1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 // On computational properties of chains of recurrences
47 // Eugene V. Zima
48 //
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
51 //
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
54 //
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SmallPtrSet.h"
64 #include "llvm/ADT/Statistic.h"
65 #include "llvm/Analysis/ConstantFolding.h"
66 #include "llvm/Analysis/InstructionSimplify.h"
67 #include "llvm/Analysis/LoopInfo.h"
68 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
69 #include "llvm/Analysis/ValueTracking.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DerivedTypes.h"
74 #include "llvm/IR/Dominators.h"
75 #include "llvm/IR/GetElementPtrTypeIterator.h"
76 #include "llvm/IR/GlobalAlias.h"
77 #include "llvm/IR/GlobalVariable.h"
78 #include "llvm/IR/InstIterator.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetLibraryInfo.h"
88 #include <algorithm>
89 using namespace llvm;
90
91 #define DEBUG_TYPE "scalar-evolution"
92
93 STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95 STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97 STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99 STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
102 static cl::opt<unsigned>
103 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
105 "symbolically execute a constant "
106 "derived loop"),
107 cl::init(100));
108
109 // FIXME: Enable this with XDEBUG when the test suite is clean.
110 static cl::opt<bool>
111 VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
114 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
118 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
119 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
120 "Scalar Evolution Analysis", false, true)
121 char ScalarEvolution::ID = 0;
122
123 //===----------------------------------------------------------------------===//
124 // SCEV class definitions
125 //===----------------------------------------------------------------------===//
126
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130
131 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const132 void SCEV::dump() const {
133 print(dbgs());
134 dbgs() << '\n';
135 }
136 #endif
137
print(raw_ostream & OS) const138 void SCEV::print(raw_ostream &OS) const {
139 switch (static_cast<SCEVTypes>(getSCEVType())) {
140 case scConstant:
141 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
170 if (AR->getNoWrapFlags(FlagNUW))
171 OS << "nuw><";
172 if (AR->getNoWrapFlags(FlagNSW))
173 OS << "nsw><";
174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
177 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
186 const char *OpStr = nullptr;
187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
197 if (std::next(I) != E)
198 OS << OpStr;
199 }
200 OS << ")";
201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
218 Type *AllocTy;
219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
227
228 Type *CTy;
229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
232 FieldNo->printAsOperand(OS, false);
233 OS << ")";
234 return;
235 }
236
237 // Otherwise just print it normally.
238 U->getValue()->printAsOperand(OS, false);
239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
244 }
245 llvm_unreachable("Unknown SCEV kind!");
246 }
247
getType() const248 Type *SCEV::getType() const {
249 switch (static_cast<SCEVTypes>(getSCEVType())) {
250 case scConstant:
251 return cast<SCEVConstant>(this)->getType();
252 case scTruncate:
253 case scZeroExtend:
254 case scSignExtend:
255 return cast<SCEVCastExpr>(this)->getType();
256 case scAddRecExpr:
257 case scMulExpr:
258 case scUMaxExpr:
259 case scSMaxExpr:
260 return cast<SCEVNAryExpr>(this)->getType();
261 case scAddExpr:
262 return cast<SCEVAddExpr>(this)->getType();
263 case scUDivExpr:
264 return cast<SCEVUDivExpr>(this)->getType();
265 case scUnknown:
266 return cast<SCEVUnknown>(this)->getType();
267 case scCouldNotCompute:
268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
269 }
270 llvm_unreachable("Unknown SCEV kind!");
271 }
272
isZero() const273 bool SCEV::isZero() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isZero();
276 return false;
277 }
278
isOne() const279 bool SCEV::isOne() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isOne();
282 return false;
283 }
284
isAllOnesValue() const285 bool SCEV::isAllOnesValue() const {
286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
287 return SC->getValue()->isAllOnesValue();
288 return false;
289 }
290
291 /// isNonConstantNegative - Return true if the specified scev is negated, but
292 /// not a constant.
isNonConstantNegative() const293 bool SCEV::isNonConstantNegative() const {
294 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
295 if (!Mul) return false;
296
297 // If there is a constant factor, it will be first.
298 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
299 if (!SC) return false;
300
301 // Return true if the value is negative, this matches things like (-42 * V).
302 return SC->getValue()->getValue().isNegative();
303 }
304
SCEVCouldNotCompute()305 SCEVCouldNotCompute::SCEVCouldNotCompute() :
306 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
307
classof(const SCEV * S)308 bool SCEVCouldNotCompute::classof(const SCEV *S) {
309 return S->getSCEVType() == scCouldNotCompute;
310 }
311
getConstant(ConstantInt * V)312 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
313 FoldingSetNodeID ID;
314 ID.AddInteger(scConstant);
315 ID.AddPointer(V);
316 void *IP = nullptr;
317 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
318 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
319 UniqueSCEVs.InsertNode(S, IP);
320 return S;
321 }
322
getConstant(const APInt & Val)323 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
324 return getConstant(ConstantInt::get(getContext(), Val));
325 }
326
327 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)328 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
329 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
330 return getConstant(ConstantInt::get(ITy, V, isSigned));
331 }
332
SCEVCastExpr(const FoldingSetNodeIDRef ID,unsigned SCEVTy,const SCEV * op,Type * ty)333 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
334 unsigned SCEVTy, const SCEV *op, Type *ty)
335 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
336
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)337 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
338 const SCEV *op, Type *ty)
339 : SCEVCastExpr(ID, scTruncate, op, ty) {
340 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
341 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
342 "Cannot truncate non-integer value!");
343 }
344
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)345 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
346 const SCEV *op, Type *ty)
347 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
348 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
349 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
350 "Cannot zero extend non-integer value!");
351 }
352
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)353 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
354 const SCEV *op, Type *ty)
355 : SCEVCastExpr(ID, scSignExtend, op, ty) {
356 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
357 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
358 "Cannot sign extend non-integer value!");
359 }
360
deleted()361 void SCEVUnknown::deleted() {
362 // Clear this SCEVUnknown from various maps.
363 SE->forgetMemoizedResults(this);
364
365 // Remove this SCEVUnknown from the uniquing map.
366 SE->UniqueSCEVs.RemoveNode(this);
367
368 // Release the value.
369 setValPtr(nullptr);
370 }
371
allUsesReplacedWith(Value * New)372 void SCEVUnknown::allUsesReplacedWith(Value *New) {
373 // Clear this SCEVUnknown from various maps.
374 SE->forgetMemoizedResults(this);
375
376 // Remove this SCEVUnknown from the uniquing map.
377 SE->UniqueSCEVs.RemoveNode(this);
378
379 // Update this SCEVUnknown to point to the new value. This is needed
380 // because there may still be outstanding SCEVs which still point to
381 // this SCEVUnknown.
382 setValPtr(New);
383 }
384
isSizeOf(Type * & AllocTy) const385 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
386 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
387 if (VCE->getOpcode() == Instruction::PtrToInt)
388 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
389 if (CE->getOpcode() == Instruction::GetElementPtr &&
390 CE->getOperand(0)->isNullValue() &&
391 CE->getNumOperands() == 2)
392 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
393 if (CI->isOne()) {
394 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
395 ->getElementType();
396 return true;
397 }
398
399 return false;
400 }
401
isAlignOf(Type * & AllocTy) const402 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
403 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
404 if (VCE->getOpcode() == Instruction::PtrToInt)
405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
406 if (CE->getOpcode() == Instruction::GetElementPtr &&
407 CE->getOperand(0)->isNullValue()) {
408 Type *Ty =
409 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
410 if (StructType *STy = dyn_cast<StructType>(Ty))
411 if (!STy->isPacked() &&
412 CE->getNumOperands() == 3 &&
413 CE->getOperand(1)->isNullValue()) {
414 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
415 if (CI->isOne() &&
416 STy->getNumElements() == 2 &&
417 STy->getElementType(0)->isIntegerTy(1)) {
418 AllocTy = STy->getElementType(1);
419 return true;
420 }
421 }
422 }
423
424 return false;
425 }
426
isOffsetOf(Type * & CTy,Constant * & FieldNo) const427 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
428 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
429 if (VCE->getOpcode() == Instruction::PtrToInt)
430 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
431 if (CE->getOpcode() == Instruction::GetElementPtr &&
432 CE->getNumOperands() == 3 &&
433 CE->getOperand(0)->isNullValue() &&
434 CE->getOperand(1)->isNullValue()) {
435 Type *Ty =
436 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
437 // Ignore vector types here so that ScalarEvolutionExpander doesn't
438 // emit getelementptrs that index into vectors.
439 if (Ty->isStructTy() || Ty->isArrayTy()) {
440 CTy = Ty;
441 FieldNo = CE->getOperand(2);
442 return true;
443 }
444 }
445
446 return false;
447 }
448
449 //===----------------------------------------------------------------------===//
450 // SCEV Utilities
451 //===----------------------------------------------------------------------===//
452
453 namespace {
454 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
455 /// than the complexity of the RHS. This comparator is used to canonicalize
456 /// expressions.
457 class SCEVComplexityCompare {
458 const LoopInfo *const LI;
459 public:
SCEVComplexityCompare(const LoopInfo * li)460 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
461
462 // Return true or false if LHS is less than, or at least RHS, respectively.
operator ()(const SCEV * LHS,const SCEV * RHS) const463 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
464 return compare(LHS, RHS) < 0;
465 }
466
467 // Return negative, zero, or positive, if LHS is less than, equal to, or
468 // greater than RHS, respectively. A three-way result allows recursive
469 // comparisons to be more efficient.
compare(const SCEV * LHS,const SCEV * RHS) const470 int compare(const SCEV *LHS, const SCEV *RHS) const {
471 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
472 if (LHS == RHS)
473 return 0;
474
475 // Primarily, sort the SCEVs by their getSCEVType().
476 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
477 if (LType != RType)
478 return (int)LType - (int)RType;
479
480 // Aside from the getSCEVType() ordering, the particular ordering
481 // isn't very important except that it's beneficial to be consistent,
482 // so that (a + b) and (b + a) don't end up as different expressions.
483 switch (static_cast<SCEVTypes>(LType)) {
484 case scUnknown: {
485 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
486 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
487
488 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
489 // not as complete as it could be.
490 const Value *LV = LU->getValue(), *RV = RU->getValue();
491
492 // Order pointer values after integer values. This helps SCEVExpander
493 // form GEPs.
494 bool LIsPointer = LV->getType()->isPointerTy(),
495 RIsPointer = RV->getType()->isPointerTy();
496 if (LIsPointer != RIsPointer)
497 return (int)LIsPointer - (int)RIsPointer;
498
499 // Compare getValueID values.
500 unsigned LID = LV->getValueID(),
501 RID = RV->getValueID();
502 if (LID != RID)
503 return (int)LID - (int)RID;
504
505 // Sort arguments by their position.
506 if (const Argument *LA = dyn_cast<Argument>(LV)) {
507 const Argument *RA = cast<Argument>(RV);
508 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
509 return (int)LArgNo - (int)RArgNo;
510 }
511
512 // For instructions, compare their loop depth, and their operand
513 // count. This is pretty loose.
514 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
515 const Instruction *RInst = cast<Instruction>(RV);
516
517 // Compare loop depths.
518 const BasicBlock *LParent = LInst->getParent(),
519 *RParent = RInst->getParent();
520 if (LParent != RParent) {
521 unsigned LDepth = LI->getLoopDepth(LParent),
522 RDepth = LI->getLoopDepth(RParent);
523 if (LDepth != RDepth)
524 return (int)LDepth - (int)RDepth;
525 }
526
527 // Compare the number of operands.
528 unsigned LNumOps = LInst->getNumOperands(),
529 RNumOps = RInst->getNumOperands();
530 return (int)LNumOps - (int)RNumOps;
531 }
532
533 return 0;
534 }
535
536 case scConstant: {
537 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
538 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
539
540 // Compare constant values.
541 const APInt &LA = LC->getValue()->getValue();
542 const APInt &RA = RC->getValue()->getValue();
543 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
544 if (LBitWidth != RBitWidth)
545 return (int)LBitWidth - (int)RBitWidth;
546 return LA.ult(RA) ? -1 : 1;
547 }
548
549 case scAddRecExpr: {
550 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
551 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
552
553 // Compare addrec loop depths.
554 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
555 if (LLoop != RLoop) {
556 unsigned LDepth = LLoop->getLoopDepth(),
557 RDepth = RLoop->getLoopDepth();
558 if (LDepth != RDepth)
559 return (int)LDepth - (int)RDepth;
560 }
561
562 // Addrec complexity grows with operand count.
563 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
564 if (LNumOps != RNumOps)
565 return (int)LNumOps - (int)RNumOps;
566
567 // Lexicographically compare.
568 for (unsigned i = 0; i != LNumOps; ++i) {
569 long X = compare(LA->getOperand(i), RA->getOperand(i));
570 if (X != 0)
571 return X;
572 }
573
574 return 0;
575 }
576
577 case scAddExpr:
578 case scMulExpr:
579 case scSMaxExpr:
580 case scUMaxExpr: {
581 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
582 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
583
584 // Lexicographically compare n-ary expressions.
585 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
586 if (LNumOps != RNumOps)
587 return (int)LNumOps - (int)RNumOps;
588
589 for (unsigned i = 0; i != LNumOps; ++i) {
590 if (i >= RNumOps)
591 return 1;
592 long X = compare(LC->getOperand(i), RC->getOperand(i));
593 if (X != 0)
594 return X;
595 }
596 return (int)LNumOps - (int)RNumOps;
597 }
598
599 case scUDivExpr: {
600 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
601 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
602
603 // Lexicographically compare udiv expressions.
604 long X = compare(LC->getLHS(), RC->getLHS());
605 if (X != 0)
606 return X;
607 return compare(LC->getRHS(), RC->getRHS());
608 }
609
610 case scTruncate:
611 case scZeroExtend:
612 case scSignExtend: {
613 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
614 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
615
616 // Compare cast expressions by operand.
617 return compare(LC->getOperand(), RC->getOperand());
618 }
619
620 case scCouldNotCompute:
621 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
622 }
623 llvm_unreachable("Unknown SCEV kind!");
624 }
625 };
626 }
627
628 /// GroupByComplexity - Given a list of SCEV objects, order them by their
629 /// complexity, and group objects of the same complexity together by value.
630 /// When this routine is finished, we know that any duplicates in the vector are
631 /// consecutive and that complexity is monotonically increasing.
632 ///
633 /// Note that we go take special precautions to ensure that we get deterministic
634 /// results from this routine. In other words, we don't want the results of
635 /// this to depend on where the addresses of various SCEV objects happened to
636 /// land in memory.
637 ///
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI)638 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
639 LoopInfo *LI) {
640 if (Ops.size() < 2) return; // Noop
641 if (Ops.size() == 2) {
642 // This is the common case, which also happens to be trivially simple.
643 // Special case it.
644 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
645 if (SCEVComplexityCompare(LI)(RHS, LHS))
646 std::swap(LHS, RHS);
647 return;
648 }
649
650 // Do the rough sort by complexity.
651 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
652
653 // Now that we are sorted by complexity, group elements of the same
654 // complexity. Note that this is, at worst, N^2, but the vector is likely to
655 // be extremely short in practice. Note that we take this approach because we
656 // do not want to depend on the addresses of the objects we are grouping.
657 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
658 const SCEV *S = Ops[i];
659 unsigned Complexity = S->getSCEVType();
660
661 // If there are any objects of the same complexity and same value as this
662 // one, group them.
663 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
664 if (Ops[j] == S) { // Found a duplicate.
665 // Move it to immediately after i'th element.
666 std::swap(Ops[i+1], Ops[j]);
667 ++i; // no need to rescan it.
668 if (i == e-2) return; // Done!
669 }
670 }
671 }
672 }
673
674
675
676 //===----------------------------------------------------------------------===//
677 // Simple SCEV method implementations
678 //===----------------------------------------------------------------------===//
679
680 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
681 /// Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)682 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
683 ScalarEvolution &SE,
684 Type *ResultTy) {
685 // Handle the simplest case efficiently.
686 if (K == 1)
687 return SE.getTruncateOrZeroExtend(It, ResultTy);
688
689 // We are using the following formula for BC(It, K):
690 //
691 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
692 //
693 // Suppose, W is the bitwidth of the return value. We must be prepared for
694 // overflow. Hence, we must assure that the result of our computation is
695 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
696 // safe in modular arithmetic.
697 //
698 // However, this code doesn't use exactly that formula; the formula it uses
699 // is something like the following, where T is the number of factors of 2 in
700 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
701 // exponentiation:
702 //
703 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
704 //
705 // This formula is trivially equivalent to the previous formula. However,
706 // this formula can be implemented much more efficiently. The trick is that
707 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
708 // arithmetic. To do exact division in modular arithmetic, all we have
709 // to do is multiply by the inverse. Therefore, this step can be done at
710 // width W.
711 //
712 // The next issue is how to safely do the division by 2^T. The way this
713 // is done is by doing the multiplication step at a width of at least W + T
714 // bits. This way, the bottom W+T bits of the product are accurate. Then,
715 // when we perform the division by 2^T (which is equivalent to a right shift
716 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
717 // truncated out after the division by 2^T.
718 //
719 // In comparison to just directly using the first formula, this technique
720 // is much more efficient; using the first formula requires W * K bits,
721 // but this formula less than W + K bits. Also, the first formula requires
722 // a division step, whereas this formula only requires multiplies and shifts.
723 //
724 // It doesn't matter whether the subtraction step is done in the calculation
725 // width or the input iteration count's width; if the subtraction overflows,
726 // the result must be zero anyway. We prefer here to do it in the width of
727 // the induction variable because it helps a lot for certain cases; CodeGen
728 // isn't smart enough to ignore the overflow, which leads to much less
729 // efficient code if the width of the subtraction is wider than the native
730 // register width.
731 //
732 // (It's possible to not widen at all by pulling out factors of 2 before
733 // the multiplication; for example, K=2 can be calculated as
734 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
735 // extra arithmetic, so it's not an obvious win, and it gets
736 // much more complicated for K > 3.)
737
738 // Protection from insane SCEVs; this bound is conservative,
739 // but it probably doesn't matter.
740 if (K > 1000)
741 return SE.getCouldNotCompute();
742
743 unsigned W = SE.getTypeSizeInBits(ResultTy);
744
745 // Calculate K! / 2^T and T; we divide out the factors of two before
746 // multiplying for calculating K! / 2^T to avoid overflow.
747 // Other overflow doesn't matter because we only care about the bottom
748 // W bits of the result.
749 APInt OddFactorial(W, 1);
750 unsigned T = 1;
751 for (unsigned i = 3; i <= K; ++i) {
752 APInt Mult(W, i);
753 unsigned TwoFactors = Mult.countTrailingZeros();
754 T += TwoFactors;
755 Mult = Mult.lshr(TwoFactors);
756 OddFactorial *= Mult;
757 }
758
759 // We need at least W + T bits for the multiplication step
760 unsigned CalculationBits = W + T;
761
762 // Calculate 2^T, at width T+W.
763 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
764
765 // Calculate the multiplicative inverse of K! / 2^T;
766 // this multiplication factor will perform the exact division by
767 // K! / 2^T.
768 APInt Mod = APInt::getSignedMinValue(W+1);
769 APInt MultiplyFactor = OddFactorial.zext(W+1);
770 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
771 MultiplyFactor = MultiplyFactor.trunc(W);
772
773 // Calculate the product, at width T+W
774 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
775 CalculationBits);
776 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
777 for (unsigned i = 1; i != K; ++i) {
778 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
779 Dividend = SE.getMulExpr(Dividend,
780 SE.getTruncateOrZeroExtend(S, CalculationTy));
781 }
782
783 // Divide by 2^T
784 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
785
786 // Truncate the result, and divide by K! / 2^T.
787
788 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
789 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
790 }
791
792 /// evaluateAtIteration - Return the value of this chain of recurrences at
793 /// the specified iteration number. We can evaluate this recurrence by
794 /// multiplying each element in the chain by the binomial coefficient
795 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
796 ///
797 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
798 ///
799 /// where BC(It, k) stands for binomial coefficient.
800 ///
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const801 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
802 ScalarEvolution &SE) const {
803 const SCEV *Result = getStart();
804 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
805 // The computation is correct in the face of overflow provided that the
806 // multiplication is performed _after_ the evaluation of the binomial
807 // coefficient.
808 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
809 if (isa<SCEVCouldNotCompute>(Coeff))
810 return Coeff;
811
812 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
813 }
814 return Result;
815 }
816
817 //===----------------------------------------------------------------------===//
818 // SCEV Expression folder implementations
819 //===----------------------------------------------------------------------===//
820
getTruncateExpr(const SCEV * Op,Type * Ty)821 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
822 Type *Ty) {
823 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
824 "This is not a truncating conversion!");
825 assert(isSCEVable(Ty) &&
826 "This is not a conversion to a SCEVable type!");
827 Ty = getEffectiveSCEVType(Ty);
828
829 FoldingSetNodeID ID;
830 ID.AddInteger(scTruncate);
831 ID.AddPointer(Op);
832 ID.AddPointer(Ty);
833 void *IP = nullptr;
834 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
835
836 // Fold if the operand is constant.
837 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
838 return getConstant(
839 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
840
841 // trunc(trunc(x)) --> trunc(x)
842 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
843 return getTruncateExpr(ST->getOperand(), Ty);
844
845 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
846 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
847 return getTruncateOrSignExtend(SS->getOperand(), Ty);
848
849 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
850 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
851 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
852
853 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
854 // eliminate all the truncates.
855 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
856 SmallVector<const SCEV *, 4> Operands;
857 bool hasTrunc = false;
858 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
859 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
860 hasTrunc = isa<SCEVTruncateExpr>(S);
861 Operands.push_back(S);
862 }
863 if (!hasTrunc)
864 return getAddExpr(Operands);
865 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
866 }
867
868 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
869 // eliminate all the truncates.
870 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
871 SmallVector<const SCEV *, 4> Operands;
872 bool hasTrunc = false;
873 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
874 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
875 hasTrunc = isa<SCEVTruncateExpr>(S);
876 Operands.push_back(S);
877 }
878 if (!hasTrunc)
879 return getMulExpr(Operands);
880 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
881 }
882
883 // If the input value is a chrec scev, truncate the chrec's operands.
884 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
885 SmallVector<const SCEV *, 4> Operands;
886 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
887 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
888 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
889 }
890
891 // The cast wasn't folded; create an explicit cast node. We can reuse
892 // the existing insert position since if we get here, we won't have
893 // made any changes which would invalidate it.
894 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
895 Op, Ty);
896 UniqueSCEVs.InsertNode(S, IP);
897 return S;
898 }
899
getZeroExtendExpr(const SCEV * Op,Type * Ty)900 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
901 Type *Ty) {
902 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
903 "This is not an extending conversion!");
904 assert(isSCEVable(Ty) &&
905 "This is not a conversion to a SCEVable type!");
906 Ty = getEffectiveSCEVType(Ty);
907
908 // Fold if the operand is constant.
909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
910 return getConstant(
911 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
912
913 // zext(zext(x)) --> zext(x)
914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
915 return getZeroExtendExpr(SZ->getOperand(), Ty);
916
917 // Before doing any expensive analysis, check to see if we've already
918 // computed a SCEV for this Op and Ty.
919 FoldingSetNodeID ID;
920 ID.AddInteger(scZeroExtend);
921 ID.AddPointer(Op);
922 ID.AddPointer(Ty);
923 void *IP = nullptr;
924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
925
926 // zext(trunc(x)) --> zext(x) or x or trunc(x)
927 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
928 // It's possible the bits taken off by the truncate were all zero bits. If
929 // so, we should be able to simplify this further.
930 const SCEV *X = ST->getOperand();
931 ConstantRange CR = getUnsignedRange(X);
932 unsigned TruncBits = getTypeSizeInBits(ST->getType());
933 unsigned NewBits = getTypeSizeInBits(Ty);
934 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
935 CR.zextOrTrunc(NewBits)))
936 return getTruncateOrZeroExtend(X, Ty);
937 }
938
939 // If the input value is a chrec scev, and we can prove that the value
940 // did not overflow the old, smaller, value, we can zero extend all of the
941 // operands (often constants). This allows analysis of something like
942 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
943 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
944 if (AR->isAffine()) {
945 const SCEV *Start = AR->getStart();
946 const SCEV *Step = AR->getStepRecurrence(*this);
947 unsigned BitWidth = getTypeSizeInBits(AR->getType());
948 const Loop *L = AR->getLoop();
949
950 // If we have special knowledge that this addrec won't overflow,
951 // we don't need to do any further analysis.
952 if (AR->getNoWrapFlags(SCEV::FlagNUW))
953 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
954 getZeroExtendExpr(Step, Ty),
955 L, AR->getNoWrapFlags());
956
957 // Check whether the backedge-taken count is SCEVCouldNotCompute.
958 // Note that this serves two purposes: It filters out loops that are
959 // simply not analyzable, and it covers the case where this code is
960 // being called from within backedge-taken count analysis, such that
961 // attempting to ask for the backedge-taken count would likely result
962 // in infinite recursion. In the later case, the analysis code will
963 // cope with a conservative value, and it will take care to purge
964 // that value once it has finished.
965 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
966 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
967 // Manually compute the final value for AR, checking for
968 // overflow.
969
970 // Check whether the backedge-taken count can be losslessly casted to
971 // the addrec's type. The count is always unsigned.
972 const SCEV *CastedMaxBECount =
973 getTruncateOrZeroExtend(MaxBECount, Start->getType());
974 const SCEV *RecastedMaxBECount =
975 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
976 if (MaxBECount == RecastedMaxBECount) {
977 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
978 // Check whether Start+Step*MaxBECount has no unsigned overflow.
979 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
980 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
981 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
982 const SCEV *WideMaxBECount =
983 getZeroExtendExpr(CastedMaxBECount, WideTy);
984 const SCEV *OperandExtendedAdd =
985 getAddExpr(WideStart,
986 getMulExpr(WideMaxBECount,
987 getZeroExtendExpr(Step, WideTy)));
988 if (ZAdd == OperandExtendedAdd) {
989 // Cache knowledge of AR NUW, which is propagated to this AddRec.
990 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
991 // Return the expression with the addrec on the outside.
992 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
993 getZeroExtendExpr(Step, Ty),
994 L, AR->getNoWrapFlags());
995 }
996 // Similar to above, only this time treat the step value as signed.
997 // This covers loops that count down.
998 OperandExtendedAdd =
999 getAddExpr(WideStart,
1000 getMulExpr(WideMaxBECount,
1001 getSignExtendExpr(Step, WideTy)));
1002 if (ZAdd == OperandExtendedAdd) {
1003 // Cache knowledge of AR NW, which is propagated to this AddRec.
1004 // Negative step causes unsigned wrap, but it still can't self-wrap.
1005 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1006 // Return the expression with the addrec on the outside.
1007 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1008 getSignExtendExpr(Step, Ty),
1009 L, AR->getNoWrapFlags());
1010 }
1011 }
1012
1013 // If the backedge is guarded by a comparison with the pre-inc value
1014 // the addrec is safe. Also, if the entry is guarded by a comparison
1015 // with the start value and the backedge is guarded by a comparison
1016 // with the post-inc value, the addrec is safe.
1017 if (isKnownPositive(Step)) {
1018 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1019 getUnsignedRange(Step).getUnsignedMax());
1020 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1021 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1022 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1023 AR->getPostIncExpr(*this), N))) {
1024 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1025 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1026 // Return the expression with the addrec on the outside.
1027 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1028 getZeroExtendExpr(Step, Ty),
1029 L, AR->getNoWrapFlags());
1030 }
1031 } else if (isKnownNegative(Step)) {
1032 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1033 getSignedRange(Step).getSignedMin());
1034 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1035 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1036 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1037 AR->getPostIncExpr(*this), N))) {
1038 // Cache knowledge of AR NW, which is propagated to this AddRec.
1039 // Negative step causes unsigned wrap, but it still can't self-wrap.
1040 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1041 // Return the expression with the addrec on the outside.
1042 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1043 getSignExtendExpr(Step, Ty),
1044 L, AR->getNoWrapFlags());
1045 }
1046 }
1047 }
1048 }
1049
1050 // The cast wasn't folded; create an explicit cast node.
1051 // Recompute the insert position, as it may have been invalidated.
1052 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1053 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1054 Op, Ty);
1055 UniqueSCEVs.InsertNode(S, IP);
1056 return S;
1057 }
1058
1059 // Get the limit of a recurrence such that incrementing by Step cannot cause
1060 // signed overflow as long as the value of the recurrence within the loop does
1061 // not exceed this limit before incrementing.
getOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1062 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1063 ICmpInst::Predicate *Pred,
1064 ScalarEvolution *SE) {
1065 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1066 if (SE->isKnownPositive(Step)) {
1067 *Pred = ICmpInst::ICMP_SLT;
1068 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1069 SE->getSignedRange(Step).getSignedMax());
1070 }
1071 if (SE->isKnownNegative(Step)) {
1072 *Pred = ICmpInst::ICMP_SGT;
1073 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1074 SE->getSignedRange(Step).getSignedMin());
1075 }
1076 return nullptr;
1077 }
1078
1079 // The recurrence AR has been shown to have no signed wrap. Typically, if we can
1080 // prove NSW for AR, then we can just as easily prove NSW for its preincrement
1081 // or postincrement sibling. This allows normalizing a sign extended AddRec as
1082 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1083 // result, the expression "Step + sext(PreIncAR)" is congruent with
1084 // "sext(PostIncAR)"
getPreStartForSignExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE)1085 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1086 Type *Ty,
1087 ScalarEvolution *SE) {
1088 const Loop *L = AR->getLoop();
1089 const SCEV *Start = AR->getStart();
1090 const SCEV *Step = AR->getStepRecurrence(*SE);
1091
1092 // Check for a simple looking step prior to loop entry.
1093 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1094 if (!SA)
1095 return nullptr;
1096
1097 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1098 // subtraction is expensive. For this purpose, perform a quick and dirty
1099 // difference, by checking for Step in the operand list.
1100 SmallVector<const SCEV *, 4> DiffOps;
1101 for (const SCEV *Op : SA->operands())
1102 if (Op != Step)
1103 DiffOps.push_back(Op);
1104
1105 if (DiffOps.size() == SA->getNumOperands())
1106 return nullptr;
1107
1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1109 // same three conditions that getSignExtendedExpr checks.
1110
1111 // 1. NSW flags on the step increment.
1112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1115
1116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1117 return PreStart;
1118
1119 // 2. Direct overflow check on the step operation's expression.
1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1122 const SCEV *OperandExtendedStart =
1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1124 SE->getSignExtendExpr(Step, WideTy));
1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1126 // Cache knowledge of PreAR NSW.
1127 if (PreAR)
1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1129 // FIXME: this optimization needs a unit test
1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1131 return PreStart;
1132 }
1133
1134 // 3. Loop precondition.
1135 ICmpInst::Predicate Pred;
1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1137
1138 if (OverflowLimit &&
1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1140 return PreStart;
1141 }
1142 return nullptr;
1143 }
1144
1145 // Get the normalized sign-extended expression for this AddRec's Start.
getSignExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE)1146 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1147 Type *Ty,
1148 ScalarEvolution *SE) {
1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1150 if (!PreStart)
1151 return SE->getSignExtendExpr(AR->getStart(), Ty);
1152
1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1154 SE->getSignExtendExpr(PreStart, Ty));
1155 }
1156
getSignExtendExpr(const SCEV * Op,Type * Ty)1157 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1158 Type *Ty) {
1159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1160 "This is not an extending conversion!");
1161 assert(isSCEVable(Ty) &&
1162 "This is not a conversion to a SCEVable type!");
1163 Ty = getEffectiveSCEVType(Ty);
1164
1165 // Fold if the operand is constant.
1166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1167 return getConstant(
1168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1169
1170 // sext(sext(x)) --> sext(x)
1171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1172 return getSignExtendExpr(SS->getOperand(), Ty);
1173
1174 // sext(zext(x)) --> zext(x)
1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1176 return getZeroExtendExpr(SZ->getOperand(), Ty);
1177
1178 // Before doing any expensive analysis, check to see if we've already
1179 // computed a SCEV for this Op and Ty.
1180 FoldingSetNodeID ID;
1181 ID.AddInteger(scSignExtend);
1182 ID.AddPointer(Op);
1183 ID.AddPointer(Ty);
1184 void *IP = nullptr;
1185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1186
1187 // If the input value is provably positive, build a zext instead.
1188 if (isKnownNonNegative(Op))
1189 return getZeroExtendExpr(Op, Ty);
1190
1191 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1193 // It's possible the bits taken off by the truncate were all sign bits. If
1194 // so, we should be able to simplify this further.
1195 const SCEV *X = ST->getOperand();
1196 ConstantRange CR = getSignedRange(X);
1197 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1198 unsigned NewBits = getTypeSizeInBits(Ty);
1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1200 CR.sextOrTrunc(NewBits)))
1201 return getTruncateOrSignExtend(X, Ty);
1202 }
1203
1204 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1205 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1206 if (SA->getNumOperands() == 2) {
1207 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1208 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1209 if (SMul && SC1) {
1210 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1211 const APInt &C1 = SC1->getValue()->getValue();
1212 const APInt &C2 = SC2->getValue()->getValue();
1213 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1214 C2.ugt(C1) && C2.isPowerOf2())
1215 return getAddExpr(getSignExtendExpr(SC1, Ty),
1216 getSignExtendExpr(SMul, Ty));
1217 }
1218 }
1219 }
1220 }
1221 // If the input value is a chrec scev, and we can prove that the value
1222 // did not overflow the old, smaller, value, we can sign extend all of the
1223 // operands (often constants). This allows analysis of something like
1224 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1225 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1226 if (AR->isAffine()) {
1227 const SCEV *Start = AR->getStart();
1228 const SCEV *Step = AR->getStepRecurrence(*this);
1229 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1230 const Loop *L = AR->getLoop();
1231
1232 // If we have special knowledge that this addrec won't overflow,
1233 // we don't need to do any further analysis.
1234 if (AR->getNoWrapFlags(SCEV::FlagNSW))
1235 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1236 getSignExtendExpr(Step, Ty),
1237 L, SCEV::FlagNSW);
1238
1239 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1240 // Note that this serves two purposes: It filters out loops that are
1241 // simply not analyzable, and it covers the case where this code is
1242 // being called from within backedge-taken count analysis, such that
1243 // attempting to ask for the backedge-taken count would likely result
1244 // in infinite recursion. In the later case, the analysis code will
1245 // cope with a conservative value, and it will take care to purge
1246 // that value once it has finished.
1247 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1248 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1249 // Manually compute the final value for AR, checking for
1250 // overflow.
1251
1252 // Check whether the backedge-taken count can be losslessly casted to
1253 // the addrec's type. The count is always unsigned.
1254 const SCEV *CastedMaxBECount =
1255 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1256 const SCEV *RecastedMaxBECount =
1257 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1258 if (MaxBECount == RecastedMaxBECount) {
1259 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1260 // Check whether Start+Step*MaxBECount has no signed overflow.
1261 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1262 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1263 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1264 const SCEV *WideMaxBECount =
1265 getZeroExtendExpr(CastedMaxBECount, WideTy);
1266 const SCEV *OperandExtendedAdd =
1267 getAddExpr(WideStart,
1268 getMulExpr(WideMaxBECount,
1269 getSignExtendExpr(Step, WideTy)));
1270 if (SAdd == OperandExtendedAdd) {
1271 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1272 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1273 // Return the expression with the addrec on the outside.
1274 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1275 getSignExtendExpr(Step, Ty),
1276 L, AR->getNoWrapFlags());
1277 }
1278 // Similar to above, only this time treat the step value as unsigned.
1279 // This covers loops that count up with an unsigned step.
1280 OperandExtendedAdd =
1281 getAddExpr(WideStart,
1282 getMulExpr(WideMaxBECount,
1283 getZeroExtendExpr(Step, WideTy)));
1284 if (SAdd == OperandExtendedAdd) {
1285 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1286 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1287 // Return the expression with the addrec on the outside.
1288 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1289 getZeroExtendExpr(Step, Ty),
1290 L, AR->getNoWrapFlags());
1291 }
1292 }
1293
1294 // If the backedge is guarded by a comparison with the pre-inc value
1295 // the addrec is safe. Also, if the entry is guarded by a comparison
1296 // with the start value and the backedge is guarded by a comparison
1297 // with the post-inc value, the addrec is safe.
1298 ICmpInst::Predicate Pred;
1299 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1300 if (OverflowLimit &&
1301 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1302 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1303 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1304 OverflowLimit)))) {
1305 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1306 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1307 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1308 getSignExtendExpr(Step, Ty),
1309 L, AR->getNoWrapFlags());
1310 }
1311 }
1312 // If Start and Step are constants, check if we can apply this
1313 // transformation:
1314 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1315 auto SC1 = dyn_cast<SCEVConstant>(Start);
1316 auto SC2 = dyn_cast<SCEVConstant>(Step);
1317 if (SC1 && SC2) {
1318 const APInt &C1 = SC1->getValue()->getValue();
1319 const APInt &C2 = SC2->getValue()->getValue();
1320 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1321 C2.isPowerOf2()) {
1322 Start = getSignExtendExpr(Start, Ty);
1323 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1324 L, AR->getNoWrapFlags());
1325 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1326 }
1327 }
1328 }
1329
1330 // The cast wasn't folded; create an explicit cast node.
1331 // Recompute the insert position, as it may have been invalidated.
1332 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1333 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1334 Op, Ty);
1335 UniqueSCEVs.InsertNode(S, IP);
1336 return S;
1337 }
1338
1339 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1340 /// unspecified bits out to the given type.
1341 ///
getAnyExtendExpr(const SCEV * Op,Type * Ty)1342 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1343 Type *Ty) {
1344 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1345 "This is not an extending conversion!");
1346 assert(isSCEVable(Ty) &&
1347 "This is not a conversion to a SCEVable type!");
1348 Ty = getEffectiveSCEVType(Ty);
1349
1350 // Sign-extend negative constants.
1351 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1352 if (SC->getValue()->getValue().isNegative())
1353 return getSignExtendExpr(Op, Ty);
1354
1355 // Peel off a truncate cast.
1356 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1357 const SCEV *NewOp = T->getOperand();
1358 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1359 return getAnyExtendExpr(NewOp, Ty);
1360 return getTruncateOrNoop(NewOp, Ty);
1361 }
1362
1363 // Next try a zext cast. If the cast is folded, use it.
1364 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1365 if (!isa<SCEVZeroExtendExpr>(ZExt))
1366 return ZExt;
1367
1368 // Next try a sext cast. If the cast is folded, use it.
1369 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1370 if (!isa<SCEVSignExtendExpr>(SExt))
1371 return SExt;
1372
1373 // Force the cast to be folded into the operands of an addrec.
1374 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1375 SmallVector<const SCEV *, 4> Ops;
1376 for (const SCEV *Op : AR->operands())
1377 Ops.push_back(getAnyExtendExpr(Op, Ty));
1378 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1379 }
1380
1381 // If the expression is obviously signed, use the sext cast value.
1382 if (isa<SCEVSMaxExpr>(Op))
1383 return SExt;
1384
1385 // Absent any other information, use the zext cast value.
1386 return ZExt;
1387 }
1388
1389 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1390 /// a list of operands to be added under the given scale, update the given
1391 /// map. This is a helper function for getAddRecExpr. As an example of
1392 /// what it does, given a sequence of operands that would form an add
1393 /// expression like this:
1394 ///
1395 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1396 ///
1397 /// where A and B are constants, update the map with these values:
1398 ///
1399 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1400 ///
1401 /// and add 13 + A*B*29 to AccumulatedConstant.
1402 /// This will allow getAddRecExpr to produce this:
1403 ///
1404 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1405 ///
1406 /// This form often exposes folding opportunities that are hidden in
1407 /// the original operand list.
1408 ///
1409 /// Return true iff it appears that any interesting folding opportunities
1410 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1411 /// the common case where no interesting opportunities are present, and
1412 /// is also used as a check to avoid infinite recursion.
1413 ///
1414 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)1415 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1416 SmallVectorImpl<const SCEV *> &NewOps,
1417 APInt &AccumulatedConstant,
1418 const SCEV *const *Ops, size_t NumOperands,
1419 const APInt &Scale,
1420 ScalarEvolution &SE) {
1421 bool Interesting = false;
1422
1423 // Iterate over the add operands. They are sorted, with constants first.
1424 unsigned i = 0;
1425 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1426 ++i;
1427 // Pull a buried constant out to the outside.
1428 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1429 Interesting = true;
1430 AccumulatedConstant += Scale * C->getValue()->getValue();
1431 }
1432
1433 // Next comes everything else. We're especially interested in multiplies
1434 // here, but they're in the middle, so just visit the rest with one loop.
1435 for (; i != NumOperands; ++i) {
1436 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1437 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1438 APInt NewScale =
1439 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1440 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1441 // A multiplication of a constant with another add; recurse.
1442 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1443 Interesting |=
1444 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1445 Add->op_begin(), Add->getNumOperands(),
1446 NewScale, SE);
1447 } else {
1448 // A multiplication of a constant with some other value. Update
1449 // the map.
1450 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1451 const SCEV *Key = SE.getMulExpr(MulOps);
1452 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1453 M.insert(std::make_pair(Key, NewScale));
1454 if (Pair.second) {
1455 NewOps.push_back(Pair.first->first);
1456 } else {
1457 Pair.first->second += NewScale;
1458 // The map already had an entry for this value, which may indicate
1459 // a folding opportunity.
1460 Interesting = true;
1461 }
1462 }
1463 } else {
1464 // An ordinary operand. Update the map.
1465 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1466 M.insert(std::make_pair(Ops[i], Scale));
1467 if (Pair.second) {
1468 NewOps.push_back(Pair.first->first);
1469 } else {
1470 Pair.first->second += Scale;
1471 // The map already had an entry for this value, which may indicate
1472 // a folding opportunity.
1473 Interesting = true;
1474 }
1475 }
1476 }
1477
1478 return Interesting;
1479 }
1480
1481 namespace {
1482 struct APIntCompare {
operator ()__anona55b42970211::APIntCompare1483 bool operator()(const APInt &LHS, const APInt &RHS) const {
1484 return LHS.ult(RHS);
1485 }
1486 };
1487 }
1488
1489 /// getAddExpr - Get a canonical add expression, or something simpler if
1490 /// possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)1491 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1492 SCEV::NoWrapFlags Flags) {
1493 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1494 "only nuw or nsw allowed");
1495 assert(!Ops.empty() && "Cannot get empty add!");
1496 if (Ops.size() == 1) return Ops[0];
1497 #ifndef NDEBUG
1498 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1499 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1500 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1501 "SCEVAddExpr operand types don't match!");
1502 #endif
1503
1504 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1505 // And vice-versa.
1506 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1507 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1508 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1509 bool All = true;
1510 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1511 E = Ops.end(); I != E; ++I)
1512 if (!isKnownNonNegative(*I)) {
1513 All = false;
1514 break;
1515 }
1516 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1517 }
1518
1519 // Sort by complexity, this groups all similar expression types together.
1520 GroupByComplexity(Ops, LI);
1521
1522 // If there are any constants, fold them together.
1523 unsigned Idx = 0;
1524 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1525 ++Idx;
1526 assert(Idx < Ops.size());
1527 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1528 // We found two constants, fold them together!
1529 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1530 RHSC->getValue()->getValue());
1531 if (Ops.size() == 2) return Ops[0];
1532 Ops.erase(Ops.begin()+1); // Erase the folded element
1533 LHSC = cast<SCEVConstant>(Ops[0]);
1534 }
1535
1536 // If we are left with a constant zero being added, strip it off.
1537 if (LHSC->getValue()->isZero()) {
1538 Ops.erase(Ops.begin());
1539 --Idx;
1540 }
1541
1542 if (Ops.size() == 1) return Ops[0];
1543 }
1544
1545 // Okay, check to see if the same value occurs in the operand list more than
1546 // once. If so, merge them together into an multiply expression. Since we
1547 // sorted the list, these values are required to be adjacent.
1548 Type *Ty = Ops[0]->getType();
1549 bool FoundMatch = false;
1550 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1551 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1552 // Scan ahead to count how many equal operands there are.
1553 unsigned Count = 2;
1554 while (i+Count != e && Ops[i+Count] == Ops[i])
1555 ++Count;
1556 // Merge the values into a multiply.
1557 const SCEV *Scale = getConstant(Ty, Count);
1558 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1559 if (Ops.size() == Count)
1560 return Mul;
1561 Ops[i] = Mul;
1562 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1563 --i; e -= Count - 1;
1564 FoundMatch = true;
1565 }
1566 if (FoundMatch)
1567 return getAddExpr(Ops, Flags);
1568
1569 // Check for truncates. If all the operands are truncated from the same
1570 // type, see if factoring out the truncate would permit the result to be
1571 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1572 // if the contents of the resulting outer trunc fold to something simple.
1573 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1574 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1575 Type *DstType = Trunc->getType();
1576 Type *SrcType = Trunc->getOperand()->getType();
1577 SmallVector<const SCEV *, 8> LargeOps;
1578 bool Ok = true;
1579 // Check all the operands to see if they can be represented in the
1580 // source type of the truncate.
1581 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1582 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1583 if (T->getOperand()->getType() != SrcType) {
1584 Ok = false;
1585 break;
1586 }
1587 LargeOps.push_back(T->getOperand());
1588 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1589 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1590 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1591 SmallVector<const SCEV *, 8> LargeMulOps;
1592 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1593 if (const SCEVTruncateExpr *T =
1594 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1595 if (T->getOperand()->getType() != SrcType) {
1596 Ok = false;
1597 break;
1598 }
1599 LargeMulOps.push_back(T->getOperand());
1600 } else if (const SCEVConstant *C =
1601 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1602 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1603 } else {
1604 Ok = false;
1605 break;
1606 }
1607 }
1608 if (Ok)
1609 LargeOps.push_back(getMulExpr(LargeMulOps));
1610 } else {
1611 Ok = false;
1612 break;
1613 }
1614 }
1615 if (Ok) {
1616 // Evaluate the expression in the larger type.
1617 const SCEV *Fold = getAddExpr(LargeOps, Flags);
1618 // If it folds to something simple, use it. Otherwise, don't.
1619 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1620 return getTruncateExpr(Fold, DstType);
1621 }
1622 }
1623
1624 // Skip past any other cast SCEVs.
1625 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1626 ++Idx;
1627
1628 // If there are add operands they would be next.
1629 if (Idx < Ops.size()) {
1630 bool DeletedAdd = false;
1631 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1632 // If we have an add, expand the add operands onto the end of the operands
1633 // list.
1634 Ops.erase(Ops.begin()+Idx);
1635 Ops.append(Add->op_begin(), Add->op_end());
1636 DeletedAdd = true;
1637 }
1638
1639 // If we deleted at least one add, we added operands to the end of the list,
1640 // and they are not necessarily sorted. Recurse to resort and resimplify
1641 // any operands we just acquired.
1642 if (DeletedAdd)
1643 return getAddExpr(Ops);
1644 }
1645
1646 // Skip over the add expression until we get to a multiply.
1647 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1648 ++Idx;
1649
1650 // Check to see if there are any folding opportunities present with
1651 // operands multiplied by constant values.
1652 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1653 uint64_t BitWidth = getTypeSizeInBits(Ty);
1654 DenseMap<const SCEV *, APInt> M;
1655 SmallVector<const SCEV *, 8> NewOps;
1656 APInt AccumulatedConstant(BitWidth, 0);
1657 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1658 Ops.data(), Ops.size(),
1659 APInt(BitWidth, 1), *this)) {
1660 // Some interesting folding opportunity is present, so its worthwhile to
1661 // re-generate the operands list. Group the operands by constant scale,
1662 // to avoid multiplying by the same constant scale multiple times.
1663 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1664 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
1665 E = NewOps.end(); I != E; ++I)
1666 MulOpLists[M.find(*I)->second].push_back(*I);
1667 // Re-generate the operands list.
1668 Ops.clear();
1669 if (AccumulatedConstant != 0)
1670 Ops.push_back(getConstant(AccumulatedConstant));
1671 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1672 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1673 if (I->first != 0)
1674 Ops.push_back(getMulExpr(getConstant(I->first),
1675 getAddExpr(I->second)));
1676 if (Ops.empty())
1677 return getConstant(Ty, 0);
1678 if (Ops.size() == 1)
1679 return Ops[0];
1680 return getAddExpr(Ops);
1681 }
1682 }
1683
1684 // If we are adding something to a multiply expression, make sure the
1685 // something is not already an operand of the multiply. If so, merge it into
1686 // the multiply.
1687 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1688 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1689 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1690 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1691 if (isa<SCEVConstant>(MulOpSCEV))
1692 continue;
1693 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1694 if (MulOpSCEV == Ops[AddOp]) {
1695 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1696 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1697 if (Mul->getNumOperands() != 2) {
1698 // If the multiply has more than two operands, we must get the
1699 // Y*Z term.
1700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1701 Mul->op_begin()+MulOp);
1702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1703 InnerMul = getMulExpr(MulOps);
1704 }
1705 const SCEV *One = getConstant(Ty, 1);
1706 const SCEV *AddOne = getAddExpr(One, InnerMul);
1707 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1708 if (Ops.size() == 2) return OuterMul;
1709 if (AddOp < Idx) {
1710 Ops.erase(Ops.begin()+AddOp);
1711 Ops.erase(Ops.begin()+Idx-1);
1712 } else {
1713 Ops.erase(Ops.begin()+Idx);
1714 Ops.erase(Ops.begin()+AddOp-1);
1715 }
1716 Ops.push_back(OuterMul);
1717 return getAddExpr(Ops);
1718 }
1719
1720 // Check this multiply against other multiplies being added together.
1721 for (unsigned OtherMulIdx = Idx+1;
1722 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1723 ++OtherMulIdx) {
1724 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1725 // If MulOp occurs in OtherMul, we can fold the two multiplies
1726 // together.
1727 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1728 OMulOp != e; ++OMulOp)
1729 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1730 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1731 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1732 if (Mul->getNumOperands() != 2) {
1733 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1734 Mul->op_begin()+MulOp);
1735 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1736 InnerMul1 = getMulExpr(MulOps);
1737 }
1738 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1739 if (OtherMul->getNumOperands() != 2) {
1740 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1741 OtherMul->op_begin()+OMulOp);
1742 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1743 InnerMul2 = getMulExpr(MulOps);
1744 }
1745 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1746 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1747 if (Ops.size() == 2) return OuterMul;
1748 Ops.erase(Ops.begin()+Idx);
1749 Ops.erase(Ops.begin()+OtherMulIdx-1);
1750 Ops.push_back(OuterMul);
1751 return getAddExpr(Ops);
1752 }
1753 }
1754 }
1755 }
1756
1757 // If there are any add recurrences in the operands list, see if any other
1758 // added values are loop invariant. If so, we can fold them into the
1759 // recurrence.
1760 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1761 ++Idx;
1762
1763 // Scan over all recurrences, trying to fold loop invariants into them.
1764 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1765 // Scan all of the other operands to this add and add them to the vector if
1766 // they are loop invariant w.r.t. the recurrence.
1767 SmallVector<const SCEV *, 8> LIOps;
1768 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1769 const Loop *AddRecLoop = AddRec->getLoop();
1770 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1771 if (isLoopInvariant(Ops[i], AddRecLoop)) {
1772 LIOps.push_back(Ops[i]);
1773 Ops.erase(Ops.begin()+i);
1774 --i; --e;
1775 }
1776
1777 // If we found some loop invariants, fold them into the recurrence.
1778 if (!LIOps.empty()) {
1779 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1780 LIOps.push_back(AddRec->getStart());
1781
1782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1783 AddRec->op_end());
1784 AddRecOps[0] = getAddExpr(LIOps);
1785
1786 // Build the new addrec. Propagate the NUW and NSW flags if both the
1787 // outer add and the inner addrec are guaranteed to have no overflow.
1788 // Always propagate NW.
1789 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1790 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1791
1792 // If all of the other operands were loop invariant, we are done.
1793 if (Ops.size() == 1) return NewRec;
1794
1795 // Otherwise, add the folded AddRec by the non-invariant parts.
1796 for (unsigned i = 0;; ++i)
1797 if (Ops[i] == AddRec) {
1798 Ops[i] = NewRec;
1799 break;
1800 }
1801 return getAddExpr(Ops);
1802 }
1803
1804 // Okay, if there weren't any loop invariants to be folded, check to see if
1805 // there are multiple AddRec's with the same loop induction variable being
1806 // added together. If so, we can fold them.
1807 for (unsigned OtherIdx = Idx+1;
1808 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1809 ++OtherIdx)
1810 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1811 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1812 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1813 AddRec->op_end());
1814 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1815 ++OtherIdx)
1816 if (const SCEVAddRecExpr *OtherAddRec =
1817 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1818 if (OtherAddRec->getLoop() == AddRecLoop) {
1819 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1820 i != e; ++i) {
1821 if (i >= AddRecOps.size()) {
1822 AddRecOps.append(OtherAddRec->op_begin()+i,
1823 OtherAddRec->op_end());
1824 break;
1825 }
1826 AddRecOps[i] = getAddExpr(AddRecOps[i],
1827 OtherAddRec->getOperand(i));
1828 }
1829 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1830 }
1831 // Step size has changed, so we cannot guarantee no self-wraparound.
1832 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1833 return getAddExpr(Ops);
1834 }
1835
1836 // Otherwise couldn't fold anything into this recurrence. Move onto the
1837 // next one.
1838 }
1839
1840 // Okay, it looks like we really DO need an add expr. Check to see if we
1841 // already have one, otherwise create a new one.
1842 FoldingSetNodeID ID;
1843 ID.AddInteger(scAddExpr);
1844 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1845 ID.AddPointer(Ops[i]);
1846 void *IP = nullptr;
1847 SCEVAddExpr *S =
1848 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1849 if (!S) {
1850 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1851 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1852 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1853 O, Ops.size());
1854 UniqueSCEVs.InsertNode(S, IP);
1855 }
1856 S->setNoWrapFlags(Flags);
1857 return S;
1858 }
1859
umul_ov(uint64_t i,uint64_t j,bool & Overflow)1860 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1861 uint64_t k = i*j;
1862 if (j > 1 && k / j != i) Overflow = true;
1863 return k;
1864 }
1865
1866 /// Compute the result of "n choose k", the binomial coefficient. If an
1867 /// intermediate computation overflows, Overflow will be set and the return will
1868 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)1869 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1870 // We use the multiplicative formula:
1871 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1872 // At each iteration, we take the n-th term of the numeral and divide by the
1873 // (k-n)th term of the denominator. This division will always produce an
1874 // integral result, and helps reduce the chance of overflow in the
1875 // intermediate computations. However, we can still overflow even when the
1876 // final result would fit.
1877
1878 if (n == 0 || n == k) return 1;
1879 if (k > n) return 0;
1880
1881 if (k > n/2)
1882 k = n-k;
1883
1884 uint64_t r = 1;
1885 for (uint64_t i = 1; i <= k; ++i) {
1886 r = umul_ov(r, n-(i-1), Overflow);
1887 r /= i;
1888 }
1889 return r;
1890 }
1891
1892 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1893 /// possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)1894 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1895 SCEV::NoWrapFlags Flags) {
1896 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1897 "only nuw or nsw allowed");
1898 assert(!Ops.empty() && "Cannot get empty mul!");
1899 if (Ops.size() == 1) return Ops[0];
1900 #ifndef NDEBUG
1901 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1902 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1903 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1904 "SCEVMulExpr operand types don't match!");
1905 #endif
1906
1907 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1908 // And vice-versa.
1909 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1910 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1911 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1912 bool All = true;
1913 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1914 E = Ops.end(); I != E; ++I)
1915 if (!isKnownNonNegative(*I)) {
1916 All = false;
1917 break;
1918 }
1919 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1920 }
1921
1922 // Sort by complexity, this groups all similar expression types together.
1923 GroupByComplexity(Ops, LI);
1924
1925 // If there are any constants, fold them together.
1926 unsigned Idx = 0;
1927 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1928
1929 // C1*(C2+V) -> C1*C2 + C1*V
1930 if (Ops.size() == 2)
1931 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1932 if (Add->getNumOperands() == 2 &&
1933 isa<SCEVConstant>(Add->getOperand(0)))
1934 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1935 getMulExpr(LHSC, Add->getOperand(1)));
1936
1937 ++Idx;
1938 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1939 // We found two constants, fold them together!
1940 ConstantInt *Fold = ConstantInt::get(getContext(),
1941 LHSC->getValue()->getValue() *
1942 RHSC->getValue()->getValue());
1943 Ops[0] = getConstant(Fold);
1944 Ops.erase(Ops.begin()+1); // Erase the folded element
1945 if (Ops.size() == 1) return Ops[0];
1946 LHSC = cast<SCEVConstant>(Ops[0]);
1947 }
1948
1949 // If we are left with a constant one being multiplied, strip it off.
1950 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1951 Ops.erase(Ops.begin());
1952 --Idx;
1953 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1954 // If we have a multiply of zero, it will always be zero.
1955 return Ops[0];
1956 } else if (Ops[0]->isAllOnesValue()) {
1957 // If we have a mul by -1 of an add, try distributing the -1 among the
1958 // add operands.
1959 if (Ops.size() == 2) {
1960 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1961 SmallVector<const SCEV *, 4> NewOps;
1962 bool AnyFolded = false;
1963 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1964 E = Add->op_end(); I != E; ++I) {
1965 const SCEV *Mul = getMulExpr(Ops[0], *I);
1966 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1967 NewOps.push_back(Mul);
1968 }
1969 if (AnyFolded)
1970 return getAddExpr(NewOps);
1971 }
1972 else if (const SCEVAddRecExpr *
1973 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1974 // Negation preserves a recurrence's no self-wrap property.
1975 SmallVector<const SCEV *, 4> Operands;
1976 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1977 E = AddRec->op_end(); I != E; ++I) {
1978 Operands.push_back(getMulExpr(Ops[0], *I));
1979 }
1980 return getAddRecExpr(Operands, AddRec->getLoop(),
1981 AddRec->getNoWrapFlags(SCEV::FlagNW));
1982 }
1983 }
1984 }
1985
1986 if (Ops.size() == 1)
1987 return Ops[0];
1988 }
1989
1990 // Skip over the add expression until we get to a multiply.
1991 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1992 ++Idx;
1993
1994 // If there are mul operands inline them all into this expression.
1995 if (Idx < Ops.size()) {
1996 bool DeletedMul = false;
1997 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1998 // If we have an mul, expand the mul operands onto the end of the operands
1999 // list.
2000 Ops.erase(Ops.begin()+Idx);
2001 Ops.append(Mul->op_begin(), Mul->op_end());
2002 DeletedMul = true;
2003 }
2004
2005 // If we deleted at least one mul, we added operands to the end of the list,
2006 // and they are not necessarily sorted. Recurse to resort and resimplify
2007 // any operands we just acquired.
2008 if (DeletedMul)
2009 return getMulExpr(Ops);
2010 }
2011
2012 // If there are any add recurrences in the operands list, see if any other
2013 // added values are loop invariant. If so, we can fold them into the
2014 // recurrence.
2015 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2016 ++Idx;
2017
2018 // Scan over all recurrences, trying to fold loop invariants into them.
2019 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2020 // Scan all of the other operands to this mul and add them to the vector if
2021 // they are loop invariant w.r.t. the recurrence.
2022 SmallVector<const SCEV *, 8> LIOps;
2023 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2024 const Loop *AddRecLoop = AddRec->getLoop();
2025 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2026 if (isLoopInvariant(Ops[i], AddRecLoop)) {
2027 LIOps.push_back(Ops[i]);
2028 Ops.erase(Ops.begin()+i);
2029 --i; --e;
2030 }
2031
2032 // If we found some loop invariants, fold them into the recurrence.
2033 if (!LIOps.empty()) {
2034 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2035 SmallVector<const SCEV *, 4> NewOps;
2036 NewOps.reserve(AddRec->getNumOperands());
2037 const SCEV *Scale = getMulExpr(LIOps);
2038 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2039 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2040
2041 // Build the new addrec. Propagate the NUW and NSW flags if both the
2042 // outer mul and the inner addrec are guaranteed to have no overflow.
2043 //
2044 // No self-wrap cannot be guaranteed after changing the step size, but
2045 // will be inferred if either NUW or NSW is true.
2046 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2047 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2048
2049 // If all of the other operands were loop invariant, we are done.
2050 if (Ops.size() == 1) return NewRec;
2051
2052 // Otherwise, multiply the folded AddRec by the non-invariant parts.
2053 for (unsigned i = 0;; ++i)
2054 if (Ops[i] == AddRec) {
2055 Ops[i] = NewRec;
2056 break;
2057 }
2058 return getMulExpr(Ops);
2059 }
2060
2061 // Okay, if there weren't any loop invariants to be folded, check to see if
2062 // there are multiple AddRec's with the same loop induction variable being
2063 // multiplied together. If so, we can fold them.
2064 for (unsigned OtherIdx = Idx+1;
2065 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2066 ++OtherIdx) {
2067 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2068 continue;
2069
2070 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2071 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2072 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2073 // ]]],+,...up to x=2n}.
2074 // Note that the arguments to choose() are always integers with values
2075 // known at compile time, never SCEV objects.
2076 //
2077 // The implementation avoids pointless extra computations when the two
2078 // addrec's are of different length (mathematically, it's equivalent to
2079 // an infinite stream of zeros on the right).
2080 bool OpsModified = false;
2081 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2082 ++OtherIdx) {
2083 const SCEVAddRecExpr *OtherAddRec =
2084 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2085 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2086 continue;
2087
2088 bool Overflow = false;
2089 Type *Ty = AddRec->getType();
2090 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2091 SmallVector<const SCEV*, 7> AddRecOps;
2092 for (int x = 0, xe = AddRec->getNumOperands() +
2093 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2094 const SCEV *Term = getConstant(Ty, 0);
2095 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2096 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2097 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2098 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2099 z < ze && !Overflow; ++z) {
2100 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2101 uint64_t Coeff;
2102 if (LargerThan64Bits)
2103 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2104 else
2105 Coeff = Coeff1*Coeff2;
2106 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2107 const SCEV *Term1 = AddRec->getOperand(y-z);
2108 const SCEV *Term2 = OtherAddRec->getOperand(z);
2109 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2110 }
2111 }
2112 AddRecOps.push_back(Term);
2113 }
2114 if (!Overflow) {
2115 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2116 SCEV::FlagAnyWrap);
2117 if (Ops.size() == 2) return NewAddRec;
2118 Ops[Idx] = NewAddRec;
2119 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2120 OpsModified = true;
2121 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2122 if (!AddRec)
2123 break;
2124 }
2125 }
2126 if (OpsModified)
2127 return getMulExpr(Ops);
2128 }
2129
2130 // Otherwise couldn't fold anything into this recurrence. Move onto the
2131 // next one.
2132 }
2133
2134 // Okay, it looks like we really DO need an mul expr. Check to see if we
2135 // already have one, otherwise create a new one.
2136 FoldingSetNodeID ID;
2137 ID.AddInteger(scMulExpr);
2138 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2139 ID.AddPointer(Ops[i]);
2140 void *IP = nullptr;
2141 SCEVMulExpr *S =
2142 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2143 if (!S) {
2144 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2145 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2146 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2147 O, Ops.size());
2148 UniqueSCEVs.InsertNode(S, IP);
2149 }
2150 S->setNoWrapFlags(Flags);
2151 return S;
2152 }
2153
2154 /// getUDivExpr - Get a canonical unsigned division expression, or something
2155 /// simpler if possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)2156 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2157 const SCEV *RHS) {
2158 assert(getEffectiveSCEVType(LHS->getType()) ==
2159 getEffectiveSCEVType(RHS->getType()) &&
2160 "SCEVUDivExpr operand types don't match!");
2161
2162 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2163 if (RHSC->getValue()->equalsInt(1))
2164 return LHS; // X udiv 1 --> x
2165 // If the denominator is zero, the result of the udiv is undefined. Don't
2166 // try to analyze it, because the resolution chosen here may differ from
2167 // the resolution chosen in other parts of the compiler.
2168 if (!RHSC->getValue()->isZero()) {
2169 // Determine if the division can be folded into the operands of
2170 // its operands.
2171 // TODO: Generalize this to non-constants by using known-bits information.
2172 Type *Ty = LHS->getType();
2173 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2174 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2175 // For non-power-of-two values, effectively round the value up to the
2176 // nearest power of two.
2177 if (!RHSC->getValue()->getValue().isPowerOf2())
2178 ++MaxShiftAmt;
2179 IntegerType *ExtTy =
2180 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2181 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2182 if (const SCEVConstant *Step =
2183 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2184 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2185 const APInt &StepInt = Step->getValue()->getValue();
2186 const APInt &DivInt = RHSC->getValue()->getValue();
2187 if (!StepInt.urem(DivInt) &&
2188 getZeroExtendExpr(AR, ExtTy) ==
2189 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2190 getZeroExtendExpr(Step, ExtTy),
2191 AR->getLoop(), SCEV::FlagAnyWrap)) {
2192 SmallVector<const SCEV *, 4> Operands;
2193 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2194 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2195 return getAddRecExpr(Operands, AR->getLoop(),
2196 SCEV::FlagNW);
2197 }
2198 /// Get a canonical UDivExpr for a recurrence.
2199 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2200 // We can currently only fold X%N if X is constant.
2201 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2202 if (StartC && !DivInt.urem(StepInt) &&
2203 getZeroExtendExpr(AR, ExtTy) ==
2204 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2205 getZeroExtendExpr(Step, ExtTy),
2206 AR->getLoop(), SCEV::FlagAnyWrap)) {
2207 const APInt &StartInt = StartC->getValue()->getValue();
2208 const APInt &StartRem = StartInt.urem(StepInt);
2209 if (StartRem != 0)
2210 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2211 AR->getLoop(), SCEV::FlagNW);
2212 }
2213 }
2214 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2215 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2216 SmallVector<const SCEV *, 4> Operands;
2217 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2218 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2219 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2220 // Find an operand that's safely divisible.
2221 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2222 const SCEV *Op = M->getOperand(i);
2223 const SCEV *Div = getUDivExpr(Op, RHSC);
2224 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2225 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2226 M->op_end());
2227 Operands[i] = Div;
2228 return getMulExpr(Operands);
2229 }
2230 }
2231 }
2232 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2233 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2234 SmallVector<const SCEV *, 4> Operands;
2235 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2236 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2237 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2238 Operands.clear();
2239 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2240 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2241 if (isa<SCEVUDivExpr>(Op) ||
2242 getMulExpr(Op, RHS) != A->getOperand(i))
2243 break;
2244 Operands.push_back(Op);
2245 }
2246 if (Operands.size() == A->getNumOperands())
2247 return getAddExpr(Operands);
2248 }
2249 }
2250
2251 // Fold if both operands are constant.
2252 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2253 Constant *LHSCV = LHSC->getValue();
2254 Constant *RHSCV = RHSC->getValue();
2255 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2256 RHSCV)));
2257 }
2258 }
2259 }
2260
2261 FoldingSetNodeID ID;
2262 ID.AddInteger(scUDivExpr);
2263 ID.AddPointer(LHS);
2264 ID.AddPointer(RHS);
2265 void *IP = nullptr;
2266 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2267 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2268 LHS, RHS);
2269 UniqueSCEVs.InsertNode(S, IP);
2270 return S;
2271 }
2272
gcd(const SCEVConstant * C1,const SCEVConstant * C2)2273 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2274 APInt A = C1->getValue()->getValue().abs();
2275 APInt B = C2->getValue()->getValue().abs();
2276 uint32_t ABW = A.getBitWidth();
2277 uint32_t BBW = B.getBitWidth();
2278
2279 if (ABW > BBW)
2280 B = B.zext(ABW);
2281 else if (ABW < BBW)
2282 A = A.zext(BBW);
2283
2284 return APIntOps::GreatestCommonDivisor(A, B);
2285 }
2286
2287 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2288 /// something simpler if possible. There is no representation for an exact udiv
2289 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2290 /// We can't do this when it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)2291 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2292 const SCEV *RHS) {
2293 // TODO: we could try to find factors in all sorts of things, but for now we
2294 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2295 // end of this file for inspiration.
2296
2297 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2298 if (!Mul)
2299 return getUDivExpr(LHS, RHS);
2300
2301 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2302 // If the mulexpr multiplies by a constant, then that constant must be the
2303 // first element of the mulexpr.
2304 if (const SCEVConstant *LHSCst =
2305 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2306 if (LHSCst == RHSCst) {
2307 SmallVector<const SCEV *, 2> Operands;
2308 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2309 return getMulExpr(Operands);
2310 }
2311
2312 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2313 // that there's a factor provided by one of the other terms. We need to
2314 // check.
2315 APInt Factor = gcd(LHSCst, RHSCst);
2316 if (!Factor.isIntN(1)) {
2317 LHSCst = cast<SCEVConstant>(
2318 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2319 RHSCst = cast<SCEVConstant>(
2320 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2321 SmallVector<const SCEV *, 2> Operands;
2322 Operands.push_back(LHSCst);
2323 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2324 LHS = getMulExpr(Operands);
2325 RHS = RHSCst;
2326 Mul = dyn_cast<SCEVMulExpr>(LHS);
2327 if (!Mul)
2328 return getUDivExactExpr(LHS, RHS);
2329 }
2330 }
2331 }
2332
2333 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2334 if (Mul->getOperand(i) == RHS) {
2335 SmallVector<const SCEV *, 2> Operands;
2336 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2337 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2338 return getMulExpr(Operands);
2339 }
2340 }
2341
2342 return getUDivExpr(LHS, RHS);
2343 }
2344
2345 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2346 /// Simplify the expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)2347 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2348 const Loop *L,
2349 SCEV::NoWrapFlags Flags) {
2350 SmallVector<const SCEV *, 4> Operands;
2351 Operands.push_back(Start);
2352 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2353 if (StepChrec->getLoop() == L) {
2354 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2355 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2356 }
2357
2358 Operands.push_back(Step);
2359 return getAddRecExpr(Operands, L, Flags);
2360 }
2361
2362 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2363 /// Simplify the expression as much as possible.
2364 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)2365 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2366 const Loop *L, SCEV::NoWrapFlags Flags) {
2367 if (Operands.size() == 1) return Operands[0];
2368 #ifndef NDEBUG
2369 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2370 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2371 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2372 "SCEVAddRecExpr operand types don't match!");
2373 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2374 assert(isLoopInvariant(Operands[i], L) &&
2375 "SCEVAddRecExpr operand is not loop-invariant!");
2376 #endif
2377
2378 if (Operands.back()->isZero()) {
2379 Operands.pop_back();
2380 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
2381 }
2382
2383 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2384 // use that information to infer NUW and NSW flags. However, computing a
2385 // BE count requires calling getAddRecExpr, so we may not yet have a
2386 // meaningful BE count at this point (and if we don't, we'd be stuck
2387 // with a SCEVCouldNotCompute as the cached BE count).
2388
2389 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2390 // And vice-versa.
2391 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2392 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2393 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2394 bool All = true;
2395 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2396 E = Operands.end(); I != E; ++I)
2397 if (!isKnownNonNegative(*I)) {
2398 All = false;
2399 break;
2400 }
2401 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2402 }
2403
2404 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2405 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2406 const Loop *NestedLoop = NestedAR->getLoop();
2407 if (L->contains(NestedLoop) ?
2408 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2409 (!NestedLoop->contains(L) &&
2410 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2411 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2412 NestedAR->op_end());
2413 Operands[0] = NestedAR->getStart();
2414 // AddRecs require their operands be loop-invariant with respect to their
2415 // loops. Don't perform this transformation if it would break this
2416 // requirement.
2417 bool AllInvariant = true;
2418 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2419 if (!isLoopInvariant(Operands[i], L)) {
2420 AllInvariant = false;
2421 break;
2422 }
2423 if (AllInvariant) {
2424 // Create a recurrence for the outer loop with the same step size.
2425 //
2426 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2427 // inner recurrence has the same property.
2428 SCEV::NoWrapFlags OuterFlags =
2429 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2430
2431 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2432 AllInvariant = true;
2433 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2434 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2435 AllInvariant = false;
2436 break;
2437 }
2438 if (AllInvariant) {
2439 // Ok, both add recurrences are valid after the transformation.
2440 //
2441 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2442 // the outer recurrence has the same property.
2443 SCEV::NoWrapFlags InnerFlags =
2444 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2445 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2446 }
2447 }
2448 // Reset Operands to its original state.
2449 Operands[0] = NestedAR;
2450 }
2451 }
2452
2453 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2454 // already have one, otherwise create a new one.
2455 FoldingSetNodeID ID;
2456 ID.AddInteger(scAddRecExpr);
2457 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2458 ID.AddPointer(Operands[i]);
2459 ID.AddPointer(L);
2460 void *IP = nullptr;
2461 SCEVAddRecExpr *S =
2462 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2463 if (!S) {
2464 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2465 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2466 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2467 O, Operands.size(), L);
2468 UniqueSCEVs.InsertNode(S, IP);
2469 }
2470 S->setNoWrapFlags(Flags);
2471 return S;
2472 }
2473
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)2474 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2475 const SCEV *RHS) {
2476 SmallVector<const SCEV *, 2> Ops;
2477 Ops.push_back(LHS);
2478 Ops.push_back(RHS);
2479 return getSMaxExpr(Ops);
2480 }
2481
2482 const SCEV *
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)2483 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2484 assert(!Ops.empty() && "Cannot get empty smax!");
2485 if (Ops.size() == 1) return Ops[0];
2486 #ifndef NDEBUG
2487 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2488 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2489 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2490 "SCEVSMaxExpr operand types don't match!");
2491 #endif
2492
2493 // Sort by complexity, this groups all similar expression types together.
2494 GroupByComplexity(Ops, LI);
2495
2496 // If there are any constants, fold them together.
2497 unsigned Idx = 0;
2498 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2499 ++Idx;
2500 assert(Idx < Ops.size());
2501 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2502 // We found two constants, fold them together!
2503 ConstantInt *Fold = ConstantInt::get(getContext(),
2504 APIntOps::smax(LHSC->getValue()->getValue(),
2505 RHSC->getValue()->getValue()));
2506 Ops[0] = getConstant(Fold);
2507 Ops.erase(Ops.begin()+1); // Erase the folded element
2508 if (Ops.size() == 1) return Ops[0];
2509 LHSC = cast<SCEVConstant>(Ops[0]);
2510 }
2511
2512 // If we are left with a constant minimum-int, strip it off.
2513 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2514 Ops.erase(Ops.begin());
2515 --Idx;
2516 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2517 // If we have an smax with a constant maximum-int, it will always be
2518 // maximum-int.
2519 return Ops[0];
2520 }
2521
2522 if (Ops.size() == 1) return Ops[0];
2523 }
2524
2525 // Find the first SMax
2526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2527 ++Idx;
2528
2529 // Check to see if one of the operands is an SMax. If so, expand its operands
2530 // onto our operand list, and recurse to simplify.
2531 if (Idx < Ops.size()) {
2532 bool DeletedSMax = false;
2533 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2534 Ops.erase(Ops.begin()+Idx);
2535 Ops.append(SMax->op_begin(), SMax->op_end());
2536 DeletedSMax = true;
2537 }
2538
2539 if (DeletedSMax)
2540 return getSMaxExpr(Ops);
2541 }
2542
2543 // Okay, check to see if the same value occurs in the operand list twice. If
2544 // so, delete one. Since we sorted the list, these values are required to
2545 // be adjacent.
2546 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2547 // X smax Y smax Y --> X smax Y
2548 // X smax Y --> X, if X is always greater than Y
2549 if (Ops[i] == Ops[i+1] ||
2550 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2551 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2552 --i; --e;
2553 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2554 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2555 --i; --e;
2556 }
2557
2558 if (Ops.size() == 1) return Ops[0];
2559
2560 assert(!Ops.empty() && "Reduced smax down to nothing!");
2561
2562 // Okay, it looks like we really DO need an smax expr. Check to see if we
2563 // already have one, otherwise create a new one.
2564 FoldingSetNodeID ID;
2565 ID.AddInteger(scSMaxExpr);
2566 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2567 ID.AddPointer(Ops[i]);
2568 void *IP = nullptr;
2569 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2570 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2571 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2572 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2573 O, Ops.size());
2574 UniqueSCEVs.InsertNode(S, IP);
2575 return S;
2576 }
2577
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)2578 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2579 const SCEV *RHS) {
2580 SmallVector<const SCEV *, 2> Ops;
2581 Ops.push_back(LHS);
2582 Ops.push_back(RHS);
2583 return getUMaxExpr(Ops);
2584 }
2585
2586 const SCEV *
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)2587 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2588 assert(!Ops.empty() && "Cannot get empty umax!");
2589 if (Ops.size() == 1) return Ops[0];
2590 #ifndef NDEBUG
2591 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2592 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2593 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2594 "SCEVUMaxExpr operand types don't match!");
2595 #endif
2596
2597 // Sort by complexity, this groups all similar expression types together.
2598 GroupByComplexity(Ops, LI);
2599
2600 // If there are any constants, fold them together.
2601 unsigned Idx = 0;
2602 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2603 ++Idx;
2604 assert(Idx < Ops.size());
2605 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2606 // We found two constants, fold them together!
2607 ConstantInt *Fold = ConstantInt::get(getContext(),
2608 APIntOps::umax(LHSC->getValue()->getValue(),
2609 RHSC->getValue()->getValue()));
2610 Ops[0] = getConstant(Fold);
2611 Ops.erase(Ops.begin()+1); // Erase the folded element
2612 if (Ops.size() == 1) return Ops[0];
2613 LHSC = cast<SCEVConstant>(Ops[0]);
2614 }
2615
2616 // If we are left with a constant minimum-int, strip it off.
2617 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2618 Ops.erase(Ops.begin());
2619 --Idx;
2620 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2621 // If we have an umax with a constant maximum-int, it will always be
2622 // maximum-int.
2623 return Ops[0];
2624 }
2625
2626 if (Ops.size() == 1) return Ops[0];
2627 }
2628
2629 // Find the first UMax
2630 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2631 ++Idx;
2632
2633 // Check to see if one of the operands is a UMax. If so, expand its operands
2634 // onto our operand list, and recurse to simplify.
2635 if (Idx < Ops.size()) {
2636 bool DeletedUMax = false;
2637 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2638 Ops.erase(Ops.begin()+Idx);
2639 Ops.append(UMax->op_begin(), UMax->op_end());
2640 DeletedUMax = true;
2641 }
2642
2643 if (DeletedUMax)
2644 return getUMaxExpr(Ops);
2645 }
2646
2647 // Okay, check to see if the same value occurs in the operand list twice. If
2648 // so, delete one. Since we sorted the list, these values are required to
2649 // be adjacent.
2650 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2651 // X umax Y umax Y --> X umax Y
2652 // X umax Y --> X, if X is always greater than Y
2653 if (Ops[i] == Ops[i+1] ||
2654 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2655 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2656 --i; --e;
2657 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2658 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2659 --i; --e;
2660 }
2661
2662 if (Ops.size() == 1) return Ops[0];
2663
2664 assert(!Ops.empty() && "Reduced umax down to nothing!");
2665
2666 // Okay, it looks like we really DO need a umax expr. Check to see if we
2667 // already have one, otherwise create a new one.
2668 FoldingSetNodeID ID;
2669 ID.AddInteger(scUMaxExpr);
2670 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2671 ID.AddPointer(Ops[i]);
2672 void *IP = nullptr;
2673 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2674 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2675 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2676 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2677 O, Ops.size());
2678 UniqueSCEVs.InsertNode(S, IP);
2679 return S;
2680 }
2681
getSMinExpr(const SCEV * LHS,const SCEV * RHS)2682 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2683 const SCEV *RHS) {
2684 // ~smax(~x, ~y) == smin(x, y).
2685 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2686 }
2687
getUMinExpr(const SCEV * LHS,const SCEV * RHS)2688 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2689 const SCEV *RHS) {
2690 // ~umax(~x, ~y) == umin(x, y)
2691 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2692 }
2693
getSizeOfExpr(Type * IntTy,Type * AllocTy)2694 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
2695 // If we have DataLayout, we can bypass creating a target-independent
2696 // constant expression and then folding it back into a ConstantInt.
2697 // This is just a compile-time optimization.
2698 if (DL)
2699 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
2700
2701 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2702 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2703 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
2704 C = Folded;
2705 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2706 assert(Ty == IntTy && "Effective SCEV type doesn't match");
2707 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2708 }
2709
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)2710 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2711 StructType *STy,
2712 unsigned FieldNo) {
2713 // If we have DataLayout, we can bypass creating a target-independent
2714 // constant expression and then folding it back into a ConstantInt.
2715 // This is just a compile-time optimization.
2716 if (DL) {
2717 return getConstant(IntTy,
2718 DL->getStructLayout(STy)->getElementOffset(FieldNo));
2719 }
2720
2721 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2722 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2723 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
2724 C = Folded;
2725
2726 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2727 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2728 }
2729
getUnknown(Value * V)2730 const SCEV *ScalarEvolution::getUnknown(Value *V) {
2731 // Don't attempt to do anything other than create a SCEVUnknown object
2732 // here. createSCEV only calls getUnknown after checking for all other
2733 // interesting possibilities, and any other code that calls getUnknown
2734 // is doing so in order to hide a value from SCEV canonicalization.
2735
2736 FoldingSetNodeID ID;
2737 ID.AddInteger(scUnknown);
2738 ID.AddPointer(V);
2739 void *IP = nullptr;
2740 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2741 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2742 "Stale SCEVUnknown in uniquing map!");
2743 return S;
2744 }
2745 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2746 FirstUnknown);
2747 FirstUnknown = cast<SCEVUnknown>(S);
2748 UniqueSCEVs.InsertNode(S, IP);
2749 return S;
2750 }
2751
2752 //===----------------------------------------------------------------------===//
2753 // Basic SCEV Analysis and PHI Idiom Recognition Code
2754 //
2755
2756 /// isSCEVable - Test if values of the given type are analyzable within
2757 /// the SCEV framework. This primarily includes integer types, and it
2758 /// can optionally include pointer types if the ScalarEvolution class
2759 /// has access to target-specific information.
isSCEVable(Type * Ty) const2760 bool ScalarEvolution::isSCEVable(Type *Ty) const {
2761 // Integers and pointers are always SCEVable.
2762 return Ty->isIntegerTy() || Ty->isPointerTy();
2763 }
2764
2765 /// getTypeSizeInBits - Return the size in bits of the specified type,
2766 /// for which isSCEVable must return true.
getTypeSizeInBits(Type * Ty) const2767 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2768 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2769
2770 // If we have a DataLayout, use it!
2771 if (DL)
2772 return DL->getTypeSizeInBits(Ty);
2773
2774 // Integer types have fixed sizes.
2775 if (Ty->isIntegerTy())
2776 return Ty->getPrimitiveSizeInBits();
2777
2778 // The only other support type is pointer. Without DataLayout, conservatively
2779 // assume pointers are 64-bit.
2780 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2781 return 64;
2782 }
2783
2784 /// getEffectiveSCEVType - Return a type with the same bitwidth as
2785 /// the given type and which represents how SCEV will treat the given
2786 /// type, for which isSCEVable must return true. For pointer types,
2787 /// this is the pointer-sized integer type.
getEffectiveSCEVType(Type * Ty) const2788 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2789 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2790
2791 if (Ty->isIntegerTy()) {
2792 return Ty;
2793 }
2794
2795 // The only other support type is pointer.
2796 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2797
2798 if (DL)
2799 return DL->getIntPtrType(Ty);
2800
2801 // Without DataLayout, conservatively assume pointers are 64-bit.
2802 return Type::getInt64Ty(getContext());
2803 }
2804
getCouldNotCompute()2805 const SCEV *ScalarEvolution::getCouldNotCompute() {
2806 return &CouldNotCompute;
2807 }
2808
2809 namespace {
2810 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2811 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2812 // is set iff if find such SCEVUnknown.
2813 //
2814 struct FindInvalidSCEVUnknown {
2815 bool FindOne;
FindInvalidSCEVUnknown__anona55b42970311::FindInvalidSCEVUnknown2816 FindInvalidSCEVUnknown() { FindOne = false; }
follow__anona55b42970311::FindInvalidSCEVUnknown2817 bool follow(const SCEV *S) {
2818 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
2819 case scConstant:
2820 return false;
2821 case scUnknown:
2822 if (!cast<SCEVUnknown>(S)->getValue())
2823 FindOne = true;
2824 return false;
2825 default:
2826 return true;
2827 }
2828 }
isDone__anona55b42970311::FindInvalidSCEVUnknown2829 bool isDone() const { return FindOne; }
2830 };
2831 }
2832
checkValidity(const SCEV * S) const2833 bool ScalarEvolution::checkValidity(const SCEV *S) const {
2834 FindInvalidSCEVUnknown F;
2835 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2836 ST.visitAll(S);
2837
2838 return !F.FindOne;
2839 }
2840
2841 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2842 /// expression and create a new one.
getSCEV(Value * V)2843 const SCEV *ScalarEvolution::getSCEV(Value *V) {
2844 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2845
2846 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2847 if (I != ValueExprMap.end()) {
2848 const SCEV *S = I->second;
2849 if (checkValidity(S))
2850 return S;
2851 else
2852 ValueExprMap.erase(I);
2853 }
2854 const SCEV *S = createSCEV(V);
2855
2856 // The process of creating a SCEV for V may have caused other SCEVs
2857 // to have been created, so it's necessary to insert the new entry
2858 // from scratch, rather than trying to remember the insert position
2859 // above.
2860 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2861 return S;
2862 }
2863
2864 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2865 ///
getNegativeSCEV(const SCEV * V)2866 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2867 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2868 return getConstant(
2869 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2870
2871 Type *Ty = V->getType();
2872 Ty = getEffectiveSCEVType(Ty);
2873 return getMulExpr(V,
2874 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2875 }
2876
2877 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)2878 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2879 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2880 return getConstant(
2881 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2882
2883 Type *Ty = V->getType();
2884 Ty = getEffectiveSCEVType(Ty);
2885 const SCEV *AllOnes =
2886 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2887 return getMinusSCEV(AllOnes, V);
2888 }
2889
2890 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags)2891 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2892 SCEV::NoWrapFlags Flags) {
2893 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2894
2895 // Fast path: X - X --> 0.
2896 if (LHS == RHS)
2897 return getConstant(LHS->getType(), 0);
2898
2899 // X - Y --> X + -Y
2900 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2901 }
2902
2903 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2904 /// input value to the specified type. If the type must be extended, it is zero
2905 /// extended.
2906 const SCEV *
getTruncateOrZeroExtend(const SCEV * V,Type * Ty)2907 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2908 Type *SrcTy = V->getType();
2909 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2910 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2911 "Cannot truncate or zero extend with non-integer arguments!");
2912 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2913 return V; // No conversion
2914 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2915 return getTruncateExpr(V, Ty);
2916 return getZeroExtendExpr(V, Ty);
2917 }
2918
2919 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2920 /// input value to the specified type. If the type must be extended, it is sign
2921 /// extended.
2922 const SCEV *
getTruncateOrSignExtend(const SCEV * V,Type * Ty)2923 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2924 Type *Ty) {
2925 Type *SrcTy = V->getType();
2926 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2927 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2928 "Cannot truncate or zero extend with non-integer arguments!");
2929 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2930 return V; // No conversion
2931 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2932 return getTruncateExpr(V, Ty);
2933 return getSignExtendExpr(V, Ty);
2934 }
2935
2936 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2937 /// input value to the specified type. If the type must be extended, it is zero
2938 /// extended. The conversion must not be narrowing.
2939 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)2940 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2941 Type *SrcTy = V->getType();
2942 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2943 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2944 "Cannot noop or zero extend with non-integer arguments!");
2945 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2946 "getNoopOrZeroExtend cannot truncate!");
2947 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2948 return V; // No conversion
2949 return getZeroExtendExpr(V, Ty);
2950 }
2951
2952 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2953 /// input value to the specified type. If the type must be extended, it is sign
2954 /// extended. The conversion must not be narrowing.
2955 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)2956 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2957 Type *SrcTy = V->getType();
2958 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2959 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2960 "Cannot noop or sign extend with non-integer arguments!");
2961 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2962 "getNoopOrSignExtend cannot truncate!");
2963 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2964 return V; // No conversion
2965 return getSignExtendExpr(V, Ty);
2966 }
2967
2968 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2969 /// the input value to the specified type. If the type must be extended,
2970 /// it is extended with unspecified bits. The conversion must not be
2971 /// narrowing.
2972 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)2973 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2974 Type *SrcTy = V->getType();
2975 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2976 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2977 "Cannot noop or any extend with non-integer arguments!");
2978 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2979 "getNoopOrAnyExtend cannot truncate!");
2980 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2981 return V; // No conversion
2982 return getAnyExtendExpr(V, Ty);
2983 }
2984
2985 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2986 /// input value to the specified type. The conversion must not be widening.
2987 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)2988 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2989 Type *SrcTy = V->getType();
2990 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2991 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2992 "Cannot truncate or noop with non-integer arguments!");
2993 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2994 "getTruncateOrNoop cannot extend!");
2995 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2996 return V; // No conversion
2997 return getTruncateExpr(V, Ty);
2998 }
2999
3000 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3001 /// the types using zero-extension, and then perform a umax operation
3002 /// with them.
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)3003 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3004 const SCEV *RHS) {
3005 const SCEV *PromotedLHS = LHS;
3006 const SCEV *PromotedRHS = RHS;
3007
3008 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3009 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3010 else
3011 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3012
3013 return getUMaxExpr(PromotedLHS, PromotedRHS);
3014 }
3015
3016 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3017 /// the types using zero-extension, and then perform a umin operation
3018 /// with them.
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)3019 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3020 const SCEV *RHS) {
3021 const SCEV *PromotedLHS = LHS;
3022 const SCEV *PromotedRHS = RHS;
3023
3024 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3025 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3026 else
3027 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3028
3029 return getUMinExpr(PromotedLHS, PromotedRHS);
3030 }
3031
3032 /// getPointerBase - Transitively follow the chain of pointer-type operands
3033 /// until reaching a SCEV that does not have a single pointer operand. This
3034 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3035 /// but corner cases do exist.
getPointerBase(const SCEV * V)3036 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3037 // A pointer operand may evaluate to a nonpointer expression, such as null.
3038 if (!V->getType()->isPointerTy())
3039 return V;
3040
3041 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3042 return getPointerBase(Cast->getOperand());
3043 }
3044 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3045 const SCEV *PtrOp = nullptr;
3046 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3047 I != E; ++I) {
3048 if ((*I)->getType()->isPointerTy()) {
3049 // Cannot find the base of an expression with multiple pointer operands.
3050 if (PtrOp)
3051 return V;
3052 PtrOp = *I;
3053 }
3054 }
3055 if (!PtrOp)
3056 return V;
3057 return getPointerBase(PtrOp);
3058 }
3059 return V;
3060 }
3061
3062 /// PushDefUseChildren - Push users of the given Instruction
3063 /// onto the given Worklist.
3064 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)3065 PushDefUseChildren(Instruction *I,
3066 SmallVectorImpl<Instruction *> &Worklist) {
3067 // Push the def-use children onto the Worklist stack.
3068 for (User *U : I->users())
3069 Worklist.push_back(cast<Instruction>(U));
3070 }
3071
3072 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3073 /// instructions that depend on the given instruction and removes them from
3074 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3075 /// resolution.
3076 void
ForgetSymbolicName(Instruction * PN,const SCEV * SymName)3077 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3078 SmallVector<Instruction *, 16> Worklist;
3079 PushDefUseChildren(PN, Worklist);
3080
3081 SmallPtrSet<Instruction *, 8> Visited;
3082 Visited.insert(PN);
3083 while (!Worklist.empty()) {
3084 Instruction *I = Worklist.pop_back_val();
3085 if (!Visited.insert(I)) continue;
3086
3087 ValueExprMapType::iterator It =
3088 ValueExprMap.find_as(static_cast<Value *>(I));
3089 if (It != ValueExprMap.end()) {
3090 const SCEV *Old = It->second;
3091
3092 // Short-circuit the def-use traversal if the symbolic name
3093 // ceases to appear in expressions.
3094 if (Old != SymName && !hasOperand(Old, SymName))
3095 continue;
3096
3097 // SCEVUnknown for a PHI either means that it has an unrecognized
3098 // structure, it's a PHI that's in the progress of being computed
3099 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3100 // additional loop trip count information isn't going to change anything.
3101 // In the second case, createNodeForPHI will perform the necessary
3102 // updates on its own when it gets to that point. In the third, we do
3103 // want to forget the SCEVUnknown.
3104 if (!isa<PHINode>(I) ||
3105 !isa<SCEVUnknown>(Old) ||
3106 (I != PN && Old == SymName)) {
3107 forgetMemoizedResults(Old);
3108 ValueExprMap.erase(It);
3109 }
3110 }
3111
3112 PushDefUseChildren(I, Worklist);
3113 }
3114 }
3115
3116 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3117 /// a loop header, making it a potential recurrence, or it doesn't.
3118 ///
createNodeForPHI(PHINode * PN)3119 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3120 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3121 if (L->getHeader() == PN->getParent()) {
3122 // The loop may have multiple entrances or multiple exits; we can analyze
3123 // this phi as an addrec if it has a unique entry value and a unique
3124 // backedge value.
3125 Value *BEValueV = nullptr, *StartValueV = nullptr;
3126 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3127 Value *V = PN->getIncomingValue(i);
3128 if (L->contains(PN->getIncomingBlock(i))) {
3129 if (!BEValueV) {
3130 BEValueV = V;
3131 } else if (BEValueV != V) {
3132 BEValueV = nullptr;
3133 break;
3134 }
3135 } else if (!StartValueV) {
3136 StartValueV = V;
3137 } else if (StartValueV != V) {
3138 StartValueV = nullptr;
3139 break;
3140 }
3141 }
3142 if (BEValueV && StartValueV) {
3143 // While we are analyzing this PHI node, handle its value symbolically.
3144 const SCEV *SymbolicName = getUnknown(PN);
3145 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3146 "PHI node already processed?");
3147 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3148
3149 // Using this symbolic name for the PHI, analyze the value coming around
3150 // the back-edge.
3151 const SCEV *BEValue = getSCEV(BEValueV);
3152
3153 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3154 // has a special value for the first iteration of the loop.
3155
3156 // If the value coming around the backedge is an add with the symbolic
3157 // value we just inserted, then we found a simple induction variable!
3158 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3159 // If there is a single occurrence of the symbolic value, replace it
3160 // with a recurrence.
3161 unsigned FoundIndex = Add->getNumOperands();
3162 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3163 if (Add->getOperand(i) == SymbolicName)
3164 if (FoundIndex == e) {
3165 FoundIndex = i;
3166 break;
3167 }
3168
3169 if (FoundIndex != Add->getNumOperands()) {
3170 // Create an add with everything but the specified operand.
3171 SmallVector<const SCEV *, 8> Ops;
3172 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3173 if (i != FoundIndex)
3174 Ops.push_back(Add->getOperand(i));
3175 const SCEV *Accum = getAddExpr(Ops);
3176
3177 // This is not a valid addrec if the step amount is varying each
3178 // loop iteration, but is not itself an addrec in this loop.
3179 if (isLoopInvariant(Accum, L) ||
3180 (isa<SCEVAddRecExpr>(Accum) &&
3181 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3182 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3183
3184 // If the increment doesn't overflow, then neither the addrec nor
3185 // the post-increment will overflow.
3186 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3187 if (OBO->hasNoUnsignedWrap())
3188 Flags = setFlags(Flags, SCEV::FlagNUW);
3189 if (OBO->hasNoSignedWrap())
3190 Flags = setFlags(Flags, SCEV::FlagNSW);
3191 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3192 // If the increment is an inbounds GEP, then we know the address
3193 // space cannot be wrapped around. We cannot make any guarantee
3194 // about signed or unsigned overflow because pointers are
3195 // unsigned but we may have a negative index from the base
3196 // pointer. We can guarantee that no unsigned wrap occurs if the
3197 // indices form a positive value.
3198 if (GEP->isInBounds()) {
3199 Flags = setFlags(Flags, SCEV::FlagNW);
3200
3201 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3202 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3203 Flags = setFlags(Flags, SCEV::FlagNUW);
3204 }
3205 } else if (const SubOperator *OBO =
3206 dyn_cast<SubOperator>(BEValueV)) {
3207 if (OBO->hasNoUnsignedWrap())
3208 Flags = setFlags(Flags, SCEV::FlagNUW);
3209 if (OBO->hasNoSignedWrap())
3210 Flags = setFlags(Flags, SCEV::FlagNSW);
3211 }
3212
3213 const SCEV *StartVal = getSCEV(StartValueV);
3214 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3215
3216 // Since the no-wrap flags are on the increment, they apply to the
3217 // post-incremented value as well.
3218 if (isLoopInvariant(Accum, L))
3219 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3220 Accum, L, Flags);
3221
3222 // Okay, for the entire analysis of this edge we assumed the PHI
3223 // to be symbolic. We now need to go back and purge all of the
3224 // entries for the scalars that use the symbolic expression.
3225 ForgetSymbolicName(PN, SymbolicName);
3226 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3227 return PHISCEV;
3228 }
3229 }
3230 } else if (const SCEVAddRecExpr *AddRec =
3231 dyn_cast<SCEVAddRecExpr>(BEValue)) {
3232 // Otherwise, this could be a loop like this:
3233 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3234 // In this case, j = {1,+,1} and BEValue is j.
3235 // Because the other in-value of i (0) fits the evolution of BEValue
3236 // i really is an addrec evolution.
3237 if (AddRec->getLoop() == L && AddRec->isAffine()) {
3238 const SCEV *StartVal = getSCEV(StartValueV);
3239
3240 // If StartVal = j.start - j.stride, we can use StartVal as the
3241 // initial step of the addrec evolution.
3242 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3243 AddRec->getOperand(1))) {
3244 // FIXME: For constant StartVal, we should be able to infer
3245 // no-wrap flags.
3246 const SCEV *PHISCEV =
3247 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3248 SCEV::FlagAnyWrap);
3249
3250 // Okay, for the entire analysis of this edge we assumed the PHI
3251 // to be symbolic. We now need to go back and purge all of the
3252 // entries for the scalars that use the symbolic expression.
3253 ForgetSymbolicName(PN, SymbolicName);
3254 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3255 return PHISCEV;
3256 }
3257 }
3258 }
3259 }
3260 }
3261
3262 // If the PHI has a single incoming value, follow that value, unless the
3263 // PHI's incoming blocks are in a different loop, in which case doing so
3264 // risks breaking LCSSA form. Instcombine would normally zap these, but
3265 // it doesn't have DominatorTree information, so it may miss cases.
3266 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT))
3267 if (LI->replacementPreservesLCSSAForm(PN, V))
3268 return getSCEV(V);
3269
3270 // If it's not a loop phi, we can't handle it yet.
3271 return getUnknown(PN);
3272 }
3273
3274 /// createNodeForGEP - Expand GEP instructions into add and multiply
3275 /// operations. This allows them to be analyzed by regular SCEV code.
3276 ///
createNodeForGEP(GEPOperator * GEP)3277 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3278 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3279 Value *Base = GEP->getOperand(0);
3280 // Don't attempt to analyze GEPs over unsized objects.
3281 if (!Base->getType()->getPointerElementType()->isSized())
3282 return getUnknown(GEP);
3283
3284 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3285 // Add expression, because the Instruction may be guarded by control flow
3286 // and the no-overflow bits may not be valid for the expression in any
3287 // context.
3288 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3289
3290 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3291 gep_type_iterator GTI = gep_type_begin(GEP);
3292 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
3293 E = GEP->op_end();
3294 I != E; ++I) {
3295 Value *Index = *I;
3296 // Compute the (potentially symbolic) offset in bytes for this index.
3297 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3298 // For a struct, add the member offset.
3299 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3300 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3301
3302 // Add the field offset to the running total offset.
3303 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3304 } else {
3305 // For an array, add the element offset, explicitly scaled.
3306 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
3307 const SCEV *IndexS = getSCEV(Index);
3308 // Getelementptr indices are signed.
3309 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3310
3311 // Multiply the index by the element size to compute the element offset.
3312 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
3313
3314 // Add the element offset to the running total offset.
3315 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3316 }
3317 }
3318
3319 // Get the SCEV for the GEP base.
3320 const SCEV *BaseS = getSCEV(Base);
3321
3322 // Add the total offset from all the GEP indices to the base.
3323 return getAddExpr(BaseS, TotalOffset, Wrap);
3324 }
3325
3326 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3327 /// guaranteed to end in (at every loop iteration). It is, at the same time,
3328 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3329 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
3330 uint32_t
GetMinTrailingZeros(const SCEV * S)3331 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3332 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3333 return C->getValue()->getValue().countTrailingZeros();
3334
3335 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3336 return std::min(GetMinTrailingZeros(T->getOperand()),
3337 (uint32_t)getTypeSizeInBits(T->getType()));
3338
3339 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3340 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3341 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3342 getTypeSizeInBits(E->getType()) : OpRes;
3343 }
3344
3345 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3346 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3347 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3348 getTypeSizeInBits(E->getType()) : OpRes;
3349 }
3350
3351 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3352 // The result is the min of all operands results.
3353 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3354 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3355 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3356 return MinOpRes;
3357 }
3358
3359 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3360 // The result is the sum of all operands results.
3361 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3362 uint32_t BitWidth = getTypeSizeInBits(M->getType());
3363 for (unsigned i = 1, e = M->getNumOperands();
3364 SumOpRes != BitWidth && i != e; ++i)
3365 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3366 BitWidth);
3367 return SumOpRes;
3368 }
3369
3370 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3371 // The result is the min of all operands results.
3372 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3373 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3374 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3375 return MinOpRes;
3376 }
3377
3378 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3379 // The result is the min of all operands results.
3380 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3381 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3382 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3383 return MinOpRes;
3384 }
3385
3386 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3387 // The result is the min of all operands results.
3388 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3389 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3390 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3391 return MinOpRes;
3392 }
3393
3394 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3395 // For a SCEVUnknown, ask ValueTracking.
3396 unsigned BitWidth = getTypeSizeInBits(U->getType());
3397 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3398 computeKnownBits(U->getValue(), Zeros, Ones);
3399 return Zeros.countTrailingOnes();
3400 }
3401
3402 // SCEVUDivExpr
3403 return 0;
3404 }
3405
3406 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3407 ///
3408 ConstantRange
getUnsignedRange(const SCEV * S)3409 ScalarEvolution::getUnsignedRange(const SCEV *S) {
3410 // See if we've computed this range already.
3411 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3412 if (I != UnsignedRanges.end())
3413 return I->second;
3414
3415 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3416 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3417
3418 unsigned BitWidth = getTypeSizeInBits(S->getType());
3419 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3420
3421 // If the value has known zeros, the maximum unsigned value will have those
3422 // known zeros as well.
3423 uint32_t TZ = GetMinTrailingZeros(S);
3424 if (TZ != 0)
3425 ConservativeResult =
3426 ConstantRange(APInt::getMinValue(BitWidth),
3427 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3428
3429 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3430 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3431 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3432 X = X.add(getUnsignedRange(Add->getOperand(i)));
3433 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3434 }
3435
3436 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3437 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3438 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3439 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3440 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3441 }
3442
3443 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3444 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3445 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3446 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3447 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3448 }
3449
3450 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3451 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3452 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3453 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3454 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3455 }
3456
3457 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3458 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3459 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3460 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3461 }
3462
3463 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3464 ConstantRange X = getUnsignedRange(ZExt->getOperand());
3465 return setUnsignedRange(ZExt,
3466 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3467 }
3468
3469 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3470 ConstantRange X = getUnsignedRange(SExt->getOperand());
3471 return setUnsignedRange(SExt,
3472 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3473 }
3474
3475 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3476 ConstantRange X = getUnsignedRange(Trunc->getOperand());
3477 return setUnsignedRange(Trunc,
3478 ConservativeResult.intersectWith(X.truncate(BitWidth)));
3479 }
3480
3481 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3482 // If there's no unsigned wrap, the value will never be less than its
3483 // initial value.
3484 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3485 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3486 if (!C->getValue()->isZero())
3487 ConservativeResult =
3488 ConservativeResult.intersectWith(
3489 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3490
3491 // TODO: non-affine addrec
3492 if (AddRec->isAffine()) {
3493 Type *Ty = AddRec->getType();
3494 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3495 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3496 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3497 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3498
3499 const SCEV *Start = AddRec->getStart();
3500 const SCEV *Step = AddRec->getStepRecurrence(*this);
3501
3502 ConstantRange StartRange = getUnsignedRange(Start);
3503 ConstantRange StepRange = getSignedRange(Step);
3504 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3505 ConstantRange EndRange =
3506 StartRange.add(MaxBECountRange.multiply(StepRange));
3507
3508 // Check for overflow. This must be done with ConstantRange arithmetic
3509 // because we could be called from within the ScalarEvolution overflow
3510 // checking code.
3511 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3512 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3513 ConstantRange ExtMaxBECountRange =
3514 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3515 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3516 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3517 ExtEndRange)
3518 return setUnsignedRange(AddRec, ConservativeResult);
3519
3520 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3521 EndRange.getUnsignedMin());
3522 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3523 EndRange.getUnsignedMax());
3524 if (Min.isMinValue() && Max.isMaxValue())
3525 return setUnsignedRange(AddRec, ConservativeResult);
3526 return setUnsignedRange(AddRec,
3527 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3528 }
3529 }
3530
3531 return setUnsignedRange(AddRec, ConservativeResult);
3532 }
3533
3534 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3535 // For a SCEVUnknown, ask ValueTracking.
3536 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3537 computeKnownBits(U->getValue(), Zeros, Ones, DL);
3538 if (Ones == ~Zeros + 1)
3539 return setUnsignedRange(U, ConservativeResult);
3540 return setUnsignedRange(U,
3541 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3542 }
3543
3544 return setUnsignedRange(S, ConservativeResult);
3545 }
3546
3547 /// getSignedRange - Determine the signed range for a particular SCEV.
3548 ///
3549 ConstantRange
getSignedRange(const SCEV * S)3550 ScalarEvolution::getSignedRange(const SCEV *S) {
3551 // See if we've computed this range already.
3552 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3553 if (I != SignedRanges.end())
3554 return I->second;
3555
3556 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3557 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3558
3559 unsigned BitWidth = getTypeSizeInBits(S->getType());
3560 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3561
3562 // If the value has known zeros, the maximum signed value will have those
3563 // known zeros as well.
3564 uint32_t TZ = GetMinTrailingZeros(S);
3565 if (TZ != 0)
3566 ConservativeResult =
3567 ConstantRange(APInt::getSignedMinValue(BitWidth),
3568 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3569
3570 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3571 ConstantRange X = getSignedRange(Add->getOperand(0));
3572 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3573 X = X.add(getSignedRange(Add->getOperand(i)));
3574 return setSignedRange(Add, ConservativeResult.intersectWith(X));
3575 }
3576
3577 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3578 ConstantRange X = getSignedRange(Mul->getOperand(0));
3579 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3580 X = X.multiply(getSignedRange(Mul->getOperand(i)));
3581 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3582 }
3583
3584 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3585 ConstantRange X = getSignedRange(SMax->getOperand(0));
3586 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3587 X = X.smax(getSignedRange(SMax->getOperand(i)));
3588 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3589 }
3590
3591 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3592 ConstantRange X = getSignedRange(UMax->getOperand(0));
3593 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3594 X = X.umax(getSignedRange(UMax->getOperand(i)));
3595 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3596 }
3597
3598 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3599 ConstantRange X = getSignedRange(UDiv->getLHS());
3600 ConstantRange Y = getSignedRange(UDiv->getRHS());
3601 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3602 }
3603
3604 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3605 ConstantRange X = getSignedRange(ZExt->getOperand());
3606 return setSignedRange(ZExt,
3607 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3608 }
3609
3610 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3611 ConstantRange X = getSignedRange(SExt->getOperand());
3612 return setSignedRange(SExt,
3613 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3614 }
3615
3616 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3617 ConstantRange X = getSignedRange(Trunc->getOperand());
3618 return setSignedRange(Trunc,
3619 ConservativeResult.intersectWith(X.truncate(BitWidth)));
3620 }
3621
3622 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3623 // If there's no signed wrap, and all the operands have the same sign or
3624 // zero, the value won't ever change sign.
3625 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3626 bool AllNonNeg = true;
3627 bool AllNonPos = true;
3628 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3629 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3630 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3631 }
3632 if (AllNonNeg)
3633 ConservativeResult = ConservativeResult.intersectWith(
3634 ConstantRange(APInt(BitWidth, 0),
3635 APInt::getSignedMinValue(BitWidth)));
3636 else if (AllNonPos)
3637 ConservativeResult = ConservativeResult.intersectWith(
3638 ConstantRange(APInt::getSignedMinValue(BitWidth),
3639 APInt(BitWidth, 1)));
3640 }
3641
3642 // TODO: non-affine addrec
3643 if (AddRec->isAffine()) {
3644 Type *Ty = AddRec->getType();
3645 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3646 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3647 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3648 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3649
3650 const SCEV *Start = AddRec->getStart();
3651 const SCEV *Step = AddRec->getStepRecurrence(*this);
3652
3653 ConstantRange StartRange = getSignedRange(Start);
3654 ConstantRange StepRange = getSignedRange(Step);
3655 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3656 ConstantRange EndRange =
3657 StartRange.add(MaxBECountRange.multiply(StepRange));
3658
3659 // Check for overflow. This must be done with ConstantRange arithmetic
3660 // because we could be called from within the ScalarEvolution overflow
3661 // checking code.
3662 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3663 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3664 ConstantRange ExtMaxBECountRange =
3665 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3666 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3667 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3668 ExtEndRange)
3669 return setSignedRange(AddRec, ConservativeResult);
3670
3671 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3672 EndRange.getSignedMin());
3673 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3674 EndRange.getSignedMax());
3675 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3676 return setSignedRange(AddRec, ConservativeResult);
3677 return setSignedRange(AddRec,
3678 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3679 }
3680 }
3681
3682 return setSignedRange(AddRec, ConservativeResult);
3683 }
3684
3685 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3686 // For a SCEVUnknown, ask ValueTracking.
3687 if (!U->getValue()->getType()->isIntegerTy() && !DL)
3688 return setSignedRange(U, ConservativeResult);
3689 unsigned NS = ComputeNumSignBits(U->getValue(), DL);
3690 if (NS <= 1)
3691 return setSignedRange(U, ConservativeResult);
3692 return setSignedRange(U, ConservativeResult.intersectWith(
3693 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3694 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3695 }
3696
3697 return setSignedRange(S, ConservativeResult);
3698 }
3699
3700 /// createSCEV - We know that there is no SCEV for the specified value.
3701 /// Analyze the expression.
3702 ///
createSCEV(Value * V)3703 const SCEV *ScalarEvolution::createSCEV(Value *V) {
3704 if (!isSCEVable(V->getType()))
3705 return getUnknown(V);
3706
3707 unsigned Opcode = Instruction::UserOp1;
3708 if (Instruction *I = dyn_cast<Instruction>(V)) {
3709 Opcode = I->getOpcode();
3710
3711 // Don't attempt to analyze instructions in blocks that aren't
3712 // reachable. Such instructions don't matter, and they aren't required
3713 // to obey basic rules for definitions dominating uses which this
3714 // analysis depends on.
3715 if (!DT->isReachableFromEntry(I->getParent()))
3716 return getUnknown(V);
3717 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3718 Opcode = CE->getOpcode();
3719 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3720 return getConstant(CI);
3721 else if (isa<ConstantPointerNull>(V))
3722 return getConstant(V->getType(), 0);
3723 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3724 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3725 else
3726 return getUnknown(V);
3727
3728 Operator *U = cast<Operator>(V);
3729 switch (Opcode) {
3730 case Instruction::Add: {
3731 // The simple thing to do would be to just call getSCEV on both operands
3732 // and call getAddExpr with the result. However if we're looking at a
3733 // bunch of things all added together, this can be quite inefficient,
3734 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3735 // Instead, gather up all the operands and make a single getAddExpr call.
3736 // LLVM IR canonical form means we need only traverse the left operands.
3737 //
3738 // Don't apply this instruction's NSW or NUW flags to the new
3739 // expression. The instruction may be guarded by control flow that the
3740 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3741 // mapped to the same SCEV expression, and it would be incorrect to transfer
3742 // NSW/NUW semantics to those operations.
3743 SmallVector<const SCEV *, 4> AddOps;
3744 AddOps.push_back(getSCEV(U->getOperand(1)));
3745 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3746 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3747 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3748 break;
3749 U = cast<Operator>(Op);
3750 const SCEV *Op1 = getSCEV(U->getOperand(1));
3751 if (Opcode == Instruction::Sub)
3752 AddOps.push_back(getNegativeSCEV(Op1));
3753 else
3754 AddOps.push_back(Op1);
3755 }
3756 AddOps.push_back(getSCEV(U->getOperand(0)));
3757 return getAddExpr(AddOps);
3758 }
3759 case Instruction::Mul: {
3760 // Don't transfer NSW/NUW for the same reason as AddExpr.
3761 SmallVector<const SCEV *, 4> MulOps;
3762 MulOps.push_back(getSCEV(U->getOperand(1)));
3763 for (Value *Op = U->getOperand(0);
3764 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3765 Op = U->getOperand(0)) {
3766 U = cast<Operator>(Op);
3767 MulOps.push_back(getSCEV(U->getOperand(1)));
3768 }
3769 MulOps.push_back(getSCEV(U->getOperand(0)));
3770 return getMulExpr(MulOps);
3771 }
3772 case Instruction::UDiv:
3773 return getUDivExpr(getSCEV(U->getOperand(0)),
3774 getSCEV(U->getOperand(1)));
3775 case Instruction::Sub:
3776 return getMinusSCEV(getSCEV(U->getOperand(0)),
3777 getSCEV(U->getOperand(1)));
3778 case Instruction::And:
3779 // For an expression like x&255 that merely masks off the high bits,
3780 // use zext(trunc(x)) as the SCEV expression.
3781 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3782 if (CI->isNullValue())
3783 return getSCEV(U->getOperand(1));
3784 if (CI->isAllOnesValue())
3785 return getSCEV(U->getOperand(0));
3786 const APInt &A = CI->getValue();
3787
3788 // Instcombine's ShrinkDemandedConstant may strip bits out of
3789 // constants, obscuring what would otherwise be a low-bits mask.
3790 // Use computeKnownBits to compute what ShrinkDemandedConstant
3791 // knew about to reconstruct a low-bits mask value.
3792 unsigned LZ = A.countLeadingZeros();
3793 unsigned TZ = A.countTrailingZeros();
3794 unsigned BitWidth = A.getBitWidth();
3795 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3796 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL);
3797
3798 APInt EffectiveMask =
3799 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
3800 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
3801 const SCEV *MulCount = getConstant(
3802 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
3803 return getMulExpr(
3804 getZeroExtendExpr(
3805 getTruncateExpr(
3806 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
3807 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
3808 U->getType()),
3809 MulCount);
3810 }
3811 }
3812 break;
3813
3814 case Instruction::Or:
3815 // If the RHS of the Or is a constant, we may have something like:
3816 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3817 // optimizations will transparently handle this case.
3818 //
3819 // In order for this transformation to be safe, the LHS must be of the
3820 // form X*(2^n) and the Or constant must be less than 2^n.
3821 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3822 const SCEV *LHS = getSCEV(U->getOperand(0));
3823 const APInt &CIVal = CI->getValue();
3824 if (GetMinTrailingZeros(LHS) >=
3825 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3826 // Build a plain add SCEV.
3827 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3828 // If the LHS of the add was an addrec and it has no-wrap flags,
3829 // transfer the no-wrap flags, since an or won't introduce a wrap.
3830 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3831 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3832 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3833 OldAR->getNoWrapFlags());
3834 }
3835 return S;
3836 }
3837 }
3838 break;
3839 case Instruction::Xor:
3840 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3841 // If the RHS of the xor is a signbit, then this is just an add.
3842 // Instcombine turns add of signbit into xor as a strength reduction step.
3843 if (CI->getValue().isSignBit())
3844 return getAddExpr(getSCEV(U->getOperand(0)),
3845 getSCEV(U->getOperand(1)));
3846
3847 // If the RHS of xor is -1, then this is a not operation.
3848 if (CI->isAllOnesValue())
3849 return getNotSCEV(getSCEV(U->getOperand(0)));
3850
3851 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3852 // This is a variant of the check for xor with -1, and it handles
3853 // the case where instcombine has trimmed non-demanded bits out
3854 // of an xor with -1.
3855 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3856 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3857 if (BO->getOpcode() == Instruction::And &&
3858 LCI->getValue() == CI->getValue())
3859 if (const SCEVZeroExtendExpr *Z =
3860 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3861 Type *UTy = U->getType();
3862 const SCEV *Z0 = Z->getOperand();
3863 Type *Z0Ty = Z0->getType();
3864 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3865
3866 // If C is a low-bits mask, the zero extend is serving to
3867 // mask off the high bits. Complement the operand and
3868 // re-apply the zext.
3869 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3870 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3871
3872 // If C is a single bit, it may be in the sign-bit position
3873 // before the zero-extend. In this case, represent the xor
3874 // using an add, which is equivalent, and re-apply the zext.
3875 APInt Trunc = CI->getValue().trunc(Z0TySize);
3876 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3877 Trunc.isSignBit())
3878 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3879 UTy);
3880 }
3881 }
3882 break;
3883
3884 case Instruction::Shl:
3885 // Turn shift left of a constant amount into a multiply.
3886 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3887 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3888
3889 // If the shift count is not less than the bitwidth, the result of
3890 // the shift is undefined. Don't try to analyze it, because the
3891 // resolution chosen here may differ from the resolution chosen in
3892 // other parts of the compiler.
3893 if (SA->getValue().uge(BitWidth))
3894 break;
3895
3896 Constant *X = ConstantInt::get(getContext(),
3897 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3898 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3899 }
3900 break;
3901
3902 case Instruction::LShr:
3903 // Turn logical shift right of a constant into a unsigned divide.
3904 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3905 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3906
3907 // If the shift count is not less than the bitwidth, the result of
3908 // the shift is undefined. Don't try to analyze it, because the
3909 // resolution chosen here may differ from the resolution chosen in
3910 // other parts of the compiler.
3911 if (SA->getValue().uge(BitWidth))
3912 break;
3913
3914 Constant *X = ConstantInt::get(getContext(),
3915 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3916 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3917 }
3918 break;
3919
3920 case Instruction::AShr:
3921 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3922 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3923 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3924 if (L->getOpcode() == Instruction::Shl &&
3925 L->getOperand(1) == U->getOperand(1)) {
3926 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3927
3928 // If the shift count is not less than the bitwidth, the result of
3929 // the shift is undefined. Don't try to analyze it, because the
3930 // resolution chosen here may differ from the resolution chosen in
3931 // other parts of the compiler.
3932 if (CI->getValue().uge(BitWidth))
3933 break;
3934
3935 uint64_t Amt = BitWidth - CI->getZExtValue();
3936 if (Amt == BitWidth)
3937 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3938 return
3939 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3940 IntegerType::get(getContext(),
3941 Amt)),
3942 U->getType());
3943 }
3944 break;
3945
3946 case Instruction::Trunc:
3947 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3948
3949 case Instruction::ZExt:
3950 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3951
3952 case Instruction::SExt:
3953 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3954
3955 case Instruction::BitCast:
3956 // BitCasts are no-op casts so we just eliminate the cast.
3957 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3958 return getSCEV(U->getOperand(0));
3959 break;
3960
3961 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3962 // lead to pointer expressions which cannot safely be expanded to GEPs,
3963 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3964 // simplifying integer expressions.
3965
3966 case Instruction::GetElementPtr:
3967 return createNodeForGEP(cast<GEPOperator>(U));
3968
3969 case Instruction::PHI:
3970 return createNodeForPHI(cast<PHINode>(U));
3971
3972 case Instruction::Select:
3973 // This could be a smax or umax that was lowered earlier.
3974 // Try to recover it.
3975 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3976 Value *LHS = ICI->getOperand(0);
3977 Value *RHS = ICI->getOperand(1);
3978 switch (ICI->getPredicate()) {
3979 case ICmpInst::ICMP_SLT:
3980 case ICmpInst::ICMP_SLE:
3981 std::swap(LHS, RHS);
3982 // fall through
3983 case ICmpInst::ICMP_SGT:
3984 case ICmpInst::ICMP_SGE:
3985 // a >s b ? a+x : b+x -> smax(a, b)+x
3986 // a >s b ? b+x : a+x -> smin(a, b)+x
3987 if (LHS->getType() == U->getType()) {
3988 const SCEV *LS = getSCEV(LHS);
3989 const SCEV *RS = getSCEV(RHS);
3990 const SCEV *LA = getSCEV(U->getOperand(1));
3991 const SCEV *RA = getSCEV(U->getOperand(2));
3992 const SCEV *LDiff = getMinusSCEV(LA, LS);
3993 const SCEV *RDiff = getMinusSCEV(RA, RS);
3994 if (LDiff == RDiff)
3995 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3996 LDiff = getMinusSCEV(LA, RS);
3997 RDiff = getMinusSCEV(RA, LS);
3998 if (LDiff == RDiff)
3999 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4000 }
4001 break;
4002 case ICmpInst::ICMP_ULT:
4003 case ICmpInst::ICMP_ULE:
4004 std::swap(LHS, RHS);
4005 // fall through
4006 case ICmpInst::ICMP_UGT:
4007 case ICmpInst::ICMP_UGE:
4008 // a >u b ? a+x : b+x -> umax(a, b)+x
4009 // a >u b ? b+x : a+x -> umin(a, b)+x
4010 if (LHS->getType() == U->getType()) {
4011 const SCEV *LS = getSCEV(LHS);
4012 const SCEV *RS = getSCEV(RHS);
4013 const SCEV *LA = getSCEV(U->getOperand(1));
4014 const SCEV *RA = getSCEV(U->getOperand(2));
4015 const SCEV *LDiff = getMinusSCEV(LA, LS);
4016 const SCEV *RDiff = getMinusSCEV(RA, RS);
4017 if (LDiff == RDiff)
4018 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4019 LDiff = getMinusSCEV(LA, RS);
4020 RDiff = getMinusSCEV(RA, LS);
4021 if (LDiff == RDiff)
4022 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4023 }
4024 break;
4025 case ICmpInst::ICMP_NE:
4026 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4027 if (LHS->getType() == U->getType() &&
4028 isa<ConstantInt>(RHS) &&
4029 cast<ConstantInt>(RHS)->isZero()) {
4030 const SCEV *One = getConstant(LHS->getType(), 1);
4031 const SCEV *LS = getSCEV(LHS);
4032 const SCEV *LA = getSCEV(U->getOperand(1));
4033 const SCEV *RA = getSCEV(U->getOperand(2));
4034 const SCEV *LDiff = getMinusSCEV(LA, LS);
4035 const SCEV *RDiff = getMinusSCEV(RA, One);
4036 if (LDiff == RDiff)
4037 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4038 }
4039 break;
4040 case ICmpInst::ICMP_EQ:
4041 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4042 if (LHS->getType() == U->getType() &&
4043 isa<ConstantInt>(RHS) &&
4044 cast<ConstantInt>(RHS)->isZero()) {
4045 const SCEV *One = getConstant(LHS->getType(), 1);
4046 const SCEV *LS = getSCEV(LHS);
4047 const SCEV *LA = getSCEV(U->getOperand(1));
4048 const SCEV *RA = getSCEV(U->getOperand(2));
4049 const SCEV *LDiff = getMinusSCEV(LA, One);
4050 const SCEV *RDiff = getMinusSCEV(RA, LS);
4051 if (LDiff == RDiff)
4052 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4053 }
4054 break;
4055 default:
4056 break;
4057 }
4058 }
4059
4060 default: // We cannot analyze this expression.
4061 break;
4062 }
4063
4064 return getUnknown(V);
4065 }
4066
4067
4068
4069 //===----------------------------------------------------------------------===//
4070 // Iteration Count Computation Code
4071 //
4072
4073 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4074 /// normal unsigned value. Returns 0 if the trip count is unknown or not
4075 /// constant. Will also return 0 if the maximum trip count is very large (>=
4076 /// 2^32).
4077 ///
4078 /// This "trip count" assumes that control exits via ExitingBlock. More
4079 /// precisely, it is the number of times that control may reach ExitingBlock
4080 /// before taking the branch. For loops with multiple exits, it may not be the
4081 /// number times that the loop header executes because the loop may exit
4082 /// prematurely via another branch.
4083 ///
4084 /// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
4085 /// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
4086 /// loop exits. getExitCount() may return an exact count for this branch
4087 /// assuming no-signed-wrap. The number of well-defined iterations may actually
4088 /// be higher than this trip count if this exit test is skipped and the loop
4089 /// exits via a different branch. Ideally, getExitCount() would know whether it
4090 /// depends on a NSW assumption, and we would only fall back to a conservative
4091 /// trip count in that case.
4092 unsigned ScalarEvolution::
getSmallConstantTripCount(Loop * L,BasicBlock *)4093 getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
4094 const SCEVConstant *ExitCount =
4095 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
4096 if (!ExitCount)
4097 return 0;
4098
4099 ConstantInt *ExitConst = ExitCount->getValue();
4100
4101 // Guard against huge trip counts.
4102 if (ExitConst->getValue().getActiveBits() > 32)
4103 return 0;
4104
4105 // In case of integer overflow, this returns 0, which is correct.
4106 return ((unsigned)ExitConst->getZExtValue()) + 1;
4107 }
4108
4109 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4110 /// trip count of this loop as a normal unsigned value, if possible. This
4111 /// means that the actual trip count is always a multiple of the returned
4112 /// value (don't forget the trip count could very well be zero as well!).
4113 ///
4114 /// Returns 1 if the trip count is unknown or not guaranteed to be the
4115 /// multiple of a constant (which is also the case if the trip count is simply
4116 /// constant, use getSmallConstantTripCount for that case), Will also return 1
4117 /// if the trip count is very large (>= 2^32).
4118 ///
4119 /// As explained in the comments for getSmallConstantTripCount, this assumes
4120 /// that control exits the loop via ExitingBlock.
4121 unsigned ScalarEvolution::
getSmallConstantTripMultiple(Loop * L,BasicBlock *)4122 getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
4123 const SCEV *ExitCount = getBackedgeTakenCount(L);
4124 if (ExitCount == getCouldNotCompute())
4125 return 1;
4126
4127 // Get the trip count from the BE count by adding 1.
4128 const SCEV *TCMul = getAddExpr(ExitCount,
4129 getConstant(ExitCount->getType(), 1));
4130 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4131 // to factor simple cases.
4132 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4133 TCMul = Mul->getOperand(0);
4134
4135 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4136 if (!MulC)
4137 return 1;
4138
4139 ConstantInt *Result = MulC->getValue();
4140
4141 // Guard against huge trip counts (this requires checking
4142 // for zero to handle the case where the trip count == -1 and the
4143 // addition wraps).
4144 if (!Result || Result->getValue().getActiveBits() > 32 ||
4145 Result->getValue().getActiveBits() == 0)
4146 return 1;
4147
4148 return (unsigned)Result->getZExtValue();
4149 }
4150
4151 // getExitCount - Get the expression for the number of loop iterations for which
4152 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4153 // SCEVCouldNotCompute.
getExitCount(Loop * L,BasicBlock * ExitingBlock)4154 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4155 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4156 }
4157
4158 /// getBackedgeTakenCount - If the specified loop has a predictable
4159 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4160 /// object. The backedge-taken count is the number of times the loop header
4161 /// will be branched to from within the loop. This is one less than the
4162 /// trip count of the loop, since it doesn't count the first iteration,
4163 /// when the header is branched to from outside the loop.
4164 ///
4165 /// Note that it is not valid to call this method on a loop without a
4166 /// loop-invariant backedge-taken count (see
4167 /// hasLoopInvariantBackedgeTakenCount).
4168 ///
getBackedgeTakenCount(const Loop * L)4169 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4170 return getBackedgeTakenInfo(L).getExact(this);
4171 }
4172
4173 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4174 /// return the least SCEV value that is known never to be less than the
4175 /// actual backedge taken count.
getMaxBackedgeTakenCount(const Loop * L)4176 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4177 return getBackedgeTakenInfo(L).getMax(this);
4178 }
4179
4180 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
4181 /// onto the given Worklist.
4182 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)4183 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4184 BasicBlock *Header = L->getHeader();
4185
4186 // Push all Loop-header PHIs onto the Worklist stack.
4187 for (BasicBlock::iterator I = Header->begin();
4188 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4189 Worklist.push_back(PN);
4190 }
4191
4192 const ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)4193 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4194 // Initially insert an invalid entry for this loop. If the insertion
4195 // succeeds, proceed to actually compute a backedge-taken count and
4196 // update the value. The temporary CouldNotCompute value tells SCEV
4197 // code elsewhere that it shouldn't attempt to request a new
4198 // backedge-taken count, which could result in infinite recursion.
4199 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4200 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4201 if (!Pair.second)
4202 return Pair.first->second;
4203
4204 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4205 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4206 // must be cleared in this scope.
4207 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4208
4209 if (Result.getExact(this) != getCouldNotCompute()) {
4210 assert(isLoopInvariant(Result.getExact(this), L) &&
4211 isLoopInvariant(Result.getMax(this), L) &&
4212 "Computed backedge-taken count isn't loop invariant for loop!");
4213 ++NumTripCountsComputed;
4214 }
4215 else if (Result.getMax(this) == getCouldNotCompute() &&
4216 isa<PHINode>(L->getHeader()->begin())) {
4217 // Only count loops that have phi nodes as not being computable.
4218 ++NumTripCountsNotComputed;
4219 }
4220
4221 // Now that we know more about the trip count for this loop, forget any
4222 // existing SCEV values for PHI nodes in this loop since they are only
4223 // conservative estimates made without the benefit of trip count
4224 // information. This is similar to the code in forgetLoop, except that
4225 // it handles SCEVUnknown PHI nodes specially.
4226 if (Result.hasAnyInfo()) {
4227 SmallVector<Instruction *, 16> Worklist;
4228 PushLoopPHIs(L, Worklist);
4229
4230 SmallPtrSet<Instruction *, 8> Visited;
4231 while (!Worklist.empty()) {
4232 Instruction *I = Worklist.pop_back_val();
4233 if (!Visited.insert(I)) continue;
4234
4235 ValueExprMapType::iterator It =
4236 ValueExprMap.find_as(static_cast<Value *>(I));
4237 if (It != ValueExprMap.end()) {
4238 const SCEV *Old = It->second;
4239
4240 // SCEVUnknown for a PHI either means that it has an unrecognized
4241 // structure, or it's a PHI that's in the progress of being computed
4242 // by createNodeForPHI. In the former case, additional loop trip
4243 // count information isn't going to change anything. In the later
4244 // case, createNodeForPHI will perform the necessary updates on its
4245 // own when it gets to that point.
4246 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4247 forgetMemoizedResults(Old);
4248 ValueExprMap.erase(It);
4249 }
4250 if (PHINode *PN = dyn_cast<PHINode>(I))
4251 ConstantEvolutionLoopExitValue.erase(PN);
4252 }
4253
4254 PushDefUseChildren(I, Worklist);
4255 }
4256 }
4257
4258 // Re-lookup the insert position, since the call to
4259 // ComputeBackedgeTakenCount above could result in a
4260 // recusive call to getBackedgeTakenInfo (on a different
4261 // loop), which would invalidate the iterator computed
4262 // earlier.
4263 return BackedgeTakenCounts.find(L)->second = Result;
4264 }
4265
4266 /// forgetLoop - This method should be called by the client when it has
4267 /// changed a loop in a way that may effect ScalarEvolution's ability to
4268 /// compute a trip count, or if the loop is deleted.
forgetLoop(const Loop * L)4269 void ScalarEvolution::forgetLoop(const Loop *L) {
4270 // Drop any stored trip count value.
4271 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4272 BackedgeTakenCounts.find(L);
4273 if (BTCPos != BackedgeTakenCounts.end()) {
4274 BTCPos->second.clear();
4275 BackedgeTakenCounts.erase(BTCPos);
4276 }
4277
4278 // Drop information about expressions based on loop-header PHIs.
4279 SmallVector<Instruction *, 16> Worklist;
4280 PushLoopPHIs(L, Worklist);
4281
4282 SmallPtrSet<Instruction *, 8> Visited;
4283 while (!Worklist.empty()) {
4284 Instruction *I = Worklist.pop_back_val();
4285 if (!Visited.insert(I)) continue;
4286
4287 ValueExprMapType::iterator It =
4288 ValueExprMap.find_as(static_cast<Value *>(I));
4289 if (It != ValueExprMap.end()) {
4290 forgetMemoizedResults(It->second);
4291 ValueExprMap.erase(It);
4292 if (PHINode *PN = dyn_cast<PHINode>(I))
4293 ConstantEvolutionLoopExitValue.erase(PN);
4294 }
4295
4296 PushDefUseChildren(I, Worklist);
4297 }
4298
4299 // Forget all contained loops too, to avoid dangling entries in the
4300 // ValuesAtScopes map.
4301 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4302 forgetLoop(*I);
4303 }
4304
4305 /// forgetValue - This method should be called by the client when it has
4306 /// changed a value in a way that may effect its value, or which may
4307 /// disconnect it from a def-use chain linking it to a loop.
forgetValue(Value * V)4308 void ScalarEvolution::forgetValue(Value *V) {
4309 Instruction *I = dyn_cast<Instruction>(V);
4310 if (!I) return;
4311
4312 // Drop information about expressions based on loop-header PHIs.
4313 SmallVector<Instruction *, 16> Worklist;
4314 Worklist.push_back(I);
4315
4316 SmallPtrSet<Instruction *, 8> Visited;
4317 while (!Worklist.empty()) {
4318 I = Worklist.pop_back_val();
4319 if (!Visited.insert(I)) continue;
4320
4321 ValueExprMapType::iterator It =
4322 ValueExprMap.find_as(static_cast<Value *>(I));
4323 if (It != ValueExprMap.end()) {
4324 forgetMemoizedResults(It->second);
4325 ValueExprMap.erase(It);
4326 if (PHINode *PN = dyn_cast<PHINode>(I))
4327 ConstantEvolutionLoopExitValue.erase(PN);
4328 }
4329
4330 PushDefUseChildren(I, Worklist);
4331 }
4332 }
4333
4334 /// getExact - Get the exact loop backedge taken count considering all loop
4335 /// exits. A computable result can only be return for loops with a single exit.
4336 /// Returning the minimum taken count among all exits is incorrect because one
4337 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4338 /// the limit of each loop test is never skipped. This is a valid assumption as
4339 /// long as the loop exits via that test. For precise results, it is the
4340 /// caller's responsibility to specify the relevant loop exit using
4341 /// getExact(ExitingBlock, SE).
4342 const SCEV *
getExact(ScalarEvolution * SE) const4343 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4344 // If any exits were not computable, the loop is not computable.
4345 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4346
4347 // We need exactly one computable exit.
4348 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4349 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4350
4351 const SCEV *BECount = nullptr;
4352 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4353 ENT != nullptr; ENT = ENT->getNextExit()) {
4354
4355 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4356
4357 if (!BECount)
4358 BECount = ENT->ExactNotTaken;
4359 else if (BECount != ENT->ExactNotTaken)
4360 return SE->getCouldNotCompute();
4361 }
4362 assert(BECount && "Invalid not taken count for loop exit");
4363 return BECount;
4364 }
4365
4366 /// getExact - Get the exact not taken count for this loop exit.
4367 const SCEV *
getExact(BasicBlock * ExitingBlock,ScalarEvolution * SE) const4368 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4369 ScalarEvolution *SE) const {
4370 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4371 ENT != nullptr; ENT = ENT->getNextExit()) {
4372
4373 if (ENT->ExitingBlock == ExitingBlock)
4374 return ENT->ExactNotTaken;
4375 }
4376 return SE->getCouldNotCompute();
4377 }
4378
4379 /// getMax - Get the max backedge taken count for the loop.
4380 const SCEV *
getMax(ScalarEvolution * SE) const4381 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4382 return Max ? Max : SE->getCouldNotCompute();
4383 }
4384
hasOperand(const SCEV * S,ScalarEvolution * SE) const4385 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4386 ScalarEvolution *SE) const {
4387 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4388 return true;
4389
4390 if (!ExitNotTaken.ExitingBlock)
4391 return false;
4392
4393 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4394 ENT != nullptr; ENT = ENT->getNextExit()) {
4395
4396 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4397 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4398 return true;
4399 }
4400 }
4401 return false;
4402 }
4403
4404 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4405 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(SmallVectorImpl<std::pair<BasicBlock *,const SCEV * >> & ExitCounts,bool Complete,const SCEV * MaxCount)4406 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4407 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4408 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4409
4410 if (!Complete)
4411 ExitNotTaken.setIncomplete();
4412
4413 unsigned NumExits = ExitCounts.size();
4414 if (NumExits == 0) return;
4415
4416 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4417 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4418 if (NumExits == 1) return;
4419
4420 // Handle the rare case of multiple computable exits.
4421 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4422
4423 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4424 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4425 PrevENT->setNextExit(ENT);
4426 ENT->ExitingBlock = ExitCounts[i].first;
4427 ENT->ExactNotTaken = ExitCounts[i].second;
4428 }
4429 }
4430
4431 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
clear()4432 void ScalarEvolution::BackedgeTakenInfo::clear() {
4433 ExitNotTaken.ExitingBlock = nullptr;
4434 ExitNotTaken.ExactNotTaken = nullptr;
4435 delete[] ExitNotTaken.getNextExit();
4436 }
4437
4438 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
4439 /// of the specified loop will execute.
4440 ScalarEvolution::BackedgeTakenInfo
ComputeBackedgeTakenCount(const Loop * L)4441 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4442 SmallVector<BasicBlock *, 8> ExitingBlocks;
4443 L->getExitingBlocks(ExitingBlocks);
4444
4445 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4446 bool CouldComputeBECount = true;
4447 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
4448 const SCEV *MustExitMaxBECount = nullptr;
4449 const SCEV *MayExitMaxBECount = nullptr;
4450
4451 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4452 // and compute maxBECount.
4453 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4454 BasicBlock *ExitBB = ExitingBlocks[i];
4455 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4456
4457 // 1. For each exit that can be computed, add an entry to ExitCounts.
4458 // CouldComputeBECount is true only if all exits can be computed.
4459 if (EL.Exact == getCouldNotCompute())
4460 // We couldn't compute an exact value for this exit, so
4461 // we won't be able to compute an exact value for the loop.
4462 CouldComputeBECount = false;
4463 else
4464 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
4465
4466 // 2. Derive the loop's MaxBECount from each exit's max number of
4467 // non-exiting iterations. Partition the loop exits into two kinds:
4468 // LoopMustExits and LoopMayExits.
4469 //
4470 // A LoopMustExit meets two requirements:
4471 //
4472 // (a) Its ExitLimit.MustExit flag must be set which indicates that the exit
4473 // test condition cannot be skipped (the tested variable has unit stride or
4474 // the test is less-than or greater-than, rather than a strict inequality).
4475 //
4476 // (b) It must dominate the loop latch, hence must be tested on every loop
4477 // iteration.
4478 //
4479 // If any computable LoopMustExit is found, then MaxBECount is the minimum
4480 // EL.Max of computable LoopMustExits. Otherwise, MaxBECount is
4481 // conservatively the maximum EL.Max, where CouldNotCompute is considered
4482 // greater than any computable EL.Max.
4483 if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch &&
4484 DT->dominates(ExitBB, Latch)) {
4485 if (!MustExitMaxBECount)
4486 MustExitMaxBECount = EL.Max;
4487 else {
4488 MustExitMaxBECount =
4489 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
4490 }
4491 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4492 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4493 MayExitMaxBECount = EL.Max;
4494 else {
4495 MayExitMaxBECount =
4496 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4497 }
4498 }
4499 }
4500 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4501 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
4502 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4503 }
4504
4505 /// ComputeExitLimit - Compute the number of times the backedge of the specified
4506 /// loop will execute if it exits via the specified block.
4507 ScalarEvolution::ExitLimit
ComputeExitLimit(const Loop * L,BasicBlock * ExitingBlock)4508 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4509
4510 // Okay, we've chosen an exiting block. See what condition causes us to
4511 // exit at this block and remember the exit block and whether all other targets
4512 // lead to the loop header.
4513 bool MustExecuteLoopHeader = true;
4514 BasicBlock *Exit = nullptr;
4515 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4516 SI != SE; ++SI)
4517 if (!L->contains(*SI)) {
4518 if (Exit) // Multiple exit successors.
4519 return getCouldNotCompute();
4520 Exit = *SI;
4521 } else if (*SI != L->getHeader()) {
4522 MustExecuteLoopHeader = false;
4523 }
4524
4525 // At this point, we know we have a conditional branch that determines whether
4526 // the loop is exited. However, we don't know if the branch is executed each
4527 // time through the loop. If not, then the execution count of the branch will
4528 // not be equal to the trip count of the loop.
4529 //
4530 // Currently we check for this by checking to see if the Exit branch goes to
4531 // the loop header. If so, we know it will always execute the same number of
4532 // times as the loop. We also handle the case where the exit block *is* the
4533 // loop header. This is common for un-rotated loops.
4534 //
4535 // If both of those tests fail, walk up the unique predecessor chain to the
4536 // header, stopping if there is an edge that doesn't exit the loop. If the
4537 // header is reached, the execution count of the branch will be equal to the
4538 // trip count of the loop.
4539 //
4540 // More extensive analysis could be done to handle more cases here.
4541 //
4542 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
4543 // The simple checks failed, try climbing the unique predecessor chain
4544 // up to the header.
4545 bool Ok = false;
4546 for (BasicBlock *BB = ExitingBlock; BB; ) {
4547 BasicBlock *Pred = BB->getUniquePredecessor();
4548 if (!Pred)
4549 return getCouldNotCompute();
4550 TerminatorInst *PredTerm = Pred->getTerminator();
4551 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4552 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4553 if (PredSucc == BB)
4554 continue;
4555 // If the predecessor has a successor that isn't BB and isn't
4556 // outside the loop, assume the worst.
4557 if (L->contains(PredSucc))
4558 return getCouldNotCompute();
4559 }
4560 if (Pred == L->getHeader()) {
4561 Ok = true;
4562 break;
4563 }
4564 BB = Pred;
4565 }
4566 if (!Ok)
4567 return getCouldNotCompute();
4568 }
4569
4570 TerminatorInst *Term = ExitingBlock->getTerminator();
4571 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4572 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4573 // Proceed to the next level to examine the exit condition expression.
4574 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4575 BI->getSuccessor(1),
4576 /*IsSubExpr=*/false);
4577 }
4578
4579 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4580 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4581 /*IsSubExpr=*/false);
4582
4583 return getCouldNotCompute();
4584 }
4585
4586 /// ComputeExitLimitFromCond - Compute the number of times the
4587 /// backedge of the specified loop will execute if its exit condition
4588 /// were a conditional branch of ExitCond, TBB, and FBB.
4589 ///
4590 /// @param IsSubExpr is true if ExitCond does not directly control the exit
4591 /// branch. In this case, we cannot assume that the loop only exits when the
4592 /// condition is true and cannot infer that failing to meet the condition prior
4593 /// to integer wraparound results in undefined behavior.
4594 ScalarEvolution::ExitLimit
ComputeExitLimitFromCond(const Loop * L,Value * ExitCond,BasicBlock * TBB,BasicBlock * FBB,bool IsSubExpr)4595 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4596 Value *ExitCond,
4597 BasicBlock *TBB,
4598 BasicBlock *FBB,
4599 bool IsSubExpr) {
4600 // Check if the controlling expression for this loop is an And or Or.
4601 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4602 if (BO->getOpcode() == Instruction::And) {
4603 // Recurse on the operands of the and.
4604 bool EitherMayExit = L->contains(TBB);
4605 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4606 IsSubExpr || EitherMayExit);
4607 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4608 IsSubExpr || EitherMayExit);
4609 const SCEV *BECount = getCouldNotCompute();
4610 const SCEV *MaxBECount = getCouldNotCompute();
4611 bool MustExit = false;
4612 if (EitherMayExit) {
4613 // Both conditions must be true for the loop to continue executing.
4614 // Choose the less conservative count.
4615 if (EL0.Exact == getCouldNotCompute() ||
4616 EL1.Exact == getCouldNotCompute())
4617 BECount = getCouldNotCompute();
4618 else
4619 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4620 if (EL0.Max == getCouldNotCompute())
4621 MaxBECount = EL1.Max;
4622 else if (EL1.Max == getCouldNotCompute())
4623 MaxBECount = EL0.Max;
4624 else
4625 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4626 MustExit = EL0.MustExit || EL1.MustExit;
4627 } else {
4628 // Both conditions must be true at the same time for the loop to exit.
4629 // For now, be conservative.
4630 assert(L->contains(FBB) && "Loop block has no successor in loop!");
4631 if (EL0.Max == EL1.Max)
4632 MaxBECount = EL0.Max;
4633 if (EL0.Exact == EL1.Exact)
4634 BECount = EL0.Exact;
4635 MustExit = EL0.MustExit && EL1.MustExit;
4636 }
4637
4638 return ExitLimit(BECount, MaxBECount, MustExit);
4639 }
4640 if (BO->getOpcode() == Instruction::Or) {
4641 // Recurse on the operands of the or.
4642 bool EitherMayExit = L->contains(FBB);
4643 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4644 IsSubExpr || EitherMayExit);
4645 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4646 IsSubExpr || EitherMayExit);
4647 const SCEV *BECount = getCouldNotCompute();
4648 const SCEV *MaxBECount = getCouldNotCompute();
4649 bool MustExit = false;
4650 if (EitherMayExit) {
4651 // Both conditions must be false for the loop to continue executing.
4652 // Choose the less conservative count.
4653 if (EL0.Exact == getCouldNotCompute() ||
4654 EL1.Exact == getCouldNotCompute())
4655 BECount = getCouldNotCompute();
4656 else
4657 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4658 if (EL0.Max == getCouldNotCompute())
4659 MaxBECount = EL1.Max;
4660 else if (EL1.Max == getCouldNotCompute())
4661 MaxBECount = EL0.Max;
4662 else
4663 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4664 MustExit = EL0.MustExit || EL1.MustExit;
4665 } else {
4666 // Both conditions must be false at the same time for the loop to exit.
4667 // For now, be conservative.
4668 assert(L->contains(TBB) && "Loop block has no successor in loop!");
4669 if (EL0.Max == EL1.Max)
4670 MaxBECount = EL0.Max;
4671 if (EL0.Exact == EL1.Exact)
4672 BECount = EL0.Exact;
4673 MustExit = EL0.MustExit && EL1.MustExit;
4674 }
4675
4676 return ExitLimit(BECount, MaxBECount, MustExit);
4677 }
4678 }
4679
4680 // With an icmp, it may be feasible to compute an exact backedge-taken count.
4681 // Proceed to the next level to examine the icmp.
4682 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4683 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
4684
4685 // Check for a constant condition. These are normally stripped out by
4686 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4687 // preserve the CFG and is temporarily leaving constant conditions
4688 // in place.
4689 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4690 if (L->contains(FBB) == !CI->getZExtValue())
4691 // The backedge is always taken.
4692 return getCouldNotCompute();
4693 else
4694 // The backedge is never taken.
4695 return getConstant(CI->getType(), 0);
4696 }
4697
4698 // If it's not an integer or pointer comparison then compute it the hard way.
4699 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4700 }
4701
4702 /// ComputeExitLimitFromICmp - Compute the number of times the
4703 /// backedge of the specified loop will execute if its exit condition
4704 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4705 ScalarEvolution::ExitLimit
ComputeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,BasicBlock * TBB,BasicBlock * FBB,bool IsSubExpr)4706 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4707 ICmpInst *ExitCond,
4708 BasicBlock *TBB,
4709 BasicBlock *FBB,
4710 bool IsSubExpr) {
4711
4712 // If the condition was exit on true, convert the condition to exit on false
4713 ICmpInst::Predicate Cond;
4714 if (!L->contains(FBB))
4715 Cond = ExitCond->getPredicate();
4716 else
4717 Cond = ExitCond->getInversePredicate();
4718
4719 // Handle common loops like: for (X = "string"; *X; ++X)
4720 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4721 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4722 ExitLimit ItCnt =
4723 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4724 if (ItCnt.hasAnyInfo())
4725 return ItCnt;
4726 }
4727
4728 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4729 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4730
4731 // Try to evaluate any dependencies out of the loop.
4732 LHS = getSCEVAtScope(LHS, L);
4733 RHS = getSCEVAtScope(RHS, L);
4734
4735 // At this point, we would like to compute how many iterations of the
4736 // loop the predicate will return true for these inputs.
4737 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4738 // If there is a loop-invariant, force it into the RHS.
4739 std::swap(LHS, RHS);
4740 Cond = ICmpInst::getSwappedPredicate(Cond);
4741 }
4742
4743 // Simplify the operands before analyzing them.
4744 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4745
4746 // If we have a comparison of a chrec against a constant, try to use value
4747 // ranges to answer this query.
4748 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4749 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4750 if (AddRec->getLoop() == L) {
4751 // Form the constant range.
4752 ConstantRange CompRange(
4753 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4754
4755 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4756 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4757 }
4758
4759 switch (Cond) {
4760 case ICmpInst::ICMP_NE: { // while (X != Y)
4761 // Convert to: while (X-Y != 0)
4762 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4763 if (EL.hasAnyInfo()) return EL;
4764 break;
4765 }
4766 case ICmpInst::ICMP_EQ: { // while (X == Y)
4767 // Convert to: while (X-Y == 0)
4768 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4769 if (EL.hasAnyInfo()) return EL;
4770 break;
4771 }
4772 case ICmpInst::ICMP_SLT:
4773 case ICmpInst::ICMP_ULT: { // while (X < Y)
4774 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4775 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
4776 if (EL.hasAnyInfo()) return EL;
4777 break;
4778 }
4779 case ICmpInst::ICMP_SGT:
4780 case ICmpInst::ICMP_UGT: { // while (X > Y)
4781 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4782 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
4783 if (EL.hasAnyInfo()) return EL;
4784 break;
4785 }
4786 default:
4787 #if 0
4788 dbgs() << "ComputeBackedgeTakenCount ";
4789 if (ExitCond->getOperand(0)->getType()->isUnsigned())
4790 dbgs() << "[unsigned] ";
4791 dbgs() << *LHS << " "
4792 << Instruction::getOpcodeName(Instruction::ICmp)
4793 << " " << *RHS << "\n";
4794 #endif
4795 break;
4796 }
4797 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4798 }
4799
4800 ScalarEvolution::ExitLimit
ComputeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool IsSubExpr)4801 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
4802 SwitchInst *Switch,
4803 BasicBlock *ExitingBlock,
4804 bool IsSubExpr) {
4805 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
4806
4807 // Give up if the exit is the default dest of a switch.
4808 if (Switch->getDefaultDest() == ExitingBlock)
4809 return getCouldNotCompute();
4810
4811 assert(L->contains(Switch->getDefaultDest()) &&
4812 "Default case must not exit the loop!");
4813 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
4814 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
4815
4816 // while (X != Y) --> while (X-Y != 0)
4817 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4818 if (EL.hasAnyInfo())
4819 return EL;
4820
4821 return getCouldNotCompute();
4822 }
4823
4824 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)4825 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4826 ScalarEvolution &SE) {
4827 const SCEV *InVal = SE.getConstant(C);
4828 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4829 assert(isa<SCEVConstant>(Val) &&
4830 "Evaluation of SCEV at constant didn't fold correctly?");
4831 return cast<SCEVConstant>(Val)->getValue();
4832 }
4833
4834 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4835 /// 'icmp op load X, cst', try to see if we can compute the backedge
4836 /// execution count.
4837 ScalarEvolution::ExitLimit
ComputeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)4838 ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4839 LoadInst *LI,
4840 Constant *RHS,
4841 const Loop *L,
4842 ICmpInst::Predicate predicate) {
4843
4844 if (LI->isVolatile()) return getCouldNotCompute();
4845
4846 // Check to see if the loaded pointer is a getelementptr of a global.
4847 // TODO: Use SCEV instead of manually grubbing with GEPs.
4848 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4849 if (!GEP) return getCouldNotCompute();
4850
4851 // Make sure that it is really a constant global we are gepping, with an
4852 // initializer, and make sure the first IDX is really 0.
4853 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4854 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4855 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4856 !cast<Constant>(GEP->getOperand(1))->isNullValue())
4857 return getCouldNotCompute();
4858
4859 // Okay, we allow one non-constant index into the GEP instruction.
4860 Value *VarIdx = nullptr;
4861 std::vector<Constant*> Indexes;
4862 unsigned VarIdxNum = 0;
4863 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4864 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4865 Indexes.push_back(CI);
4866 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4867 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
4868 VarIdx = GEP->getOperand(i);
4869 VarIdxNum = i-2;
4870 Indexes.push_back(nullptr);
4871 }
4872
4873 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4874 if (!VarIdx)
4875 return getCouldNotCompute();
4876
4877 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4878 // Check to see if X is a loop variant variable value now.
4879 const SCEV *Idx = getSCEV(VarIdx);
4880 Idx = getSCEVAtScope(Idx, L);
4881
4882 // We can only recognize very limited forms of loop index expressions, in
4883 // particular, only affine AddRec's like {C1,+,C2}.
4884 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4885 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4886 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4887 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4888 return getCouldNotCompute();
4889
4890 unsigned MaxSteps = MaxBruteForceIterations;
4891 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4892 ConstantInt *ItCst = ConstantInt::get(
4893 cast<IntegerType>(IdxExpr->getType()), IterationNum);
4894 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4895
4896 // Form the GEP offset.
4897 Indexes[VarIdxNum] = Val;
4898
4899 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4900 Indexes);
4901 if (!Result) break; // Cannot compute!
4902
4903 // Evaluate the condition for this iteration.
4904 Result = ConstantExpr::getICmp(predicate, Result, RHS);
4905 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
4906 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4907 #if 0
4908 dbgs() << "\n***\n*** Computed loop count " << *ItCst
4909 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4910 << "***\n";
4911 #endif
4912 ++NumArrayLenItCounts;
4913 return getConstant(ItCst); // Found terminating iteration!
4914 }
4915 }
4916 return getCouldNotCompute();
4917 }
4918
4919
4920 /// CanConstantFold - Return true if we can constant fold an instruction of the
4921 /// specified type, assuming that all operands were constants.
CanConstantFold(const Instruction * I)4922 static bool CanConstantFold(const Instruction *I) {
4923 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4924 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4925 isa<LoadInst>(I))
4926 return true;
4927
4928 if (const CallInst *CI = dyn_cast<CallInst>(I))
4929 if (const Function *F = CI->getCalledFunction())
4930 return canConstantFoldCallTo(F);
4931 return false;
4932 }
4933
4934 /// Determine whether this instruction can constant evolve within this loop
4935 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)4936 static bool canConstantEvolve(Instruction *I, const Loop *L) {
4937 // An instruction outside of the loop can't be derived from a loop PHI.
4938 if (!L->contains(I)) return false;
4939
4940 if (isa<PHINode>(I)) {
4941 if (L->getHeader() == I->getParent())
4942 return true;
4943 else
4944 // We don't currently keep track of the control flow needed to evaluate
4945 // PHIs, so we cannot handle PHIs inside of loops.
4946 return false;
4947 }
4948
4949 // If we won't be able to constant fold this expression even if the operands
4950 // are constants, bail early.
4951 return CanConstantFold(I);
4952 }
4953
4954 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4955 /// recursing through each instruction operand until reaching a loop header phi.
4956 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap)4957 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4958 DenseMap<Instruction *, PHINode *> &PHIMap) {
4959
4960 // Otherwise, we can evaluate this instruction if all of its operands are
4961 // constant or derived from a PHI node themselves.
4962 PHINode *PHI = nullptr;
4963 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4964 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4965
4966 if (isa<Constant>(*OpI)) continue;
4967
4968 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4969 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
4970
4971 PHINode *P = dyn_cast<PHINode>(OpInst);
4972 if (!P)
4973 // If this operand is already visited, reuse the prior result.
4974 // We may have P != PHI if this is the deepest point at which the
4975 // inconsistent paths meet.
4976 P = PHIMap.lookup(OpInst);
4977 if (!P) {
4978 // Recurse and memoize the results, whether a phi is found or not.
4979 // This recursive call invalidates pointers into PHIMap.
4980 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4981 PHIMap[OpInst] = P;
4982 }
4983 if (!P)
4984 return nullptr; // Not evolving from PHI
4985 if (PHI && PHI != P)
4986 return nullptr; // Evolving from multiple different PHIs.
4987 PHI = P;
4988 }
4989 // This is a expression evolving from a constant PHI!
4990 return PHI;
4991 }
4992
4993 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4994 /// in the loop that V is derived from. We allow arbitrary operations along the
4995 /// way, but the operands of an operation must either be constants or a value
4996 /// derived from a constant PHI. If this expression does not fit with these
4997 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)4998 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4999 Instruction *I = dyn_cast<Instruction>(V);
5000 if (!I || !canConstantEvolve(I, L)) return nullptr;
5001
5002 if (PHINode *PN = dyn_cast<PHINode>(I)) {
5003 return PN;
5004 }
5005
5006 // Record non-constant instructions contained by the loop.
5007 DenseMap<Instruction *, PHINode *> PHIMap;
5008 return getConstantEvolvingPHIOperands(I, L, PHIMap);
5009 }
5010
5011 /// EvaluateExpression - Given an expression that passes the
5012 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5013 /// in the loop has the value PHIVal. If we can't fold this expression for some
5014 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout * DL,const TargetLibraryInfo * TLI)5015 static Constant *EvaluateExpression(Value *V, const Loop *L,
5016 DenseMap<Instruction *, Constant *> &Vals,
5017 const DataLayout *DL,
5018 const TargetLibraryInfo *TLI) {
5019 // Convenient constant check, but redundant for recursive calls.
5020 if (Constant *C = dyn_cast<Constant>(V)) return C;
5021 Instruction *I = dyn_cast<Instruction>(V);
5022 if (!I) return nullptr;
5023
5024 if (Constant *C = Vals.lookup(I)) return C;
5025
5026 // An instruction inside the loop depends on a value outside the loop that we
5027 // weren't given a mapping for, or a value such as a call inside the loop.
5028 if (!canConstantEvolve(I, L)) return nullptr;
5029
5030 // An unmapped PHI can be due to a branch or another loop inside this loop,
5031 // or due to this not being the initial iteration through a loop where we
5032 // couldn't compute the evolution of this particular PHI last time.
5033 if (isa<PHINode>(I)) return nullptr;
5034
5035 std::vector<Constant*> Operands(I->getNumOperands());
5036
5037 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5038 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5039 if (!Operand) {
5040 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5041 if (!Operands[i]) return nullptr;
5042 continue;
5043 }
5044 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5045 Vals[Operand] = C;
5046 if (!C) return nullptr;
5047 Operands[i] = C;
5048 }
5049
5050 if (CmpInst *CI = dyn_cast<CmpInst>(I))
5051 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5052 Operands[1], DL, TLI);
5053 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5054 if (!LI->isVolatile())
5055 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
5056 }
5057 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
5058 TLI);
5059 }
5060
5061 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5062 /// in the header of its containing loop, we know the loop executes a
5063 /// constant number of times, and the PHI node is just a recurrence
5064 /// involving constants, fold it.
5065 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)5066 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
5067 const APInt &BEs,
5068 const Loop *L) {
5069 DenseMap<PHINode*, Constant*>::const_iterator I =
5070 ConstantEvolutionLoopExitValue.find(PN);
5071 if (I != ConstantEvolutionLoopExitValue.end())
5072 return I->second;
5073
5074 if (BEs.ugt(MaxBruteForceIterations))
5075 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
5076
5077 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5078
5079 DenseMap<Instruction *, Constant *> CurrentIterVals;
5080 BasicBlock *Header = L->getHeader();
5081 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5082
5083 // Since the loop is canonicalized, the PHI node must have two entries. One
5084 // entry must be a constant (coming in from outside of the loop), and the
5085 // second must be derived from the same PHI.
5086 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5087 PHINode *PHI = nullptr;
5088 for (BasicBlock::iterator I = Header->begin();
5089 (PHI = dyn_cast<PHINode>(I)); ++I) {
5090 Constant *StartCST =
5091 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5092 if (!StartCST) continue;
5093 CurrentIterVals[PHI] = StartCST;
5094 }
5095 if (!CurrentIterVals.count(PN))
5096 return RetVal = nullptr;
5097
5098 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
5099
5100 // Execute the loop symbolically to determine the exit value.
5101 if (BEs.getActiveBits() >= 32)
5102 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
5103
5104 unsigned NumIterations = BEs.getZExtValue(); // must be in range
5105 unsigned IterationNum = 0;
5106 for (; ; ++IterationNum) {
5107 if (IterationNum == NumIterations)
5108 return RetVal = CurrentIterVals[PN]; // Got exit value!
5109
5110 // Compute the value of the PHIs for the next iteration.
5111 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
5112 DenseMap<Instruction *, Constant *> NextIterVals;
5113 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
5114 TLI);
5115 if (!NextPHI)
5116 return nullptr; // Couldn't evaluate!
5117 NextIterVals[PN] = NextPHI;
5118
5119 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5120
5121 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5122 // cease to be able to evaluate one of them or if they stop evolving,
5123 // because that doesn't necessarily prevent us from computing PN.
5124 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
5125 for (DenseMap<Instruction *, Constant *>::const_iterator
5126 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5127 PHINode *PHI = dyn_cast<PHINode>(I->first);
5128 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
5129 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5130 }
5131 // We use two distinct loops because EvaluateExpression may invalidate any
5132 // iterators into CurrentIterVals.
5133 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5134 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5135 PHINode *PHI = I->first;
5136 Constant *&NextPHI = NextIterVals[PHI];
5137 if (!NextPHI) { // Not already computed.
5138 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5139 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5140 }
5141 if (NextPHI != I->second)
5142 StoppedEvolving = false;
5143 }
5144
5145 // If all entries in CurrentIterVals == NextIterVals then we can stop
5146 // iterating, the loop can't continue to change.
5147 if (StoppedEvolving)
5148 return RetVal = CurrentIterVals[PN];
5149
5150 CurrentIterVals.swap(NextIterVals);
5151 }
5152 }
5153
5154 /// ComputeExitCountExhaustively - If the loop is known to execute a
5155 /// constant number of times (the condition evolves only from constants),
5156 /// try to evaluate a few iterations of the loop until we get the exit
5157 /// condition gets a value of ExitWhen (true or false). If we cannot
5158 /// evaluate the trip count of the loop, return getCouldNotCompute().
ComputeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)5159 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5160 Value *Cond,
5161 bool ExitWhen) {
5162 PHINode *PN = getConstantEvolvingPHI(Cond, L);
5163 if (!PN) return getCouldNotCompute();
5164
5165 // If the loop is canonicalized, the PHI will have exactly two entries.
5166 // That's the only form we support here.
5167 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5168
5169 DenseMap<Instruction *, Constant *> CurrentIterVals;
5170 BasicBlock *Header = L->getHeader();
5171 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5172
5173 // One entry must be a constant (coming in from outside of the loop), and the
5174 // second must be derived from the same PHI.
5175 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5176 PHINode *PHI = nullptr;
5177 for (BasicBlock::iterator I = Header->begin();
5178 (PHI = dyn_cast<PHINode>(I)); ++I) {
5179 Constant *StartCST =
5180 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5181 if (!StartCST) continue;
5182 CurrentIterVals[PHI] = StartCST;
5183 }
5184 if (!CurrentIterVals.count(PN))
5185 return getCouldNotCompute();
5186
5187 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5188 // the loop symbolically to determine when the condition gets a value of
5189 // "ExitWhen".
5190
5191 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
5192 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
5193 ConstantInt *CondVal =
5194 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5195 DL, TLI));
5196
5197 // Couldn't symbolically evaluate.
5198 if (!CondVal) return getCouldNotCompute();
5199
5200 if (CondVal->getValue() == uint64_t(ExitWhen)) {
5201 ++NumBruteForceTripCountsComputed;
5202 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
5203 }
5204
5205 // Update all the PHI nodes for the next iteration.
5206 DenseMap<Instruction *, Constant *> NextIterVals;
5207
5208 // Create a list of which PHIs we need to compute. We want to do this before
5209 // calling EvaluateExpression on them because that may invalidate iterators
5210 // into CurrentIterVals.
5211 SmallVector<PHINode *, 8> PHIsToCompute;
5212 for (DenseMap<Instruction *, Constant *>::const_iterator
5213 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5214 PHINode *PHI = dyn_cast<PHINode>(I->first);
5215 if (!PHI || PHI->getParent() != Header) continue;
5216 PHIsToCompute.push_back(PHI);
5217 }
5218 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5219 E = PHIsToCompute.end(); I != E; ++I) {
5220 PHINode *PHI = *I;
5221 Constant *&NextPHI = NextIterVals[PHI];
5222 if (NextPHI) continue; // Already computed!
5223
5224 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5225 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5226 }
5227 CurrentIterVals.swap(NextIterVals);
5228 }
5229
5230 // Too many iterations were needed to evaluate.
5231 return getCouldNotCompute();
5232 }
5233
5234 /// getSCEVAtScope - Return a SCEV expression for the specified value
5235 /// at the specified scope in the program. The L value specifies a loop
5236 /// nest to evaluate the expression at, where null is the top-level or a
5237 /// specified loop is immediately inside of the loop.
5238 ///
5239 /// This method can be used to compute the exit value for a variable defined
5240 /// in a loop by querying what the value will hold in the parent loop.
5241 ///
5242 /// In the case that a relevant loop exit value cannot be computed, the
5243 /// original value V is returned.
getSCEVAtScope(const SCEV * V,const Loop * L)5244 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5245 // Check to see if we've folded this expression at this loop before.
5246 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5247 for (unsigned u = 0; u < Values.size(); u++) {
5248 if (Values[u].first == L)
5249 return Values[u].second ? Values[u].second : V;
5250 }
5251 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
5252 // Otherwise compute it.
5253 const SCEV *C = computeSCEVAtScope(V, L);
5254 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5255 for (unsigned u = Values2.size(); u > 0; u--) {
5256 if (Values2[u - 1].first == L) {
5257 Values2[u - 1].second = C;
5258 break;
5259 }
5260 }
5261 return C;
5262 }
5263
5264 /// This builds up a Constant using the ConstantExpr interface. That way, we
5265 /// will return Constants for objects which aren't represented by a
5266 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5267 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)5268 static Constant *BuildConstantFromSCEV(const SCEV *V) {
5269 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
5270 case scCouldNotCompute:
5271 case scAddRecExpr:
5272 break;
5273 case scConstant:
5274 return cast<SCEVConstant>(V)->getValue();
5275 case scUnknown:
5276 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5277 case scSignExtend: {
5278 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5279 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5280 return ConstantExpr::getSExt(CastOp, SS->getType());
5281 break;
5282 }
5283 case scZeroExtend: {
5284 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5285 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5286 return ConstantExpr::getZExt(CastOp, SZ->getType());
5287 break;
5288 }
5289 case scTruncate: {
5290 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5291 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5292 return ConstantExpr::getTrunc(CastOp, ST->getType());
5293 break;
5294 }
5295 case scAddExpr: {
5296 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5297 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5298 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5299 unsigned AS = PTy->getAddressSpace();
5300 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5301 C = ConstantExpr::getBitCast(C, DestPtrTy);
5302 }
5303 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5304 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5305 if (!C2) return nullptr;
5306
5307 // First pointer!
5308 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5309 unsigned AS = C2->getType()->getPointerAddressSpace();
5310 std::swap(C, C2);
5311 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5312 // The offsets have been converted to bytes. We can add bytes to an
5313 // i8* by GEP with the byte count in the first index.
5314 C = ConstantExpr::getBitCast(C, DestPtrTy);
5315 }
5316
5317 // Don't bother trying to sum two pointers. We probably can't
5318 // statically compute a load that results from it anyway.
5319 if (C2->getType()->isPointerTy())
5320 return nullptr;
5321
5322 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5323 if (PTy->getElementType()->isStructTy())
5324 C2 = ConstantExpr::getIntegerCast(
5325 C2, Type::getInt32Ty(C->getContext()), true);
5326 C = ConstantExpr::getGetElementPtr(C, C2);
5327 } else
5328 C = ConstantExpr::getAdd(C, C2);
5329 }
5330 return C;
5331 }
5332 break;
5333 }
5334 case scMulExpr: {
5335 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5336 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5337 // Don't bother with pointers at all.
5338 if (C->getType()->isPointerTy()) return nullptr;
5339 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5340 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5341 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
5342 C = ConstantExpr::getMul(C, C2);
5343 }
5344 return C;
5345 }
5346 break;
5347 }
5348 case scUDivExpr: {
5349 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5350 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5351 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5352 if (LHS->getType() == RHS->getType())
5353 return ConstantExpr::getUDiv(LHS, RHS);
5354 break;
5355 }
5356 case scSMaxExpr:
5357 case scUMaxExpr:
5358 break; // TODO: smax, umax.
5359 }
5360 return nullptr;
5361 }
5362
computeSCEVAtScope(const SCEV * V,const Loop * L)5363 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5364 if (isa<SCEVConstant>(V)) return V;
5365
5366 // If this instruction is evolved from a constant-evolving PHI, compute the
5367 // exit value from the loop without using SCEVs.
5368 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5369 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5370 const Loop *LI = (*this->LI)[I->getParent()];
5371 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5372 if (PHINode *PN = dyn_cast<PHINode>(I))
5373 if (PN->getParent() == LI->getHeader()) {
5374 // Okay, there is no closed form solution for the PHI node. Check
5375 // to see if the loop that contains it has a known backedge-taken
5376 // count. If so, we may be able to force computation of the exit
5377 // value.
5378 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5379 if (const SCEVConstant *BTCC =
5380 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5381 // Okay, we know how many times the containing loop executes. If
5382 // this is a constant evolving PHI node, get the final value at
5383 // the specified iteration number.
5384 Constant *RV = getConstantEvolutionLoopExitValue(PN,
5385 BTCC->getValue()->getValue(),
5386 LI);
5387 if (RV) return getSCEV(RV);
5388 }
5389 }
5390
5391 // Okay, this is an expression that we cannot symbolically evaluate
5392 // into a SCEV. Check to see if it's possible to symbolically evaluate
5393 // the arguments into constants, and if so, try to constant propagate the
5394 // result. This is particularly useful for computing loop exit values.
5395 if (CanConstantFold(I)) {
5396 SmallVector<Constant *, 4> Operands;
5397 bool MadeImprovement = false;
5398 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5399 Value *Op = I->getOperand(i);
5400 if (Constant *C = dyn_cast<Constant>(Op)) {
5401 Operands.push_back(C);
5402 continue;
5403 }
5404
5405 // If any of the operands is non-constant and if they are
5406 // non-integer and non-pointer, don't even try to analyze them
5407 // with scev techniques.
5408 if (!isSCEVable(Op->getType()))
5409 return V;
5410
5411 const SCEV *OrigV = getSCEV(Op);
5412 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5413 MadeImprovement |= OrigV != OpV;
5414
5415 Constant *C = BuildConstantFromSCEV(OpV);
5416 if (!C) return V;
5417 if (C->getType() != Op->getType())
5418 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5419 Op->getType(),
5420 false),
5421 C, Op->getType());
5422 Operands.push_back(C);
5423 }
5424
5425 // Check to see if getSCEVAtScope actually made an improvement.
5426 if (MadeImprovement) {
5427 Constant *C = nullptr;
5428 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5429 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5430 Operands[0], Operands[1], DL,
5431 TLI);
5432 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5433 if (!LI->isVolatile())
5434 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
5435 } else
5436 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5437 Operands, DL, TLI);
5438 if (!C) return V;
5439 return getSCEV(C);
5440 }
5441 }
5442 }
5443
5444 // This is some other type of SCEVUnknown, just return it.
5445 return V;
5446 }
5447
5448 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5449 // Avoid performing the look-up in the common case where the specified
5450 // expression has no loop-variant portions.
5451 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5452 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5453 if (OpAtScope != Comm->getOperand(i)) {
5454 // Okay, at least one of these operands is loop variant but might be
5455 // foldable. Build a new instance of the folded commutative expression.
5456 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5457 Comm->op_begin()+i);
5458 NewOps.push_back(OpAtScope);
5459
5460 for (++i; i != e; ++i) {
5461 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5462 NewOps.push_back(OpAtScope);
5463 }
5464 if (isa<SCEVAddExpr>(Comm))
5465 return getAddExpr(NewOps);
5466 if (isa<SCEVMulExpr>(Comm))
5467 return getMulExpr(NewOps);
5468 if (isa<SCEVSMaxExpr>(Comm))
5469 return getSMaxExpr(NewOps);
5470 if (isa<SCEVUMaxExpr>(Comm))
5471 return getUMaxExpr(NewOps);
5472 llvm_unreachable("Unknown commutative SCEV type!");
5473 }
5474 }
5475 // If we got here, all operands are loop invariant.
5476 return Comm;
5477 }
5478
5479 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5480 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5481 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5482 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5483 return Div; // must be loop invariant
5484 return getUDivExpr(LHS, RHS);
5485 }
5486
5487 // If this is a loop recurrence for a loop that does not contain L, then we
5488 // are dealing with the final value computed by the loop.
5489 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5490 // First, attempt to evaluate each operand.
5491 // Avoid performing the look-up in the common case where the specified
5492 // expression has no loop-variant portions.
5493 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5494 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5495 if (OpAtScope == AddRec->getOperand(i))
5496 continue;
5497
5498 // Okay, at least one of these operands is loop variant but might be
5499 // foldable. Build a new instance of the folded commutative expression.
5500 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5501 AddRec->op_begin()+i);
5502 NewOps.push_back(OpAtScope);
5503 for (++i; i != e; ++i)
5504 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5505
5506 const SCEV *FoldedRec =
5507 getAddRecExpr(NewOps, AddRec->getLoop(),
5508 AddRec->getNoWrapFlags(SCEV::FlagNW));
5509 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5510 // The addrec may be folded to a nonrecurrence, for example, if the
5511 // induction variable is multiplied by zero after constant folding. Go
5512 // ahead and return the folded value.
5513 if (!AddRec)
5514 return FoldedRec;
5515 break;
5516 }
5517
5518 // If the scope is outside the addrec's loop, evaluate it by using the
5519 // loop exit value of the addrec.
5520 if (!AddRec->getLoop()->contains(L)) {
5521 // To evaluate this recurrence, we need to know how many times the AddRec
5522 // loop iterates. Compute this now.
5523 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5524 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5525
5526 // Then, evaluate the AddRec.
5527 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5528 }
5529
5530 return AddRec;
5531 }
5532
5533 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5534 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5535 if (Op == Cast->getOperand())
5536 return Cast; // must be loop invariant
5537 return getZeroExtendExpr(Op, Cast->getType());
5538 }
5539
5540 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5541 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5542 if (Op == Cast->getOperand())
5543 return Cast; // must be loop invariant
5544 return getSignExtendExpr(Op, Cast->getType());
5545 }
5546
5547 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5548 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5549 if (Op == Cast->getOperand())
5550 return Cast; // must be loop invariant
5551 return getTruncateExpr(Op, Cast->getType());
5552 }
5553
5554 llvm_unreachable("Unknown SCEV type!");
5555 }
5556
5557 /// getSCEVAtScope - This is a convenience function which does
5558 /// getSCEVAtScope(getSCEV(V), L).
getSCEVAtScope(Value * V,const Loop * L)5559 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5560 return getSCEVAtScope(getSCEV(V), L);
5561 }
5562
5563 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5564 /// following equation:
5565 ///
5566 /// A * X = B (mod N)
5567 ///
5568 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5569 /// A and B isn't important.
5570 ///
5571 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const APInt & B,ScalarEvolution & SE)5572 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5573 ScalarEvolution &SE) {
5574 uint32_t BW = A.getBitWidth();
5575 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5576 assert(A != 0 && "A must be non-zero.");
5577
5578 // 1. D = gcd(A, N)
5579 //
5580 // The gcd of A and N may have only one prime factor: 2. The number of
5581 // trailing zeros in A is its multiplicity
5582 uint32_t Mult2 = A.countTrailingZeros();
5583 // D = 2^Mult2
5584
5585 // 2. Check if B is divisible by D.
5586 //
5587 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5588 // is not less than multiplicity of this prime factor for D.
5589 if (B.countTrailingZeros() < Mult2)
5590 return SE.getCouldNotCompute();
5591
5592 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5593 // modulo (N / D).
5594 //
5595 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5596 // bit width during computations.
5597 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5598 APInt Mod(BW + 1, 0);
5599 Mod.setBit(BW - Mult2); // Mod = N / D
5600 APInt I = AD.multiplicativeInverse(Mod);
5601
5602 // 4. Compute the minimum unsigned root of the equation:
5603 // I * (B / D) mod (N / D)
5604 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5605
5606 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5607 // bits.
5608 return SE.getConstant(Result.trunc(BW));
5609 }
5610
5611 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5612 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5613 /// might be the same) or two SCEVCouldNotCompute objects.
5614 ///
5615 static std::pair<const SCEV *,const SCEV *>
SolveQuadraticEquation(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)5616 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5617 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5618 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5619 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5620 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5621
5622 // We currently can only solve this if the coefficients are constants.
5623 if (!LC || !MC || !NC) {
5624 const SCEV *CNC = SE.getCouldNotCompute();
5625 return std::make_pair(CNC, CNC);
5626 }
5627
5628 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5629 const APInt &L = LC->getValue()->getValue();
5630 const APInt &M = MC->getValue()->getValue();
5631 const APInt &N = NC->getValue()->getValue();
5632 APInt Two(BitWidth, 2);
5633 APInt Four(BitWidth, 4);
5634
5635 {
5636 using namespace APIntOps;
5637 const APInt& C = L;
5638 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5639 // The B coefficient is M-N/2
5640 APInt B(M);
5641 B -= sdiv(N,Two);
5642
5643 // The A coefficient is N/2
5644 APInt A(N.sdiv(Two));
5645
5646 // Compute the B^2-4ac term.
5647 APInt SqrtTerm(B);
5648 SqrtTerm *= B;
5649 SqrtTerm -= Four * (A * C);
5650
5651 if (SqrtTerm.isNegative()) {
5652 // The loop is provably infinite.
5653 const SCEV *CNC = SE.getCouldNotCompute();
5654 return std::make_pair(CNC, CNC);
5655 }
5656
5657 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5658 // integer value or else APInt::sqrt() will assert.
5659 APInt SqrtVal(SqrtTerm.sqrt());
5660
5661 // Compute the two solutions for the quadratic formula.
5662 // The divisions must be performed as signed divisions.
5663 APInt NegB(-B);
5664 APInt TwoA(A << 1);
5665 if (TwoA.isMinValue()) {
5666 const SCEV *CNC = SE.getCouldNotCompute();
5667 return std::make_pair(CNC, CNC);
5668 }
5669
5670 LLVMContext &Context = SE.getContext();
5671
5672 ConstantInt *Solution1 =
5673 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5674 ConstantInt *Solution2 =
5675 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5676
5677 return std::make_pair(SE.getConstant(Solution1),
5678 SE.getConstant(Solution2));
5679 } // end APIntOps namespace
5680 }
5681
5682 /// HowFarToZero - Return the number of times a backedge comparing the specified
5683 /// value to zero will execute. If not computable, return CouldNotCompute.
5684 ///
5685 /// This is only used for loops with a "x != y" exit test. The exit condition is
5686 /// now expressed as a single expression, V = x-y. So the exit test is
5687 /// effectively V != 0. We know and take advantage of the fact that this
5688 /// expression only being used in a comparison by zero context.
5689 ScalarEvolution::ExitLimit
HowFarToZero(const SCEV * V,const Loop * L,bool IsSubExpr)5690 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
5691 // If the value is a constant
5692 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5693 // If the value is already zero, the branch will execute zero times.
5694 if (C->getValue()->isZero()) return C;
5695 return getCouldNotCompute(); // Otherwise it will loop infinitely.
5696 }
5697
5698 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5699 if (!AddRec || AddRec->getLoop() != L)
5700 return getCouldNotCompute();
5701
5702 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5703 // the quadratic equation to solve it.
5704 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5705 std::pair<const SCEV *,const SCEV *> Roots =
5706 SolveQuadraticEquation(AddRec, *this);
5707 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5708 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5709 if (R1 && R2) {
5710 #if 0
5711 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5712 << " sol#2: " << *R2 << "\n";
5713 #endif
5714 // Pick the smallest positive root value.
5715 if (ConstantInt *CB =
5716 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5717 R1->getValue(),
5718 R2->getValue()))) {
5719 if (CB->getZExtValue() == false)
5720 std::swap(R1, R2); // R1 is the minimum root now.
5721
5722 // We can only use this value if the chrec ends up with an exact zero
5723 // value at this index. When solving for "X*X != 5", for example, we
5724 // should not accept a root of 2.
5725 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5726 if (Val->isZero())
5727 return R1; // We found a quadratic root!
5728 }
5729 }
5730 return getCouldNotCompute();
5731 }
5732
5733 // Otherwise we can only handle this if it is affine.
5734 if (!AddRec->isAffine())
5735 return getCouldNotCompute();
5736
5737 // If this is an affine expression, the execution count of this branch is
5738 // the minimum unsigned root of the following equation:
5739 //
5740 // Start + Step*N = 0 (mod 2^BW)
5741 //
5742 // equivalent to:
5743 //
5744 // Step*N = -Start (mod 2^BW)
5745 //
5746 // where BW is the common bit width of Start and Step.
5747
5748 // Get the initial value for the loop.
5749 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5750 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5751
5752 // For now we handle only constant steps.
5753 //
5754 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5755 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5756 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5757 // We have not yet seen any such cases.
5758 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5759 if (!StepC || StepC->getValue()->equalsInt(0))
5760 return getCouldNotCompute();
5761
5762 // For positive steps (counting up until unsigned overflow):
5763 // N = -Start/Step (as unsigned)
5764 // For negative steps (counting down to zero):
5765 // N = Start/-Step
5766 // First compute the unsigned distance from zero in the direction of Step.
5767 bool CountDown = StepC->getValue()->getValue().isNegative();
5768 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5769
5770 // Handle unitary steps, which cannot wraparound.
5771 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5772 // N = Distance (as unsigned)
5773 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5774 ConstantRange CR = getUnsignedRange(Start);
5775 const SCEV *MaxBECount;
5776 if (!CountDown && CR.getUnsignedMin().isMinValue())
5777 // When counting up, the worst starting value is 1, not 0.
5778 MaxBECount = CR.getUnsignedMax().isMinValue()
5779 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5780 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5781 else
5782 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5783 : -CR.getUnsignedMin());
5784 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
5785 }
5786
5787 // If the recurrence is known not to wraparound, unsigned divide computes the
5788 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5789 // that the value will either become zero (and thus the loop terminates), that
5790 // the loop will terminate through some other exit condition first, or that
5791 // the loop has undefined behavior. This means we can't "miss" the exit
5792 // value, even with nonunit stride, and exit later via the same branch. Note
5793 // that we can skip this exit if loop later exits via a different
5794 // branch. Hence MustExit=false.
5795 //
5796 // This is only valid for expressions that directly compute the loop exit. It
5797 // is invalid for subexpressions in which the loop may exit through this
5798 // branch even if this subexpression is false. In that case, the trip count
5799 // computed by this udiv could be smaller than the number of well-defined
5800 // iterations.
5801 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5802 const SCEV *Exact =
5803 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5804 return ExitLimit(Exact, Exact, /*MustExit=*/false);
5805 }
5806
5807 // If Step is a power of two that evenly divides Start we know that the loop
5808 // will always terminate. Start may not be a constant so we just have the
5809 // number of trailing zeros available. This is safe even in presence of
5810 // overflow as the recurrence will overflow to exactly 0.
5811 const APInt &StepV = StepC->getValue()->getValue();
5812 if (StepV.isPowerOf2() &&
5813 GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros())
5814 return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5815
5816 // Then, try to solve the above equation provided that Start is constant.
5817 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5818 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5819 -StartC->getValue()->getValue(),
5820 *this);
5821 return getCouldNotCompute();
5822 }
5823
5824 /// HowFarToNonZero - Return the number of times a backedge checking the
5825 /// specified value for nonzero will execute. If not computable, return
5826 /// CouldNotCompute
5827 ScalarEvolution::ExitLimit
HowFarToNonZero(const SCEV * V,const Loop * L)5828 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5829 // Loops that look like: while (X == 0) are very strange indeed. We don't
5830 // handle them yet except for the trivial case. This could be expanded in the
5831 // future as needed.
5832
5833 // If the value is a constant, check to see if it is known to be non-zero
5834 // already. If so, the backedge will execute zero times.
5835 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5836 if (!C->getValue()->isNullValue())
5837 return getConstant(C->getType(), 0);
5838 return getCouldNotCompute(); // Otherwise it will loop infinitely.
5839 }
5840
5841 // We could implement others, but I really doubt anyone writes loops like
5842 // this, and if they did, they would already be constant folded.
5843 return getCouldNotCompute();
5844 }
5845
5846 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5847 /// (which may not be an immediate predecessor) which has exactly one
5848 /// successor from which BB is reachable, or null if no such block is
5849 /// found.
5850 ///
5851 std::pair<BasicBlock *, BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(BasicBlock * BB)5852 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5853 // If the block has a unique predecessor, then there is no path from the
5854 // predecessor to the block that does not go through the direct edge
5855 // from the predecessor to the block.
5856 if (BasicBlock *Pred = BB->getSinglePredecessor())
5857 return std::make_pair(Pred, BB);
5858
5859 // A loop's header is defined to be a block that dominates the loop.
5860 // If the header has a unique predecessor outside the loop, it must be
5861 // a block that has exactly one successor that can reach the loop.
5862 if (Loop *L = LI->getLoopFor(BB))
5863 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5864
5865 return std::pair<BasicBlock *, BasicBlock *>();
5866 }
5867
5868 /// HasSameValue - SCEV structural equivalence is usually sufficient for
5869 /// testing whether two expressions are equal, however for the purposes of
5870 /// looking for a condition guarding a loop, it can be useful to be a little
5871 /// more general, since a front-end may have replicated the controlling
5872 /// expression.
5873 ///
HasSameValue(const SCEV * A,const SCEV * B)5874 static bool HasSameValue(const SCEV *A, const SCEV *B) {
5875 // Quick check to see if they are the same SCEV.
5876 if (A == B) return true;
5877
5878 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5879 // two different instructions with the same value. Check for this case.
5880 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5881 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5882 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5883 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5884 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5885 return true;
5886
5887 // Otherwise assume they may have a different value.
5888 return false;
5889 }
5890
5891 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5892 /// predicate Pred. Return true iff any changes were made.
5893 ///
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)5894 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5895 const SCEV *&LHS, const SCEV *&RHS,
5896 unsigned Depth) {
5897 bool Changed = false;
5898
5899 // If we hit the max recursion limit bail out.
5900 if (Depth >= 3)
5901 return false;
5902
5903 // Canonicalize a constant to the right side.
5904 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5905 // Check for both operands constant.
5906 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5907 if (ConstantExpr::getICmp(Pred,
5908 LHSC->getValue(),
5909 RHSC->getValue())->isNullValue())
5910 goto trivially_false;
5911 else
5912 goto trivially_true;
5913 }
5914 // Otherwise swap the operands to put the constant on the right.
5915 std::swap(LHS, RHS);
5916 Pred = ICmpInst::getSwappedPredicate(Pred);
5917 Changed = true;
5918 }
5919
5920 // If we're comparing an addrec with a value which is loop-invariant in the
5921 // addrec's loop, put the addrec on the left. Also make a dominance check,
5922 // as both operands could be addrecs loop-invariant in each other's loop.
5923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5924 const Loop *L = AR->getLoop();
5925 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5926 std::swap(LHS, RHS);
5927 Pred = ICmpInst::getSwappedPredicate(Pred);
5928 Changed = true;
5929 }
5930 }
5931
5932 // If there's a constant operand, canonicalize comparisons with boundary
5933 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5934 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5935 const APInt &RA = RC->getValue()->getValue();
5936 switch (Pred) {
5937 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5938 case ICmpInst::ICMP_EQ:
5939 case ICmpInst::ICMP_NE:
5940 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5941 if (!RA)
5942 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5943 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
5944 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5945 ME->getOperand(0)->isAllOnesValue()) {
5946 RHS = AE->getOperand(1);
5947 LHS = ME->getOperand(1);
5948 Changed = true;
5949 }
5950 break;
5951 case ICmpInst::ICMP_UGE:
5952 if ((RA - 1).isMinValue()) {
5953 Pred = ICmpInst::ICMP_NE;
5954 RHS = getConstant(RA - 1);
5955 Changed = true;
5956 break;
5957 }
5958 if (RA.isMaxValue()) {
5959 Pred = ICmpInst::ICMP_EQ;
5960 Changed = true;
5961 break;
5962 }
5963 if (RA.isMinValue()) goto trivially_true;
5964
5965 Pred = ICmpInst::ICMP_UGT;
5966 RHS = getConstant(RA - 1);
5967 Changed = true;
5968 break;
5969 case ICmpInst::ICMP_ULE:
5970 if ((RA + 1).isMaxValue()) {
5971 Pred = ICmpInst::ICMP_NE;
5972 RHS = getConstant(RA + 1);
5973 Changed = true;
5974 break;
5975 }
5976 if (RA.isMinValue()) {
5977 Pred = ICmpInst::ICMP_EQ;
5978 Changed = true;
5979 break;
5980 }
5981 if (RA.isMaxValue()) goto trivially_true;
5982
5983 Pred = ICmpInst::ICMP_ULT;
5984 RHS = getConstant(RA + 1);
5985 Changed = true;
5986 break;
5987 case ICmpInst::ICMP_SGE:
5988 if ((RA - 1).isMinSignedValue()) {
5989 Pred = ICmpInst::ICMP_NE;
5990 RHS = getConstant(RA - 1);
5991 Changed = true;
5992 break;
5993 }
5994 if (RA.isMaxSignedValue()) {
5995 Pred = ICmpInst::ICMP_EQ;
5996 Changed = true;
5997 break;
5998 }
5999 if (RA.isMinSignedValue()) goto trivially_true;
6000
6001 Pred = ICmpInst::ICMP_SGT;
6002 RHS = getConstant(RA - 1);
6003 Changed = true;
6004 break;
6005 case ICmpInst::ICMP_SLE:
6006 if ((RA + 1).isMaxSignedValue()) {
6007 Pred = ICmpInst::ICMP_NE;
6008 RHS = getConstant(RA + 1);
6009 Changed = true;
6010 break;
6011 }
6012 if (RA.isMinSignedValue()) {
6013 Pred = ICmpInst::ICMP_EQ;
6014 Changed = true;
6015 break;
6016 }
6017 if (RA.isMaxSignedValue()) goto trivially_true;
6018
6019 Pred = ICmpInst::ICMP_SLT;
6020 RHS = getConstant(RA + 1);
6021 Changed = true;
6022 break;
6023 case ICmpInst::ICMP_UGT:
6024 if (RA.isMinValue()) {
6025 Pred = ICmpInst::ICMP_NE;
6026 Changed = true;
6027 break;
6028 }
6029 if ((RA + 1).isMaxValue()) {
6030 Pred = ICmpInst::ICMP_EQ;
6031 RHS = getConstant(RA + 1);
6032 Changed = true;
6033 break;
6034 }
6035 if (RA.isMaxValue()) goto trivially_false;
6036 break;
6037 case ICmpInst::ICMP_ULT:
6038 if (RA.isMaxValue()) {
6039 Pred = ICmpInst::ICMP_NE;
6040 Changed = true;
6041 break;
6042 }
6043 if ((RA - 1).isMinValue()) {
6044 Pred = ICmpInst::ICMP_EQ;
6045 RHS = getConstant(RA - 1);
6046 Changed = true;
6047 break;
6048 }
6049 if (RA.isMinValue()) goto trivially_false;
6050 break;
6051 case ICmpInst::ICMP_SGT:
6052 if (RA.isMinSignedValue()) {
6053 Pred = ICmpInst::ICMP_NE;
6054 Changed = true;
6055 break;
6056 }
6057 if ((RA + 1).isMaxSignedValue()) {
6058 Pred = ICmpInst::ICMP_EQ;
6059 RHS = getConstant(RA + 1);
6060 Changed = true;
6061 break;
6062 }
6063 if (RA.isMaxSignedValue()) goto trivially_false;
6064 break;
6065 case ICmpInst::ICMP_SLT:
6066 if (RA.isMaxSignedValue()) {
6067 Pred = ICmpInst::ICMP_NE;
6068 Changed = true;
6069 break;
6070 }
6071 if ((RA - 1).isMinSignedValue()) {
6072 Pred = ICmpInst::ICMP_EQ;
6073 RHS = getConstant(RA - 1);
6074 Changed = true;
6075 break;
6076 }
6077 if (RA.isMinSignedValue()) goto trivially_false;
6078 break;
6079 }
6080 }
6081
6082 // Check for obvious equality.
6083 if (HasSameValue(LHS, RHS)) {
6084 if (ICmpInst::isTrueWhenEqual(Pred))
6085 goto trivially_true;
6086 if (ICmpInst::isFalseWhenEqual(Pred))
6087 goto trivially_false;
6088 }
6089
6090 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6091 // adding or subtracting 1 from one of the operands.
6092 switch (Pred) {
6093 case ICmpInst::ICMP_SLE:
6094 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6095 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6096 SCEV::FlagNSW);
6097 Pred = ICmpInst::ICMP_SLT;
6098 Changed = true;
6099 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
6100 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6101 SCEV::FlagNSW);
6102 Pred = ICmpInst::ICMP_SLT;
6103 Changed = true;
6104 }
6105 break;
6106 case ICmpInst::ICMP_SGE:
6107 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
6108 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6109 SCEV::FlagNSW);
6110 Pred = ICmpInst::ICMP_SGT;
6111 Changed = true;
6112 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6113 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6114 SCEV::FlagNSW);
6115 Pred = ICmpInst::ICMP_SGT;
6116 Changed = true;
6117 }
6118 break;
6119 case ICmpInst::ICMP_ULE:
6120 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
6121 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6122 SCEV::FlagNUW);
6123 Pred = ICmpInst::ICMP_ULT;
6124 Changed = true;
6125 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
6126 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6127 SCEV::FlagNUW);
6128 Pred = ICmpInst::ICMP_ULT;
6129 Changed = true;
6130 }
6131 break;
6132 case ICmpInst::ICMP_UGE:
6133 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
6134 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6135 SCEV::FlagNUW);
6136 Pred = ICmpInst::ICMP_UGT;
6137 Changed = true;
6138 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
6139 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6140 SCEV::FlagNUW);
6141 Pred = ICmpInst::ICMP_UGT;
6142 Changed = true;
6143 }
6144 break;
6145 default:
6146 break;
6147 }
6148
6149 // TODO: More simplifications are possible here.
6150
6151 // Recursively simplify until we either hit a recursion limit or nothing
6152 // changes.
6153 if (Changed)
6154 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6155
6156 return Changed;
6157
6158 trivially_true:
6159 // Return 0 == 0.
6160 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6161 Pred = ICmpInst::ICMP_EQ;
6162 return true;
6163
6164 trivially_false:
6165 // Return 0 != 0.
6166 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6167 Pred = ICmpInst::ICMP_NE;
6168 return true;
6169 }
6170
isKnownNegative(const SCEV * S)6171 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6172 return getSignedRange(S).getSignedMax().isNegative();
6173 }
6174
isKnownPositive(const SCEV * S)6175 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6176 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6177 }
6178
isKnownNonNegative(const SCEV * S)6179 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6180 return !getSignedRange(S).getSignedMin().isNegative();
6181 }
6182
isKnownNonPositive(const SCEV * S)6183 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6184 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6185 }
6186
isKnownNonZero(const SCEV * S)6187 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6188 return isKnownNegative(S) || isKnownPositive(S);
6189 }
6190
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)6191 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6192 const SCEV *LHS, const SCEV *RHS) {
6193 // Canonicalize the inputs first.
6194 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6195
6196 // If LHS or RHS is an addrec, check to see if the condition is true in
6197 // every iteration of the loop.
6198 // If LHS and RHS are both addrec, both conditions must be true in
6199 // every iteration of the loop.
6200 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6201 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6202 bool LeftGuarded = false;
6203 bool RightGuarded = false;
6204 if (LAR) {
6205 const Loop *L = LAR->getLoop();
6206 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6207 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6208 if (!RAR) return true;
6209 LeftGuarded = true;
6210 }
6211 }
6212 if (RAR) {
6213 const Loop *L = RAR->getLoop();
6214 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6215 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6216 if (!LAR) return true;
6217 RightGuarded = true;
6218 }
6219 }
6220 if (LeftGuarded && RightGuarded)
6221 return true;
6222
6223 // Otherwise see what can be done with known constant ranges.
6224 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6225 }
6226
6227 bool
isKnownPredicateWithRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)6228 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6229 const SCEV *LHS, const SCEV *RHS) {
6230 if (HasSameValue(LHS, RHS))
6231 return ICmpInst::isTrueWhenEqual(Pred);
6232
6233 // This code is split out from isKnownPredicate because it is called from
6234 // within isLoopEntryGuardedByCond.
6235 switch (Pred) {
6236 default:
6237 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6238 case ICmpInst::ICMP_SGT:
6239 std::swap(LHS, RHS);
6240 case ICmpInst::ICMP_SLT: {
6241 ConstantRange LHSRange = getSignedRange(LHS);
6242 ConstantRange RHSRange = getSignedRange(RHS);
6243 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6244 return true;
6245 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6246 return false;
6247 break;
6248 }
6249 case ICmpInst::ICMP_SGE:
6250 std::swap(LHS, RHS);
6251 case ICmpInst::ICMP_SLE: {
6252 ConstantRange LHSRange = getSignedRange(LHS);
6253 ConstantRange RHSRange = getSignedRange(RHS);
6254 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6255 return true;
6256 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6257 return false;
6258 break;
6259 }
6260 case ICmpInst::ICMP_UGT:
6261 std::swap(LHS, RHS);
6262 case ICmpInst::ICMP_ULT: {
6263 ConstantRange LHSRange = getUnsignedRange(LHS);
6264 ConstantRange RHSRange = getUnsignedRange(RHS);
6265 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6266 return true;
6267 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6268 return false;
6269 break;
6270 }
6271 case ICmpInst::ICMP_UGE:
6272 std::swap(LHS, RHS);
6273 case ICmpInst::ICMP_ULE: {
6274 ConstantRange LHSRange = getUnsignedRange(LHS);
6275 ConstantRange RHSRange = getUnsignedRange(RHS);
6276 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6277 return true;
6278 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6279 return false;
6280 break;
6281 }
6282 case ICmpInst::ICMP_NE: {
6283 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6284 return true;
6285 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6286 return true;
6287
6288 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6289 if (isKnownNonZero(Diff))
6290 return true;
6291 break;
6292 }
6293 case ICmpInst::ICMP_EQ:
6294 // The check at the top of the function catches the case where
6295 // the values are known to be equal.
6296 break;
6297 }
6298 return false;
6299 }
6300
6301 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6302 /// protected by a conditional between LHS and RHS. This is used to
6303 /// to eliminate casts.
6304 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)6305 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6306 ICmpInst::Predicate Pred,
6307 const SCEV *LHS, const SCEV *RHS) {
6308 // Interpret a null as meaning no loop, where there is obviously no guard
6309 // (interprocedural conditions notwithstanding).
6310 if (!L) return true;
6311
6312 BasicBlock *Latch = L->getLoopLatch();
6313 if (!Latch)
6314 return false;
6315
6316 BranchInst *LoopContinuePredicate =
6317 dyn_cast<BranchInst>(Latch->getTerminator());
6318 if (!LoopContinuePredicate ||
6319 LoopContinuePredicate->isUnconditional())
6320 return false;
6321
6322 return isImpliedCond(Pred, LHS, RHS,
6323 LoopContinuePredicate->getCondition(),
6324 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
6325 }
6326
6327 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6328 /// by a conditional between LHS and RHS. This is used to help avoid max
6329 /// expressions in loop trip counts, and to eliminate casts.
6330 bool
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)6331 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6332 ICmpInst::Predicate Pred,
6333 const SCEV *LHS, const SCEV *RHS) {
6334 // Interpret a null as meaning no loop, where there is obviously no guard
6335 // (interprocedural conditions notwithstanding).
6336 if (!L) return false;
6337
6338 // Starting at the loop predecessor, climb up the predecessor chain, as long
6339 // as there are predecessors that can be found that have unique successors
6340 // leading to the original header.
6341 for (std::pair<BasicBlock *, BasicBlock *>
6342 Pair(L->getLoopPredecessor(), L->getHeader());
6343 Pair.first;
6344 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6345
6346 BranchInst *LoopEntryPredicate =
6347 dyn_cast<BranchInst>(Pair.first->getTerminator());
6348 if (!LoopEntryPredicate ||
6349 LoopEntryPredicate->isUnconditional())
6350 continue;
6351
6352 if (isImpliedCond(Pred, LHS, RHS,
6353 LoopEntryPredicate->getCondition(),
6354 LoopEntryPredicate->getSuccessor(0) != Pair.second))
6355 return true;
6356 }
6357
6358 return false;
6359 }
6360
6361 /// RAII wrapper to prevent recursive application of isImpliedCond.
6362 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6363 /// currently evaluating isImpliedCond.
6364 struct MarkPendingLoopPredicate {
6365 Value *Cond;
6366 DenseSet<Value*> &LoopPreds;
6367 bool Pending;
6368
MarkPendingLoopPredicateMarkPendingLoopPredicate6369 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6370 : Cond(C), LoopPreds(LP) {
6371 Pending = !LoopPreds.insert(Cond).second;
6372 }
~MarkPendingLoopPredicateMarkPendingLoopPredicate6373 ~MarkPendingLoopPredicate() {
6374 if (!Pending)
6375 LoopPreds.erase(Cond);
6376 }
6377 };
6378
6379 /// isImpliedCond - Test whether the condition described by Pred, LHS,
6380 /// and RHS is true whenever the given Cond value evaluates to true.
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,Value * FoundCondValue,bool Inverse)6381 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6382 const SCEV *LHS, const SCEV *RHS,
6383 Value *FoundCondValue,
6384 bool Inverse) {
6385 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6386 if (Mark.Pending)
6387 return false;
6388
6389 // Recursively handle And and Or conditions.
6390 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6391 if (BO->getOpcode() == Instruction::And) {
6392 if (!Inverse)
6393 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6394 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6395 } else if (BO->getOpcode() == Instruction::Or) {
6396 if (Inverse)
6397 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6398 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6399 }
6400 }
6401
6402 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6403 if (!ICI) return false;
6404
6405 // Bail if the ICmp's operands' types are wider than the needed type
6406 // before attempting to call getSCEV on them. This avoids infinite
6407 // recursion, since the analysis of widening casts can require loop
6408 // exit condition information for overflow checking, which would
6409 // lead back here.
6410 if (getTypeSizeInBits(LHS->getType()) <
6411 getTypeSizeInBits(ICI->getOperand(0)->getType()))
6412 return false;
6413
6414 // Now that we found a conditional branch that dominates the loop or controls
6415 // the loop latch. Check to see if it is the comparison we are looking for.
6416 ICmpInst::Predicate FoundPred;
6417 if (Inverse)
6418 FoundPred = ICI->getInversePredicate();
6419 else
6420 FoundPred = ICI->getPredicate();
6421
6422 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6423 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6424
6425 // Balance the types. The case where FoundLHS' type is wider than
6426 // LHS' type is checked for above.
6427 if (getTypeSizeInBits(LHS->getType()) >
6428 getTypeSizeInBits(FoundLHS->getType())) {
6429 if (CmpInst::isSigned(FoundPred)) {
6430 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6431 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6432 } else {
6433 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6434 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6435 }
6436 }
6437
6438 // Canonicalize the query to match the way instcombine will have
6439 // canonicalized the comparison.
6440 if (SimplifyICmpOperands(Pred, LHS, RHS))
6441 if (LHS == RHS)
6442 return CmpInst::isTrueWhenEqual(Pred);
6443 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6444 if (FoundLHS == FoundRHS)
6445 return CmpInst::isFalseWhenEqual(FoundPred);
6446
6447 // Check to see if we can make the LHS or RHS match.
6448 if (LHS == FoundRHS || RHS == FoundLHS) {
6449 if (isa<SCEVConstant>(RHS)) {
6450 std::swap(FoundLHS, FoundRHS);
6451 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6452 } else {
6453 std::swap(LHS, RHS);
6454 Pred = ICmpInst::getSwappedPredicate(Pred);
6455 }
6456 }
6457
6458 // Check whether the found predicate is the same as the desired predicate.
6459 if (FoundPred == Pred)
6460 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6461
6462 // Check whether swapping the found predicate makes it the same as the
6463 // desired predicate.
6464 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6465 if (isa<SCEVConstant>(RHS))
6466 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6467 else
6468 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6469 RHS, LHS, FoundLHS, FoundRHS);
6470 }
6471
6472 // Check whether the actual condition is beyond sufficient.
6473 if (FoundPred == ICmpInst::ICMP_EQ)
6474 if (ICmpInst::isTrueWhenEqual(Pred))
6475 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6476 return true;
6477 if (Pred == ICmpInst::ICMP_NE)
6478 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6479 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6480 return true;
6481
6482 // Otherwise assume the worst.
6483 return false;
6484 }
6485
6486 /// isImpliedCondOperands - Test whether the condition described by Pred,
6487 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6488 /// and FoundRHS is true.
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)6489 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6490 const SCEV *LHS, const SCEV *RHS,
6491 const SCEV *FoundLHS,
6492 const SCEV *FoundRHS) {
6493 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6494 FoundLHS, FoundRHS) ||
6495 // ~x < ~y --> x > y
6496 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6497 getNotSCEV(FoundRHS),
6498 getNotSCEV(FoundLHS));
6499 }
6500
6501 /// isImpliedCondOperandsHelper - Test whether the condition described by
6502 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
6503 /// FoundLHS, and FoundRHS is true.
6504 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)6505 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6506 const SCEV *LHS, const SCEV *RHS,
6507 const SCEV *FoundLHS,
6508 const SCEV *FoundRHS) {
6509 switch (Pred) {
6510 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6511 case ICmpInst::ICMP_EQ:
6512 case ICmpInst::ICMP_NE:
6513 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6514 return true;
6515 break;
6516 case ICmpInst::ICMP_SLT:
6517 case ICmpInst::ICMP_SLE:
6518 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6519 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6520 return true;
6521 break;
6522 case ICmpInst::ICMP_SGT:
6523 case ICmpInst::ICMP_SGE:
6524 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6525 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6526 return true;
6527 break;
6528 case ICmpInst::ICMP_ULT:
6529 case ICmpInst::ICMP_ULE:
6530 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6531 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6532 return true;
6533 break;
6534 case ICmpInst::ICMP_UGT:
6535 case ICmpInst::ICMP_UGE:
6536 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6537 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6538 return true;
6539 break;
6540 }
6541
6542 return false;
6543 }
6544
6545 // Verify if an linear IV with positive stride can overflow when in a
6546 // less-than comparison, knowing the invariant term of the comparison, the
6547 // stride and the knowledge of NSW/NUW flags on the recurrence.
doesIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)6548 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6549 bool IsSigned, bool NoWrap) {
6550 if (NoWrap) return false;
6551
6552 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6553 const SCEV *One = getConstant(Stride->getType(), 1);
6554
6555 if (IsSigned) {
6556 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6557 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6558 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6559 .getSignedMax();
6560
6561 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6562 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
6563 }
6564
6565 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6566 APInt MaxValue = APInt::getMaxValue(BitWidth);
6567 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6568 .getUnsignedMax();
6569
6570 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6571 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6572 }
6573
6574 // Verify if an linear IV with negative stride can overflow when in a
6575 // greater-than comparison, knowing the invariant term of the comparison,
6576 // the stride and the knowledge of NSW/NUW flags on the recurrence.
doesIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)6577 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6578 bool IsSigned, bool NoWrap) {
6579 if (NoWrap) return false;
6580
6581 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6582 const SCEV *One = getConstant(Stride->getType(), 1);
6583
6584 if (IsSigned) {
6585 APInt MinRHS = getSignedRange(RHS).getSignedMin();
6586 APInt MinValue = APInt::getSignedMinValue(BitWidth);
6587 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6588 .getSignedMax();
6589
6590 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6591 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6592 }
6593
6594 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6595 APInt MinValue = APInt::getMinValue(BitWidth);
6596 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6597 .getUnsignedMax();
6598
6599 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6600 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6601 }
6602
6603 // Compute the backedge taken count knowing the interval difference, the
6604 // stride and presence of the equality in the comparison.
computeBECount(const SCEV * Delta,const SCEV * Step,bool Equality)6605 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6606 bool Equality) {
6607 const SCEV *One = getConstant(Step->getType(), 1);
6608 Delta = Equality ? getAddExpr(Delta, Step)
6609 : getAddExpr(Delta, getMinusSCEV(Step, One));
6610 return getUDivExpr(Delta, Step);
6611 }
6612
6613 /// HowManyLessThans - Return the number of times a backedge containing the
6614 /// specified less-than comparison will execute. If not computable, return
6615 /// CouldNotCompute.
6616 ///
6617 /// @param IsSubExpr is true when the LHS < RHS condition does not directly
6618 /// control the branch. In this case, we can only compute an iteration count for
6619 /// a subexpression that cannot overflow before evaluating true.
6620 ScalarEvolution::ExitLimit
HowManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool IsSubExpr)6621 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6622 const Loop *L, bool IsSigned,
6623 bool IsSubExpr) {
6624 // We handle only IV < Invariant
6625 if (!isLoopInvariant(RHS, L))
6626 return getCouldNotCompute();
6627
6628 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6629
6630 // Avoid weird loops
6631 if (!IV || IV->getLoop() != L || !IV->isAffine())
6632 return getCouldNotCompute();
6633
6634 bool NoWrap = !IsSubExpr &&
6635 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6636
6637 const SCEV *Stride = IV->getStepRecurrence(*this);
6638
6639 // Avoid negative or zero stride values
6640 if (!isKnownPositive(Stride))
6641 return getCouldNotCompute();
6642
6643 // Avoid proven overflow cases: this will ensure that the backedge taken count
6644 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6645 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6646 // behaviors like the case of C language.
6647 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6648 return getCouldNotCompute();
6649
6650 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6651 : ICmpInst::ICMP_ULT;
6652 const SCEV *Start = IV->getStart();
6653 const SCEV *End = RHS;
6654 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6655 End = IsSigned ? getSMaxExpr(RHS, Start)
6656 : getUMaxExpr(RHS, Start);
6657
6658 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
6659
6660 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6661 : getUnsignedRange(Start).getUnsignedMin();
6662
6663 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6664 : getUnsignedRange(Stride).getUnsignedMin();
6665
6666 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6667 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6668 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
6669
6670 // Although End can be a MAX expression we estimate MaxEnd considering only
6671 // the case End = RHS. This is safe because in the other case (End - Start)
6672 // is zero, leading to a zero maximum backedge taken count.
6673 APInt MaxEnd =
6674 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6675 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6676
6677 const SCEV *MaxBECount;
6678 if (isa<SCEVConstant>(BECount))
6679 MaxBECount = BECount;
6680 else
6681 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6682 getConstant(MinStride), false);
6683
6684 if (isa<SCEVCouldNotCompute>(MaxBECount))
6685 MaxBECount = BECount;
6686
6687 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
6688 }
6689
6690 ScalarEvolution::ExitLimit
HowManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool IsSubExpr)6691 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6692 const Loop *L, bool IsSigned,
6693 bool IsSubExpr) {
6694 // We handle only IV > Invariant
6695 if (!isLoopInvariant(RHS, L))
6696 return getCouldNotCompute();
6697
6698 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6699
6700 // Avoid weird loops
6701 if (!IV || IV->getLoop() != L || !IV->isAffine())
6702 return getCouldNotCompute();
6703
6704 bool NoWrap = !IsSubExpr &&
6705 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6706
6707 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6708
6709 // Avoid negative or zero stride values
6710 if (!isKnownPositive(Stride))
6711 return getCouldNotCompute();
6712
6713 // Avoid proven overflow cases: this will ensure that the backedge taken count
6714 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6715 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6716 // behaviors like the case of C language.
6717 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6718 return getCouldNotCompute();
6719
6720 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6721 : ICmpInst::ICMP_UGT;
6722
6723 const SCEV *Start = IV->getStart();
6724 const SCEV *End = RHS;
6725 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6726 End = IsSigned ? getSMinExpr(RHS, Start)
6727 : getUMinExpr(RHS, Start);
6728
6729 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6730
6731 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6732 : getUnsignedRange(Start).getUnsignedMax();
6733
6734 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6735 : getUnsignedRange(Stride).getUnsignedMin();
6736
6737 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6738 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6739 : APInt::getMinValue(BitWidth) + (MinStride - 1);
6740
6741 // Although End can be a MIN expression we estimate MinEnd considering only
6742 // the case End = RHS. This is safe because in the other case (Start - End)
6743 // is zero, leading to a zero maximum backedge taken count.
6744 APInt MinEnd =
6745 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6746 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6747
6748
6749 const SCEV *MaxBECount = getCouldNotCompute();
6750 if (isa<SCEVConstant>(BECount))
6751 MaxBECount = BECount;
6752 else
6753 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6754 getConstant(MinStride), false);
6755
6756 if (isa<SCEVCouldNotCompute>(MaxBECount))
6757 MaxBECount = BECount;
6758
6759 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
6760 }
6761
6762 /// getNumIterationsInRange - Return the number of iterations of this loop that
6763 /// produce values in the specified constant range. Another way of looking at
6764 /// this is that it returns the first iteration number where the value is not in
6765 /// the condition, thus computing the exit count. If the iteration count can't
6766 /// be computed, an instance of SCEVCouldNotCompute is returned.
getNumIterationsInRange(ConstantRange Range,ScalarEvolution & SE) const6767 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6768 ScalarEvolution &SE) const {
6769 if (Range.isFullSet()) // Infinite loop.
6770 return SE.getCouldNotCompute();
6771
6772 // If the start is a non-zero constant, shift the range to simplify things.
6773 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6774 if (!SC->getValue()->isZero()) {
6775 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6776 Operands[0] = SE.getConstant(SC->getType(), 0);
6777 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6778 getNoWrapFlags(FlagNW));
6779 if (const SCEVAddRecExpr *ShiftedAddRec =
6780 dyn_cast<SCEVAddRecExpr>(Shifted))
6781 return ShiftedAddRec->getNumIterationsInRange(
6782 Range.subtract(SC->getValue()->getValue()), SE);
6783 // This is strange and shouldn't happen.
6784 return SE.getCouldNotCompute();
6785 }
6786
6787 // The only time we can solve this is when we have all constant indices.
6788 // Otherwise, we cannot determine the overflow conditions.
6789 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6790 if (!isa<SCEVConstant>(getOperand(i)))
6791 return SE.getCouldNotCompute();
6792
6793
6794 // Okay at this point we know that all elements of the chrec are constants and
6795 // that the start element is zero.
6796
6797 // First check to see if the range contains zero. If not, the first
6798 // iteration exits.
6799 unsigned BitWidth = SE.getTypeSizeInBits(getType());
6800 if (!Range.contains(APInt(BitWidth, 0)))
6801 return SE.getConstant(getType(), 0);
6802
6803 if (isAffine()) {
6804 // If this is an affine expression then we have this situation:
6805 // Solve {0,+,A} in Range === Ax in Range
6806
6807 // We know that zero is in the range. If A is positive then we know that
6808 // the upper value of the range must be the first possible exit value.
6809 // If A is negative then the lower of the range is the last possible loop
6810 // value. Also note that we already checked for a full range.
6811 APInt One(BitWidth,1);
6812 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6813 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6814
6815 // The exit value should be (End+A)/A.
6816 APInt ExitVal = (End + A).udiv(A);
6817 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6818
6819 // Evaluate at the exit value. If we really did fall out of the valid
6820 // range, then we computed our trip count, otherwise wrap around or other
6821 // things must have happened.
6822 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6823 if (Range.contains(Val->getValue()))
6824 return SE.getCouldNotCompute(); // Something strange happened
6825
6826 // Ensure that the previous value is in the range. This is a sanity check.
6827 assert(Range.contains(
6828 EvaluateConstantChrecAtConstant(this,
6829 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6830 "Linear scev computation is off in a bad way!");
6831 return SE.getConstant(ExitValue);
6832 } else if (isQuadratic()) {
6833 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6834 // quadratic equation to solve it. To do this, we must frame our problem in
6835 // terms of figuring out when zero is crossed, instead of when
6836 // Range.getUpper() is crossed.
6837 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6838 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6839 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6840 // getNoWrapFlags(FlagNW)
6841 FlagAnyWrap);
6842
6843 // Next, solve the constructed addrec
6844 std::pair<const SCEV *,const SCEV *> Roots =
6845 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6846 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6847 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6848 if (R1) {
6849 // Pick the smallest positive root value.
6850 if (ConstantInt *CB =
6851 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6852 R1->getValue(), R2->getValue()))) {
6853 if (CB->getZExtValue() == false)
6854 std::swap(R1, R2); // R1 is the minimum root now.
6855
6856 // Make sure the root is not off by one. The returned iteration should
6857 // not be in the range, but the previous one should be. When solving
6858 // for "X*X < 5", for example, we should not return a root of 2.
6859 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6860 R1->getValue(),
6861 SE);
6862 if (Range.contains(R1Val->getValue())) {
6863 // The next iteration must be out of the range...
6864 ConstantInt *NextVal =
6865 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6866
6867 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6868 if (!Range.contains(R1Val->getValue()))
6869 return SE.getConstant(NextVal);
6870 return SE.getCouldNotCompute(); // Something strange happened
6871 }
6872
6873 // If R1 was not in the range, then it is a good return value. Make
6874 // sure that R1-1 WAS in the range though, just in case.
6875 ConstantInt *NextVal =
6876 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6877 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6878 if (Range.contains(R1Val->getValue()))
6879 return R1;
6880 return SE.getCouldNotCompute(); // Something strange happened
6881 }
6882 }
6883 }
6884
6885 return SE.getCouldNotCompute();
6886 }
6887
6888 namespace {
6889 struct FindUndefs {
6890 bool Found;
FindUndefs__anona55b42970411::FindUndefs6891 FindUndefs() : Found(false) {}
6892
follow__anona55b42970411::FindUndefs6893 bool follow(const SCEV *S) {
6894 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
6895 if (isa<UndefValue>(C->getValue()))
6896 Found = true;
6897 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6898 if (isa<UndefValue>(C->getValue()))
6899 Found = true;
6900 }
6901
6902 // Keep looking if we haven't found it yet.
6903 return !Found;
6904 }
isDone__anona55b42970411::FindUndefs6905 bool isDone() const {
6906 // Stop recursion if we have found an undef.
6907 return Found;
6908 }
6909 };
6910 }
6911
6912 // Return true when S contains at least an undef value.
6913 static inline bool
containsUndefs(const SCEV * S)6914 containsUndefs(const SCEV *S) {
6915 FindUndefs F;
6916 SCEVTraversal<FindUndefs> ST(F);
6917 ST.visitAll(S);
6918
6919 return F.Found;
6920 }
6921
6922 namespace {
6923 // Collect all steps of SCEV expressions.
6924 struct SCEVCollectStrides {
6925 ScalarEvolution &SE;
6926 SmallVectorImpl<const SCEV *> &Strides;
6927
SCEVCollectStrides__anona55b42970511::SCEVCollectStrides6928 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
6929 : SE(SE), Strides(S) {}
6930
follow__anona55b42970511::SCEVCollectStrides6931 bool follow(const SCEV *S) {
6932 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
6933 Strides.push_back(AR->getStepRecurrence(SE));
6934 return true;
6935 }
isDone__anona55b42970511::SCEVCollectStrides6936 bool isDone() const { return false; }
6937 };
6938
6939 // Collect all SCEVUnknown and SCEVMulExpr expressions.
6940 struct SCEVCollectTerms {
6941 SmallVectorImpl<const SCEV *> &Terms;
6942
SCEVCollectTerms__anona55b42970511::SCEVCollectTerms6943 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
6944 : Terms(T) {}
6945
follow__anona55b42970511::SCEVCollectTerms6946 bool follow(const SCEV *S) {
6947 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
6948 if (!containsUndefs(S))
6949 Terms.push_back(S);
6950
6951 // Stop recursion: once we collected a term, do not walk its operands.
6952 return false;
6953 }
6954
6955 // Keep looking.
6956 return true;
6957 }
isDone__anona55b42970511::SCEVCollectTerms6958 bool isDone() const { return false; }
6959 };
6960 }
6961
6962 /// Find parametric terms in this SCEVAddRecExpr.
collectParametricTerms(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms) const6963 void SCEVAddRecExpr::collectParametricTerms(
6964 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
6965 SmallVector<const SCEV *, 4> Strides;
6966 SCEVCollectStrides StrideCollector(SE, Strides);
6967 visitAll(this, StrideCollector);
6968
6969 DEBUG({
6970 dbgs() << "Strides:\n";
6971 for (const SCEV *S : Strides)
6972 dbgs() << *S << "\n";
6973 });
6974
6975 for (const SCEV *S : Strides) {
6976 SCEVCollectTerms TermCollector(Terms);
6977 visitAll(S, TermCollector);
6978 }
6979
6980 DEBUG({
6981 dbgs() << "Terms:\n";
6982 for (const SCEV *T : Terms)
6983 dbgs() << *T << "\n";
6984 });
6985 }
6986
srem(const SCEVConstant * C1,const SCEVConstant * C2)6987 static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
6988 APInt A = C1->getValue()->getValue();
6989 APInt B = C2->getValue()->getValue();
6990 uint32_t ABW = A.getBitWidth();
6991 uint32_t BBW = B.getBitWidth();
6992
6993 if (ABW > BBW)
6994 B = B.sext(ABW);
6995 else if (ABW < BBW)
6996 A = A.sext(BBW);
6997
6998 return APIntOps::srem(A, B);
6999 }
7000
sdiv(const SCEVConstant * C1,const SCEVConstant * C2)7001 static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
7002 APInt A = C1->getValue()->getValue();
7003 APInt B = C2->getValue()->getValue();
7004 uint32_t ABW = A.getBitWidth();
7005 uint32_t BBW = B.getBitWidth();
7006
7007 if (ABW > BBW)
7008 B = B.sext(ABW);
7009 else if (ABW < BBW)
7010 A = A.sext(BBW);
7011
7012 return APIntOps::sdiv(A, B);
7013 }
7014
7015 namespace {
7016 struct FindSCEVSize {
7017 int Size;
FindSCEVSize__anona55b42970611::FindSCEVSize7018 FindSCEVSize() : Size(0) {}
7019
follow__anona55b42970611::FindSCEVSize7020 bool follow(const SCEV *S) {
7021 ++Size;
7022 // Keep looking at all operands of S.
7023 return true;
7024 }
isDone__anona55b42970611::FindSCEVSize7025 bool isDone() const {
7026 return false;
7027 }
7028 };
7029 }
7030
7031 // Returns the size of the SCEV S.
sizeOfSCEV(const SCEV * S)7032 static inline int sizeOfSCEV(const SCEV *S) {
7033 FindSCEVSize F;
7034 SCEVTraversal<FindSCEVSize> ST(F);
7035 ST.visitAll(S);
7036 return F.Size;
7037 }
7038
7039 namespace {
7040
7041 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
7042 public:
7043 // Computes the Quotient and Remainder of the division of Numerator by
7044 // Denominator.
divide__anona55b42970711::SCEVDivision7045 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
7046 const SCEV *Denominator, const SCEV **Quotient,
7047 const SCEV **Remainder) {
7048 assert(Numerator && Denominator && "Uninitialized SCEV");
7049
7050 SCEVDivision D(SE, Numerator, Denominator);
7051
7052 // Check for the trivial case here to avoid having to check for it in the
7053 // rest of the code.
7054 if (Numerator == Denominator) {
7055 *Quotient = D.One;
7056 *Remainder = D.Zero;
7057 return;
7058 }
7059
7060 if (Numerator->isZero()) {
7061 *Quotient = D.Zero;
7062 *Remainder = D.Zero;
7063 return;
7064 }
7065
7066 // Split the Denominator when it is a product.
7067 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
7068 const SCEV *Q, *R;
7069 *Quotient = Numerator;
7070 for (const SCEV *Op : T->operands()) {
7071 divide(SE, *Quotient, Op, &Q, &R);
7072 *Quotient = Q;
7073
7074 // Bail out when the Numerator is not divisible by one of the terms of
7075 // the Denominator.
7076 if (!R->isZero()) {
7077 *Quotient = D.Zero;
7078 *Remainder = Numerator;
7079 return;
7080 }
7081 }
7082 *Remainder = D.Zero;
7083 return;
7084 }
7085
7086 D.visit(Numerator);
7087 *Quotient = D.Quotient;
7088 *Remainder = D.Remainder;
7089 }
7090
SCEVDivision__anona55b42970711::SCEVDivision7091 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
7092 : SE(S), Denominator(Denominator) {
7093 Zero = SE.getConstant(Denominator->getType(), 0);
7094 One = SE.getConstant(Denominator->getType(), 1);
7095
7096 // By default, we don't know how to divide Expr by Denominator.
7097 // Providing the default here simplifies the rest of the code.
7098 Quotient = Zero;
7099 Remainder = Numerator;
7100 }
7101
7102 // Except in the trivial case described above, we do not know how to divide
7103 // Expr by Denominator for the following functions with empty implementation.
visitTruncateExpr__anona55b42970711::SCEVDivision7104 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
visitZeroExtendExpr__anona55b42970711::SCEVDivision7105 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
visitSignExtendExpr__anona55b42970711::SCEVDivision7106 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
visitUDivExpr__anona55b42970711::SCEVDivision7107 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
visitSMaxExpr__anona55b42970711::SCEVDivision7108 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
visitUMaxExpr__anona55b42970711::SCEVDivision7109 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
visitUnknown__anona55b42970711::SCEVDivision7110 void visitUnknown(const SCEVUnknown *Numerator) {}
visitCouldNotCompute__anona55b42970711::SCEVDivision7111 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
7112
visitConstant__anona55b42970711::SCEVDivision7113 void visitConstant(const SCEVConstant *Numerator) {
7114 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
7115 Quotient = SE.getConstant(sdiv(Numerator, D));
7116 Remainder = SE.getConstant(srem(Numerator, D));
7117 return;
7118 }
7119 }
7120
visitAddRecExpr__anona55b42970711::SCEVDivision7121 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
7122 const SCEV *StartQ, *StartR, *StepQ, *StepR;
7123 assert(Numerator->isAffine() && "Numerator should be affine");
7124 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
7125 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
7126 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
7127 Numerator->getNoWrapFlags());
7128 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
7129 Numerator->getNoWrapFlags());
7130 }
7131
visitAddExpr__anona55b42970711::SCEVDivision7132 void visitAddExpr(const SCEVAddExpr *Numerator) {
7133 SmallVector<const SCEV *, 2> Qs, Rs;
7134 Type *Ty = Denominator->getType();
7135
7136 for (const SCEV *Op : Numerator->operands()) {
7137 const SCEV *Q, *R;
7138 divide(SE, Op, Denominator, &Q, &R);
7139
7140 // Bail out if types do not match.
7141 if (Ty != Q->getType() || Ty != R->getType()) {
7142 Quotient = Zero;
7143 Remainder = Numerator;
7144 return;
7145 }
7146
7147 Qs.push_back(Q);
7148 Rs.push_back(R);
7149 }
7150
7151 if (Qs.size() == 1) {
7152 Quotient = Qs[0];
7153 Remainder = Rs[0];
7154 return;
7155 }
7156
7157 Quotient = SE.getAddExpr(Qs);
7158 Remainder = SE.getAddExpr(Rs);
7159 }
7160
visitMulExpr__anona55b42970711::SCEVDivision7161 void visitMulExpr(const SCEVMulExpr *Numerator) {
7162 SmallVector<const SCEV *, 2> Qs;
7163 Type *Ty = Denominator->getType();
7164
7165 bool FoundDenominatorTerm = false;
7166 for (const SCEV *Op : Numerator->operands()) {
7167 // Bail out if types do not match.
7168 if (Ty != Op->getType()) {
7169 Quotient = Zero;
7170 Remainder = Numerator;
7171 return;
7172 }
7173
7174 if (FoundDenominatorTerm) {
7175 Qs.push_back(Op);
7176 continue;
7177 }
7178
7179 // Check whether Denominator divides one of the product operands.
7180 const SCEV *Q, *R;
7181 divide(SE, Op, Denominator, &Q, &R);
7182 if (!R->isZero()) {
7183 Qs.push_back(Op);
7184 continue;
7185 }
7186
7187 // Bail out if types do not match.
7188 if (Ty != Q->getType()) {
7189 Quotient = Zero;
7190 Remainder = Numerator;
7191 return;
7192 }
7193
7194 FoundDenominatorTerm = true;
7195 Qs.push_back(Q);
7196 }
7197
7198 if (FoundDenominatorTerm) {
7199 Remainder = Zero;
7200 if (Qs.size() == 1)
7201 Quotient = Qs[0];
7202 else
7203 Quotient = SE.getMulExpr(Qs);
7204 return;
7205 }
7206
7207 if (!isa<SCEVUnknown>(Denominator)) {
7208 Quotient = Zero;
7209 Remainder = Numerator;
7210 return;
7211 }
7212
7213 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
7214 ValueToValueMap RewriteMap;
7215 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
7216 cast<SCEVConstant>(Zero)->getValue();
7217 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
7218
7219 if (Remainder->isZero()) {
7220 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
7221 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
7222 cast<SCEVConstant>(One)->getValue();
7223 Quotient =
7224 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
7225 return;
7226 }
7227
7228 // Quotient is (Numerator - Remainder) divided by Denominator.
7229 const SCEV *Q, *R;
7230 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
7231 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
7232 // This SCEV does not seem to simplify: fail the division here.
7233 Quotient = Zero;
7234 Remainder = Numerator;
7235 return;
7236 }
7237 divide(SE, Diff, Denominator, &Q, &R);
7238 assert(R == Zero &&
7239 "(Numerator - Remainder) should evenly divide Denominator");
7240 Quotient = Q;
7241 }
7242
7243 private:
7244 ScalarEvolution &SE;
7245 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
7246 };
7247 }
7248
findArrayDimensionsRec(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes)7249 static bool findArrayDimensionsRec(ScalarEvolution &SE,
7250 SmallVectorImpl<const SCEV *> &Terms,
7251 SmallVectorImpl<const SCEV *> &Sizes) {
7252 int Last = Terms.size() - 1;
7253 const SCEV *Step = Terms[Last];
7254
7255 // End of recursion.
7256 if (Last == 0) {
7257 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
7258 SmallVector<const SCEV *, 2> Qs;
7259 for (const SCEV *Op : M->operands())
7260 if (!isa<SCEVConstant>(Op))
7261 Qs.push_back(Op);
7262
7263 Step = SE.getMulExpr(Qs);
7264 }
7265
7266 Sizes.push_back(Step);
7267 return true;
7268 }
7269
7270 for (const SCEV *&Term : Terms) {
7271 // Normalize the terms before the next call to findArrayDimensionsRec.
7272 const SCEV *Q, *R;
7273 SCEVDivision::divide(SE, Term, Step, &Q, &R);
7274
7275 // Bail out when GCD does not evenly divide one of the terms.
7276 if (!R->isZero())
7277 return false;
7278
7279 Term = Q;
7280 }
7281
7282 // Remove all SCEVConstants.
7283 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7284 return isa<SCEVConstant>(E);
7285 }),
7286 Terms.end());
7287
7288 if (Terms.size() > 0)
7289 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7290 return false;
7291
7292 Sizes.push_back(Step);
7293 return true;
7294 }
7295
7296 namespace {
7297 struct FindParameter {
7298 bool FoundParameter;
FindParameter__anona55b42970911::FindParameter7299 FindParameter() : FoundParameter(false) {}
7300
follow__anona55b42970911::FindParameter7301 bool follow(const SCEV *S) {
7302 if (isa<SCEVUnknown>(S)) {
7303 FoundParameter = true;
7304 // Stop recursion: we found a parameter.
7305 return false;
7306 }
7307 // Keep looking.
7308 return true;
7309 }
isDone__anona55b42970911::FindParameter7310 bool isDone() const {
7311 // Stop recursion if we have found a parameter.
7312 return FoundParameter;
7313 }
7314 };
7315 }
7316
7317 // Returns true when S contains at least a SCEVUnknown parameter.
7318 static inline bool
containsParameters(const SCEV * S)7319 containsParameters(const SCEV *S) {
7320 FindParameter F;
7321 SCEVTraversal<FindParameter> ST(F);
7322 ST.visitAll(S);
7323
7324 return F.FoundParameter;
7325 }
7326
7327 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7328 static inline bool
containsParameters(SmallVectorImpl<const SCEV * > & Terms)7329 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7330 for (const SCEV *T : Terms)
7331 if (containsParameters(T))
7332 return true;
7333 return false;
7334 }
7335
7336 // Return the number of product terms in S.
numberOfTerms(const SCEV * S)7337 static inline int numberOfTerms(const SCEV *S) {
7338 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7339 return Expr->getNumOperands();
7340 return 1;
7341 }
7342
removeConstantFactors(ScalarEvolution & SE,const SCEV * T)7343 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7344 if (isa<SCEVConstant>(T))
7345 return nullptr;
7346
7347 if (isa<SCEVUnknown>(T))
7348 return T;
7349
7350 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7351 SmallVector<const SCEV *, 2> Factors;
7352 for (const SCEV *Op : M->operands())
7353 if (!isa<SCEVConstant>(Op))
7354 Factors.push_back(Op);
7355
7356 return SE.getMulExpr(Factors);
7357 }
7358
7359 return T;
7360 }
7361
7362 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)7363 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7364 Type *Ty;
7365 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7366 Ty = Store->getValueOperand()->getType();
7367 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
7368 Ty = Load->getType();
7369 else
7370 return nullptr;
7371
7372 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7373 return getSizeOfExpr(ETy, Ty);
7374 }
7375
7376 /// Second step of delinearization: compute the array dimensions Sizes from the
7377 /// set of Terms extracted from the memory access function of this SCEVAddRec.
findArrayDimensions(SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize) const7378 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7379 SmallVectorImpl<const SCEV *> &Sizes,
7380 const SCEV *ElementSize) const {
7381
7382 if (Terms.size() < 1 || !ElementSize)
7383 return;
7384
7385 // Early return when Terms do not contain parameters: we do not delinearize
7386 // non parametric SCEVs.
7387 if (!containsParameters(Terms))
7388 return;
7389
7390 DEBUG({
7391 dbgs() << "Terms:\n";
7392 for (const SCEV *T : Terms)
7393 dbgs() << *T << "\n";
7394 });
7395
7396 // Remove duplicates.
7397 std::sort(Terms.begin(), Terms.end());
7398 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7399
7400 // Put larger terms first.
7401 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7402 return numberOfTerms(LHS) > numberOfTerms(RHS);
7403 });
7404
7405 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7406
7407 // Divide all terms by the element size.
7408 for (const SCEV *&Term : Terms) {
7409 const SCEV *Q, *R;
7410 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
7411 Term = Q;
7412 }
7413
7414 SmallVector<const SCEV *, 4> NewTerms;
7415
7416 // Remove constant factors.
7417 for (const SCEV *T : Terms)
7418 if (const SCEV *NewT = removeConstantFactors(SE, T))
7419 NewTerms.push_back(NewT);
7420
7421 DEBUG({
7422 dbgs() << "Terms after sorting:\n";
7423 for (const SCEV *T : NewTerms)
7424 dbgs() << *T << "\n";
7425 });
7426
7427 if (NewTerms.empty() ||
7428 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
7429 Sizes.clear();
7430 return;
7431 }
7432
7433 // The last element to be pushed into Sizes is the size of an element.
7434 Sizes.push_back(ElementSize);
7435
7436 DEBUG({
7437 dbgs() << "Sizes:\n";
7438 for (const SCEV *S : Sizes)
7439 dbgs() << *S << "\n";
7440 });
7441 }
7442
7443 /// Third step of delinearization: compute the access functions for the
7444 /// Subscripts based on the dimensions in Sizes.
computeAccessFunctions(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes) const7445 void SCEVAddRecExpr::computeAccessFunctions(
7446 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7447 SmallVectorImpl<const SCEV *> &Sizes) const {
7448
7449 // Early exit in case this SCEV is not an affine multivariate function.
7450 if (Sizes.empty() || !this->isAffine())
7451 return;
7452
7453 const SCEV *Res = this;
7454 int Last = Sizes.size() - 1;
7455 for (int i = Last; i >= 0; i--) {
7456 const SCEV *Q, *R;
7457 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7458
7459 DEBUG({
7460 dbgs() << "Res: " << *Res << "\n";
7461 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7462 dbgs() << "Res divided by Sizes[i]:\n";
7463 dbgs() << "Quotient: " << *Q << "\n";
7464 dbgs() << "Remainder: " << *R << "\n";
7465 });
7466
7467 Res = Q;
7468
7469 // Do not record the last subscript corresponding to the size of elements in
7470 // the array.
7471 if (i == Last) {
7472
7473 // Bail out if the remainder is too complex.
7474 if (isa<SCEVAddRecExpr>(R)) {
7475 Subscripts.clear();
7476 Sizes.clear();
7477 return;
7478 }
7479
7480 continue;
7481 }
7482
7483 // Record the access function for the current subscript.
7484 Subscripts.push_back(R);
7485 }
7486
7487 // Also push in last position the remainder of the last division: it will be
7488 // the access function of the innermost dimension.
7489 Subscripts.push_back(Res);
7490
7491 std::reverse(Subscripts.begin(), Subscripts.end());
7492
7493 DEBUG({
7494 dbgs() << "Subscripts:\n";
7495 for (const SCEV *S : Subscripts)
7496 dbgs() << *S << "\n";
7497 });
7498 }
7499
7500 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7501 /// sizes of an array access. Returns the remainder of the delinearization that
7502 /// is the offset start of the array. The SCEV->delinearize algorithm computes
7503 /// the multiples of SCEV coefficients: that is a pattern matching of sub
7504 /// expressions in the stride and base of a SCEV corresponding to the
7505 /// computation of a GCD (greatest common divisor) of base and stride. When
7506 /// SCEV->delinearize fails, it returns the SCEV unchanged.
7507 ///
7508 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
7509 ///
7510 /// void foo(long n, long m, long o, double A[n][m][o]) {
7511 ///
7512 /// for (long i = 0; i < n; i++)
7513 /// for (long j = 0; j < m; j++)
7514 /// for (long k = 0; k < o; k++)
7515 /// A[i][j][k] = 1.0;
7516 /// }
7517 ///
7518 /// the delinearization input is the following AddRec SCEV:
7519 ///
7520 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7521 ///
7522 /// From this SCEV, we are able to say that the base offset of the access is %A
7523 /// because it appears as an offset that does not divide any of the strides in
7524 /// the loops:
7525 ///
7526 /// CHECK: Base offset: %A
7527 ///
7528 /// and then SCEV->delinearize determines the size of some of the dimensions of
7529 /// the array as these are the multiples by which the strides are happening:
7530 ///
7531 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7532 ///
7533 /// Note that the outermost dimension remains of UnknownSize because there are
7534 /// no strides that would help identifying the size of the last dimension: when
7535 /// the array has been statically allocated, one could compute the size of that
7536 /// dimension by dividing the overall size of the array by the size of the known
7537 /// dimensions: %m * %o * 8.
7538 ///
7539 /// Finally delinearize provides the access functions for the array reference
7540 /// that does correspond to A[i][j][k] of the above C testcase:
7541 ///
7542 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7543 ///
7544 /// The testcases are checking the output of a function pass:
7545 /// DelinearizationPass that walks through all loads and stores of a function
7546 /// asking for the SCEV of the memory access with respect to all enclosing
7547 /// loops, calling SCEV->delinearize on that and printing the results.
7548
delinearize(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize) const7549 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7550 SmallVectorImpl<const SCEV *> &Subscripts,
7551 SmallVectorImpl<const SCEV *> &Sizes,
7552 const SCEV *ElementSize) const {
7553 // First step: collect parametric terms.
7554 SmallVector<const SCEV *, 4> Terms;
7555 collectParametricTerms(SE, Terms);
7556
7557 if (Terms.empty())
7558 return;
7559
7560 // Second step: find subscript sizes.
7561 SE.findArrayDimensions(Terms, Sizes, ElementSize);
7562
7563 if (Sizes.empty())
7564 return;
7565
7566 // Third step: compute the access functions for each subscript.
7567 computeAccessFunctions(SE, Subscripts, Sizes);
7568
7569 if (Subscripts.empty())
7570 return;
7571
7572 DEBUG({
7573 dbgs() << "succeeded to delinearize " << *this << "\n";
7574 dbgs() << "ArrayDecl[UnknownSize]";
7575 for (const SCEV *S : Sizes)
7576 dbgs() << "[" << *S << "]";
7577
7578 dbgs() << "\nArrayRef";
7579 for (const SCEV *S : Subscripts)
7580 dbgs() << "[" << *S << "]";
7581 dbgs() << "\n";
7582 });
7583 }
7584
7585 //===----------------------------------------------------------------------===//
7586 // SCEVCallbackVH Class Implementation
7587 //===----------------------------------------------------------------------===//
7588
deleted()7589 void ScalarEvolution::SCEVCallbackVH::deleted() {
7590 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7591 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7592 SE->ConstantEvolutionLoopExitValue.erase(PN);
7593 SE->ValueExprMap.erase(getValPtr());
7594 // this now dangles!
7595 }
7596
allUsesReplacedWith(Value * V)7597 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
7598 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7599
7600 // Forget all the expressions associated with users of the old value,
7601 // so that future queries will recompute the expressions using the new
7602 // value.
7603 Value *Old = getValPtr();
7604 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
7605 SmallPtrSet<User *, 8> Visited;
7606 while (!Worklist.empty()) {
7607 User *U = Worklist.pop_back_val();
7608 // Deleting the Old value will cause this to dangle. Postpone
7609 // that until everything else is done.
7610 if (U == Old)
7611 continue;
7612 if (!Visited.insert(U))
7613 continue;
7614 if (PHINode *PN = dyn_cast<PHINode>(U))
7615 SE->ConstantEvolutionLoopExitValue.erase(PN);
7616 SE->ValueExprMap.erase(U);
7617 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
7618 }
7619 // Delete the Old value.
7620 if (PHINode *PN = dyn_cast<PHINode>(Old))
7621 SE->ConstantEvolutionLoopExitValue.erase(PN);
7622 SE->ValueExprMap.erase(Old);
7623 // this now dangles!
7624 }
7625
SCEVCallbackVH(Value * V,ScalarEvolution * se)7626 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
7627 : CallbackVH(V), SE(se) {}
7628
7629 //===----------------------------------------------------------------------===//
7630 // ScalarEvolution Class Implementation
7631 //===----------------------------------------------------------------------===//
7632
ScalarEvolution()7633 ScalarEvolution::ScalarEvolution()
7634 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7635 BlockDispositions(64), FirstUnknown(nullptr) {
7636 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
7637 }
7638
runOnFunction(Function & F)7639 bool ScalarEvolution::runOnFunction(Function &F) {
7640 this->F = &F;
7641 LI = &getAnalysis<LoopInfo>();
7642 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
7643 DL = DLP ? &DLP->getDataLayout() : nullptr;
7644 TLI = &getAnalysis<TargetLibraryInfo>();
7645 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7646 return false;
7647 }
7648
releaseMemory()7649 void ScalarEvolution::releaseMemory() {
7650 // Iterate through all the SCEVUnknown instances and call their
7651 // destructors, so that they release their references to their values.
7652 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7653 U->~SCEVUnknown();
7654 FirstUnknown = nullptr;
7655
7656 ValueExprMap.clear();
7657
7658 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7659 // that a loop had multiple computable exits.
7660 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7661 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7662 I != E; ++I) {
7663 I->second.clear();
7664 }
7665
7666 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7667
7668 BackedgeTakenCounts.clear();
7669 ConstantEvolutionLoopExitValue.clear();
7670 ValuesAtScopes.clear();
7671 LoopDispositions.clear();
7672 BlockDispositions.clear();
7673 UnsignedRanges.clear();
7674 SignedRanges.clear();
7675 UniqueSCEVs.clear();
7676 SCEVAllocator.Reset();
7677 }
7678
getAnalysisUsage(AnalysisUsage & AU) const7679 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7680 AU.setPreservesAll();
7681 AU.addRequiredTransitive<LoopInfo>();
7682 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
7683 AU.addRequired<TargetLibraryInfo>();
7684 }
7685
hasLoopInvariantBackedgeTakenCount(const Loop * L)7686 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
7687 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
7688 }
7689
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)7690 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
7691 const Loop *L) {
7692 // Print all inner loops first
7693 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7694 PrintLoopInfo(OS, SE, *I);
7695
7696 OS << "Loop ";
7697 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
7698 OS << ": ";
7699
7700 SmallVector<BasicBlock *, 8> ExitBlocks;
7701 L->getExitBlocks(ExitBlocks);
7702 if (ExitBlocks.size() != 1)
7703 OS << "<multiple exits> ";
7704
7705 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7706 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
7707 } else {
7708 OS << "Unpredictable backedge-taken count. ";
7709 }
7710
7711 OS << "\n"
7712 "Loop ";
7713 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
7714 OS << ": ";
7715
7716 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7717 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7718 } else {
7719 OS << "Unpredictable max backedge-taken count. ";
7720 }
7721
7722 OS << "\n";
7723 }
7724
print(raw_ostream & OS,const Module *) const7725 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
7726 // ScalarEvolution's implementation of the print method is to print
7727 // out SCEV values of all instructions that are interesting. Doing
7728 // this potentially causes it to create new SCEV objects though,
7729 // which technically conflicts with the const qualifier. This isn't
7730 // observable from outside the class though, so casting away the
7731 // const isn't dangerous.
7732 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7733
7734 OS << "Classifying expressions for: ";
7735 F->printAsOperand(OS, /*PrintType=*/false);
7736 OS << "\n";
7737 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
7738 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
7739 OS << *I << '\n';
7740 OS << " --> ";
7741 const SCEV *SV = SE.getSCEV(&*I);
7742 SV->print(OS);
7743
7744 const Loop *L = LI->getLoopFor((*I).getParent());
7745
7746 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
7747 if (AtUse != SV) {
7748 OS << " --> ";
7749 AtUse->print(OS);
7750 }
7751
7752 if (L) {
7753 OS << "\t\t" "Exits: ";
7754 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
7755 if (!SE.isLoopInvariant(ExitValue, L)) {
7756 OS << "<<Unknown>>";
7757 } else {
7758 OS << *ExitValue;
7759 }
7760 }
7761
7762 OS << "\n";
7763 }
7764
7765 OS << "Determining loop execution counts for: ";
7766 F->printAsOperand(OS, /*PrintType=*/false);
7767 OS << "\n";
7768 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7769 PrintLoopInfo(OS, &SE, *I);
7770 }
7771
7772 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)7773 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
7774 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7775 for (unsigned u = 0; u < Values.size(); u++) {
7776 if (Values[u].first == L)
7777 return Values[u].second;
7778 }
7779 Values.push_back(std::make_pair(L, LoopVariant));
7780 LoopDisposition D = computeLoopDisposition(S, L);
7781 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7782 for (unsigned u = Values2.size(); u > 0; u--) {
7783 if (Values2[u - 1].first == L) {
7784 Values2[u - 1].second = D;
7785 break;
7786 }
7787 }
7788 return D;
7789 }
7790
7791 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)7792 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
7793 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
7794 case scConstant:
7795 return LoopInvariant;
7796 case scTruncate:
7797 case scZeroExtend:
7798 case scSignExtend:
7799 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
7800 case scAddRecExpr: {
7801 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7802
7803 // If L is the addrec's loop, it's computable.
7804 if (AR->getLoop() == L)
7805 return LoopComputable;
7806
7807 // Add recurrences are never invariant in the function-body (null loop).
7808 if (!L)
7809 return LoopVariant;
7810
7811 // This recurrence is variant w.r.t. L if L contains AR's loop.
7812 if (L->contains(AR->getLoop()))
7813 return LoopVariant;
7814
7815 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7816 if (AR->getLoop()->contains(L))
7817 return LoopInvariant;
7818
7819 // This recurrence is variant w.r.t. L if any of its operands
7820 // are variant.
7821 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7822 I != E; ++I)
7823 if (!isLoopInvariant(*I, L))
7824 return LoopVariant;
7825
7826 // Otherwise it's loop-invariant.
7827 return LoopInvariant;
7828 }
7829 case scAddExpr:
7830 case scMulExpr:
7831 case scUMaxExpr:
7832 case scSMaxExpr: {
7833 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7834 bool HasVarying = false;
7835 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7836 I != E; ++I) {
7837 LoopDisposition D = getLoopDisposition(*I, L);
7838 if (D == LoopVariant)
7839 return LoopVariant;
7840 if (D == LoopComputable)
7841 HasVarying = true;
7842 }
7843 return HasVarying ? LoopComputable : LoopInvariant;
7844 }
7845 case scUDivExpr: {
7846 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7847 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7848 if (LD == LoopVariant)
7849 return LoopVariant;
7850 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7851 if (RD == LoopVariant)
7852 return LoopVariant;
7853 return (LD == LoopInvariant && RD == LoopInvariant) ?
7854 LoopInvariant : LoopComputable;
7855 }
7856 case scUnknown:
7857 // All non-instruction values are loop invariant. All instructions are loop
7858 // invariant if they are not contained in the specified loop.
7859 // Instructions are never considered invariant in the function body
7860 // (null loop) because they are defined within the "loop".
7861 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7862 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7863 return LoopInvariant;
7864 case scCouldNotCompute:
7865 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7866 }
7867 llvm_unreachable("Unknown SCEV kind!");
7868 }
7869
isLoopInvariant(const SCEV * S,const Loop * L)7870 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7871 return getLoopDisposition(S, L) == LoopInvariant;
7872 }
7873
hasComputableLoopEvolution(const SCEV * S,const Loop * L)7874 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7875 return getLoopDisposition(S, L) == LoopComputable;
7876 }
7877
7878 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)7879 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7880 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7881 for (unsigned u = 0; u < Values.size(); u++) {
7882 if (Values[u].first == BB)
7883 return Values[u].second;
7884 }
7885 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
7886 BlockDisposition D = computeBlockDisposition(S, BB);
7887 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7888 for (unsigned u = Values2.size(); u > 0; u--) {
7889 if (Values2[u - 1].first == BB) {
7890 Values2[u - 1].second = D;
7891 break;
7892 }
7893 }
7894 return D;
7895 }
7896
7897 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)7898 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7899 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
7900 case scConstant:
7901 return ProperlyDominatesBlock;
7902 case scTruncate:
7903 case scZeroExtend:
7904 case scSignExtend:
7905 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
7906 case scAddRecExpr: {
7907 // This uses a "dominates" query instead of "properly dominates" query
7908 // to test for proper dominance too, because the instruction which
7909 // produces the addrec's value is a PHI, and a PHI effectively properly
7910 // dominates its entire containing block.
7911 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7912 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
7913 return DoesNotDominateBlock;
7914 }
7915 // FALL THROUGH into SCEVNAryExpr handling.
7916 case scAddExpr:
7917 case scMulExpr:
7918 case scUMaxExpr:
7919 case scSMaxExpr: {
7920 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7921 bool Proper = true;
7922 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7923 I != E; ++I) {
7924 BlockDisposition D = getBlockDisposition(*I, BB);
7925 if (D == DoesNotDominateBlock)
7926 return DoesNotDominateBlock;
7927 if (D == DominatesBlock)
7928 Proper = false;
7929 }
7930 return Proper ? ProperlyDominatesBlock : DominatesBlock;
7931 }
7932 case scUDivExpr: {
7933 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7934 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7935 BlockDisposition LD = getBlockDisposition(LHS, BB);
7936 if (LD == DoesNotDominateBlock)
7937 return DoesNotDominateBlock;
7938 BlockDisposition RD = getBlockDisposition(RHS, BB);
7939 if (RD == DoesNotDominateBlock)
7940 return DoesNotDominateBlock;
7941 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7942 ProperlyDominatesBlock : DominatesBlock;
7943 }
7944 case scUnknown:
7945 if (Instruction *I =
7946 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7947 if (I->getParent() == BB)
7948 return DominatesBlock;
7949 if (DT->properlyDominates(I->getParent(), BB))
7950 return ProperlyDominatesBlock;
7951 return DoesNotDominateBlock;
7952 }
7953 return ProperlyDominatesBlock;
7954 case scCouldNotCompute:
7955 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7956 }
7957 llvm_unreachable("Unknown SCEV kind!");
7958 }
7959
dominates(const SCEV * S,const BasicBlock * BB)7960 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7961 return getBlockDisposition(S, BB) >= DominatesBlock;
7962 }
7963
properlyDominates(const SCEV * S,const BasicBlock * BB)7964 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7965 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
7966 }
7967
7968 namespace {
7969 // Search for a SCEV expression node within an expression tree.
7970 // Implements SCEVTraversal::Visitor.
7971 struct SCEVSearch {
7972 const SCEV *Node;
7973 bool IsFound;
7974
SCEVSearch__anona55b42970b11::SCEVSearch7975 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7976
follow__anona55b42970b11::SCEVSearch7977 bool follow(const SCEV *S) {
7978 IsFound |= (S == Node);
7979 return !IsFound;
7980 }
isDone__anona55b42970b11::SCEVSearch7981 bool isDone() const { return IsFound; }
7982 };
7983 }
7984
hasOperand(const SCEV * S,const SCEV * Op) const7985 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
7986 SCEVSearch Search(Op);
7987 visitAll(S, Search);
7988 return Search.IsFound;
7989 }
7990
forgetMemoizedResults(const SCEV * S)7991 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7992 ValuesAtScopes.erase(S);
7993 LoopDispositions.erase(S);
7994 BlockDispositions.erase(S);
7995 UnsignedRanges.erase(S);
7996 SignedRanges.erase(S);
7997
7998 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7999 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8000 BackedgeTakenInfo &BEInfo = I->second;
8001 if (BEInfo.hasOperand(S, this)) {
8002 BEInfo.clear();
8003 BackedgeTakenCounts.erase(I++);
8004 }
8005 else
8006 ++I;
8007 }
8008 }
8009
8010 typedef DenseMap<const Loop *, std::string> VerifyMap;
8011
8012 /// replaceSubString - Replaces all occurrences of From in Str with To.
replaceSubString(std::string & Str,StringRef From,StringRef To)8013 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8014 size_t Pos = 0;
8015 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8016 Str.replace(Pos, From.size(), To.data(), To.size());
8017 Pos += To.size();
8018 }
8019 }
8020
8021 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8022 static void
getLoopBackedgeTakenCounts(Loop * L,VerifyMap & Map,ScalarEvolution & SE)8023 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8024 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8025 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8026
8027 std::string &S = Map[L];
8028 if (S.empty()) {
8029 raw_string_ostream OS(S);
8030 SE.getBackedgeTakenCount(L)->print(OS);
8031
8032 // false and 0 are semantically equivalent. This can happen in dead loops.
8033 replaceSubString(OS.str(), "false", "0");
8034 // Remove wrap flags, their use in SCEV is highly fragile.
8035 // FIXME: Remove this when SCEV gets smarter about them.
8036 replaceSubString(OS.str(), "<nw>", "");
8037 replaceSubString(OS.str(), "<nsw>", "");
8038 replaceSubString(OS.str(), "<nuw>", "");
8039 }
8040 }
8041 }
8042
verifyAnalysis() const8043 void ScalarEvolution::verifyAnalysis() const {
8044 if (!VerifySCEV)
8045 return;
8046
8047 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8048
8049 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8050 // FIXME: It would be much better to store actual values instead of strings,
8051 // but SCEV pointers will change if we drop the caches.
8052 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8053 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8054 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8055
8056 // Gather stringified backedge taken counts for all loops without using
8057 // SCEV's caches.
8058 SE.releaseMemory();
8059 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8060 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8061
8062 // Now compare whether they're the same with and without caches. This allows
8063 // verifying that no pass changed the cache.
8064 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8065 "New loops suddenly appeared!");
8066
8067 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8068 OldE = BackedgeDumpsOld.end(),
8069 NewI = BackedgeDumpsNew.begin();
8070 OldI != OldE; ++OldI, ++NewI) {
8071 assert(OldI->first == NewI->first && "Loop order changed!");
8072
8073 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8074 // changes.
8075 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
8076 // means that a pass is buggy or SCEV has to learn a new pattern but is
8077 // usually not harmful.
8078 if (OldI->second != NewI->second &&
8079 OldI->second.find("undef") == std::string::npos &&
8080 NewI->second.find("undef") == std::string::npos &&
8081 OldI->second != "***COULDNOTCOMPUTE***" &&
8082 NewI->second != "***COULDNOTCOMPUTE***") {
8083 dbgs() << "SCEVValidator: SCEV for loop '"
8084 << OldI->first->getHeader()->getName()
8085 << "' changed from '" << OldI->second
8086 << "' to '" << NewI->second << "'!\n";
8087 std::abort();
8088 }
8089 }
8090
8091 // TODO: Verify more things.
8092 }
8093