer(const void *PI) override {
292 if (PI == &AliasAnalysis::ID)
293 return (AliasAnalysis*)this;
294 return this;
295 }
296
297 bool Aliases(const MDNode *A, const MDNode *B) const;
298 bool PathAliases(const MDNode *A, const MDNode *B) const;
299
300 private:
301 void getAnalysisUsage(AnalysisUsage &AU) const override;
302 AliasResult alias(const Location &LocA, const Location &LocB) override;
303 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
304 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
305 ModRefBehavior getModRefBehavior(const Function *F) override;
306 ModRefResult getModRefInfo(ImmutableCallSite CS,
307 const Location &Loc) override;
308 ModRefResult getModRefInfo(ImmutableCallSite CS1,
309 ImmutableCallSite CS2) override;
310 };
311 } // End of anonymous namespace
312
313 // Register this pass...
314 char TypeBasedAliasAnalysis::ID = 0;
315 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
316 "Type-Based Alias Analysis", false, true, false)
317
createTypeBasedAliasAnalysisPass()318 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
319 return new TypeBasedAliasAnalysis();
320 }
321
322 void
getAnalysisUsage(AnalysisUsage & AU) const323 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
324 AU.setPreservesAll();
325 AliasAnalysis::getAnalysisUsage(AU);
326 }
327
328 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
329 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
330 /// format.
isStructPathTBAA(const MDNode * MD)331 static bool isStructPathTBAA(const MDNode *MD) {
332 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
333 // a TBAA tag.
334 return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
335 }
336
337 /// Aliases - Test whether the type represented by A may alias the
338 /// type represented by B.
339 bool
Aliases(const MDNode * A,const MDNode * B) const340 TypeBasedAliasAnalysis::Aliases(const MDNode *A,
341 const MDNode *B) const {
342 // Make sure that both MDNodes are struct-path aware.
343 if (isStructPathTBAA(A) && isStructPathTBAA(B))
344 return PathAliases(A, B);
345
346 // Keep track of the root node for A and B.
347 TBAANode RootA, RootB;
348
349 // Climb the tree from A to see if we reach B.
350 for (TBAANode T(A); ; ) {
351 if (T.getNode() == B)
352 // B is an ancestor of A.
353 return true;
354
355 RootA = T;
356 T = T.getParent();
357 if (!T.getNode())
358 break;
359 }
360
361 // Climb the tree from B to see if we reach A.
362 for (TBAANode T(B); ; ) {
363 if (T.getNode() == A)
364 // A is an ancestor of B.
365 return true;
366
367 RootB = T;
368 T = T.getParent();
369 if (!T.getNode())
370 break;
371 }
372
373 // Neither node is an ancestor of the other.
374
375 // If they have different roots, they're part of different potentially
376 // unrelated type systems, so we must be conservative.
377 if (RootA.getNode() != RootB.getNode())
378 return true;
379
380 // If they have the same root, then we've proved there's no alias.
381 return false;
382 }
383
384 /// Test whether the struct-path tag represented by A may alias the
385 /// struct-path tag represented by B.
386 bool
PathAliases(const MDNode * A,const MDNode * B) const387 TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
388 const MDNode *B) const {
389 // Verify that both input nodes are struct-path aware.
390 assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
391 assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
392
393 // Keep track of the root node for A and B.
394 TBAAStructTypeNode RootA, RootB;
395 TBAAStructTagNode TagA(A), TagB(B);
396
397 // TODO: We need to check if AccessType of TagA encloses AccessType of
398 // TagB to support aggregate AccessType. If yes, return true.
399
400 // Start from the base type of A, follow the edge with the correct offset in
401 // the type DAG and adjust the offset until we reach the base type of B or
402 // until we reach the Root node.
403 // Compare the adjusted offset once we have the same base.
404
405 // Climb the type DAG from base type of A to see if we reach base type of B.
406 const MDNode *BaseA = TagA.getBaseType();
407 const MDNode *BaseB = TagB.getBaseType();
408 uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
409 for (TBAAStructTypeNode T(BaseA); ; ) {
410 if (T.getNode() == BaseB)
411 // Base type of A encloses base type of B, check if the offsets match.
412 return OffsetA == OffsetB;
413
414 RootA = T;
415 // Follow the edge with the correct offset, OffsetA will be adjusted to
416 // be relative to the field type.
417 T = T.getParent(OffsetA);
418 if (!T.getNode())
419 break;
420 }
421
422 // Reset OffsetA and climb the type DAG from base type of B to see if we reach
423 // base type of A.
424 OffsetA = TagA.getOffset();
425 for (TBAAStructTypeNode T(BaseB); ; ) {
426 if (T.getNode() == BaseA)
427 // Base type of B encloses base type of A, check if the offsets match.
428 return OffsetA == OffsetB;
429
430 RootB = T;
431 // Follow the edge with the correct offset, OffsetB will be adjusted to
432 // be relative to the field type.
433 T = T.getParent(OffsetB);
434 if (!T.getNode())
435 break;
436 }
437
438 // Neither node is an ancestor of the other.
439
440 // If they have different roots, they're part of different potentially
441 // unrelated type systems, so we must be conservative.
442 if (RootA.getNode() != RootB.getNode())
443 return true;
444
445 // If they have the same root, then we've proved there's no alias.
446 return false;
447 }
448
449 AliasAnalysis::AliasResult
alias(const Location & LocA,const Location & LocB)450 TypeBasedAliasAnalysis::alias(const Location &LocA,
451 const Location &LocB) {
452 if (!EnableTBAA)
453 return AliasAnalysis::alias(LocA, LocB);
454
455 // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
456 // be conservative.
457 const MDNode *AM = LocA.TBAATag;
458 if (!AM) return AliasAnalysis::alias(LocA, LocB);
459 const MDNode *BM = LocB.TBAATag;
460 if (!BM) return AliasAnalysis::alias(LocA, LocB);
461
462 // If they may alias, chain to the next AliasAnalysis.
463 if (Aliases(AM, BM))
464 return AliasAnalysis::alias(LocA, LocB);
465
466 // Otherwise return a definitive result.
467 return NoAlias;
468 }
469
pointsToConstantMemory(const Location & Loc,bool OrLocal)470 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
471 bool OrLocal) {
472 if (!EnableTBAA)
473 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
474
475 const MDNode *M = Loc.TBAATag;
476 if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
477
478 // If this is an "immutable" type, we can assume the pointer is pointing
479 // to constant memory.
480 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
481 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
482 return true;
483
484 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
485 }
486
487 AliasAnalysis::ModRefBehavior
getModRefBehavior(ImmutableCallSite CS)488 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
489 if (!EnableTBAA)
490 return AliasAnalysis::getModRefBehavior(CS);
491
492 ModRefBehavior Min = UnknownModRefBehavior;
493
494 // If this is an "immutable" type, we can assume the call doesn't write
495 // to memory.
496 if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
497 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
498 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
499 Min = OnlyReadsMemory;
500
501 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
502 }
503
504 AliasAnalysis::ModRefBehavior
getModRefBehavior(const Function * F)505 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
506 // Functions don't have metadata. Just chain to the next implementation.
507 return AliasAnalysis::getModRefBehavior(F);
508 }
509
510 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS,const Location & Loc)511 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
512 const Location &Loc) {
513 if (!EnableTBAA)
514 return AliasAnalysis::getModRefInfo(CS, Loc);
515
516 if (const MDNode *L = Loc.TBAATag)
517 if (const MDNode *M =
518 CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
519 if (!Aliases(L, M))
520 return NoModRef;
521
522 return AliasAnalysis::getModRefInfo(CS, Loc);
523 }
524
525 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)526 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
527 ImmutableCallSite CS2) {
528 if (!EnableTBAA)
529 return AliasAnalysis::getModRefInfo(CS1, CS2);
530
531 if (const MDNode *M1 =
532 CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
533 if (const MDNode *M2 =
534 CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
535 if (!Aliases(M1, M2))
536 return NoModRef;
537
538 return AliasAnalysis::getModRefInfo(CS1, CS2);
539 }
540
isTBAAVtableAccess() const541 bool MDNode::isTBAAVtableAccess() const {
542 if (!isStructPathTBAA(this)) {
543 if (getNumOperands() < 1) return false;
544 if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
545 if (Tag1->getString() == "vtable pointer") return true;
546 }
547 return false;
548 }
549
550 // For struct-path aware TBAA, we use the access type of the tag.
551 if (getNumOperands() < 2) return false;
552 MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
553 if (!Tag) return false;
554 if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
555 if (Tag1->getString() == "vtable pointer") return true;
556 }
557 return false;
558 }
559
getMostGenericTBAA(MDNode * A,MDNode * B)560 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
561 if (!A || !B)
562 return nullptr;
563
564 if (A == B)
565 return A;
566
567 // For struct-path aware TBAA, we use the access type of the tag.
568 bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
569 if (StructPath) {
570 A = cast_or_null<MDNode>(A->getOperand(1));
571 if (!A) return nullptr;
572 B = cast_or_null<MDNode>(B->getOperand(1));
573 if (!B) return nullptr;
574 }
575
576 SmallVector<MDNode *, 4> PathA;
577 MDNode *T = A;
578 while (T) {
579 PathA.push_back(T);
580 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
581 : nullptr;
582 }
583
584 SmallVector<MDNode *, 4> PathB;
585 T = B;
586 while (T) {
587 PathB.push_back(T);
588 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
589 : nullptr;
590 }
591
592 int IA = PathA.size() - 1;
593 int IB = PathB.size() - 1;
594
595 MDNode *Ret = nullptr;
596 while (IA >= 0 && IB >=0) {
597 if (PathA[IA] == PathB[IB])
598 Ret = PathA[IA];
599 else
600 break;
601 --IA;
602 --IB;
603 }
604 if (!StructPath)
605 return Ret;
606
607 if (!Ret)
608 return nullptr;
609 // We need to convert from a type node to a tag node.
610 Type *Int64 = IntegerType::get(A->getContext(), 64);
611 Value *Ops[3] = { Ret, Ret, ConstantInt::get(Int64, 0) };
612 return MDNode::get(A->getContext(), Ops);
613 }
614