1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an (incomplete) implementation of the approach
12 // described in
13 //
14 // Practical Dependence Testing
15 // Goff, Kennedy, Tseng
16 // PLDI 1991
17 //
18 // There's a single entry point that analyzes the dependence between a pair
19 // of memory references in a function, returning either NULL, for no dependence,
20 // or a more-or-less detailed description of the dependence between them.
21 //
22 // Currently, the implementation cannot propagate constraints between
23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
24 // Both of these are conservative weaknesses;
25 // that is, not a source of correctness problems.
26 //
27 // The implementation depends on the GEP instruction to differentiate
28 // subscripts. Since Clang linearizes some array subscripts, the dependence
29 // analysis is using SCEV->delinearize to recover the representation of multiple
30 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
31 // delinearization is controlled by the flag -da-delinearize.
32 //
33 // We should pay some careful attention to the possibility of integer overflow
34 // in the implementation of the various tests. This could happen with Add,
35 // Subtract, or Multiply, with both APInt's and SCEV's.
36 //
37 // Some non-linear subscript pairs can be handled by the GCD test
38 // (and perhaps other tests).
39 // Should explore how often these things occur.
40 //
41 // Finally, it seems like certain test cases expose weaknesses in the SCEV
42 // simplification, especially in the handling of sign and zero extensions.
43 // It could be useful to spend time exploring these.
44 //
45 // Please note that this is work in progress and the interface is subject to
46 // change.
47 //
48 //===----------------------------------------------------------------------===//
49 // //
50 // In memory of Ken Kennedy, 1945 - 2007 //
51 // //
52 //===----------------------------------------------------------------------===//
53
54 #include "llvm/Analysis/DependenceAnalysis.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/AliasAnalysis.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
60 #include "llvm/Analysis/ValueTracking.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67
68 using namespace llvm;
69
70 #define DEBUG_TYPE "da"
71
72 //===----------------------------------------------------------------------===//
73 // statistics
74
75 STATISTIC(TotalArrayPairs, "Array pairs tested");
76 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
77 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
78 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
79 STATISTIC(ZIVapplications, "ZIV applications");
80 STATISTIC(ZIVindependence, "ZIV independence");
81 STATISTIC(StrongSIVapplications, "Strong SIV applications");
82 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
83 STATISTIC(StrongSIVindependence, "Strong SIV independence");
84 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
85 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
86 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
87 STATISTIC(ExactSIVapplications, "Exact SIV applications");
88 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
89 STATISTIC(ExactSIVindependence, "Exact SIV independence");
90 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
91 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
92 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
93 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
94 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
95 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
96 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
97 STATISTIC(DeltaApplications, "Delta applications");
98 STATISTIC(DeltaSuccesses, "Delta successes");
99 STATISTIC(DeltaIndependence, "Delta independence");
100 STATISTIC(DeltaPropagations, "Delta propagations");
101 STATISTIC(GCDapplications, "GCD applications");
102 STATISTIC(GCDsuccesses, "GCD successes");
103 STATISTIC(GCDindependence, "GCD independence");
104 STATISTIC(BanerjeeApplications, "Banerjee applications");
105 STATISTIC(BanerjeeIndependence, "Banerjee independence");
106 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
107
108 static cl::opt<bool>
109 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
110 cl::desc("Try to delinearize array references."));
111
112 //===----------------------------------------------------------------------===//
113 // basics
114
115 INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
116 "Dependence Analysis", true, true)
117 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
118 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
119 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
120 INITIALIZE_PASS_END(DependenceAnalysis, "da",
121 "Dependence Analysis", true, true)
122
123 char DependenceAnalysis::ID = 0;
124
125
createDependenceAnalysisPass()126 FunctionPass *llvm::createDependenceAnalysisPass() {
127 return new DependenceAnalysis();
128 }
129
130
runOnFunction(Function & F)131 bool DependenceAnalysis::runOnFunction(Function &F) {
132 this->F = &F;
133 AA = &getAnalysis<AliasAnalysis>();
134 SE = &getAnalysis<ScalarEvolution>();
135 LI = &getAnalysis<LoopInfo>();
136 return false;
137 }
138
139
releaseMemory()140 void DependenceAnalysis::releaseMemory() {
141 }
142
143
getAnalysisUsage(AnalysisUsage & AU) const144 void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
145 AU.setPreservesAll();
146 AU.addRequiredTransitive<AliasAnalysis>();
147 AU.addRequiredTransitive<ScalarEvolution>();
148 AU.addRequiredTransitive<LoopInfo>();
149 }
150
151
152 // Used to test the dependence analyzer.
153 // Looks through the function, noting loads and stores.
154 // Calls depends() on every possible pair and prints out the result.
155 // Ignores all other instructions.
156 static
dumpExampleDependence(raw_ostream & OS,Function * F,DependenceAnalysis * DA)157 void dumpExampleDependence(raw_ostream &OS, Function *F,
158 DependenceAnalysis *DA) {
159 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
160 SrcI != SrcE; ++SrcI) {
161 if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
162 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
163 DstI != DstE; ++DstI) {
164 if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
165 OS << "da analyze - ";
166 if (Dependence *D = DA->depends(&*SrcI, &*DstI, true)) {
167 D->dump(OS);
168 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
169 if (D->isSplitable(Level)) {
170 OS << "da analyze - split level = " << Level;
171 OS << ", iteration = " << *DA->getSplitIteration(D, Level);
172 OS << "!\n";
173 }
174 }
175 delete D;
176 }
177 else
178 OS << "none!\n";
179 }
180 }
181 }
182 }
183 }
184
185
print(raw_ostream & OS,const Module *) const186 void DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
187 dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
188 }
189
190 //===----------------------------------------------------------------------===//
191 // Dependence methods
192
193 // Returns true if this is an input dependence.
isInput() const194 bool Dependence::isInput() const {
195 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
196 }
197
198
199 // Returns true if this is an output dependence.
isOutput() const200 bool Dependence::isOutput() const {
201 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
202 }
203
204
205 // Returns true if this is an flow (aka true) dependence.
isFlow() const206 bool Dependence::isFlow() const {
207 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
208 }
209
210
211 // Returns true if this is an anti dependence.
isAnti() const212 bool Dependence::isAnti() const {
213 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
214 }
215
216
217 // Returns true if a particular level is scalar; that is,
218 // if no subscript in the source or destination mention the induction
219 // variable associated with the loop at this level.
220 // Leave this out of line, so it will serve as a virtual method anchor
isScalar(unsigned level) const221 bool Dependence::isScalar(unsigned level) const {
222 return false;
223 }
224
225
226 //===----------------------------------------------------------------------===//
227 // FullDependence methods
228
FullDependence(Instruction * Source,Instruction * Destination,bool PossiblyLoopIndependent,unsigned CommonLevels)229 FullDependence::FullDependence(Instruction *Source,
230 Instruction *Destination,
231 bool PossiblyLoopIndependent,
232 unsigned CommonLevels) :
233 Dependence(Source, Destination),
234 Levels(CommonLevels),
235 LoopIndependent(PossiblyLoopIndependent) {
236 Consistent = true;
237 DV = CommonLevels ? new DVEntry[CommonLevels] : nullptr;
238 }
239
240 // The rest are simple getters that hide the implementation.
241
242 // getDirection - Returns the direction associated with a particular level.
getDirection(unsigned Level) const243 unsigned FullDependence::getDirection(unsigned Level) const {
244 assert(0 < Level && Level <= Levels && "Level out of range");
245 return DV[Level - 1].Direction;
246 }
247
248
249 // Returns the distance (or NULL) associated with a particular level.
getDistance(unsigned Level) const250 const SCEV *FullDependence::getDistance(unsigned Level) const {
251 assert(0 < Level && Level <= Levels && "Level out of range");
252 return DV[Level - 1].Distance;
253 }
254
255
256 // Returns true if a particular level is scalar; that is,
257 // if no subscript in the source or destination mention the induction
258 // variable associated with the loop at this level.
isScalar(unsigned Level) const259 bool FullDependence::isScalar(unsigned Level) const {
260 assert(0 < Level && Level <= Levels && "Level out of range");
261 return DV[Level - 1].Scalar;
262 }
263
264
265 // Returns true if peeling the first iteration from this loop
266 // will break this dependence.
isPeelFirst(unsigned Level) const267 bool FullDependence::isPeelFirst(unsigned Level) const {
268 assert(0 < Level && Level <= Levels && "Level out of range");
269 return DV[Level - 1].PeelFirst;
270 }
271
272
273 // Returns true if peeling the last iteration from this loop
274 // will break this dependence.
isPeelLast(unsigned Level) const275 bool FullDependence::isPeelLast(unsigned Level) const {
276 assert(0 < Level && Level <= Levels && "Level out of range");
277 return DV[Level - 1].PeelLast;
278 }
279
280
281 // Returns true if splitting this loop will break the dependence.
isSplitable(unsigned Level) const282 bool FullDependence::isSplitable(unsigned Level) const {
283 assert(0 < Level && Level <= Levels && "Level out of range");
284 return DV[Level - 1].Splitable;
285 }
286
287
288 //===----------------------------------------------------------------------===//
289 // DependenceAnalysis::Constraint methods
290
291 // If constraint is a point <X, Y>, returns X.
292 // Otherwise assert.
getX() const293 const SCEV *DependenceAnalysis::Constraint::getX() const {
294 assert(Kind == Point && "Kind should be Point");
295 return A;
296 }
297
298
299 // If constraint is a point <X, Y>, returns Y.
300 // Otherwise assert.
getY() const301 const SCEV *DependenceAnalysis::Constraint::getY() const {
302 assert(Kind == Point && "Kind should be Point");
303 return B;
304 }
305
306
307 // If constraint is a line AX + BY = C, returns A.
308 // Otherwise assert.
getA() const309 const SCEV *DependenceAnalysis::Constraint::getA() const {
310 assert((Kind == Line || Kind == Distance) &&
311 "Kind should be Line (or Distance)");
312 return A;
313 }
314
315
316 // If constraint is a line AX + BY = C, returns B.
317 // Otherwise assert.
getB() const318 const SCEV *DependenceAnalysis::Constraint::getB() const {
319 assert((Kind == Line || Kind == Distance) &&
320 "Kind should be Line (or Distance)");
321 return B;
322 }
323
324
325 // If constraint is a line AX + BY = C, returns C.
326 // Otherwise assert.
getC() const327 const SCEV *DependenceAnalysis::Constraint::getC() const {
328 assert((Kind == Line || Kind == Distance) &&
329 "Kind should be Line (or Distance)");
330 return C;
331 }
332
333
334 // If constraint is a distance, returns D.
335 // Otherwise assert.
getD() const336 const SCEV *DependenceAnalysis::Constraint::getD() const {
337 assert(Kind == Distance && "Kind should be Distance");
338 return SE->getNegativeSCEV(C);
339 }
340
341
342 // Returns the loop associated with this constraint.
getAssociatedLoop() const343 const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
344 assert((Kind == Distance || Kind == Line || Kind == Point) &&
345 "Kind should be Distance, Line, or Point");
346 return AssociatedLoop;
347 }
348
349
setPoint(const SCEV * X,const SCEV * Y,const Loop * CurLoop)350 void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
351 const SCEV *Y,
352 const Loop *CurLoop) {
353 Kind = Point;
354 A = X;
355 B = Y;
356 AssociatedLoop = CurLoop;
357 }
358
359
setLine(const SCEV * AA,const SCEV * BB,const SCEV * CC,const Loop * CurLoop)360 void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
361 const SCEV *BB,
362 const SCEV *CC,
363 const Loop *CurLoop) {
364 Kind = Line;
365 A = AA;
366 B = BB;
367 C = CC;
368 AssociatedLoop = CurLoop;
369 }
370
371
setDistance(const SCEV * D,const Loop * CurLoop)372 void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
373 const Loop *CurLoop) {
374 Kind = Distance;
375 A = SE->getConstant(D->getType(), 1);
376 B = SE->getNegativeSCEV(A);
377 C = SE->getNegativeSCEV(D);
378 AssociatedLoop = CurLoop;
379 }
380
381
setEmpty()382 void DependenceAnalysis::Constraint::setEmpty() {
383 Kind = Empty;
384 }
385
386
setAny(ScalarEvolution * NewSE)387 void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
388 SE = NewSE;
389 Kind = Any;
390 }
391
392
393 // For debugging purposes. Dumps the constraint out to OS.
dump(raw_ostream & OS) const394 void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
395 if (isEmpty())
396 OS << " Empty\n";
397 else if (isAny())
398 OS << " Any\n";
399 else if (isPoint())
400 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
401 else if (isDistance())
402 OS << " Distance is " << *getD() <<
403 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
404 else if (isLine())
405 OS << " Line is " << *getA() << "*X + " <<
406 *getB() << "*Y = " << *getC() << "\n";
407 else
408 llvm_unreachable("unknown constraint type in Constraint::dump");
409 }
410
411
412 // Updates X with the intersection
413 // of the Constraints X and Y. Returns true if X has changed.
414 // Corresponds to Figure 4 from the paper
415 //
416 // Practical Dependence Testing
417 // Goff, Kennedy, Tseng
418 // PLDI 1991
intersectConstraints(Constraint * X,const Constraint * Y)419 bool DependenceAnalysis::intersectConstraints(Constraint *X,
420 const Constraint *Y) {
421 ++DeltaApplications;
422 DEBUG(dbgs() << "\tintersect constraints\n");
423 DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
424 DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
425 assert(!Y->isPoint() && "Y must not be a Point");
426 if (X->isAny()) {
427 if (Y->isAny())
428 return false;
429 *X = *Y;
430 return true;
431 }
432 if (X->isEmpty())
433 return false;
434 if (Y->isEmpty()) {
435 X->setEmpty();
436 return true;
437 }
438
439 if (X->isDistance() && Y->isDistance()) {
440 DEBUG(dbgs() << "\t intersect 2 distances\n");
441 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
442 return false;
443 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
444 X->setEmpty();
445 ++DeltaSuccesses;
446 return true;
447 }
448 // Hmmm, interesting situation.
449 // I guess if either is constant, keep it and ignore the other.
450 if (isa<SCEVConstant>(Y->getD())) {
451 *X = *Y;
452 return true;
453 }
454 return false;
455 }
456
457 // At this point, the pseudo-code in Figure 4 of the paper
458 // checks if (X->isPoint() && Y->isPoint()).
459 // This case can't occur in our implementation,
460 // since a Point can only arise as the result of intersecting
461 // two Line constraints, and the right-hand value, Y, is never
462 // the result of an intersection.
463 assert(!(X->isPoint() && Y->isPoint()) &&
464 "We shouldn't ever see X->isPoint() && Y->isPoint()");
465
466 if (X->isLine() && Y->isLine()) {
467 DEBUG(dbgs() << "\t intersect 2 lines\n");
468 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
469 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
470 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
471 // slopes are equal, so lines are parallel
472 DEBUG(dbgs() << "\t\tsame slope\n");
473 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
474 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
475 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
476 return false;
477 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
478 X->setEmpty();
479 ++DeltaSuccesses;
480 return true;
481 }
482 return false;
483 }
484 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
485 // slopes differ, so lines intersect
486 DEBUG(dbgs() << "\t\tdifferent slopes\n");
487 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
488 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
489 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
490 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
491 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
492 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
493 const SCEVConstant *C1A2_C2A1 =
494 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
495 const SCEVConstant *C1B2_C2B1 =
496 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
497 const SCEVConstant *A1B2_A2B1 =
498 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
499 const SCEVConstant *A2B1_A1B2 =
500 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
501 if (!C1B2_C2B1 || !C1A2_C2A1 ||
502 !A1B2_A2B1 || !A2B1_A1B2)
503 return false;
504 APInt Xtop = C1B2_C2B1->getValue()->getValue();
505 APInt Xbot = A1B2_A2B1->getValue()->getValue();
506 APInt Ytop = C1A2_C2A1->getValue()->getValue();
507 APInt Ybot = A2B1_A1B2->getValue()->getValue();
508 DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
509 DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
510 DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
511 DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
512 APInt Xq = Xtop; // these need to be initialized, even
513 APInt Xr = Xtop; // though they're just going to be overwritten
514 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
515 APInt Yq = Ytop;
516 APInt Yr = Ytop;
517 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
518 if (Xr != 0 || Yr != 0) {
519 X->setEmpty();
520 ++DeltaSuccesses;
521 return true;
522 }
523 DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
524 if (Xq.slt(0) || Yq.slt(0)) {
525 X->setEmpty();
526 ++DeltaSuccesses;
527 return true;
528 }
529 if (const SCEVConstant *CUB =
530 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
531 APInt UpperBound = CUB->getValue()->getValue();
532 DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
533 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
534 X->setEmpty();
535 ++DeltaSuccesses;
536 return true;
537 }
538 }
539 X->setPoint(SE->getConstant(Xq),
540 SE->getConstant(Yq),
541 X->getAssociatedLoop());
542 ++DeltaSuccesses;
543 return true;
544 }
545 return false;
546 }
547
548 // if (X->isLine() && Y->isPoint()) This case can't occur.
549 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
550
551 if (X->isPoint() && Y->isLine()) {
552 DEBUG(dbgs() << "\t intersect Point and Line\n");
553 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
554 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
555 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
556 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
557 return false;
558 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
559 X->setEmpty();
560 ++DeltaSuccesses;
561 return true;
562 }
563 return false;
564 }
565
566 llvm_unreachable("shouldn't reach the end of Constraint intersection");
567 return false;
568 }
569
570
571 //===----------------------------------------------------------------------===//
572 // DependenceAnalysis methods
573
574 // For debugging purposes. Dumps a dependence to OS.
dump(raw_ostream & OS) const575 void Dependence::dump(raw_ostream &OS) const {
576 bool Splitable = false;
577 if (isConfused())
578 OS << "confused";
579 else {
580 if (isConsistent())
581 OS << "consistent ";
582 if (isFlow())
583 OS << "flow";
584 else if (isOutput())
585 OS << "output";
586 else if (isAnti())
587 OS << "anti";
588 else if (isInput())
589 OS << "input";
590 unsigned Levels = getLevels();
591 OS << " [";
592 for (unsigned II = 1; II <= Levels; ++II) {
593 if (isSplitable(II))
594 Splitable = true;
595 if (isPeelFirst(II))
596 OS << 'p';
597 const SCEV *Distance = getDistance(II);
598 if (Distance)
599 OS << *Distance;
600 else if (isScalar(II))
601 OS << "S";
602 else {
603 unsigned Direction = getDirection(II);
604 if (Direction == DVEntry::ALL)
605 OS << "*";
606 else {
607 if (Direction & DVEntry::LT)
608 OS << "<";
609 if (Direction & DVEntry::EQ)
610 OS << "=";
611 if (Direction & DVEntry::GT)
612 OS << ">";
613 }
614 }
615 if (isPeelLast(II))
616 OS << 'p';
617 if (II < Levels)
618 OS << " ";
619 }
620 if (isLoopIndependent())
621 OS << "|<";
622 OS << "]";
623 if (Splitable)
624 OS << " splitable";
625 }
626 OS << "!\n";
627 }
628
629
630
631 static
underlyingObjectsAlias(AliasAnalysis * AA,const Value * A,const Value * B)632 AliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
633 const Value *A,
634 const Value *B) {
635 const Value *AObj = GetUnderlyingObject(A);
636 const Value *BObj = GetUnderlyingObject(B);
637 return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
638 BObj, AA->getTypeStoreSize(BObj->getType()));
639 }
640
641
642 // Returns true if the load or store can be analyzed. Atomic and volatile
643 // operations have properties which this analysis does not understand.
644 static
isLoadOrStore(const Instruction * I)645 bool isLoadOrStore(const Instruction *I) {
646 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
647 return LI->isUnordered();
648 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
649 return SI->isUnordered();
650 return false;
651 }
652
653
654 static
getPointerOperand(Instruction * I)655 Value *getPointerOperand(Instruction *I) {
656 if (LoadInst *LI = dyn_cast<LoadInst>(I))
657 return LI->getPointerOperand();
658 if (StoreInst *SI = dyn_cast<StoreInst>(I))
659 return SI->getPointerOperand();
660 llvm_unreachable("Value is not load or store instruction");
661 return nullptr;
662 }
663
664
665 // Examines the loop nesting of the Src and Dst
666 // instructions and establishes their shared loops. Sets the variables
667 // CommonLevels, SrcLevels, and MaxLevels.
668 // The source and destination instructions needn't be contained in the same
669 // loop. The routine establishNestingLevels finds the level of most deeply
670 // nested loop that contains them both, CommonLevels. An instruction that's
671 // not contained in a loop is at level = 0. MaxLevels is equal to the level
672 // of the source plus the level of the destination, minus CommonLevels.
673 // This lets us allocate vectors MaxLevels in length, with room for every
674 // distinct loop referenced in both the source and destination subscripts.
675 // The variable SrcLevels is the nesting depth of the source instruction.
676 // It's used to help calculate distinct loops referenced by the destination.
677 // Here's the map from loops to levels:
678 // 0 - unused
679 // 1 - outermost common loop
680 // ... - other common loops
681 // CommonLevels - innermost common loop
682 // ... - loops containing Src but not Dst
683 // SrcLevels - innermost loop containing Src but not Dst
684 // ... - loops containing Dst but not Src
685 // MaxLevels - innermost loops containing Dst but not Src
686 // Consider the follow code fragment:
687 // for (a = ...) {
688 // for (b = ...) {
689 // for (c = ...) {
690 // for (d = ...) {
691 // A[] = ...;
692 // }
693 // }
694 // for (e = ...) {
695 // for (f = ...) {
696 // for (g = ...) {
697 // ... = A[];
698 // }
699 // }
700 // }
701 // }
702 // }
703 // If we're looking at the possibility of a dependence between the store
704 // to A (the Src) and the load from A (the Dst), we'll note that they
705 // have 2 loops in common, so CommonLevels will equal 2 and the direction
706 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
707 // A map from loop names to loop numbers would look like
708 // a - 1
709 // b - 2 = CommonLevels
710 // c - 3
711 // d - 4 = SrcLevels
712 // e - 5
713 // f - 6
714 // g - 7 = MaxLevels
establishNestingLevels(const Instruction * Src,const Instruction * Dst)715 void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
716 const Instruction *Dst) {
717 const BasicBlock *SrcBlock = Src->getParent();
718 const BasicBlock *DstBlock = Dst->getParent();
719 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
720 unsigned DstLevel = LI->getLoopDepth(DstBlock);
721 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
722 const Loop *DstLoop = LI->getLoopFor(DstBlock);
723 SrcLevels = SrcLevel;
724 MaxLevels = SrcLevel + DstLevel;
725 while (SrcLevel > DstLevel) {
726 SrcLoop = SrcLoop->getParentLoop();
727 SrcLevel--;
728 }
729 while (DstLevel > SrcLevel) {
730 DstLoop = DstLoop->getParentLoop();
731 DstLevel--;
732 }
733 while (SrcLoop != DstLoop) {
734 SrcLoop = SrcLoop->getParentLoop();
735 DstLoop = DstLoop->getParentLoop();
736 SrcLevel--;
737 }
738 CommonLevels = SrcLevel;
739 MaxLevels -= CommonLevels;
740 }
741
742
743 // Given one of the loops containing the source, return
744 // its level index in our numbering scheme.
mapSrcLoop(const Loop * SrcLoop) const745 unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
746 return SrcLoop->getLoopDepth();
747 }
748
749
750 // Given one of the loops containing the destination,
751 // return its level index in our numbering scheme.
mapDstLoop(const Loop * DstLoop) const752 unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
753 unsigned D = DstLoop->getLoopDepth();
754 if (D > CommonLevels)
755 return D - CommonLevels + SrcLevels;
756 else
757 return D;
758 }
759
760
761 // Returns true if Expression is loop invariant in LoopNest.
isLoopInvariant(const SCEV * Expression,const Loop * LoopNest) const762 bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
763 const Loop *LoopNest) const {
764 if (!LoopNest)
765 return true;
766 return SE->isLoopInvariant(Expression, LoopNest) &&
767 isLoopInvariant(Expression, LoopNest->getParentLoop());
768 }
769
770
771
772 // Finds the set of loops from the LoopNest that
773 // have a level <= CommonLevels and are referred to by the SCEV Expression.
collectCommonLoops(const SCEV * Expression,const Loop * LoopNest,SmallBitVector & Loops) const774 void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
775 const Loop *LoopNest,
776 SmallBitVector &Loops) const {
777 while (LoopNest) {
778 unsigned Level = LoopNest->getLoopDepth();
779 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
780 Loops.set(Level);
781 LoopNest = LoopNest->getParentLoop();
782 }
783 }
784
785
786 // removeMatchingExtensions - Examines a subscript pair.
787 // If the source and destination are identically sign (or zero)
788 // extended, it strips off the extension in an effect to simplify
789 // the actual analysis.
removeMatchingExtensions(Subscript * Pair)790 void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
791 const SCEV *Src = Pair->Src;
792 const SCEV *Dst = Pair->Dst;
793 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
794 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
795 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
796 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
797 if (SrcCast->getType() == DstCast->getType()) {
798 Pair->Src = SrcCast->getOperand();
799 Pair->Dst = DstCast->getOperand();
800 }
801 }
802 }
803
804
805 // Examine the scev and return true iff it's linear.
806 // Collect any loops mentioned in the set of "Loops".
checkSrcSubscript(const SCEV * Src,const Loop * LoopNest,SmallBitVector & Loops)807 bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
808 const Loop *LoopNest,
809 SmallBitVector &Loops) {
810 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
811 if (!AddRec)
812 return isLoopInvariant(Src, LoopNest);
813 const SCEV *Start = AddRec->getStart();
814 const SCEV *Step = AddRec->getStepRecurrence(*SE);
815 if (!isLoopInvariant(Step, LoopNest))
816 return false;
817 Loops.set(mapSrcLoop(AddRec->getLoop()));
818 return checkSrcSubscript(Start, LoopNest, Loops);
819 }
820
821
822
823 // Examine the scev and return true iff it's linear.
824 // Collect any loops mentioned in the set of "Loops".
checkDstSubscript(const SCEV * Dst,const Loop * LoopNest,SmallBitVector & Loops)825 bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
826 const Loop *LoopNest,
827 SmallBitVector &Loops) {
828 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
829 if (!AddRec)
830 return isLoopInvariant(Dst, LoopNest);
831 const SCEV *Start = AddRec->getStart();
832 const SCEV *Step = AddRec->getStepRecurrence(*SE);
833 if (!isLoopInvariant(Step, LoopNest))
834 return false;
835 Loops.set(mapDstLoop(AddRec->getLoop()));
836 return checkDstSubscript(Start, LoopNest, Loops);
837 }
838
839
840 // Examines the subscript pair (the Src and Dst SCEVs)
841 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
842 // Collects the associated loops in a set.
843 DependenceAnalysis::Subscript::ClassificationKind
classifyPair(const SCEV * Src,const Loop * SrcLoopNest,const SCEV * Dst,const Loop * DstLoopNest,SmallBitVector & Loops)844 DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
845 const SCEV *Dst, const Loop *DstLoopNest,
846 SmallBitVector &Loops) {
847 SmallBitVector SrcLoops(MaxLevels + 1);
848 SmallBitVector DstLoops(MaxLevels + 1);
849 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
850 return Subscript::NonLinear;
851 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
852 return Subscript::NonLinear;
853 Loops = SrcLoops;
854 Loops |= DstLoops;
855 unsigned N = Loops.count();
856 if (N == 0)
857 return Subscript::ZIV;
858 if (N == 1)
859 return Subscript::SIV;
860 if (N == 2 && (SrcLoops.count() == 0 ||
861 DstLoops.count() == 0 ||
862 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
863 return Subscript::RDIV;
864 return Subscript::MIV;
865 }
866
867
868 // A wrapper around SCEV::isKnownPredicate.
869 // Looks for cases where we're interested in comparing for equality.
870 // If both X and Y have been identically sign or zero extended,
871 // it strips off the (confusing) extensions before invoking
872 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
873 // will be similarly updated.
874 //
875 // If SCEV::isKnownPredicate can't prove the predicate,
876 // we try simple subtraction, which seems to help in some cases
877 // involving symbolics.
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * X,const SCEV * Y) const878 bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
879 const SCEV *X,
880 const SCEV *Y) const {
881 if (Pred == CmpInst::ICMP_EQ ||
882 Pred == CmpInst::ICMP_NE) {
883 if ((isa<SCEVSignExtendExpr>(X) &&
884 isa<SCEVSignExtendExpr>(Y)) ||
885 (isa<SCEVZeroExtendExpr>(X) &&
886 isa<SCEVZeroExtendExpr>(Y))) {
887 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
888 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
889 const SCEV *Xop = CX->getOperand();
890 const SCEV *Yop = CY->getOperand();
891 if (Xop->getType() == Yop->getType()) {
892 X = Xop;
893 Y = Yop;
894 }
895 }
896 }
897 if (SE->isKnownPredicate(Pred, X, Y))
898 return true;
899 // If SE->isKnownPredicate can't prove the condition,
900 // we try the brute-force approach of subtracting
901 // and testing the difference.
902 // By testing with SE->isKnownPredicate first, we avoid
903 // the possibility of overflow when the arguments are constants.
904 const SCEV *Delta = SE->getMinusSCEV(X, Y);
905 switch (Pred) {
906 case CmpInst::ICMP_EQ:
907 return Delta->isZero();
908 case CmpInst::ICMP_NE:
909 return SE->isKnownNonZero(Delta);
910 case CmpInst::ICMP_SGE:
911 return SE->isKnownNonNegative(Delta);
912 case CmpInst::ICMP_SLE:
913 return SE->isKnownNonPositive(Delta);
914 case CmpInst::ICMP_SGT:
915 return SE->isKnownPositive(Delta);
916 case CmpInst::ICMP_SLT:
917 return SE->isKnownNegative(Delta);
918 default:
919 llvm_unreachable("unexpected predicate in isKnownPredicate");
920 }
921 }
922
923
924 // All subscripts are all the same type.
925 // Loop bound may be smaller (e.g., a char).
926 // Should zero extend loop bound, since it's always >= 0.
927 // This routine collects upper bound and extends if needed.
928 // Return null if no bound available.
collectUpperBound(const Loop * L,Type * T) const929 const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
930 Type *T) const {
931 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
932 const SCEV *UB = SE->getBackedgeTakenCount(L);
933 return SE->getNoopOrZeroExtend(UB, T);
934 }
935 return nullptr;
936 }
937
938
939 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
940 // If the cast fails, returns NULL.
collectConstantUpperBound(const Loop * L,Type * T) const941 const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
942 Type *T
943 ) const {
944 if (const SCEV *UB = collectUpperBound(L, T))
945 return dyn_cast<SCEVConstant>(UB);
946 return nullptr;
947 }
948
949
950 // testZIV -
951 // When we have a pair of subscripts of the form [c1] and [c2],
952 // where c1 and c2 are both loop invariant, we attack it using
953 // the ZIV test. Basically, we test by comparing the two values,
954 // but there are actually three possible results:
955 // 1) the values are equal, so there's a dependence
956 // 2) the values are different, so there's no dependence
957 // 3) the values might be equal, so we have to assume a dependence.
958 //
959 // Return true if dependence disproved.
testZIV(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const960 bool DependenceAnalysis::testZIV(const SCEV *Src,
961 const SCEV *Dst,
962 FullDependence &Result) const {
963 DEBUG(dbgs() << " src = " << *Src << "\n");
964 DEBUG(dbgs() << " dst = " << *Dst << "\n");
965 ++ZIVapplications;
966 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
967 DEBUG(dbgs() << " provably dependent\n");
968 return false; // provably dependent
969 }
970 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
971 DEBUG(dbgs() << " provably independent\n");
972 ++ZIVindependence;
973 return true; // provably independent
974 }
975 DEBUG(dbgs() << " possibly dependent\n");
976 Result.Consistent = false;
977 return false; // possibly dependent
978 }
979
980
981 // strongSIVtest -
982 // From the paper, Practical Dependence Testing, Section 4.2.1
983 //
984 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
985 // where i is an induction variable, c1 and c2 are loop invariant,
986 // and a is a constant, we can solve it exactly using the Strong SIV test.
987 //
988 // Can prove independence. Failing that, can compute distance (and direction).
989 // In the presence of symbolic terms, we can sometimes make progress.
990 //
991 // If there's a dependence,
992 //
993 // c1 + a*i = c2 + a*i'
994 //
995 // The dependence distance is
996 //
997 // d = i' - i = (c1 - c2)/a
998 //
999 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1000 // loop's upper bound. If a dependence exists, the dependence direction is
1001 // defined as
1002 //
1003 // { < if d > 0
1004 // direction = { = if d = 0
1005 // { > if d < 0
1006 //
1007 // Return true if dependence disproved.
strongSIVtest(const SCEV * Coeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1008 bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
1009 const SCEV *SrcConst,
1010 const SCEV *DstConst,
1011 const Loop *CurLoop,
1012 unsigned Level,
1013 FullDependence &Result,
1014 Constraint &NewConstraint) const {
1015 DEBUG(dbgs() << "\tStrong SIV test\n");
1016 DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1017 DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1018 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1019 DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1020 DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1021 DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1022 ++StrongSIVapplications;
1023 assert(0 < Level && Level <= CommonLevels && "level out of range");
1024 Level--;
1025
1026 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1027 DEBUG(dbgs() << "\t Delta = " << *Delta);
1028 DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1029
1030 // check that |Delta| < iteration count
1031 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1032 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1033 DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1034 const SCEV *AbsDelta =
1035 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1036 const SCEV *AbsCoeff =
1037 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1038 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1039 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1040 // Distance greater than trip count - no dependence
1041 ++StrongSIVindependence;
1042 ++StrongSIVsuccesses;
1043 return true;
1044 }
1045 }
1046
1047 // Can we compute distance?
1048 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1049 APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
1050 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
1051 APInt Distance = ConstDelta; // these need to be initialized
1052 APInt Remainder = ConstDelta;
1053 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1054 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1055 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1056 // Make sure Coeff divides Delta exactly
1057 if (Remainder != 0) {
1058 // Coeff doesn't divide Distance, no dependence
1059 ++StrongSIVindependence;
1060 ++StrongSIVsuccesses;
1061 return true;
1062 }
1063 Result.DV[Level].Distance = SE->getConstant(Distance);
1064 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1065 if (Distance.sgt(0))
1066 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1067 else if (Distance.slt(0))
1068 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1069 else
1070 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1071 ++StrongSIVsuccesses;
1072 }
1073 else if (Delta->isZero()) {
1074 // since 0/X == 0
1075 Result.DV[Level].Distance = Delta;
1076 NewConstraint.setDistance(Delta, CurLoop);
1077 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1078 ++StrongSIVsuccesses;
1079 }
1080 else {
1081 if (Coeff->isOne()) {
1082 DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1083 Result.DV[Level].Distance = Delta; // since X/1 == X
1084 NewConstraint.setDistance(Delta, CurLoop);
1085 }
1086 else {
1087 Result.Consistent = false;
1088 NewConstraint.setLine(Coeff,
1089 SE->getNegativeSCEV(Coeff),
1090 SE->getNegativeSCEV(Delta), CurLoop);
1091 }
1092
1093 // maybe we can get a useful direction
1094 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1095 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1096 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1097 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1098 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1099 // The double negatives above are confusing.
1100 // It helps to read !SE->isKnownNonZero(Delta)
1101 // as "Delta might be Zero"
1102 unsigned NewDirection = Dependence::DVEntry::NONE;
1103 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1104 (DeltaMaybeNegative && CoeffMaybeNegative))
1105 NewDirection = Dependence::DVEntry::LT;
1106 if (DeltaMaybeZero)
1107 NewDirection |= Dependence::DVEntry::EQ;
1108 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1109 (DeltaMaybePositive && CoeffMaybeNegative))
1110 NewDirection |= Dependence::DVEntry::GT;
1111 if (NewDirection < Result.DV[Level].Direction)
1112 ++StrongSIVsuccesses;
1113 Result.DV[Level].Direction &= NewDirection;
1114 }
1115 return false;
1116 }
1117
1118
1119 // weakCrossingSIVtest -
1120 // From the paper, Practical Dependence Testing, Section 4.2.2
1121 //
1122 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1123 // where i is an induction variable, c1 and c2 are loop invariant,
1124 // and a is a constant, we can solve it exactly using the
1125 // Weak-Crossing SIV test.
1126 //
1127 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1128 // the two lines, where i = i', yielding
1129 //
1130 // c1 + a*i = c2 - a*i
1131 // 2a*i = c2 - c1
1132 // i = (c2 - c1)/2a
1133 //
1134 // If i < 0, there is no dependence.
1135 // If i > upperbound, there is no dependence.
1136 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1137 // If i = upperbound, there's a dependence with distance = 0.
1138 // If i is integral, there's a dependence (all directions).
1139 // If the non-integer part = 1/2, there's a dependence (<> directions).
1140 // Otherwise, there's no dependence.
1141 //
1142 // Can prove independence. Failing that,
1143 // can sometimes refine the directions.
1144 // Can determine iteration for splitting.
1145 //
1146 // Return true if dependence disproved.
weakCrossingSIVtest(const SCEV * Coeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint,const SCEV * & SplitIter) const1147 bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
1148 const SCEV *SrcConst,
1149 const SCEV *DstConst,
1150 const Loop *CurLoop,
1151 unsigned Level,
1152 FullDependence &Result,
1153 Constraint &NewConstraint,
1154 const SCEV *&SplitIter) const {
1155 DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1156 DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1157 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1158 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1159 ++WeakCrossingSIVapplications;
1160 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1161 Level--;
1162 Result.Consistent = false;
1163 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1164 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1165 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1166 if (Delta->isZero()) {
1167 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1168 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1169 ++WeakCrossingSIVsuccesses;
1170 if (!Result.DV[Level].Direction) {
1171 ++WeakCrossingSIVindependence;
1172 return true;
1173 }
1174 Result.DV[Level].Distance = Delta; // = 0
1175 return false;
1176 }
1177 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1178 if (!ConstCoeff)
1179 return false;
1180
1181 Result.DV[Level].Splitable = true;
1182 if (SE->isKnownNegative(ConstCoeff)) {
1183 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1184 assert(ConstCoeff &&
1185 "dynamic cast of negative of ConstCoeff should yield constant");
1186 Delta = SE->getNegativeSCEV(Delta);
1187 }
1188 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1189
1190 // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
1191 SplitIter =
1192 SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
1193 Delta),
1194 SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
1195 ConstCoeff));
1196 DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1197
1198 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1199 if (!ConstDelta)
1200 return false;
1201
1202 // We're certain that ConstCoeff > 0; therefore,
1203 // if Delta < 0, then no dependence.
1204 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1205 DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1206 if (SE->isKnownNegative(Delta)) {
1207 // No dependence, Delta < 0
1208 ++WeakCrossingSIVindependence;
1209 ++WeakCrossingSIVsuccesses;
1210 return true;
1211 }
1212
1213 // We're certain that Delta > 0 and ConstCoeff > 0.
1214 // Check Delta/(2*ConstCoeff) against upper loop bound
1215 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1216 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1217 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1218 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1219 ConstantTwo);
1220 DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1221 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1222 // Delta too big, no dependence
1223 ++WeakCrossingSIVindependence;
1224 ++WeakCrossingSIVsuccesses;
1225 return true;
1226 }
1227 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1228 // i = i' = UB
1229 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1230 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1231 ++WeakCrossingSIVsuccesses;
1232 if (!Result.DV[Level].Direction) {
1233 ++WeakCrossingSIVindependence;
1234 return true;
1235 }
1236 Result.DV[Level].Splitable = false;
1237 Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
1238 return false;
1239 }
1240 }
1241
1242 // check that Coeff divides Delta
1243 APInt APDelta = ConstDelta->getValue()->getValue();
1244 APInt APCoeff = ConstCoeff->getValue()->getValue();
1245 APInt Distance = APDelta; // these need to be initialzed
1246 APInt Remainder = APDelta;
1247 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1248 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1249 if (Remainder != 0) {
1250 // Coeff doesn't divide Delta, no dependence
1251 ++WeakCrossingSIVindependence;
1252 ++WeakCrossingSIVsuccesses;
1253 return true;
1254 }
1255 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1256
1257 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1258 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1259 Remainder = Distance.srem(Two);
1260 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1261 if (Remainder != 0) {
1262 // Equal direction isn't possible
1263 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1264 ++WeakCrossingSIVsuccesses;
1265 }
1266 return false;
1267 }
1268
1269
1270 // Kirch's algorithm, from
1271 //
1272 // Optimizing Supercompilers for Supercomputers
1273 // Michael Wolfe
1274 // MIT Press, 1989
1275 //
1276 // Program 2.1, page 29.
1277 // Computes the GCD of AM and BM.
1278 // Also finds a solution to the equation ax - by = gcd(a, b).
1279 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1280 static
findGCD(unsigned Bits,APInt AM,APInt BM,APInt Delta,APInt & G,APInt & X,APInt & Y)1281 bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
1282 APInt &G, APInt &X, APInt &Y) {
1283 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1284 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1285 APInt G0 = AM.abs();
1286 APInt G1 = BM.abs();
1287 APInt Q = G0; // these need to be initialized
1288 APInt R = G0;
1289 APInt::sdivrem(G0, G1, Q, R);
1290 while (R != 0) {
1291 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1292 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1293 G0 = G1; G1 = R;
1294 APInt::sdivrem(G0, G1, Q, R);
1295 }
1296 G = G1;
1297 DEBUG(dbgs() << "\t GCD = " << G << "\n");
1298 X = AM.slt(0) ? -A1 : A1;
1299 Y = BM.slt(0) ? B1 : -B1;
1300
1301 // make sure gcd divides Delta
1302 R = Delta.srem(G);
1303 if (R != 0)
1304 return true; // gcd doesn't divide Delta, no dependence
1305 Q = Delta.sdiv(G);
1306 X *= Q;
1307 Y *= Q;
1308 return false;
1309 }
1310
1311
1312 static
floorOfQuotient(APInt A,APInt B)1313 APInt floorOfQuotient(APInt A, APInt B) {
1314 APInt Q = A; // these need to be initialized
1315 APInt R = A;
1316 APInt::sdivrem(A, B, Q, R);
1317 if (R == 0)
1318 return Q;
1319 if ((A.sgt(0) && B.sgt(0)) ||
1320 (A.slt(0) && B.slt(0)))
1321 return Q;
1322 else
1323 return Q - 1;
1324 }
1325
1326
1327 static
ceilingOfQuotient(APInt A,APInt B)1328 APInt ceilingOfQuotient(APInt A, APInt B) {
1329 APInt Q = A; // these need to be initialized
1330 APInt R = A;
1331 APInt::sdivrem(A, B, Q, R);
1332 if (R == 0)
1333 return Q;
1334 if ((A.sgt(0) && B.sgt(0)) ||
1335 (A.slt(0) && B.slt(0)))
1336 return Q + 1;
1337 else
1338 return Q;
1339 }
1340
1341
1342 static
maxAPInt(APInt A,APInt B)1343 APInt maxAPInt(APInt A, APInt B) {
1344 return A.sgt(B) ? A : B;
1345 }
1346
1347
1348 static
minAPInt(APInt A,APInt B)1349 APInt minAPInt(APInt A, APInt B) {
1350 return A.slt(B) ? A : B;
1351 }
1352
1353
1354 // exactSIVtest -
1355 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1356 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1357 // and a2 are constant, we can solve it exactly using an algorithm developed
1358 // by Banerjee and Wolfe. See Section 2.5.3 in
1359 //
1360 // Optimizing Supercompilers for Supercomputers
1361 // Michael Wolfe
1362 // MIT Press, 1989
1363 //
1364 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1365 // so use them if possible. They're also a bit better with symbolics and,
1366 // in the case of the strong SIV test, can compute Distances.
1367 //
1368 // Return true if dependence disproved.
exactSIVtest(const SCEV * SrcCoeff,const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1369 bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
1370 const SCEV *DstCoeff,
1371 const SCEV *SrcConst,
1372 const SCEV *DstConst,
1373 const Loop *CurLoop,
1374 unsigned Level,
1375 FullDependence &Result,
1376 Constraint &NewConstraint) const {
1377 DEBUG(dbgs() << "\tExact SIV test\n");
1378 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1379 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1380 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1381 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1382 ++ExactSIVapplications;
1383 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1384 Level--;
1385 Result.Consistent = false;
1386 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1387 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1388 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1389 Delta, CurLoop);
1390 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1391 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1392 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1393 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1394 return false;
1395
1396 // find gcd
1397 APInt G, X, Y;
1398 APInt AM = ConstSrcCoeff->getValue()->getValue();
1399 APInt BM = ConstDstCoeff->getValue()->getValue();
1400 unsigned Bits = AM.getBitWidth();
1401 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1402 // gcd doesn't divide Delta, no dependence
1403 ++ExactSIVindependence;
1404 ++ExactSIVsuccesses;
1405 return true;
1406 }
1407
1408 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1409
1410 // since SCEV construction normalizes, LM = 0
1411 APInt UM(Bits, 1, true);
1412 bool UMvalid = false;
1413 // UM is perhaps unavailable, let's check
1414 if (const SCEVConstant *CUB =
1415 collectConstantUpperBound(CurLoop, Delta->getType())) {
1416 UM = CUB->getValue()->getValue();
1417 DEBUG(dbgs() << "\t UM = " << UM << "\n");
1418 UMvalid = true;
1419 }
1420
1421 APInt TU(APInt::getSignedMaxValue(Bits));
1422 APInt TL(APInt::getSignedMinValue(Bits));
1423
1424 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1425 APInt TMUL = BM.sdiv(G);
1426 if (TMUL.sgt(0)) {
1427 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1428 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1429 if (UMvalid) {
1430 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1431 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1432 }
1433 }
1434 else {
1435 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1436 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1437 if (UMvalid) {
1438 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1439 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1440 }
1441 }
1442
1443 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1444 TMUL = AM.sdiv(G);
1445 if (TMUL.sgt(0)) {
1446 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1447 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1448 if (UMvalid) {
1449 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1450 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1451 }
1452 }
1453 else {
1454 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1455 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1456 if (UMvalid) {
1457 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1458 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1459 }
1460 }
1461 if (TL.sgt(TU)) {
1462 ++ExactSIVindependence;
1463 ++ExactSIVsuccesses;
1464 return true;
1465 }
1466
1467 // explore directions
1468 unsigned NewDirection = Dependence::DVEntry::NONE;
1469
1470 // less than
1471 APInt SaveTU(TU); // save these
1472 APInt SaveTL(TL);
1473 DEBUG(dbgs() << "\t exploring LT direction\n");
1474 TMUL = AM - BM;
1475 if (TMUL.sgt(0)) {
1476 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1477 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1478 }
1479 else {
1480 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1481 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1482 }
1483 if (TL.sle(TU)) {
1484 NewDirection |= Dependence::DVEntry::LT;
1485 ++ExactSIVsuccesses;
1486 }
1487
1488 // equal
1489 TU = SaveTU; // restore
1490 TL = SaveTL;
1491 DEBUG(dbgs() << "\t exploring EQ direction\n");
1492 if (TMUL.sgt(0)) {
1493 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1494 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1495 }
1496 else {
1497 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1498 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1499 }
1500 TMUL = BM - AM;
1501 if (TMUL.sgt(0)) {
1502 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1503 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1504 }
1505 else {
1506 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1507 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1508 }
1509 if (TL.sle(TU)) {
1510 NewDirection |= Dependence::DVEntry::EQ;
1511 ++ExactSIVsuccesses;
1512 }
1513
1514 // greater than
1515 TU = SaveTU; // restore
1516 TL = SaveTL;
1517 DEBUG(dbgs() << "\t exploring GT direction\n");
1518 if (TMUL.sgt(0)) {
1519 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1520 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1521 }
1522 else {
1523 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1524 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1525 }
1526 if (TL.sle(TU)) {
1527 NewDirection |= Dependence::DVEntry::GT;
1528 ++ExactSIVsuccesses;
1529 }
1530
1531 // finished
1532 Result.DV[Level].Direction &= NewDirection;
1533 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1534 ++ExactSIVindependence;
1535 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1536 }
1537
1538
1539
1540 // Return true if the divisor evenly divides the dividend.
1541 static
isRemainderZero(const SCEVConstant * Dividend,const SCEVConstant * Divisor)1542 bool isRemainderZero(const SCEVConstant *Dividend,
1543 const SCEVConstant *Divisor) {
1544 APInt ConstDividend = Dividend->getValue()->getValue();
1545 APInt ConstDivisor = Divisor->getValue()->getValue();
1546 return ConstDividend.srem(ConstDivisor) == 0;
1547 }
1548
1549
1550 // weakZeroSrcSIVtest -
1551 // From the paper, Practical Dependence Testing, Section 4.2.2
1552 //
1553 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1554 // where i is an induction variable, c1 and c2 are loop invariant,
1555 // and a is a constant, we can solve it exactly using the
1556 // Weak-Zero SIV test.
1557 //
1558 // Given
1559 //
1560 // c1 = c2 + a*i
1561 //
1562 // we get
1563 //
1564 // (c1 - c2)/a = i
1565 //
1566 // If i is not an integer, there's no dependence.
1567 // If i < 0 or > UB, there's no dependence.
1568 // If i = 0, the direction is <= and peeling the
1569 // 1st iteration will break the dependence.
1570 // If i = UB, the direction is >= and peeling the
1571 // last iteration will break the dependence.
1572 // Otherwise, the direction is *.
1573 //
1574 // Can prove independence. Failing that, we can sometimes refine
1575 // the directions. Can sometimes show that first or last
1576 // iteration carries all the dependences (so worth peeling).
1577 //
1578 // (see also weakZeroDstSIVtest)
1579 //
1580 // Return true if dependence disproved.
weakZeroSrcSIVtest(const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1581 bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1582 const SCEV *SrcConst,
1583 const SCEV *DstConst,
1584 const Loop *CurLoop,
1585 unsigned Level,
1586 FullDependence &Result,
1587 Constraint &NewConstraint) const {
1588 // For the WeakSIV test, it's possible the loop isn't common to
1589 // the Src and Dst loops. If it isn't, then there's no need to
1590 // record a direction.
1591 DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1592 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1593 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1594 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1595 ++WeakZeroSIVapplications;
1596 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1597 Level--;
1598 Result.Consistent = false;
1599 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1600 NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
1601 DstCoeff, Delta, CurLoop);
1602 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1603 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1604 if (Level < CommonLevels) {
1605 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1606 Result.DV[Level].PeelFirst = true;
1607 ++WeakZeroSIVsuccesses;
1608 }
1609 return false; // dependences caused by first iteration
1610 }
1611 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1612 if (!ConstCoeff)
1613 return false;
1614 const SCEV *AbsCoeff =
1615 SE->isKnownNegative(ConstCoeff) ?
1616 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1617 const SCEV *NewDelta =
1618 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1619
1620 // check that Delta/SrcCoeff < iteration count
1621 // really check NewDelta < count*AbsCoeff
1622 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1623 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1624 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1625 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1626 ++WeakZeroSIVindependence;
1627 ++WeakZeroSIVsuccesses;
1628 return true;
1629 }
1630 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1631 // dependences caused by last iteration
1632 if (Level < CommonLevels) {
1633 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1634 Result.DV[Level].PeelLast = true;
1635 ++WeakZeroSIVsuccesses;
1636 }
1637 return false;
1638 }
1639 }
1640
1641 // check that Delta/SrcCoeff >= 0
1642 // really check that NewDelta >= 0
1643 if (SE->isKnownNegative(NewDelta)) {
1644 // No dependence, newDelta < 0
1645 ++WeakZeroSIVindependence;
1646 ++WeakZeroSIVsuccesses;
1647 return true;
1648 }
1649
1650 // if SrcCoeff doesn't divide Delta, then no dependence
1651 if (isa<SCEVConstant>(Delta) &&
1652 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1653 ++WeakZeroSIVindependence;
1654 ++WeakZeroSIVsuccesses;
1655 return true;
1656 }
1657 return false;
1658 }
1659
1660
1661 // weakZeroDstSIVtest -
1662 // From the paper, Practical Dependence Testing, Section 4.2.2
1663 //
1664 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1665 // where i is an induction variable, c1 and c2 are loop invariant,
1666 // and a is a constant, we can solve it exactly using the
1667 // Weak-Zero SIV test.
1668 //
1669 // Given
1670 //
1671 // c1 + a*i = c2
1672 //
1673 // we get
1674 //
1675 // i = (c2 - c1)/a
1676 //
1677 // If i is not an integer, there's no dependence.
1678 // If i < 0 or > UB, there's no dependence.
1679 // If i = 0, the direction is <= and peeling the
1680 // 1st iteration will break the dependence.
1681 // If i = UB, the direction is >= and peeling the
1682 // last iteration will break the dependence.
1683 // Otherwise, the direction is *.
1684 //
1685 // Can prove independence. Failing that, we can sometimes refine
1686 // the directions. Can sometimes show that first or last
1687 // iteration carries all the dependences (so worth peeling).
1688 //
1689 // (see also weakZeroSrcSIVtest)
1690 //
1691 // Return true if dependence disproved.
weakZeroDstSIVtest(const SCEV * SrcCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1692 bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1693 const SCEV *SrcConst,
1694 const SCEV *DstConst,
1695 const Loop *CurLoop,
1696 unsigned Level,
1697 FullDependence &Result,
1698 Constraint &NewConstraint) const {
1699 // For the WeakSIV test, it's possible the loop isn't common to the
1700 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1701 DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1702 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1703 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1704 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1705 ++WeakZeroSIVapplications;
1706 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1707 Level--;
1708 Result.Consistent = false;
1709 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1710 NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
1711 Delta, CurLoop);
1712 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1713 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1714 if (Level < CommonLevels) {
1715 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1716 Result.DV[Level].PeelFirst = true;
1717 ++WeakZeroSIVsuccesses;
1718 }
1719 return false; // dependences caused by first iteration
1720 }
1721 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1722 if (!ConstCoeff)
1723 return false;
1724 const SCEV *AbsCoeff =
1725 SE->isKnownNegative(ConstCoeff) ?
1726 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1727 const SCEV *NewDelta =
1728 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1729
1730 // check that Delta/SrcCoeff < iteration count
1731 // really check NewDelta < count*AbsCoeff
1732 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1733 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1734 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1735 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1736 ++WeakZeroSIVindependence;
1737 ++WeakZeroSIVsuccesses;
1738 return true;
1739 }
1740 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1741 // dependences caused by last iteration
1742 if (Level < CommonLevels) {
1743 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1744 Result.DV[Level].PeelLast = true;
1745 ++WeakZeroSIVsuccesses;
1746 }
1747 return false;
1748 }
1749 }
1750
1751 // check that Delta/SrcCoeff >= 0
1752 // really check that NewDelta >= 0
1753 if (SE->isKnownNegative(NewDelta)) {
1754 // No dependence, newDelta < 0
1755 ++WeakZeroSIVindependence;
1756 ++WeakZeroSIVsuccesses;
1757 return true;
1758 }
1759
1760 // if SrcCoeff doesn't divide Delta, then no dependence
1761 if (isa<SCEVConstant>(Delta) &&
1762 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1763 ++WeakZeroSIVindependence;
1764 ++WeakZeroSIVsuccesses;
1765 return true;
1766 }
1767 return false;
1768 }
1769
1770
1771 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1772 // Things of the form [c1 + a*i] and [c2 + b*j],
1773 // where i and j are induction variable, c1 and c2 are loop invariant,
1774 // and a and b are constants.
1775 // Returns true if any possible dependence is disproved.
1776 // Marks the result as inconsistent.
1777 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
exactRDIVtest(const SCEV * SrcCoeff,const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * SrcLoop,const Loop * DstLoop,FullDependence & Result) const1778 bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
1779 const SCEV *DstCoeff,
1780 const SCEV *SrcConst,
1781 const SCEV *DstConst,
1782 const Loop *SrcLoop,
1783 const Loop *DstLoop,
1784 FullDependence &Result) const {
1785 DEBUG(dbgs() << "\tExact RDIV test\n");
1786 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1787 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1788 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1789 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1790 ++ExactRDIVapplications;
1791 Result.Consistent = false;
1792 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1793 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1794 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1795 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1796 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1797 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1798 return false;
1799
1800 // find gcd
1801 APInt G, X, Y;
1802 APInt AM = ConstSrcCoeff->getValue()->getValue();
1803 APInt BM = ConstDstCoeff->getValue()->getValue();
1804 unsigned Bits = AM.getBitWidth();
1805 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1806 // gcd doesn't divide Delta, no dependence
1807 ++ExactRDIVindependence;
1808 return true;
1809 }
1810
1811 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1812
1813 // since SCEV construction seems to normalize, LM = 0
1814 APInt SrcUM(Bits, 1, true);
1815 bool SrcUMvalid = false;
1816 // SrcUM is perhaps unavailable, let's check
1817 if (const SCEVConstant *UpperBound =
1818 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1819 SrcUM = UpperBound->getValue()->getValue();
1820 DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1821 SrcUMvalid = true;
1822 }
1823
1824 APInt DstUM(Bits, 1, true);
1825 bool DstUMvalid = false;
1826 // UM is perhaps unavailable, let's check
1827 if (const SCEVConstant *UpperBound =
1828 collectConstantUpperBound(DstLoop, Delta->getType())) {
1829 DstUM = UpperBound->getValue()->getValue();
1830 DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1831 DstUMvalid = true;
1832 }
1833
1834 APInt TU(APInt::getSignedMaxValue(Bits));
1835 APInt TL(APInt::getSignedMinValue(Bits));
1836
1837 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1838 APInt TMUL = BM.sdiv(G);
1839 if (TMUL.sgt(0)) {
1840 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1841 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1842 if (SrcUMvalid) {
1843 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1844 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1845 }
1846 }
1847 else {
1848 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1849 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1850 if (SrcUMvalid) {
1851 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1852 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1853 }
1854 }
1855
1856 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1857 TMUL = AM.sdiv(G);
1858 if (TMUL.sgt(0)) {
1859 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1860 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1861 if (DstUMvalid) {
1862 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1863 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1864 }
1865 }
1866 else {
1867 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1868 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1869 if (DstUMvalid) {
1870 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1871 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1872 }
1873 }
1874 if (TL.sgt(TU))
1875 ++ExactRDIVindependence;
1876 return TL.sgt(TU);
1877 }
1878
1879
1880 // symbolicRDIVtest -
1881 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1882 // introduce a special case of Banerjee's Inequalities (also called the
1883 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1884 // particularly cases with symbolics. Since it's only able to disprove
1885 // dependence (not compute distances or directions), we'll use it as a
1886 // fall back for the other tests.
1887 //
1888 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1889 // where i and j are induction variables and c1 and c2 are loop invariants,
1890 // we can use the symbolic tests to disprove some dependences, serving as a
1891 // backup for the RDIV test. Note that i and j can be the same variable,
1892 // letting this test serve as a backup for the various SIV tests.
1893 //
1894 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1895 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1896 // loop bounds for the i and j loops, respectively. So, ...
1897 //
1898 // c1 + a1*i = c2 + a2*j
1899 // a1*i - a2*j = c2 - c1
1900 //
1901 // To test for a dependence, we compute c2 - c1 and make sure it's in the
1902 // range of the maximum and minimum possible values of a1*i - a2*j.
1903 // Considering the signs of a1 and a2, we have 4 possible cases:
1904 //
1905 // 1) If a1 >= 0 and a2 >= 0, then
1906 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1907 // -a2*N2 <= c2 - c1 <= a1*N1
1908 //
1909 // 2) If a1 >= 0 and a2 <= 0, then
1910 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1911 // 0 <= c2 - c1 <= a1*N1 - a2*N2
1912 //
1913 // 3) If a1 <= 0 and a2 >= 0, then
1914 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1915 // a1*N1 - a2*N2 <= c2 - c1 <= 0
1916 //
1917 // 4) If a1 <= 0 and a2 <= 0, then
1918 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
1919 // a1*N1 <= c2 - c1 <= -a2*N2
1920 //
1921 // return true if dependence disproved
symbolicRDIVtest(const SCEV * A1,const SCEV * A2,const SCEV * C1,const SCEV * C2,const Loop * Loop1,const Loop * Loop2) const1922 bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
1923 const SCEV *A2,
1924 const SCEV *C1,
1925 const SCEV *C2,
1926 const Loop *Loop1,
1927 const Loop *Loop2) const {
1928 ++SymbolicRDIVapplications;
1929 DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1930 DEBUG(dbgs() << "\t A1 = " << *A1);
1931 DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1932 DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
1933 DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
1934 DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
1935 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1936 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1937 DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
1938 DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
1939 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1940 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1941 DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
1942 DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
1943 if (SE->isKnownNonNegative(A1)) {
1944 if (SE->isKnownNonNegative(A2)) {
1945 // A1 >= 0 && A2 >= 0
1946 if (N1) {
1947 // make sure that c2 - c1 <= a1*N1
1948 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1949 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
1950 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1951 ++SymbolicRDIVindependence;
1952 return true;
1953 }
1954 }
1955 if (N2) {
1956 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1957 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1958 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
1959 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1960 ++SymbolicRDIVindependence;
1961 return true;
1962 }
1963 }
1964 }
1965 else if (SE->isKnownNonPositive(A2)) {
1966 // a1 >= 0 && a2 <= 0
1967 if (N1 && N2) {
1968 // make sure that c2 - c1 <= a1*N1 - a2*N2
1969 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1970 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1971 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1972 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1973 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
1974 ++SymbolicRDIVindependence;
1975 return true;
1976 }
1977 }
1978 // make sure that 0 <= c2 - c1
1979 if (SE->isKnownNegative(C2_C1)) {
1980 ++SymbolicRDIVindependence;
1981 return true;
1982 }
1983 }
1984 }
1985 else if (SE->isKnownNonPositive(A1)) {
1986 if (SE->isKnownNonNegative(A2)) {
1987 // a1 <= 0 && a2 >= 0
1988 if (N1 && N2) {
1989 // make sure that a1*N1 - a2*N2 <= c2 - c1
1990 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1991 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1992 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1993 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1994 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
1995 ++SymbolicRDIVindependence;
1996 return true;
1997 }
1998 }
1999 // make sure that c2 - c1 <= 0
2000 if (SE->isKnownPositive(C2_C1)) {
2001 ++SymbolicRDIVindependence;
2002 return true;
2003 }
2004 }
2005 else if (SE->isKnownNonPositive(A2)) {
2006 // a1 <= 0 && a2 <= 0
2007 if (N1) {
2008 // make sure that a1*N1 <= c2 - c1
2009 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2010 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2011 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2012 ++SymbolicRDIVindependence;
2013 return true;
2014 }
2015 }
2016 if (N2) {
2017 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2018 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2019 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2020 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2021 ++SymbolicRDIVindependence;
2022 return true;
2023 }
2024 }
2025 }
2026 }
2027 return false;
2028 }
2029
2030
2031 // testSIV -
2032 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2033 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2034 // a2 are constant, we attack it with an SIV test. While they can all be
2035 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2036 // they apply; they're cheaper and sometimes more precise.
2037 //
2038 // Return true if dependence disproved.
testSIV(const SCEV * Src,const SCEV * Dst,unsigned & Level,FullDependence & Result,Constraint & NewConstraint,const SCEV * & SplitIter) const2039 bool DependenceAnalysis::testSIV(const SCEV *Src,
2040 const SCEV *Dst,
2041 unsigned &Level,
2042 FullDependence &Result,
2043 Constraint &NewConstraint,
2044 const SCEV *&SplitIter) const {
2045 DEBUG(dbgs() << " src = " << *Src << "\n");
2046 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2047 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2048 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2049 if (SrcAddRec && DstAddRec) {
2050 const SCEV *SrcConst = SrcAddRec->getStart();
2051 const SCEV *DstConst = DstAddRec->getStart();
2052 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2053 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2054 const Loop *CurLoop = SrcAddRec->getLoop();
2055 assert(CurLoop == DstAddRec->getLoop() &&
2056 "both loops in SIV should be same");
2057 Level = mapSrcLoop(CurLoop);
2058 bool disproven;
2059 if (SrcCoeff == DstCoeff)
2060 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2061 Level, Result, NewConstraint);
2062 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2063 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2064 Level, Result, NewConstraint, SplitIter);
2065 else
2066 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2067 Level, Result, NewConstraint);
2068 return disproven ||
2069 gcdMIVtest(Src, Dst, Result) ||
2070 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2071 }
2072 if (SrcAddRec) {
2073 const SCEV *SrcConst = SrcAddRec->getStart();
2074 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2075 const SCEV *DstConst = Dst;
2076 const Loop *CurLoop = SrcAddRec->getLoop();
2077 Level = mapSrcLoop(CurLoop);
2078 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2079 Level, Result, NewConstraint) ||
2080 gcdMIVtest(Src, Dst, Result);
2081 }
2082 if (DstAddRec) {
2083 const SCEV *DstConst = DstAddRec->getStart();
2084 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2085 const SCEV *SrcConst = Src;
2086 const Loop *CurLoop = DstAddRec->getLoop();
2087 Level = mapDstLoop(CurLoop);
2088 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2089 CurLoop, Level, Result, NewConstraint) ||
2090 gcdMIVtest(Src, Dst, Result);
2091 }
2092 llvm_unreachable("SIV test expected at least one AddRec");
2093 return false;
2094 }
2095
2096
2097 // testRDIV -
2098 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2099 // where i and j are induction variables, c1 and c2 are loop invariant,
2100 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2101 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2102 // It doesn't make sense to talk about distance or direction in this case,
2103 // so there's no point in making special versions of the Strong SIV test or
2104 // the Weak-crossing SIV test.
2105 //
2106 // With minor algebra, this test can also be used for things like
2107 // [c1 + a1*i + a2*j][c2].
2108 //
2109 // Return true if dependence disproved.
testRDIV(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const2110 bool DependenceAnalysis::testRDIV(const SCEV *Src,
2111 const SCEV *Dst,
2112 FullDependence &Result) const {
2113 // we have 3 possible situations here:
2114 // 1) [a*i + b] and [c*j + d]
2115 // 2) [a*i + c*j + b] and [d]
2116 // 3) [b] and [a*i + c*j + d]
2117 // We need to find what we've got and get organized
2118
2119 const SCEV *SrcConst, *DstConst;
2120 const SCEV *SrcCoeff, *DstCoeff;
2121 const Loop *SrcLoop, *DstLoop;
2122
2123 DEBUG(dbgs() << " src = " << *Src << "\n");
2124 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2125 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2126 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2127 if (SrcAddRec && DstAddRec) {
2128 SrcConst = SrcAddRec->getStart();
2129 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2130 SrcLoop = SrcAddRec->getLoop();
2131 DstConst = DstAddRec->getStart();
2132 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2133 DstLoop = DstAddRec->getLoop();
2134 }
2135 else if (SrcAddRec) {
2136 if (const SCEVAddRecExpr *tmpAddRec =
2137 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2138 SrcConst = tmpAddRec->getStart();
2139 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2140 SrcLoop = tmpAddRec->getLoop();
2141 DstConst = Dst;
2142 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2143 DstLoop = SrcAddRec->getLoop();
2144 }
2145 else
2146 llvm_unreachable("RDIV reached by surprising SCEVs");
2147 }
2148 else if (DstAddRec) {
2149 if (const SCEVAddRecExpr *tmpAddRec =
2150 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2151 DstConst = tmpAddRec->getStart();
2152 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2153 DstLoop = tmpAddRec->getLoop();
2154 SrcConst = Src;
2155 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2156 SrcLoop = DstAddRec->getLoop();
2157 }
2158 else
2159 llvm_unreachable("RDIV reached by surprising SCEVs");
2160 }
2161 else
2162 llvm_unreachable("RDIV expected at least one AddRec");
2163 return exactRDIVtest(SrcCoeff, DstCoeff,
2164 SrcConst, DstConst,
2165 SrcLoop, DstLoop,
2166 Result) ||
2167 gcdMIVtest(Src, Dst, Result) ||
2168 symbolicRDIVtest(SrcCoeff, DstCoeff,
2169 SrcConst, DstConst,
2170 SrcLoop, DstLoop);
2171 }
2172
2173
2174 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2175 // Return true if dependence disproved.
2176 // Can sometimes refine direction vectors.
testMIV(const SCEV * Src,const SCEV * Dst,const SmallBitVector & Loops,FullDependence & Result) const2177 bool DependenceAnalysis::testMIV(const SCEV *Src,
2178 const SCEV *Dst,
2179 const SmallBitVector &Loops,
2180 FullDependence &Result) const {
2181 DEBUG(dbgs() << " src = " << *Src << "\n");
2182 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2183 Result.Consistent = false;
2184 return gcdMIVtest(Src, Dst, Result) ||
2185 banerjeeMIVtest(Src, Dst, Loops, Result);
2186 }
2187
2188
2189 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2190 // in this case 10. If there is no constant part, returns NULL.
2191 static
getConstantPart(const SCEVMulExpr * Product)2192 const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
2193 for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
2194 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
2195 return Constant;
2196 }
2197 return nullptr;
2198 }
2199
2200
2201 //===----------------------------------------------------------------------===//
2202 // gcdMIVtest -
2203 // Tests an MIV subscript pair for dependence.
2204 // Returns true if any possible dependence is disproved.
2205 // Marks the result as inconsistent.
2206 // Can sometimes disprove the equal direction for 1 or more loops,
2207 // as discussed in Michael Wolfe's book,
2208 // High Performance Compilers for Parallel Computing, page 235.
2209 //
2210 // We spend some effort (code!) to handle cases like
2211 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2212 // but M and N are just loop-invariant variables.
2213 // This should help us handle linearized subscripts;
2214 // also makes this test a useful backup to the various SIV tests.
2215 //
2216 // It occurs to me that the presence of loop-invariant variables
2217 // changes the nature of the test from "greatest common divisor"
2218 // to "a common divisor".
gcdMIVtest(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const2219 bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
2220 const SCEV *Dst,
2221 FullDependence &Result) const {
2222 DEBUG(dbgs() << "starting gcd\n");
2223 ++GCDapplications;
2224 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2225 APInt RunningGCD = APInt::getNullValue(BitWidth);
2226
2227 // Examine Src coefficients.
2228 // Compute running GCD and record source constant.
2229 // Because we're looking for the constant at the end of the chain,
2230 // we can't quit the loop just because the GCD == 1.
2231 const SCEV *Coefficients = Src;
2232 while (const SCEVAddRecExpr *AddRec =
2233 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2234 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2235 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2236 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2237 // If the coefficient is the product of a constant and other stuff,
2238 // we can use the constant in the GCD computation.
2239 Constant = getConstantPart(Product);
2240 if (!Constant)
2241 return false;
2242 APInt ConstCoeff = Constant->getValue()->getValue();
2243 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2244 Coefficients = AddRec->getStart();
2245 }
2246 const SCEV *SrcConst = Coefficients;
2247
2248 // Examine Dst coefficients.
2249 // Compute running GCD and record destination constant.
2250 // Because we're looking for the constant at the end of the chain,
2251 // we can't quit the loop just because the GCD == 1.
2252 Coefficients = Dst;
2253 while (const SCEVAddRecExpr *AddRec =
2254 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2255 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2256 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2257 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2258 // If the coefficient is the product of a constant and other stuff,
2259 // we can use the constant in the GCD computation.
2260 Constant = getConstantPart(Product);
2261 if (!Constant)
2262 return false;
2263 APInt ConstCoeff = Constant->getValue()->getValue();
2264 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2265 Coefficients = AddRec->getStart();
2266 }
2267 const SCEV *DstConst = Coefficients;
2268
2269 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2270 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2271 DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2272 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2273 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2274 // If Delta is a sum of products, we may be able to make further progress.
2275 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2276 const SCEV *Operand = Sum->getOperand(Op);
2277 if (isa<SCEVConstant>(Operand)) {
2278 assert(!Constant && "Surprised to find multiple constants");
2279 Constant = cast<SCEVConstant>(Operand);
2280 }
2281 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2282 // Search for constant operand to participate in GCD;
2283 // If none found; return false.
2284 const SCEVConstant *ConstOp = getConstantPart(Product);
2285 if (!ConstOp)
2286 return false;
2287 APInt ConstOpValue = ConstOp->getValue()->getValue();
2288 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2289 ConstOpValue.abs());
2290 }
2291 else
2292 return false;
2293 }
2294 }
2295 if (!Constant)
2296 return false;
2297 APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
2298 DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2299 if (ConstDelta == 0)
2300 return false;
2301 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2302 DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2303 APInt Remainder = ConstDelta.srem(RunningGCD);
2304 if (Remainder != 0) {
2305 ++GCDindependence;
2306 return true;
2307 }
2308
2309 // Try to disprove equal directions.
2310 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2311 // the code above can't disprove the dependence because the GCD = 1.
2312 // So we consider what happen if i = i' and what happens if j = j'.
2313 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2314 // which is infeasible, so we can disallow the = direction for the i level.
2315 // Setting j = j' doesn't help matters, so we end up with a direction vector
2316 // of [<>, *]
2317 //
2318 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2319 // we need to remember that the constant part is 5 and the RunningGCD should
2320 // be initialized to ExtraGCD = 30.
2321 DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2322
2323 bool Improved = false;
2324 Coefficients = Src;
2325 while (const SCEVAddRecExpr *AddRec =
2326 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2327 Coefficients = AddRec->getStart();
2328 const Loop *CurLoop = AddRec->getLoop();
2329 RunningGCD = ExtraGCD;
2330 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2331 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2332 const SCEV *Inner = Src;
2333 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2334 AddRec = cast<SCEVAddRecExpr>(Inner);
2335 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2336 if (CurLoop == AddRec->getLoop())
2337 ; // SrcCoeff == Coeff
2338 else {
2339 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2340 // If the coefficient is the product of a constant and other stuff,
2341 // we can use the constant in the GCD computation.
2342 Constant = getConstantPart(Product);
2343 else
2344 Constant = cast<SCEVConstant>(Coeff);
2345 APInt ConstCoeff = Constant->getValue()->getValue();
2346 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2347 }
2348 Inner = AddRec->getStart();
2349 }
2350 Inner = Dst;
2351 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2352 AddRec = cast<SCEVAddRecExpr>(Inner);
2353 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2354 if (CurLoop == AddRec->getLoop())
2355 DstCoeff = Coeff;
2356 else {
2357 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2358 // If the coefficient is the product of a constant and other stuff,
2359 // we can use the constant in the GCD computation.
2360 Constant = getConstantPart(Product);
2361 else
2362 Constant = cast<SCEVConstant>(Coeff);
2363 APInt ConstCoeff = Constant->getValue()->getValue();
2364 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2365 }
2366 Inner = AddRec->getStart();
2367 }
2368 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2369 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
2370 // If the coefficient is the product of a constant and other stuff,
2371 // we can use the constant in the GCD computation.
2372 Constant = getConstantPart(Product);
2373 else if (isa<SCEVConstant>(Delta))
2374 Constant = cast<SCEVConstant>(Delta);
2375 else {
2376 // The difference of the two coefficients might not be a product
2377 // or constant, in which case we give up on this direction.
2378 continue;
2379 }
2380 APInt ConstCoeff = Constant->getValue()->getValue();
2381 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2382 DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2383 if (RunningGCD != 0) {
2384 Remainder = ConstDelta.srem(RunningGCD);
2385 DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2386 if (Remainder != 0) {
2387 unsigned Level = mapSrcLoop(CurLoop);
2388 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2389 Improved = true;
2390 }
2391 }
2392 }
2393 if (Improved)
2394 ++GCDsuccesses;
2395 DEBUG(dbgs() << "all done\n");
2396 return false;
2397 }
2398
2399
2400 //===----------------------------------------------------------------------===//
2401 // banerjeeMIVtest -
2402 // Use Banerjee's Inequalities to test an MIV subscript pair.
2403 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2404 // Generally follows the discussion in Section 2.5.2 of
2405 //
2406 // Optimizing Supercompilers for Supercomputers
2407 // Michael Wolfe
2408 //
2409 // The inequalities given on page 25 are simplified in that loops are
2410 // normalized so that the lower bound is always 0 and the stride is always 1.
2411 // For example, Wolfe gives
2412 //
2413 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2414 //
2415 // where A_k is the coefficient of the kth index in the source subscript,
2416 // B_k is the coefficient of the kth index in the destination subscript,
2417 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2418 // index, and N_k is the stride of the kth index. Since all loops are normalized
2419 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2420 // equation to
2421 //
2422 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2423 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2424 //
2425 // Similar simplifications are possible for the other equations.
2426 //
2427 // When we can't determine the number of iterations for a loop,
2428 // we use NULL as an indicator for the worst case, infinity.
2429 // When computing the upper bound, NULL denotes +inf;
2430 // for the lower bound, NULL denotes -inf.
2431 //
2432 // Return true if dependence disproved.
banerjeeMIVtest(const SCEV * Src,const SCEV * Dst,const SmallBitVector & Loops,FullDependence & Result) const2433 bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
2434 const SCEV *Dst,
2435 const SmallBitVector &Loops,
2436 FullDependence &Result) const {
2437 DEBUG(dbgs() << "starting Banerjee\n");
2438 ++BanerjeeApplications;
2439 DEBUG(dbgs() << " Src = " << *Src << '\n');
2440 const SCEV *A0;
2441 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2442 DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2443 const SCEV *B0;
2444 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2445 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2446 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2447 DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2448
2449 // Compute bounds for all the * directions.
2450 DEBUG(dbgs() << "\tBounds[*]\n");
2451 for (unsigned K = 1; K <= MaxLevels; ++K) {
2452 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2453 Bound[K].Direction = Dependence::DVEntry::ALL;
2454 Bound[K].DirSet = Dependence::DVEntry::NONE;
2455 findBoundsALL(A, B, Bound, K);
2456 #ifndef NDEBUG
2457 DEBUG(dbgs() << "\t " << K << '\t');
2458 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2459 DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2460 else
2461 DEBUG(dbgs() << "-inf\t");
2462 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2463 DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2464 else
2465 DEBUG(dbgs() << "+inf\n");
2466 #endif
2467 }
2468
2469 // Test the *, *, *, ... case.
2470 bool Disproved = false;
2471 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2472 // Explore the direction vector hierarchy.
2473 unsigned DepthExpanded = 0;
2474 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2475 Loops, DepthExpanded, Delta);
2476 if (NewDeps > 0) {
2477 bool Improved = false;
2478 for (unsigned K = 1; K <= CommonLevels; ++K) {
2479 if (Loops[K]) {
2480 unsigned Old = Result.DV[K - 1].Direction;
2481 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2482 Improved |= Old != Result.DV[K - 1].Direction;
2483 if (!Result.DV[K - 1].Direction) {
2484 Improved = false;
2485 Disproved = true;
2486 break;
2487 }
2488 }
2489 }
2490 if (Improved)
2491 ++BanerjeeSuccesses;
2492 }
2493 else {
2494 ++BanerjeeIndependence;
2495 Disproved = true;
2496 }
2497 }
2498 else {
2499 ++BanerjeeIndependence;
2500 Disproved = true;
2501 }
2502 delete [] Bound;
2503 delete [] A;
2504 delete [] B;
2505 return Disproved;
2506 }
2507
2508
2509 // Hierarchically expands the direction vector
2510 // search space, combining the directions of discovered dependences
2511 // in the DirSet field of Bound. Returns the number of distinct
2512 // dependences discovered. If the dependence is disproved,
2513 // it will return 0.
exploreDirections(unsigned Level,CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,const SmallBitVector & Loops,unsigned & DepthExpanded,const SCEV * Delta) const2514 unsigned DependenceAnalysis::exploreDirections(unsigned Level,
2515 CoefficientInfo *A,
2516 CoefficientInfo *B,
2517 BoundInfo *Bound,
2518 const SmallBitVector &Loops,
2519 unsigned &DepthExpanded,
2520 const SCEV *Delta) const {
2521 if (Level > CommonLevels) {
2522 // record result
2523 DEBUG(dbgs() << "\t[");
2524 for (unsigned K = 1; K <= CommonLevels; ++K) {
2525 if (Loops[K]) {
2526 Bound[K].DirSet |= Bound[K].Direction;
2527 #ifndef NDEBUG
2528 switch (Bound[K].Direction) {
2529 case Dependence::DVEntry::LT:
2530 DEBUG(dbgs() << " <");
2531 break;
2532 case Dependence::DVEntry::EQ:
2533 DEBUG(dbgs() << " =");
2534 break;
2535 case Dependence::DVEntry::GT:
2536 DEBUG(dbgs() << " >");
2537 break;
2538 case Dependence::DVEntry::ALL:
2539 DEBUG(dbgs() << " *");
2540 break;
2541 default:
2542 llvm_unreachable("unexpected Bound[K].Direction");
2543 }
2544 #endif
2545 }
2546 }
2547 DEBUG(dbgs() << " ]\n");
2548 return 1;
2549 }
2550 if (Loops[Level]) {
2551 if (Level > DepthExpanded) {
2552 DepthExpanded = Level;
2553 // compute bounds for <, =, > at current level
2554 findBoundsLT(A, B, Bound, Level);
2555 findBoundsGT(A, B, Bound, Level);
2556 findBoundsEQ(A, B, Bound, Level);
2557 #ifndef NDEBUG
2558 DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2559 DEBUG(dbgs() << "\t <\t");
2560 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2561 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2562 else
2563 DEBUG(dbgs() << "-inf\t");
2564 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2565 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2566 else
2567 DEBUG(dbgs() << "+inf\n");
2568 DEBUG(dbgs() << "\t =\t");
2569 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2570 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2571 else
2572 DEBUG(dbgs() << "-inf\t");
2573 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2574 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2575 else
2576 DEBUG(dbgs() << "+inf\n");
2577 DEBUG(dbgs() << "\t >\t");
2578 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2579 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2580 else
2581 DEBUG(dbgs() << "-inf\t");
2582 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2583 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2584 else
2585 DEBUG(dbgs() << "+inf\n");
2586 #endif
2587 }
2588
2589 unsigned NewDeps = 0;
2590
2591 // test bounds for <, *, *, ...
2592 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2593 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2594 Loops, DepthExpanded, Delta);
2595
2596 // Test bounds for =, *, *, ...
2597 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2598 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2599 Loops, DepthExpanded, Delta);
2600
2601 // test bounds for >, *, *, ...
2602 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2603 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2604 Loops, DepthExpanded, Delta);
2605
2606 Bound[Level].Direction = Dependence::DVEntry::ALL;
2607 return NewDeps;
2608 }
2609 else
2610 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2611 }
2612
2613
2614 // Returns true iff the current bounds are plausible.
testBounds(unsigned char DirKind,unsigned Level,BoundInfo * Bound,const SCEV * Delta) const2615 bool DependenceAnalysis::testBounds(unsigned char DirKind,
2616 unsigned Level,
2617 BoundInfo *Bound,
2618 const SCEV *Delta) const {
2619 Bound[Level].Direction = DirKind;
2620 if (const SCEV *LowerBound = getLowerBound(Bound))
2621 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2622 return false;
2623 if (const SCEV *UpperBound = getUpperBound(Bound))
2624 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2625 return false;
2626 return true;
2627 }
2628
2629
2630 // Computes the upper and lower bounds for level K
2631 // using the * direction. Records them in Bound.
2632 // Wolfe gives the equations
2633 //
2634 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2635 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2636 //
2637 // Since we normalize loops, we can simplify these equations to
2638 //
2639 // LB^*_k = (A^-_k - B^+_k)U_k
2640 // UB^*_k = (A^+_k - B^-_k)U_k
2641 //
2642 // We must be careful to handle the case where the upper bound is unknown.
2643 // Note that the lower bound is always <= 0
2644 // and the upper bound is always >= 0.
findBoundsALL(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2645 void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
2646 CoefficientInfo *B,
2647 BoundInfo *Bound,
2648 unsigned K) const {
2649 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2650 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2651 if (Bound[K].Iterations) {
2652 Bound[K].Lower[Dependence::DVEntry::ALL] =
2653 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2654 Bound[K].Iterations);
2655 Bound[K].Upper[Dependence::DVEntry::ALL] =
2656 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2657 Bound[K].Iterations);
2658 }
2659 else {
2660 // If the difference is 0, we won't need to know the number of iterations.
2661 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2662 Bound[K].Lower[Dependence::DVEntry::ALL] =
2663 SE->getConstant(A[K].Coeff->getType(), 0);
2664 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2665 Bound[K].Upper[Dependence::DVEntry::ALL] =
2666 SE->getConstant(A[K].Coeff->getType(), 0);
2667 }
2668 }
2669
2670
2671 // Computes the upper and lower bounds for level K
2672 // using the = direction. Records them in Bound.
2673 // Wolfe gives the equations
2674 //
2675 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2676 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2677 //
2678 // Since we normalize loops, we can simplify these equations to
2679 //
2680 // LB^=_k = (A_k - B_k)^- U_k
2681 // UB^=_k = (A_k - B_k)^+ U_k
2682 //
2683 // We must be careful to handle the case where the upper bound is unknown.
2684 // Note that the lower bound is always <= 0
2685 // and the upper bound is always >= 0.
findBoundsEQ(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2686 void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
2687 CoefficientInfo *B,
2688 BoundInfo *Bound,
2689 unsigned K) const {
2690 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2691 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2692 if (Bound[K].Iterations) {
2693 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2694 const SCEV *NegativePart = getNegativePart(Delta);
2695 Bound[K].Lower[Dependence::DVEntry::EQ] =
2696 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2697 const SCEV *PositivePart = getPositivePart(Delta);
2698 Bound[K].Upper[Dependence::DVEntry::EQ] =
2699 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2700 }
2701 else {
2702 // If the positive/negative part of the difference is 0,
2703 // we won't need to know the number of iterations.
2704 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2705 const SCEV *NegativePart = getNegativePart(Delta);
2706 if (NegativePart->isZero())
2707 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2708 const SCEV *PositivePart = getPositivePart(Delta);
2709 if (PositivePart->isZero())
2710 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2711 }
2712 }
2713
2714
2715 // Computes the upper and lower bounds for level K
2716 // using the < direction. Records them in Bound.
2717 // Wolfe gives the equations
2718 //
2719 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2720 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2721 //
2722 // Since we normalize loops, we can simplify these equations to
2723 //
2724 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2725 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2726 //
2727 // We must be careful to handle the case where the upper bound is unknown.
findBoundsLT(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2728 void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
2729 CoefficientInfo *B,
2730 BoundInfo *Bound,
2731 unsigned K) const {
2732 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2733 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2734 if (Bound[K].Iterations) {
2735 const SCEV *Iter_1 =
2736 SE->getMinusSCEV(Bound[K].Iterations,
2737 SE->getConstant(Bound[K].Iterations->getType(), 1));
2738 const SCEV *NegPart =
2739 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2740 Bound[K].Lower[Dependence::DVEntry::LT] =
2741 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2742 const SCEV *PosPart =
2743 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2744 Bound[K].Upper[Dependence::DVEntry::LT] =
2745 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2746 }
2747 else {
2748 // If the positive/negative part of the difference is 0,
2749 // we won't need to know the number of iterations.
2750 const SCEV *NegPart =
2751 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2752 if (NegPart->isZero())
2753 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2754 const SCEV *PosPart =
2755 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2756 if (PosPart->isZero())
2757 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2758 }
2759 }
2760
2761
2762 // Computes the upper and lower bounds for level K
2763 // using the > direction. Records them in Bound.
2764 // Wolfe gives the equations
2765 //
2766 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2767 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2768 //
2769 // Since we normalize loops, we can simplify these equations to
2770 //
2771 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2772 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2773 //
2774 // We must be careful to handle the case where the upper bound is unknown.
findBoundsGT(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2775 void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
2776 CoefficientInfo *B,
2777 BoundInfo *Bound,
2778 unsigned K) const {
2779 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2780 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2781 if (Bound[K].Iterations) {
2782 const SCEV *Iter_1 =
2783 SE->getMinusSCEV(Bound[K].Iterations,
2784 SE->getConstant(Bound[K].Iterations->getType(), 1));
2785 const SCEV *NegPart =
2786 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2787 Bound[K].Lower[Dependence::DVEntry::GT] =
2788 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2789 const SCEV *PosPart =
2790 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2791 Bound[K].Upper[Dependence::DVEntry::GT] =
2792 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2793 }
2794 else {
2795 // If the positive/negative part of the difference is 0,
2796 // we won't need to know the number of iterations.
2797 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2798 if (NegPart->isZero())
2799 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2800 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2801 if (PosPart->isZero())
2802 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2803 }
2804 }
2805
2806
2807 // X^+ = max(X, 0)
getPositivePart(const SCEV * X) const2808 const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
2809 return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
2810 }
2811
2812
2813 // X^- = min(X, 0)
getNegativePart(const SCEV * X) const2814 const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
2815 return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
2816 }
2817
2818
2819 // Walks through the subscript,
2820 // collecting each coefficient, the associated loop bounds,
2821 // and recording its positive and negative parts for later use.
2822 DependenceAnalysis::CoefficientInfo *
collectCoeffInfo(const SCEV * Subscript,bool SrcFlag,const SCEV * & Constant) const2823 DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
2824 bool SrcFlag,
2825 const SCEV *&Constant) const {
2826 const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
2827 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2828 for (unsigned K = 1; K <= MaxLevels; ++K) {
2829 CI[K].Coeff = Zero;
2830 CI[K].PosPart = Zero;
2831 CI[K].NegPart = Zero;
2832 CI[K].Iterations = nullptr;
2833 }
2834 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2835 const Loop *L = AddRec->getLoop();
2836 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2837 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2838 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2839 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2840 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2841 Subscript = AddRec->getStart();
2842 }
2843 Constant = Subscript;
2844 #ifndef NDEBUG
2845 DEBUG(dbgs() << "\tCoefficient Info\n");
2846 for (unsigned K = 1; K <= MaxLevels; ++K) {
2847 DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2848 DEBUG(dbgs() << "\tPos Part = ");
2849 DEBUG(dbgs() << *CI[K].PosPart);
2850 DEBUG(dbgs() << "\tNeg Part = ");
2851 DEBUG(dbgs() << *CI[K].NegPart);
2852 DEBUG(dbgs() << "\tUpper Bound = ");
2853 if (CI[K].Iterations)
2854 DEBUG(dbgs() << *CI[K].Iterations);
2855 else
2856 DEBUG(dbgs() << "+inf");
2857 DEBUG(dbgs() << '\n');
2858 }
2859 DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2860 #endif
2861 return CI;
2862 }
2863
2864
2865 // Looks through all the bounds info and
2866 // computes the lower bound given the current direction settings
2867 // at each level. If the lower bound for any level is -inf,
2868 // the result is -inf.
getLowerBound(BoundInfo * Bound) const2869 const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
2870 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2871 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2872 if (Bound[K].Lower[Bound[K].Direction])
2873 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2874 else
2875 Sum = nullptr;
2876 }
2877 return Sum;
2878 }
2879
2880
2881 // Looks through all the bounds info and
2882 // computes the upper bound given the current direction settings
2883 // at each level. If the upper bound at any level is +inf,
2884 // the result is +inf.
getUpperBound(BoundInfo * Bound) const2885 const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
2886 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2887 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2888 if (Bound[K].Upper[Bound[K].Direction])
2889 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2890 else
2891 Sum = nullptr;
2892 }
2893 return Sum;
2894 }
2895
2896
2897 //===----------------------------------------------------------------------===//
2898 // Constraint manipulation for Delta test.
2899
2900 // Given a linear SCEV,
2901 // return the coefficient (the step)
2902 // corresponding to the specified loop.
2903 // If there isn't one, return 0.
2904 // For example, given a*i + b*j + c*k, zeroing the coefficient
2905 // corresponding to the j loop would yield b.
findCoefficient(const SCEV * Expr,const Loop * TargetLoop) const2906 const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
2907 const Loop *TargetLoop) const {
2908 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2909 if (!AddRec)
2910 return SE->getConstant(Expr->getType(), 0);
2911 if (AddRec->getLoop() == TargetLoop)
2912 return AddRec->getStepRecurrence(*SE);
2913 return findCoefficient(AddRec->getStart(), TargetLoop);
2914 }
2915
2916
2917 // Given a linear SCEV,
2918 // return the SCEV given by zeroing out the coefficient
2919 // corresponding to the specified loop.
2920 // For example, given a*i + b*j + c*k, zeroing the coefficient
2921 // corresponding to the j loop would yield a*i + c*k.
zeroCoefficient(const SCEV * Expr,const Loop * TargetLoop) const2922 const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
2923 const Loop *TargetLoop) const {
2924 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2925 if (!AddRec)
2926 return Expr; // ignore
2927 if (AddRec->getLoop() == TargetLoop)
2928 return AddRec->getStart();
2929 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2930 AddRec->getStepRecurrence(*SE),
2931 AddRec->getLoop(),
2932 AddRec->getNoWrapFlags());
2933 }
2934
2935
2936 // Given a linear SCEV Expr,
2937 // return the SCEV given by adding some Value to the
2938 // coefficient corresponding to the specified TargetLoop.
2939 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
2940 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
addToCoefficient(const SCEV * Expr,const Loop * TargetLoop,const SCEV * Value) const2941 const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
2942 const Loop *TargetLoop,
2943 const SCEV *Value) const {
2944 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2945 if (!AddRec) // create a new addRec
2946 return SE->getAddRecExpr(Expr,
2947 Value,
2948 TargetLoop,
2949 SCEV::FlagAnyWrap); // Worst case, with no info.
2950 if (AddRec->getLoop() == TargetLoop) {
2951 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2952 if (Sum->isZero())
2953 return AddRec->getStart();
2954 return SE->getAddRecExpr(AddRec->getStart(),
2955 Sum,
2956 AddRec->getLoop(),
2957 AddRec->getNoWrapFlags());
2958 }
2959 if (SE->isLoopInvariant(AddRec, TargetLoop))
2960 return SE->getAddRecExpr(AddRec,
2961 Value,
2962 TargetLoop,
2963 SCEV::FlagAnyWrap);
2964 return SE->getAddRecExpr(addToCoefficient(AddRec->getStart(),
2965 TargetLoop, Value),
2966 AddRec->getStepRecurrence(*SE),
2967 AddRec->getLoop(),
2968 AddRec->getNoWrapFlags());
2969 }
2970
2971
2972 // Review the constraints, looking for opportunities
2973 // to simplify a subscript pair (Src and Dst).
2974 // Return true if some simplification occurs.
2975 // If the simplification isn't exact (that is, if it is conservative
2976 // in terms of dependence), set consistent to false.
2977 // Corresponds to Figure 5 from the paper
2978 //
2979 // Practical Dependence Testing
2980 // Goff, Kennedy, Tseng
2981 // PLDI 1991
propagate(const SCEV * & Src,const SCEV * & Dst,SmallBitVector & Loops,SmallVectorImpl<Constraint> & Constraints,bool & Consistent)2982 bool DependenceAnalysis::propagate(const SCEV *&Src,
2983 const SCEV *&Dst,
2984 SmallBitVector &Loops,
2985 SmallVectorImpl<Constraint> &Constraints,
2986 bool &Consistent) {
2987 bool Result = false;
2988 for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
2989 DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
2990 DEBUG(Constraints[LI].dump(dbgs()));
2991 if (Constraints[LI].isDistance())
2992 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
2993 else if (Constraints[LI].isLine())
2994 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
2995 else if (Constraints[LI].isPoint())
2996 Result |= propagatePoint(Src, Dst, Constraints[LI]);
2997 }
2998 return Result;
2999 }
3000
3001
3002 // Attempt to propagate a distance
3003 // constraint into a subscript pair (Src and Dst).
3004 // Return true if some simplification occurs.
3005 // If the simplification isn't exact (that is, if it is conservative
3006 // in terms of dependence), set consistent to false.
propagateDistance(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint,bool & Consistent)3007 bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
3008 const SCEV *&Dst,
3009 Constraint &CurConstraint,
3010 bool &Consistent) {
3011 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3012 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3013 const SCEV *A_K = findCoefficient(Src, CurLoop);
3014 if (A_K->isZero())
3015 return false;
3016 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3017 Src = SE->getMinusSCEV(Src, DA_K);
3018 Src = zeroCoefficient(Src, CurLoop);
3019 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3020 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3021 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3022 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3023 if (!findCoefficient(Dst, CurLoop)->isZero())
3024 Consistent = false;
3025 return true;
3026 }
3027
3028
3029 // Attempt to propagate a line
3030 // constraint into a subscript pair (Src and Dst).
3031 // Return true if some simplification occurs.
3032 // If the simplification isn't exact (that is, if it is conservative
3033 // in terms of dependence), set consistent to false.
propagateLine(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint,bool & Consistent)3034 bool DependenceAnalysis::propagateLine(const SCEV *&Src,
3035 const SCEV *&Dst,
3036 Constraint &CurConstraint,
3037 bool &Consistent) {
3038 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3039 const SCEV *A = CurConstraint.getA();
3040 const SCEV *B = CurConstraint.getB();
3041 const SCEV *C = CurConstraint.getC();
3042 DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3043 DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3044 DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3045 if (A->isZero()) {
3046 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3047 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3048 if (!Bconst || !Cconst) return false;
3049 APInt Beta = Bconst->getValue()->getValue();
3050 APInt Charlie = Cconst->getValue()->getValue();
3051 APInt CdivB = Charlie.sdiv(Beta);
3052 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3053 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3054 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3055 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3056 Dst = zeroCoefficient(Dst, CurLoop);
3057 if (!findCoefficient(Src, CurLoop)->isZero())
3058 Consistent = false;
3059 }
3060 else if (B->isZero()) {
3061 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3062 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3063 if (!Aconst || !Cconst) return false;
3064 APInt Alpha = Aconst->getValue()->getValue();
3065 APInt Charlie = Cconst->getValue()->getValue();
3066 APInt CdivA = Charlie.sdiv(Alpha);
3067 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3068 const SCEV *A_K = findCoefficient(Src, CurLoop);
3069 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3070 Src = zeroCoefficient(Src, CurLoop);
3071 if (!findCoefficient(Dst, CurLoop)->isZero())
3072 Consistent = false;
3073 }
3074 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3075 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3076 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3077 if (!Aconst || !Cconst) return false;
3078 APInt Alpha = Aconst->getValue()->getValue();
3079 APInt Charlie = Cconst->getValue()->getValue();
3080 APInt CdivA = Charlie.sdiv(Alpha);
3081 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3082 const SCEV *A_K = findCoefficient(Src, CurLoop);
3083 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3084 Src = zeroCoefficient(Src, CurLoop);
3085 Dst = addToCoefficient(Dst, CurLoop, A_K);
3086 if (!findCoefficient(Dst, CurLoop)->isZero())
3087 Consistent = false;
3088 }
3089 else {
3090 // paper is incorrect here, or perhaps just misleading
3091 const SCEV *A_K = findCoefficient(Src, CurLoop);
3092 Src = SE->getMulExpr(Src, A);
3093 Dst = SE->getMulExpr(Dst, A);
3094 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3095 Src = zeroCoefficient(Src, CurLoop);
3096 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3097 if (!findCoefficient(Dst, CurLoop)->isZero())
3098 Consistent = false;
3099 }
3100 DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3101 DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3102 return true;
3103 }
3104
3105
3106 // Attempt to propagate a point
3107 // constraint into a subscript pair (Src and Dst).
3108 // Return true if some simplification occurs.
propagatePoint(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint)3109 bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
3110 const SCEV *&Dst,
3111 Constraint &CurConstraint) {
3112 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3113 const SCEV *A_K = findCoefficient(Src, CurLoop);
3114 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3115 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3116 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3117 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3118 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3119 Src = zeroCoefficient(Src, CurLoop);
3120 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3121 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3122 Dst = zeroCoefficient(Dst, CurLoop);
3123 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3124 return true;
3125 }
3126
3127
3128 // Update direction vector entry based on the current constraint.
updateDirection(Dependence::DVEntry & Level,const Constraint & CurConstraint) const3129 void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
3130 const Constraint &CurConstraint
3131 ) const {
3132 DEBUG(dbgs() << "\tUpdate direction, constraint =");
3133 DEBUG(CurConstraint.dump(dbgs()));
3134 if (CurConstraint.isAny())
3135 ; // use defaults
3136 else if (CurConstraint.isDistance()) {
3137 // this one is consistent, the others aren't
3138 Level.Scalar = false;
3139 Level.Distance = CurConstraint.getD();
3140 unsigned NewDirection = Dependence::DVEntry::NONE;
3141 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3142 NewDirection = Dependence::DVEntry::EQ;
3143 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3144 NewDirection |= Dependence::DVEntry::LT;
3145 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3146 NewDirection |= Dependence::DVEntry::GT;
3147 Level.Direction &= NewDirection;
3148 }
3149 else if (CurConstraint.isLine()) {
3150 Level.Scalar = false;
3151 Level.Distance = nullptr;
3152 // direction should be accurate
3153 }
3154 else if (CurConstraint.isPoint()) {
3155 Level.Scalar = false;
3156 Level.Distance = nullptr;
3157 unsigned NewDirection = Dependence::DVEntry::NONE;
3158 if (!isKnownPredicate(CmpInst::ICMP_NE,
3159 CurConstraint.getY(),
3160 CurConstraint.getX()))
3161 // if X may be = Y
3162 NewDirection |= Dependence::DVEntry::EQ;
3163 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3164 CurConstraint.getY(),
3165 CurConstraint.getX()))
3166 // if Y may be > X
3167 NewDirection |= Dependence::DVEntry::LT;
3168 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3169 CurConstraint.getY(),
3170 CurConstraint.getX()))
3171 // if Y may be < X
3172 NewDirection |= Dependence::DVEntry::GT;
3173 Level.Direction &= NewDirection;
3174 }
3175 else
3176 llvm_unreachable("constraint has unexpected kind");
3177 }
3178
3179 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3180 /// source and destination array references are recurrences on a nested loop,
3181 /// this function flattens the nested recurrences into separate recurrences
3182 /// for each loop level.
tryDelinearize(const SCEV * SrcSCEV,const SCEV * DstSCEV,SmallVectorImpl<Subscript> & Pair,const SCEV * ElementSize) const3183 bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV,
3184 const SCEV *DstSCEV,
3185 SmallVectorImpl<Subscript> &Pair,
3186 const SCEV *ElementSize) const {
3187 const SCEVUnknown *SrcBase =
3188 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcSCEV));
3189 const SCEVUnknown *DstBase =
3190 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstSCEV));
3191
3192 if (!SrcBase || !DstBase || SrcBase != DstBase)
3193 return false;
3194
3195 SrcSCEV = SE->getMinusSCEV(SrcSCEV, SrcBase);
3196 DstSCEV = SE->getMinusSCEV(DstSCEV, DstBase);
3197
3198 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3199 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3200 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3201 return false;
3202
3203 // First step: collect parametric terms in both array references.
3204 SmallVector<const SCEV *, 4> Terms;
3205 SrcAR->collectParametricTerms(*SE, Terms);
3206 DstAR->collectParametricTerms(*SE, Terms);
3207
3208 // Second step: find subscript sizes.
3209 SmallVector<const SCEV *, 4> Sizes;
3210 SE->findArrayDimensions(Terms, Sizes, ElementSize);
3211
3212 // Third step: compute the access functions for each subscript.
3213 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3214 SrcAR->computeAccessFunctions(*SE, SrcSubscripts, Sizes);
3215 DstAR->computeAccessFunctions(*SE, DstSubscripts, Sizes);
3216
3217 // Fail when there is only a subscript: that's a linearized access function.
3218 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3219 SrcSubscripts.size() != DstSubscripts.size())
3220 return false;
3221
3222 int size = SrcSubscripts.size();
3223
3224 DEBUG({
3225 dbgs() << "\nSrcSubscripts: ";
3226 for (int i = 0; i < size; i++)
3227 dbgs() << *SrcSubscripts[i];
3228 dbgs() << "\nDstSubscripts: ";
3229 for (int i = 0; i < size; i++)
3230 dbgs() << *DstSubscripts[i];
3231 });
3232
3233 // The delinearization transforms a single-subscript MIV dependence test into
3234 // a multi-subscript SIV dependence test that is easier to compute. So we
3235 // resize Pair to contain as many pairs of subscripts as the delinearization
3236 // has found, and then initialize the pairs following the delinearization.
3237 Pair.resize(size);
3238 for (int i = 0; i < size; ++i) {
3239 Pair[i].Src = SrcSubscripts[i];
3240 Pair[i].Dst = DstSubscripts[i];
3241
3242 // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
3243 // delinearization has found, and add these constraints to the dependence
3244 // check to avoid memory accesses overflow from one dimension into another.
3245 // This is related to the problem of determining the existence of data
3246 // dependences in array accesses using a different number of subscripts: in
3247 // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
3248 }
3249
3250 return true;
3251 }
3252
3253 //===----------------------------------------------------------------------===//
3254
3255 #ifndef NDEBUG
3256 // For debugging purposes, dump a small bit vector to dbgs().
dumpSmallBitVector(SmallBitVector & BV)3257 static void dumpSmallBitVector(SmallBitVector &BV) {
3258 dbgs() << "{";
3259 for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3260 dbgs() << VI;
3261 if (BV.find_next(VI) >= 0)
3262 dbgs() << ' ';
3263 }
3264 dbgs() << "}\n";
3265 }
3266 #endif
3267
3268
3269 // depends -
3270 // Returns NULL if there is no dependence.
3271 // Otherwise, return a Dependence with as many details as possible.
3272 // Corresponds to Section 3.1 in the paper
3273 //
3274 // Practical Dependence Testing
3275 // Goff, Kennedy, Tseng
3276 // PLDI 1991
3277 //
3278 // Care is required to keep the routine below, getSplitIteration(),
3279 // up to date with respect to this routine.
depends(Instruction * Src,Instruction * Dst,bool PossiblyLoopIndependent)3280 Dependence *DependenceAnalysis::depends(Instruction *Src,
3281 Instruction *Dst,
3282 bool PossiblyLoopIndependent) {
3283 if (Src == Dst)
3284 PossiblyLoopIndependent = false;
3285
3286 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3287 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3288 // if both instructions don't reference memory, there's no dependence
3289 return nullptr;
3290
3291 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3292 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3293 DEBUG(dbgs() << "can only handle simple loads and stores\n");
3294 return new Dependence(Src, Dst);
3295 }
3296
3297 Value *SrcPtr = getPointerOperand(Src);
3298 Value *DstPtr = getPointerOperand(Dst);
3299
3300 switch (underlyingObjectsAlias(AA, DstPtr, SrcPtr)) {
3301 case AliasAnalysis::MayAlias:
3302 case AliasAnalysis::PartialAlias:
3303 // cannot analyse objects if we don't understand their aliasing.
3304 DEBUG(dbgs() << "can't analyze may or partial alias\n");
3305 return new Dependence(Src, Dst);
3306 case AliasAnalysis::NoAlias:
3307 // If the objects noalias, they are distinct, accesses are independent.
3308 DEBUG(dbgs() << "no alias\n");
3309 return nullptr;
3310 case AliasAnalysis::MustAlias:
3311 break; // The underlying objects alias; test accesses for dependence.
3312 }
3313
3314 // establish loop nesting levels
3315 establishNestingLevels(Src, Dst);
3316 DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3317 DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3318
3319 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3320 ++TotalArrayPairs;
3321
3322 // See if there are GEPs we can use.
3323 bool UsefulGEP = false;
3324 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3325 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3326 if (SrcGEP && DstGEP &&
3327 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3328 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3329 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3330 DEBUG(dbgs() << " SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
3331 DEBUG(dbgs() << " DstPtrSCEV = " << *DstPtrSCEV << "\n");
3332
3333 UsefulGEP =
3334 isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3335 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
3336 }
3337 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3338 SmallVector<Subscript, 4> Pair(Pairs);
3339 if (UsefulGEP) {
3340 DEBUG(dbgs() << " using GEPs\n");
3341 unsigned P = 0;
3342 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3343 SrcEnd = SrcGEP->idx_end(),
3344 DstIdx = DstGEP->idx_begin();
3345 SrcIdx != SrcEnd;
3346 ++SrcIdx, ++DstIdx, ++P) {
3347 Pair[P].Src = SE->getSCEV(*SrcIdx);
3348 Pair[P].Dst = SE->getSCEV(*DstIdx);
3349 }
3350 }
3351 else {
3352 DEBUG(dbgs() << " ignoring GEPs\n");
3353 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3354 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3355 DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3356 DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3357 Pair[0].Src = SrcSCEV;
3358 Pair[0].Dst = DstSCEV;
3359 }
3360
3361 if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
3362 tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
3363 DEBUG(dbgs() << " delinerized GEP\n");
3364 Pairs = Pair.size();
3365 }
3366
3367 for (unsigned P = 0; P < Pairs; ++P) {
3368 Pair[P].Loops.resize(MaxLevels + 1);
3369 Pair[P].GroupLoops.resize(MaxLevels + 1);
3370 Pair[P].Group.resize(Pairs);
3371 removeMatchingExtensions(&Pair[P]);
3372 Pair[P].Classification =
3373 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3374 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3375 Pair[P].Loops);
3376 Pair[P].GroupLoops = Pair[P].Loops;
3377 Pair[P].Group.set(P);
3378 DEBUG(dbgs() << " subscript " << P << "\n");
3379 DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3380 DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3381 DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3382 DEBUG(dbgs() << "\tloops = ");
3383 DEBUG(dumpSmallBitVector(Pair[P].Loops));
3384 }
3385
3386 SmallBitVector Separable(Pairs);
3387 SmallBitVector Coupled(Pairs);
3388
3389 // Partition subscripts into separable and minimally-coupled groups
3390 // Algorithm in paper is algorithmically better;
3391 // this may be faster in practice. Check someday.
3392 //
3393 // Here's an example of how it works. Consider this code:
3394 //
3395 // for (i = ...) {
3396 // for (j = ...) {
3397 // for (k = ...) {
3398 // for (l = ...) {
3399 // for (m = ...) {
3400 // A[i][j][k][m] = ...;
3401 // ... = A[0][j][l][i + j];
3402 // }
3403 // }
3404 // }
3405 // }
3406 // }
3407 //
3408 // There are 4 subscripts here:
3409 // 0 [i] and [0]
3410 // 1 [j] and [j]
3411 // 2 [k] and [l]
3412 // 3 [m] and [i + j]
3413 //
3414 // We've already classified each subscript pair as ZIV, SIV, etc.,
3415 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3416 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3417 // and set Pair[P].Group = {P}.
3418 //
3419 // Src Dst Classification Loops GroupLoops Group
3420 // 0 [i] [0] SIV {1} {1} {0}
3421 // 1 [j] [j] SIV {2} {2} {1}
3422 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3423 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3424 //
3425 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3426 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3427 //
3428 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3429 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3430 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3431 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3432 // to either Separable or Coupled).
3433 //
3434 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3435 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3436 // so Pair[3].Group = {0, 1, 3} and Done = false.
3437 //
3438 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3439 // Since Done remains true, we add 2 to the set of Separable pairs.
3440 //
3441 // Finally, we consider 3. There's nothing to compare it with,
3442 // so Done remains true and we add it to the Coupled set.
3443 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3444 //
3445 // In the end, we've got 1 separable subscript and 1 coupled group.
3446 for (unsigned SI = 0; SI < Pairs; ++SI) {
3447 if (Pair[SI].Classification == Subscript::NonLinear) {
3448 // ignore these, but collect loops for later
3449 ++NonlinearSubscriptPairs;
3450 collectCommonLoops(Pair[SI].Src,
3451 LI->getLoopFor(Src->getParent()),
3452 Pair[SI].Loops);
3453 collectCommonLoops(Pair[SI].Dst,
3454 LI->getLoopFor(Dst->getParent()),
3455 Pair[SI].Loops);
3456 Result.Consistent = false;
3457 }
3458 else if (Pair[SI].Classification == Subscript::ZIV) {
3459 // always separable
3460 Separable.set(SI);
3461 }
3462 else {
3463 // SIV, RDIV, or MIV, so check for coupled group
3464 bool Done = true;
3465 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3466 SmallBitVector Intersection = Pair[SI].GroupLoops;
3467 Intersection &= Pair[SJ].GroupLoops;
3468 if (Intersection.any()) {
3469 // accumulate set of all the loops in group
3470 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3471 // accumulate set of all subscripts in group
3472 Pair[SJ].Group |= Pair[SI].Group;
3473 Done = false;
3474 }
3475 }
3476 if (Done) {
3477 if (Pair[SI].Group.count() == 1) {
3478 Separable.set(SI);
3479 ++SeparableSubscriptPairs;
3480 }
3481 else {
3482 Coupled.set(SI);
3483 ++CoupledSubscriptPairs;
3484 }
3485 }
3486 }
3487 }
3488
3489 DEBUG(dbgs() << " Separable = ");
3490 DEBUG(dumpSmallBitVector(Separable));
3491 DEBUG(dbgs() << " Coupled = ");
3492 DEBUG(dumpSmallBitVector(Coupled));
3493
3494 Constraint NewConstraint;
3495 NewConstraint.setAny(SE);
3496
3497 // test separable subscripts
3498 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3499 DEBUG(dbgs() << "testing subscript " << SI);
3500 switch (Pair[SI].Classification) {
3501 case Subscript::ZIV:
3502 DEBUG(dbgs() << ", ZIV\n");
3503 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3504 return nullptr;
3505 break;
3506 case Subscript::SIV: {
3507 DEBUG(dbgs() << ", SIV\n");
3508 unsigned Level;
3509 const SCEV *SplitIter = nullptr;
3510 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3511 Result, NewConstraint, SplitIter))
3512 return nullptr;
3513 break;
3514 }
3515 case Subscript::RDIV:
3516 DEBUG(dbgs() << ", RDIV\n");
3517 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3518 return nullptr;
3519 break;
3520 case Subscript::MIV:
3521 DEBUG(dbgs() << ", MIV\n");
3522 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3523 return nullptr;
3524 break;
3525 default:
3526 llvm_unreachable("subscript has unexpected classification");
3527 }
3528 }
3529
3530 if (Coupled.count()) {
3531 // test coupled subscript groups
3532 DEBUG(dbgs() << "starting on coupled subscripts\n");
3533 DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3534 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3535 for (unsigned II = 0; II <= MaxLevels; ++II)
3536 Constraints[II].setAny(SE);
3537 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3538 DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3539 SmallBitVector Group(Pair[SI].Group);
3540 SmallBitVector Sivs(Pairs);
3541 SmallBitVector Mivs(Pairs);
3542 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3543 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3544 DEBUG(dbgs() << SJ << " ");
3545 if (Pair[SJ].Classification == Subscript::SIV)
3546 Sivs.set(SJ);
3547 else
3548 Mivs.set(SJ);
3549 }
3550 DEBUG(dbgs() << "}\n");
3551 while (Sivs.any()) {
3552 bool Changed = false;
3553 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3554 DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3555 // SJ is an SIV subscript that's part of the current coupled group
3556 unsigned Level;
3557 const SCEV *SplitIter = nullptr;
3558 DEBUG(dbgs() << "SIV\n");
3559 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3560 Result, NewConstraint, SplitIter))
3561 return nullptr;
3562 ConstrainedLevels.set(Level);
3563 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3564 if (Constraints[Level].isEmpty()) {
3565 ++DeltaIndependence;
3566 return nullptr;
3567 }
3568 Changed = true;
3569 }
3570 Sivs.reset(SJ);
3571 }
3572 if (Changed) {
3573 // propagate, possibly creating new SIVs and ZIVs
3574 DEBUG(dbgs() << " propagating\n");
3575 DEBUG(dbgs() << "\tMivs = ");
3576 DEBUG(dumpSmallBitVector(Mivs));
3577 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3578 // SJ is an MIV subscript that's part of the current coupled group
3579 DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3580 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3581 Constraints, Result.Consistent)) {
3582 DEBUG(dbgs() << "\t Changed\n");
3583 ++DeltaPropagations;
3584 Pair[SJ].Classification =
3585 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3586 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3587 Pair[SJ].Loops);
3588 switch (Pair[SJ].Classification) {
3589 case Subscript::ZIV:
3590 DEBUG(dbgs() << "ZIV\n");
3591 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3592 return nullptr;
3593 Mivs.reset(SJ);
3594 break;
3595 case Subscript::SIV:
3596 Sivs.set(SJ);
3597 Mivs.reset(SJ);
3598 break;
3599 case Subscript::RDIV:
3600 case Subscript::MIV:
3601 break;
3602 default:
3603 llvm_unreachable("bad subscript classification");
3604 }
3605 }
3606 }
3607 }
3608 }
3609
3610 // test & propagate remaining RDIVs
3611 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3612 if (Pair[SJ].Classification == Subscript::RDIV) {
3613 DEBUG(dbgs() << "RDIV test\n");
3614 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3615 return nullptr;
3616 // I don't yet understand how to propagate RDIV results
3617 Mivs.reset(SJ);
3618 }
3619 }
3620
3621 // test remaining MIVs
3622 // This code is temporary.
3623 // Better to somehow test all remaining subscripts simultaneously.
3624 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3625 if (Pair[SJ].Classification == Subscript::MIV) {
3626 DEBUG(dbgs() << "MIV test\n");
3627 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3628 return nullptr;
3629 }
3630 else
3631 llvm_unreachable("expected only MIV subscripts at this point");
3632 }
3633
3634 // update Result.DV from constraint vector
3635 DEBUG(dbgs() << " updating\n");
3636 for (int SJ = ConstrainedLevels.find_first();
3637 SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) {
3638 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3639 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3640 return nullptr;
3641 }
3642 }
3643 }
3644
3645 // Make sure the Scalar flags are set correctly.
3646 SmallBitVector CompleteLoops(MaxLevels + 1);
3647 for (unsigned SI = 0; SI < Pairs; ++SI)
3648 CompleteLoops |= Pair[SI].Loops;
3649 for (unsigned II = 1; II <= CommonLevels; ++II)
3650 if (CompleteLoops[II])
3651 Result.DV[II - 1].Scalar = false;
3652
3653 if (PossiblyLoopIndependent) {
3654 // Make sure the LoopIndependent flag is set correctly.
3655 // All directions must include equal, otherwise no
3656 // loop-independent dependence is possible.
3657 for (unsigned II = 1; II <= CommonLevels; ++II) {
3658 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3659 Result.LoopIndependent = false;
3660 break;
3661 }
3662 }
3663 }
3664 else {
3665 // On the other hand, if all directions are equal and there's no
3666 // loop-independent dependence possible, then no dependence exists.
3667 bool AllEqual = true;
3668 for (unsigned II = 1; II <= CommonLevels; ++II) {
3669 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3670 AllEqual = false;
3671 break;
3672 }
3673 }
3674 if (AllEqual)
3675 return nullptr;
3676 }
3677
3678 FullDependence *Final = new FullDependence(Result);
3679 Result.DV = nullptr;
3680 return Final;
3681 }
3682
3683
3684
3685 //===----------------------------------------------------------------------===//
3686 // getSplitIteration -
3687 // Rather than spend rarely-used space recording the splitting iteration
3688 // during the Weak-Crossing SIV test, we re-compute it on demand.
3689 // The re-computation is basically a repeat of the entire dependence test,
3690 // though simplified since we know that the dependence exists.
3691 // It's tedious, since we must go through all propagations, etc.
3692 //
3693 // Care is required to keep this code up to date with respect to the routine
3694 // above, depends().
3695 //
3696 // Generally, the dependence analyzer will be used to build
3697 // a dependence graph for a function (basically a map from instructions
3698 // to dependences). Looking for cycles in the graph shows us loops
3699 // that cannot be trivially vectorized/parallelized.
3700 //
3701 // We can try to improve the situation by examining all the dependences
3702 // that make up the cycle, looking for ones we can break.
3703 // Sometimes, peeling the first or last iteration of a loop will break
3704 // dependences, and we've got flags for those possibilities.
3705 // Sometimes, splitting a loop at some other iteration will do the trick,
3706 // and we've got a flag for that case. Rather than waste the space to
3707 // record the exact iteration (since we rarely know), we provide
3708 // a method that calculates the iteration. It's a drag that it must work
3709 // from scratch, but wonderful in that it's possible.
3710 //
3711 // Here's an example:
3712 //
3713 // for (i = 0; i < 10; i++)
3714 // A[i] = ...
3715 // ... = A[11 - i]
3716 //
3717 // There's a loop-carried flow dependence from the store to the load,
3718 // found by the weak-crossing SIV test. The dependence will have a flag,
3719 // indicating that the dependence can be broken by splitting the loop.
3720 // Calling getSplitIteration will return 5.
3721 // Splitting the loop breaks the dependence, like so:
3722 //
3723 // for (i = 0; i <= 5; i++)
3724 // A[i] = ...
3725 // ... = A[11 - i]
3726 // for (i = 6; i < 10; i++)
3727 // A[i] = ...
3728 // ... = A[11 - i]
3729 //
3730 // breaks the dependence and allows us to vectorize/parallelize
3731 // both loops.
getSplitIteration(const Dependence * Dep,unsigned SplitLevel)3732 const SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
3733 unsigned SplitLevel) {
3734 assert(Dep && "expected a pointer to a Dependence");
3735 assert(Dep->isSplitable(SplitLevel) &&
3736 "Dep should be splitable at SplitLevel");
3737 Instruction *Src = Dep->getSrc();
3738 Instruction *Dst = Dep->getDst();
3739 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3740 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3741 assert(isLoadOrStore(Src));
3742 assert(isLoadOrStore(Dst));
3743 Value *SrcPtr = getPointerOperand(Src);
3744 Value *DstPtr = getPointerOperand(Dst);
3745 assert(underlyingObjectsAlias(AA, DstPtr, SrcPtr) ==
3746 AliasAnalysis::MustAlias);
3747
3748 // establish loop nesting levels
3749 establishNestingLevels(Src, Dst);
3750
3751 FullDependence Result(Src, Dst, false, CommonLevels);
3752
3753 // See if there are GEPs we can use.
3754 bool UsefulGEP = false;
3755 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3756 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3757 if (SrcGEP && DstGEP &&
3758 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3759 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3760 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3761 UsefulGEP =
3762 isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3763 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
3764 }
3765 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3766 SmallVector<Subscript, 4> Pair(Pairs);
3767 if (UsefulGEP) {
3768 unsigned P = 0;
3769 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3770 SrcEnd = SrcGEP->idx_end(),
3771 DstIdx = DstGEP->idx_begin();
3772 SrcIdx != SrcEnd;
3773 ++SrcIdx, ++DstIdx, ++P) {
3774 Pair[P].Src = SE->getSCEV(*SrcIdx);
3775 Pair[P].Dst = SE->getSCEV(*DstIdx);
3776 }
3777 }
3778 else {
3779 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3780 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3781 Pair[0].Src = SrcSCEV;
3782 Pair[0].Dst = DstSCEV;
3783 }
3784
3785 if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
3786 tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
3787 DEBUG(dbgs() << " delinerized GEP\n");
3788 Pairs = Pair.size();
3789 }
3790
3791 for (unsigned P = 0; P < Pairs; ++P) {
3792 Pair[P].Loops.resize(MaxLevels + 1);
3793 Pair[P].GroupLoops.resize(MaxLevels + 1);
3794 Pair[P].Group.resize(Pairs);
3795 removeMatchingExtensions(&Pair[P]);
3796 Pair[P].Classification =
3797 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3798 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3799 Pair[P].Loops);
3800 Pair[P].GroupLoops = Pair[P].Loops;
3801 Pair[P].Group.set(P);
3802 }
3803
3804 SmallBitVector Separable(Pairs);
3805 SmallBitVector Coupled(Pairs);
3806
3807 // partition subscripts into separable and minimally-coupled groups
3808 for (unsigned SI = 0; SI < Pairs; ++SI) {
3809 if (Pair[SI].Classification == Subscript::NonLinear) {
3810 // ignore these, but collect loops for later
3811 collectCommonLoops(Pair[SI].Src,
3812 LI->getLoopFor(Src->getParent()),
3813 Pair[SI].Loops);
3814 collectCommonLoops(Pair[SI].Dst,
3815 LI->getLoopFor(Dst->getParent()),
3816 Pair[SI].Loops);
3817 Result.Consistent = false;
3818 }
3819 else if (Pair[SI].Classification == Subscript::ZIV)
3820 Separable.set(SI);
3821 else {
3822 // SIV, RDIV, or MIV, so check for coupled group
3823 bool Done = true;
3824 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3825 SmallBitVector Intersection = Pair[SI].GroupLoops;
3826 Intersection &= Pair[SJ].GroupLoops;
3827 if (Intersection.any()) {
3828 // accumulate set of all the loops in group
3829 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3830 // accumulate set of all subscripts in group
3831 Pair[SJ].Group |= Pair[SI].Group;
3832 Done = false;
3833 }
3834 }
3835 if (Done) {
3836 if (Pair[SI].Group.count() == 1)
3837 Separable.set(SI);
3838 else
3839 Coupled.set(SI);
3840 }
3841 }
3842 }
3843
3844 Constraint NewConstraint;
3845 NewConstraint.setAny(SE);
3846
3847 // test separable subscripts
3848 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3849 switch (Pair[SI].Classification) {
3850 case Subscript::SIV: {
3851 unsigned Level;
3852 const SCEV *SplitIter = nullptr;
3853 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3854 Result, NewConstraint, SplitIter);
3855 if (Level == SplitLevel) {
3856 assert(SplitIter != nullptr);
3857 return SplitIter;
3858 }
3859 break;
3860 }
3861 case Subscript::ZIV:
3862 case Subscript::RDIV:
3863 case Subscript::MIV:
3864 break;
3865 default:
3866 llvm_unreachable("subscript has unexpected classification");
3867 }
3868 }
3869
3870 if (Coupled.count()) {
3871 // test coupled subscript groups
3872 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3873 for (unsigned II = 0; II <= MaxLevels; ++II)
3874 Constraints[II].setAny(SE);
3875 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3876 SmallBitVector Group(Pair[SI].Group);
3877 SmallBitVector Sivs(Pairs);
3878 SmallBitVector Mivs(Pairs);
3879 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3880 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3881 if (Pair[SJ].Classification == Subscript::SIV)
3882 Sivs.set(SJ);
3883 else
3884 Mivs.set(SJ);
3885 }
3886 while (Sivs.any()) {
3887 bool Changed = false;
3888 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3889 // SJ is an SIV subscript that's part of the current coupled group
3890 unsigned Level;
3891 const SCEV *SplitIter = nullptr;
3892 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3893 Result, NewConstraint, SplitIter);
3894 if (Level == SplitLevel && SplitIter)
3895 return SplitIter;
3896 ConstrainedLevels.set(Level);
3897 if (intersectConstraints(&Constraints[Level], &NewConstraint))
3898 Changed = true;
3899 Sivs.reset(SJ);
3900 }
3901 if (Changed) {
3902 // propagate, possibly creating new SIVs and ZIVs
3903 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3904 // SJ is an MIV subscript that's part of the current coupled group
3905 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3906 Pair[SJ].Loops, Constraints, Result.Consistent)) {
3907 Pair[SJ].Classification =
3908 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3909 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3910 Pair[SJ].Loops);
3911 switch (Pair[SJ].Classification) {
3912 case Subscript::ZIV:
3913 Mivs.reset(SJ);
3914 break;
3915 case Subscript::SIV:
3916 Sivs.set(SJ);
3917 Mivs.reset(SJ);
3918 break;
3919 case Subscript::RDIV:
3920 case Subscript::MIV:
3921 break;
3922 default:
3923 llvm_unreachable("bad subscript classification");
3924 }
3925 }
3926 }
3927 }
3928 }
3929 }
3930 }
3931 llvm_unreachable("somehow reached end of routine");
3932 return nullptr;
3933 }
3934