1 /* hash.c -- hash table maintenance
2 Copyright (C) 1995, 1999, 2002 Free Software Foundation, Inc.
3 Written by Greg McGary <gkm@gnu.org> <greg@mcgary.org>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; see the file COPYING. If not, write to the Free Software
17 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */
18
19 #include "make.h"
20 #include "hash.h"
21
22 #define CALLOC(t, n) ((t *) calloc (sizeof (t), (n)))
23 #define MALLOC(t, n) ((t *) xmalloc (sizeof (t) * (n)))
24 #define REALLOC(o, t, n) ((t *) xrealloc ((o), sizeof (t) * (n)))
25 #define CLONE(o, t, n) ((t *) memcpy (MALLOC (t, (n)), (o), sizeof (t) * (n)))
26
27 static void hash_rehash __P((struct hash_table* ht));
28 static unsigned long round_up_2 __P((unsigned long rough));
29
30 /* Implement double hashing with open addressing. The table size is
31 always a power of two. The secondary (`increment') hash function
32 is forced to return an odd-value, in order to be relatively prime
33 to the table size. This guarantees that the increment can
34 potentially hit every slot in the table during collision
35 resolution. */
36
37 void *hash_deleted_item = &hash_deleted_item;
38
39 /* Force the table size to be a power of two, possibly rounding up the
40 given size. */
41
42 void
hash_init(struct hash_table * ht,unsigned long size,hash_func_t hash_1,hash_func_t hash_2,hash_cmp_func_t hash_cmp)43 hash_init (struct hash_table *ht, unsigned long size,
44 hash_func_t hash_1, hash_func_t hash_2, hash_cmp_func_t hash_cmp)
45 {
46 ht->ht_size = round_up_2 (size);
47 ht->ht_empty_slots = ht->ht_size;
48 ht->ht_vec = (void**) CALLOC (struct token *, ht->ht_size);
49 if (ht->ht_vec == 0)
50 {
51 fprintf (stderr, _("can't allocate %ld bytes for hash table: memory exhausted"),
52 ht->ht_size * sizeof(struct token *));
53 exit (1);
54 }
55
56 ht->ht_capacity = ht->ht_size - (ht->ht_size / 16); /* 93.75% loading factor */
57 ht->ht_fill = 0;
58 ht->ht_collisions = 0;
59 ht->ht_lookups = 0;
60 ht->ht_rehashes = 0;
61 ht->ht_hash_1 = hash_1;
62 ht->ht_hash_2 = hash_2;
63 ht->ht_compare = hash_cmp;
64 }
65
66 /* Load an array of items into `ht'. */
67
68 void
hash_load(struct hash_table * ht,void * item_table,unsigned long cardinality,unsigned long size)69 hash_load (struct hash_table *ht, void *item_table,
70 unsigned long cardinality, unsigned long size)
71 {
72 char *items = (char *) item_table;
73 while (cardinality--)
74 {
75 hash_insert (ht, items);
76 items += size;
77 }
78 }
79
80 /* Returns the address of the table slot matching `key'. If `key' is
81 not found, return the address of an empty slot suitable for
82 inserting `key'. The caller is responsible for incrementing
83 ht_fill on insertion. */
84
85 void **
hash_find_slot(struct hash_table * ht,const void * key)86 hash_find_slot (struct hash_table *ht, const void *key)
87 {
88 void **slot;
89 void **deleted_slot = 0;
90 unsigned int hash_2 = 0;
91 unsigned int hash_1 = (*ht->ht_hash_1) (key);
92
93 ht->ht_lookups++;
94 for (;;)
95 {
96 hash_1 &= (ht->ht_size - 1);
97 slot = &ht->ht_vec[hash_1];
98
99 if (*slot == 0)
100 return (deleted_slot ? deleted_slot : slot);
101 if (*slot == hash_deleted_item)
102 {
103 if (deleted_slot == 0)
104 deleted_slot = slot;
105 }
106 else
107 {
108 if (key == *slot)
109 return slot;
110 if ((*ht->ht_compare) (key, *slot) == 0)
111 return slot;
112 ht->ht_collisions++;
113 }
114 if (!hash_2)
115 hash_2 = (*ht->ht_hash_2) (key) | 1;
116 hash_1 += hash_2;
117 }
118 }
119
120 void *
hash_find_item(struct hash_table * ht,const void * key)121 hash_find_item (struct hash_table *ht, const void *key)
122 {
123 void **slot = hash_find_slot (ht, key);
124 return ((HASH_VACANT (*slot)) ? 0 : *slot);
125 }
126
127 void *
hash_insert(struct hash_table * ht,const void * item)128 hash_insert (struct hash_table *ht, const void *item)
129 {
130 void **slot = hash_find_slot (ht, item);
131 const void *old_item = slot ? *slot : 0;
132 hash_insert_at (ht, item, slot);
133 return (void *)((HASH_VACANT (old_item)) ? 0 : old_item);
134 }
135
136 void *
hash_insert_at(struct hash_table * ht,const void * item,const void * slot)137 hash_insert_at (struct hash_table *ht, const void *item, const void *slot)
138 {
139 const void *old_item = *(void **) slot;
140 if (HASH_VACANT (old_item))
141 {
142 ht->ht_fill++;
143 if (old_item == 0)
144 ht->ht_empty_slots--;
145 old_item = item;
146 }
147 *(void const **) slot = item;
148 if (ht->ht_empty_slots < ht->ht_size - ht->ht_capacity)
149 {
150 hash_rehash (ht);
151 return (void *) hash_find_slot (ht, item);
152 }
153 else
154 return (void *) slot;
155 }
156
157 void *
hash_delete(struct hash_table * ht,const void * item)158 hash_delete (struct hash_table *ht, const void *item)
159 {
160 void **slot = hash_find_slot (ht, item);
161 return hash_delete_at (ht, slot);
162 }
163
164 void *
hash_delete_at(struct hash_table * ht,const void * slot)165 hash_delete_at (struct hash_table *ht, const void *slot)
166 {
167 void *item = *(void **) slot;
168 if (!HASH_VACANT (item))
169 {
170 *(void const **) slot = hash_deleted_item;
171 ht->ht_fill--;
172 return item;
173 }
174 else
175 return 0;
176 }
177
178 void
hash_free_items(struct hash_table * ht)179 hash_free_items (struct hash_table *ht)
180 {
181 void **vec = ht->ht_vec;
182 void **end = &vec[ht->ht_size];
183 for (; vec < end; vec++)
184 {
185 void *item = *vec;
186 if (!HASH_VACANT (item))
187 free (item);
188 *vec = 0;
189 }
190 ht->ht_fill = 0;
191 ht->ht_empty_slots = ht->ht_size;
192 }
193
194 void
hash_delete_items(struct hash_table * ht)195 hash_delete_items (struct hash_table *ht)
196 {
197 void **vec = ht->ht_vec;
198 void **end = &vec[ht->ht_size];
199 for (; vec < end; vec++)
200 *vec = 0;
201 ht->ht_fill = 0;
202 ht->ht_collisions = 0;
203 ht->ht_lookups = 0;
204 ht->ht_rehashes = 0;
205 ht->ht_empty_slots = ht->ht_size;
206 }
207
208 void
hash_free(struct hash_table * ht,int free_items)209 hash_free (struct hash_table *ht, int free_items)
210 {
211 if (free_items)
212 hash_free_items (ht);
213 else
214 {
215 ht->ht_fill = 0;
216 ht->ht_empty_slots = ht->ht_size;
217 }
218 free (ht->ht_vec);
219 ht->ht_vec = 0;
220 ht->ht_capacity = 0;
221 }
222
223 void
hash_map(struct hash_table * ht,hash_map_func_t map)224 hash_map (struct hash_table *ht, hash_map_func_t map)
225 {
226 void **slot;
227 void **end = &ht->ht_vec[ht->ht_size];
228
229 for (slot = ht->ht_vec; slot < end; slot++)
230 {
231 if (!HASH_VACANT (*slot))
232 (*map) (*slot);
233 }
234 }
235
236 void
hash_map_arg(struct hash_table * ht,hash_map_arg_func_t map,void * arg)237 hash_map_arg (struct hash_table *ht, hash_map_arg_func_t map, void *arg)
238 {
239 void **slot;
240 void **end = &ht->ht_vec[ht->ht_size];
241
242 for (slot = ht->ht_vec; slot < end; slot++)
243 {
244 if (!HASH_VACANT (*slot))
245 (*map) (*slot, arg);
246 }
247 }
248
249 /* Double the size of the hash table in the event of overflow... */
250
251 static void
hash_rehash(struct hash_table * ht)252 hash_rehash (struct hash_table *ht)
253 {
254 unsigned long old_ht_size = ht->ht_size;
255 void **old_vec = ht->ht_vec;
256 void **ovp;
257
258 if (ht->ht_fill >= ht->ht_capacity)
259 {
260 ht->ht_size *= 2;
261 ht->ht_capacity = ht->ht_size - (ht->ht_size >> 4);
262 }
263 ht->ht_rehashes++;
264 ht->ht_vec = (void **) CALLOC (struct token *, ht->ht_size);
265
266 for (ovp = old_vec; ovp < &old_vec[old_ht_size]; ovp++)
267 {
268 if (! HASH_VACANT (*ovp))
269 {
270 void **slot = hash_find_slot (ht, *ovp);
271 *slot = *ovp;
272 }
273 }
274 ht->ht_empty_slots = ht->ht_size - ht->ht_fill;
275 free (old_vec);
276 }
277
278 void
hash_print_stats(struct hash_table * ht,FILE * out_FILE)279 hash_print_stats (struct hash_table *ht, FILE *out_FILE)
280 {
281 /* GKM FIXME: honor NO_FLOAT */
282 fprintf (out_FILE, _("Load=%ld/%ld=%.0f%%, "), ht->ht_fill, ht->ht_size,
283 100.0 * (double) ht->ht_fill / (double) ht->ht_size);
284 fprintf (out_FILE, _("Rehash=%d, "), ht->ht_rehashes);
285 fprintf (out_FILE, _("Collisions=%ld/%ld=%.0f%%"), ht->ht_collisions, ht->ht_lookups,
286 (ht->ht_lookups
287 ? (100.0 * (double) ht->ht_collisions / (double) ht->ht_lookups)
288 : 0));
289 }
290
291 /* Dump all items into a NULL-terminated vector. Use the
292 user-supplied vector, or malloc one. */
293
294 void **
hash_dump(struct hash_table * ht,void ** vector_0,qsort_cmp_t compare)295 hash_dump (struct hash_table *ht, void **vector_0, qsort_cmp_t compare)
296 {
297 void **vector;
298 void **slot;
299 void **end = &ht->ht_vec[ht->ht_size];
300
301 if (vector_0 == 0)
302 vector_0 = MALLOC (void *, ht->ht_fill + 1);
303 vector = vector_0;
304
305 for (slot = ht->ht_vec; slot < end; slot++)
306 if (!HASH_VACANT (*slot))
307 *vector++ = *slot;
308 *vector = 0;
309
310 if (compare)
311 qsort (vector_0, ht->ht_fill, sizeof (void *), compare);
312 return vector_0;
313 }
314
315 /* Round a given number up to the nearest power of 2. */
316
317 static unsigned long
round_up_2(unsigned long n)318 round_up_2 (unsigned long n)
319 {
320 n |= (n >> 1);
321 n |= (n >> 2);
322 n |= (n >> 4);
323 n |= (n >> 8);
324 n |= (n >> 16);
325
326 #if !defined(HAVE_LIMITS_H) || ULONG_MAX > 4294967295
327 /* We only need this on systems where unsigned long is >32 bits. */
328 n |= (n >> 32);
329 #endif
330
331 return n + 1;
332 }
333