• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_ARM64
8 
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/codegen.h"
12 #include "src/compiler.h"
13 #include "src/debug.h"
14 #include "src/full-codegen.h"
15 #include "src/ic/ic.h"
16 #include "src/isolate-inl.h"
17 #include "src/parser.h"
18 #include "src/scopes.h"
19 
20 #include "src/arm64/code-stubs-arm64.h"
21 #include "src/arm64/macro-assembler-arm64.h"
22 
23 namespace v8 {
24 namespace internal {
25 
26 #define __ ACCESS_MASM(masm_)
27 
28 class JumpPatchSite BASE_EMBEDDED {
29  public:
JumpPatchSite(MacroAssembler * masm)30   explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm), reg_(NoReg) {
31 #ifdef DEBUG
32     info_emitted_ = false;
33 #endif
34   }
35 
~JumpPatchSite()36   ~JumpPatchSite() {
37     if (patch_site_.is_bound()) {
38       DCHECK(info_emitted_);
39     } else {
40       DCHECK(reg_.IsNone());
41     }
42   }
43 
EmitJumpIfNotSmi(Register reg,Label * target)44   void EmitJumpIfNotSmi(Register reg, Label* target) {
45     // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc.
46     InstructionAccurateScope scope(masm_, 1);
47     DCHECK(!info_emitted_);
48     DCHECK(reg.Is64Bits());
49     DCHECK(!reg.Is(csp));
50     reg_ = reg;
51     __ bind(&patch_site_);
52     __ tbz(xzr, 0, target);   // Always taken before patched.
53   }
54 
EmitJumpIfSmi(Register reg,Label * target)55   void EmitJumpIfSmi(Register reg, Label* target) {
56     // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc.
57     InstructionAccurateScope scope(masm_, 1);
58     DCHECK(!info_emitted_);
59     DCHECK(reg.Is64Bits());
60     DCHECK(!reg.Is(csp));
61     reg_ = reg;
62     __ bind(&patch_site_);
63     __ tbnz(xzr, 0, target);  // Never taken before patched.
64   }
65 
EmitJumpIfEitherNotSmi(Register reg1,Register reg2,Label * target)66   void EmitJumpIfEitherNotSmi(Register reg1, Register reg2, Label* target) {
67     UseScratchRegisterScope temps(masm_);
68     Register temp = temps.AcquireX();
69     __ Orr(temp, reg1, reg2);
70     EmitJumpIfNotSmi(temp, target);
71   }
72 
EmitPatchInfo()73   void EmitPatchInfo() {
74     Assembler::BlockPoolsScope scope(masm_);
75     InlineSmiCheckInfo::Emit(masm_, reg_, &patch_site_);
76 #ifdef DEBUG
77     info_emitted_ = true;
78 #endif
79   }
80 
81  private:
82   MacroAssembler* masm_;
83   Label patch_site_;
84   Register reg_;
85 #ifdef DEBUG
86   bool info_emitted_;
87 #endif
88 };
89 
90 
91 // Generate code for a JS function. On entry to the function the receiver
92 // and arguments have been pushed on the stack left to right. The actual
93 // argument count matches the formal parameter count expected by the
94 // function.
95 //
96 // The live registers are:
97 //   - x1: the JS function object being called (i.e. ourselves).
98 //   - cp: our context.
99 //   - fp: our caller's frame pointer.
100 //   - jssp: stack pointer.
101 //   - lr: return address.
102 //
103 // The function builds a JS frame. See JavaScriptFrameConstants in
104 // frames-arm.h for its layout.
Generate()105 void FullCodeGenerator::Generate() {
106   CompilationInfo* info = info_;
107   handler_table_ =
108       isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
109 
110   profiling_counter_ = isolate()->factory()->NewCell(
111       Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
112   SetFunctionPosition(function());
113   Comment cmnt(masm_, "[ Function compiled by full code generator");
114 
115   ProfileEntryHookStub::MaybeCallEntryHook(masm_);
116 
117 #ifdef DEBUG
118   if (strlen(FLAG_stop_at) > 0 &&
119       info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
120     __ Debug("stop-at", __LINE__, BREAK);
121   }
122 #endif
123 
124   // Sloppy mode functions and builtins need to replace the receiver with the
125   // global proxy when called as functions (without an explicit receiver
126   // object).
127   if (info->strict_mode() == SLOPPY && !info->is_native()) {
128     Label ok;
129     int receiver_offset = info->scope()->num_parameters() * kXRegSize;
130     __ Peek(x10, receiver_offset);
131     __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
132 
133     __ Ldr(x10, GlobalObjectMemOperand());
134     __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset));
135     __ Poke(x10, receiver_offset);
136 
137     __ Bind(&ok);
138   }
139 
140 
141   // Open a frame scope to indicate that there is a frame on the stack.
142   // The MANUAL indicates that the scope shouldn't actually generate code
143   // to set up the frame because we do it manually below.
144   FrameScope frame_scope(masm_, StackFrame::MANUAL);
145 
146   // This call emits the following sequence in a way that can be patched for
147   // code ageing support:
148   //  Push(lr, fp, cp, x1);
149   //  Add(fp, jssp, 2 * kPointerSize);
150   info->set_prologue_offset(masm_->pc_offset());
151   __ Prologue(info->IsCodePreAgingActive());
152   info->AddNoFrameRange(0, masm_->pc_offset());
153 
154   // Reserve space on the stack for locals.
155   { Comment cmnt(masm_, "[ Allocate locals");
156     int locals_count = info->scope()->num_stack_slots();
157     // Generators allocate locals, if any, in context slots.
158     DCHECK(!info->function()->is_generator() || locals_count == 0);
159 
160     if (locals_count > 0) {
161       if (locals_count >= 128) {
162         Label ok;
163         DCHECK(jssp.Is(__ StackPointer()));
164         __ Sub(x10, jssp, locals_count * kPointerSize);
165         __ CompareRoot(x10, Heap::kRealStackLimitRootIndex);
166         __ B(hs, &ok);
167         __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
168         __ Bind(&ok);
169       }
170       __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
171       if (FLAG_optimize_for_size) {
172         __ PushMultipleTimes(x10 , locals_count);
173       } else {
174         const int kMaxPushes = 32;
175         if (locals_count >= kMaxPushes) {
176           int loop_iterations = locals_count / kMaxPushes;
177           __ Mov(x3, loop_iterations);
178           Label loop_header;
179           __ Bind(&loop_header);
180           // Do pushes.
181           __ PushMultipleTimes(x10 , kMaxPushes);
182           __ Subs(x3, x3, 1);
183           __ B(ne, &loop_header);
184         }
185         int remaining = locals_count % kMaxPushes;
186         // Emit the remaining pushes.
187         __ PushMultipleTimes(x10 , remaining);
188       }
189     }
190   }
191 
192   bool function_in_register_x1 = true;
193 
194   int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
195   if (heap_slots > 0) {
196     // Argument to NewContext is the function, which is still in x1.
197     Comment cmnt(masm_, "[ Allocate context");
198     bool need_write_barrier = true;
199     if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
200       __ Mov(x10, Operand(info->scope()->GetScopeInfo()));
201       __ Push(x1, x10);
202       __ CallRuntime(Runtime::kNewGlobalContext, 2);
203     } else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
204       FastNewContextStub stub(isolate(), heap_slots);
205       __ CallStub(&stub);
206       // Result of FastNewContextStub is always in new space.
207       need_write_barrier = false;
208     } else {
209       __ Push(x1);
210       __ CallRuntime(Runtime::kNewFunctionContext, 1);
211     }
212     function_in_register_x1 = false;
213     // Context is returned in x0.  It replaces the context passed to us.
214     // It's saved in the stack and kept live in cp.
215     __ Mov(cp, x0);
216     __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
217     // Copy any necessary parameters into the context.
218     int num_parameters = info->scope()->num_parameters();
219     for (int i = 0; i < num_parameters; i++) {
220       Variable* var = scope()->parameter(i);
221       if (var->IsContextSlot()) {
222         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
223             (num_parameters - 1 - i) * kPointerSize;
224         // Load parameter from stack.
225         __ Ldr(x10, MemOperand(fp, parameter_offset));
226         // Store it in the context.
227         MemOperand target = ContextMemOperand(cp, var->index());
228         __ Str(x10, target);
229 
230         // Update the write barrier.
231         if (need_write_barrier) {
232           __ RecordWriteContextSlot(
233               cp, target.offset(), x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
234         } else if (FLAG_debug_code) {
235           Label done;
236           __ JumpIfInNewSpace(cp, &done);
237           __ Abort(kExpectedNewSpaceObject);
238           __ bind(&done);
239         }
240       }
241     }
242   }
243 
244   Variable* arguments = scope()->arguments();
245   if (arguments != NULL) {
246     // Function uses arguments object.
247     Comment cmnt(masm_, "[ Allocate arguments object");
248     if (!function_in_register_x1) {
249       // Load this again, if it's used by the local context below.
250       __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
251     } else {
252       __ Mov(x3, x1);
253     }
254     // Receiver is just before the parameters on the caller's stack.
255     int num_parameters = info->scope()->num_parameters();
256     int offset = num_parameters * kPointerSize;
257     __ Add(x2, fp, StandardFrameConstants::kCallerSPOffset + offset);
258     __ Mov(x1, Smi::FromInt(num_parameters));
259     __ Push(x3, x2, x1);
260 
261     // Arguments to ArgumentsAccessStub:
262     //   function, receiver address, parameter count.
263     // The stub will rewrite receiver and parameter count if the previous
264     // stack frame was an arguments adapter frame.
265     ArgumentsAccessStub::Type type;
266     if (strict_mode() == STRICT) {
267       type = ArgumentsAccessStub::NEW_STRICT;
268     } else if (function()->has_duplicate_parameters()) {
269       type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
270     } else {
271       type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
272     }
273     ArgumentsAccessStub stub(isolate(), type);
274     __ CallStub(&stub);
275 
276     SetVar(arguments, x0, x1, x2);
277   }
278 
279   if (FLAG_trace) {
280     __ CallRuntime(Runtime::kTraceEnter, 0);
281   }
282 
283 
284   // Visit the declarations and body unless there is an illegal
285   // redeclaration.
286   if (scope()->HasIllegalRedeclaration()) {
287     Comment cmnt(masm_, "[ Declarations");
288     scope()->VisitIllegalRedeclaration(this);
289 
290   } else {
291     PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
292     { Comment cmnt(masm_, "[ Declarations");
293       if (scope()->is_function_scope() && scope()->function() != NULL) {
294         VariableDeclaration* function = scope()->function();
295         DCHECK(function->proxy()->var()->mode() == CONST ||
296                function->proxy()->var()->mode() == CONST_LEGACY);
297         DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED);
298         VisitVariableDeclaration(function);
299       }
300       VisitDeclarations(scope()->declarations());
301     }
302   }
303 
304   { Comment cmnt(masm_, "[ Stack check");
305     PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
306     Label ok;
307     DCHECK(jssp.Is(__ StackPointer()));
308     __ CompareRoot(jssp, Heap::kStackLimitRootIndex);
309     __ B(hs, &ok);
310     PredictableCodeSizeScope predictable(masm_,
311                                          Assembler::kCallSizeWithRelocation);
312     __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
313     __ Bind(&ok);
314   }
315 
316   { Comment cmnt(masm_, "[ Body");
317     DCHECK(loop_depth() == 0);
318     VisitStatements(function()->body());
319     DCHECK(loop_depth() == 0);
320   }
321 
322   // Always emit a 'return undefined' in case control fell off the end of
323   // the body.
324   { Comment cmnt(masm_, "[ return <undefined>;");
325     __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
326   }
327   EmitReturnSequence();
328 
329   // Force emission of the pools, so they don't get emitted in the middle
330   // of the back edge table.
331   masm()->CheckVeneerPool(true, false);
332   masm()->CheckConstPool(true, false);
333 }
334 
335 
ClearAccumulator()336 void FullCodeGenerator::ClearAccumulator() {
337   __ Mov(x0, Smi::FromInt(0));
338 }
339 
340 
EmitProfilingCounterDecrement(int delta)341 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
342   __ Mov(x2, Operand(profiling_counter_));
343   __ Ldr(x3, FieldMemOperand(x2, Cell::kValueOffset));
344   __ Subs(x3, x3, Smi::FromInt(delta));
345   __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset));
346 }
347 
348 
EmitProfilingCounterReset()349 void FullCodeGenerator::EmitProfilingCounterReset() {
350   int reset_value = FLAG_interrupt_budget;
351   if (info_->is_debug()) {
352     // Detect debug break requests as soon as possible.
353     reset_value = FLAG_interrupt_budget >> 4;
354   }
355   __ Mov(x2, Operand(profiling_counter_));
356   __ Mov(x3, Smi::FromInt(reset_value));
357   __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset));
358 }
359 
360 
EmitBackEdgeBookkeeping(IterationStatement * stmt,Label * back_edge_target)361 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
362                                                 Label* back_edge_target) {
363   DCHECK(jssp.Is(__ StackPointer()));
364   Comment cmnt(masm_, "[ Back edge bookkeeping");
365   // Block literal pools whilst emitting back edge code.
366   Assembler::BlockPoolsScope block_const_pool(masm_);
367   Label ok;
368 
369   DCHECK(back_edge_target->is_bound());
370   // We want to do a round rather than a floor of distance/kCodeSizeMultiplier
371   // to reduce the absolute error due to the integer division. To do that,
372   // we add kCodeSizeMultiplier/2 to the distance (equivalent to adding 0.5 to
373   // the result).
374   int distance =
375     masm_->SizeOfCodeGeneratedSince(back_edge_target) + kCodeSizeMultiplier / 2;
376   int weight = Min(kMaxBackEdgeWeight,
377                    Max(1, distance / kCodeSizeMultiplier));
378   EmitProfilingCounterDecrement(weight);
379   __ B(pl, &ok);
380   __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
381 
382   // Record a mapping of this PC offset to the OSR id.  This is used to find
383   // the AST id from the unoptimized code in order to use it as a key into
384   // the deoptimization input data found in the optimized code.
385   RecordBackEdge(stmt->OsrEntryId());
386 
387   EmitProfilingCounterReset();
388 
389   __ Bind(&ok);
390   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
391   // Record a mapping of the OSR id to this PC.  This is used if the OSR
392   // entry becomes the target of a bailout.  We don't expect it to be, but
393   // we want it to work if it is.
394   PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
395 }
396 
397 
EmitReturnSequence()398 void FullCodeGenerator::EmitReturnSequence() {
399   Comment cmnt(masm_, "[ Return sequence");
400 
401   if (return_label_.is_bound()) {
402     __ B(&return_label_);
403 
404   } else {
405     __ Bind(&return_label_);
406     if (FLAG_trace) {
407       // Push the return value on the stack as the parameter.
408       // Runtime::TraceExit returns its parameter in x0.
409       __ Push(result_register());
410       __ CallRuntime(Runtime::kTraceExit, 1);
411       DCHECK(x0.Is(result_register()));
412     }
413     // Pretend that the exit is a backwards jump to the entry.
414     int weight = 1;
415     if (info_->ShouldSelfOptimize()) {
416       weight = FLAG_interrupt_budget / FLAG_self_opt_count;
417     } else {
418       int distance = masm_->pc_offset() + kCodeSizeMultiplier / 2;
419       weight = Min(kMaxBackEdgeWeight,
420                    Max(1, distance / kCodeSizeMultiplier));
421     }
422     EmitProfilingCounterDecrement(weight);
423     Label ok;
424     __ B(pl, &ok);
425     __ Push(x0);
426     __ Call(isolate()->builtins()->InterruptCheck(),
427             RelocInfo::CODE_TARGET);
428     __ Pop(x0);
429     EmitProfilingCounterReset();
430     __ Bind(&ok);
431 
432     // Make sure that the constant pool is not emitted inside of the return
433     // sequence. This sequence can get patched when the debugger is used. See
434     // debug-arm64.cc:BreakLocationIterator::SetDebugBreakAtReturn().
435     {
436       InstructionAccurateScope scope(masm_,
437                                      Assembler::kJSRetSequenceInstructions);
438       CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
439       __ RecordJSReturn();
440       // This code is generated using Assembler methods rather than Macro
441       // Assembler methods because it will be patched later on, and so the size
442       // of the generated code must be consistent.
443       const Register& current_sp = __ StackPointer();
444       // Nothing ensures 16 bytes alignment here.
445       DCHECK(!current_sp.Is(csp));
446       __ mov(current_sp, fp);
447       int no_frame_start = masm_->pc_offset();
448       __ ldp(fp, lr, MemOperand(current_sp, 2 * kXRegSize, PostIndex));
449       // Drop the arguments and receiver and return.
450       // TODO(all): This implementation is overkill as it supports 2**31+1
451       // arguments, consider how to improve it without creating a security
452       // hole.
453       __ ldr_pcrel(ip0, (3 * kInstructionSize) >> kLoadLiteralScaleLog2);
454       __ add(current_sp, current_sp, ip0);
455       __ ret();
456       __ dc64(kXRegSize * (info_->scope()->num_parameters() + 1));
457       info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
458     }
459   }
460 }
461 
462 
Plug(Variable * var) const463 void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
464   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
465 }
466 
467 
Plug(Variable * var) const468 void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
469   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
470   codegen()->GetVar(result_register(), var);
471 }
472 
473 
Plug(Variable * var) const474 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
475   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
476   codegen()->GetVar(result_register(), var);
477   __ Push(result_register());
478 }
479 
480 
Plug(Variable * var) const481 void FullCodeGenerator::TestContext::Plug(Variable* var) const {
482   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
483   // For simplicity we always test the accumulator register.
484   codegen()->GetVar(result_register(), var);
485   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
486   codegen()->DoTest(this);
487 }
488 
489 
Plug(Heap::RootListIndex index) const490 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
491   // Root values have no side effects.
492 }
493 
494 
Plug(Heap::RootListIndex index) const495 void FullCodeGenerator::AccumulatorValueContext::Plug(
496     Heap::RootListIndex index) const {
497   __ LoadRoot(result_register(), index);
498 }
499 
500 
Plug(Heap::RootListIndex index) const501 void FullCodeGenerator::StackValueContext::Plug(
502     Heap::RootListIndex index) const {
503   __ LoadRoot(result_register(), index);
504   __ Push(result_register());
505 }
506 
507 
Plug(Heap::RootListIndex index) const508 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
509   codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
510                                           false_label_);
511   if (index == Heap::kUndefinedValueRootIndex ||
512       index == Heap::kNullValueRootIndex ||
513       index == Heap::kFalseValueRootIndex) {
514     if (false_label_ != fall_through_) __ B(false_label_);
515   } else if (index == Heap::kTrueValueRootIndex) {
516     if (true_label_ != fall_through_) __ B(true_label_);
517   } else {
518     __ LoadRoot(result_register(), index);
519     codegen()->DoTest(this);
520   }
521 }
522 
523 
Plug(Handle<Object> lit) const524 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
525 }
526 
527 
Plug(Handle<Object> lit) const528 void FullCodeGenerator::AccumulatorValueContext::Plug(
529     Handle<Object> lit) const {
530   __ Mov(result_register(), Operand(lit));
531 }
532 
533 
Plug(Handle<Object> lit) const534 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
535   // Immediates cannot be pushed directly.
536   __ Mov(result_register(), Operand(lit));
537   __ Push(result_register());
538 }
539 
540 
Plug(Handle<Object> lit) const541 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
542   codegen()->PrepareForBailoutBeforeSplit(condition(),
543                                           true,
544                                           true_label_,
545                                           false_label_);
546   DCHECK(!lit->IsUndetectableObject());  // There are no undetectable literals.
547   if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
548     if (false_label_ != fall_through_) __ B(false_label_);
549   } else if (lit->IsTrue() || lit->IsJSObject()) {
550     if (true_label_ != fall_through_) __ B(true_label_);
551   } else if (lit->IsString()) {
552     if (String::cast(*lit)->length() == 0) {
553       if (false_label_ != fall_through_) __ B(false_label_);
554     } else {
555       if (true_label_ != fall_through_) __ B(true_label_);
556     }
557   } else if (lit->IsSmi()) {
558     if (Smi::cast(*lit)->value() == 0) {
559       if (false_label_ != fall_through_) __ B(false_label_);
560     } else {
561       if (true_label_ != fall_through_) __ B(true_label_);
562     }
563   } else {
564     // For simplicity we always test the accumulator register.
565     __ Mov(result_register(), Operand(lit));
566     codegen()->DoTest(this);
567   }
568 }
569 
570 
DropAndPlug(int count,Register reg) const571 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
572                                                    Register reg) const {
573   DCHECK(count > 0);
574   __ Drop(count);
575 }
576 
577 
DropAndPlug(int count,Register reg) const578 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
579     int count,
580     Register reg) const {
581   DCHECK(count > 0);
582   __ Drop(count);
583   __ Move(result_register(), reg);
584 }
585 
586 
DropAndPlug(int count,Register reg) const587 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
588                                                        Register reg) const {
589   DCHECK(count > 0);
590   if (count > 1) __ Drop(count - 1);
591   __ Poke(reg, 0);
592 }
593 
594 
DropAndPlug(int count,Register reg) const595 void FullCodeGenerator::TestContext::DropAndPlug(int count,
596                                                  Register reg) const {
597   DCHECK(count > 0);
598   // For simplicity we always test the accumulator register.
599   __ Drop(count);
600   __ Mov(result_register(), reg);
601   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
602   codegen()->DoTest(this);
603 }
604 
605 
Plug(Label * materialize_true,Label * materialize_false) const606 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
607                                             Label* materialize_false) const {
608   DCHECK(materialize_true == materialize_false);
609   __ Bind(materialize_true);
610 }
611 
612 
Plug(Label * materialize_true,Label * materialize_false) const613 void FullCodeGenerator::AccumulatorValueContext::Plug(
614     Label* materialize_true,
615     Label* materialize_false) const {
616   Label done;
617   __ Bind(materialize_true);
618   __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
619   __ B(&done);
620   __ Bind(materialize_false);
621   __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
622   __ Bind(&done);
623 }
624 
625 
Plug(Label * materialize_true,Label * materialize_false) const626 void FullCodeGenerator::StackValueContext::Plug(
627     Label* materialize_true,
628     Label* materialize_false) const {
629   Label done;
630   __ Bind(materialize_true);
631   __ LoadRoot(x10, Heap::kTrueValueRootIndex);
632   __ B(&done);
633   __ Bind(materialize_false);
634   __ LoadRoot(x10, Heap::kFalseValueRootIndex);
635   __ Bind(&done);
636   __ Push(x10);
637 }
638 
639 
Plug(Label * materialize_true,Label * materialize_false) const640 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
641                                           Label* materialize_false) const {
642   DCHECK(materialize_true == true_label_);
643   DCHECK(materialize_false == false_label_);
644 }
645 
646 
Plug(bool flag) const647 void FullCodeGenerator::EffectContext::Plug(bool flag) const {
648 }
649 
650 
Plug(bool flag) const651 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
652   Heap::RootListIndex value_root_index =
653       flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
654   __ LoadRoot(result_register(), value_root_index);
655 }
656 
657 
Plug(bool flag) const658 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
659   Heap::RootListIndex value_root_index =
660       flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
661   __ LoadRoot(x10, value_root_index);
662   __ Push(x10);
663 }
664 
665 
Plug(bool flag) const666 void FullCodeGenerator::TestContext::Plug(bool flag) const {
667   codegen()->PrepareForBailoutBeforeSplit(condition(),
668                                           true,
669                                           true_label_,
670                                           false_label_);
671   if (flag) {
672     if (true_label_ != fall_through_) {
673       __ B(true_label_);
674     }
675   } else {
676     if (false_label_ != fall_through_) {
677       __ B(false_label_);
678     }
679   }
680 }
681 
682 
DoTest(Expression * condition,Label * if_true,Label * if_false,Label * fall_through)683 void FullCodeGenerator::DoTest(Expression* condition,
684                                Label* if_true,
685                                Label* if_false,
686                                Label* fall_through) {
687   Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
688   CallIC(ic, condition->test_id());
689   __ CompareAndSplit(result_register(), 0, ne, if_true, if_false, fall_through);
690 }
691 
692 
693 // If (cond), branch to if_true.
694 // If (!cond), branch to if_false.
695 // fall_through is used as an optimization in cases where only one branch
696 // instruction is necessary.
Split(Condition cond,Label * if_true,Label * if_false,Label * fall_through)697 void FullCodeGenerator::Split(Condition cond,
698                               Label* if_true,
699                               Label* if_false,
700                               Label* fall_through) {
701   if (if_false == fall_through) {
702     __ B(cond, if_true);
703   } else if (if_true == fall_through) {
704     DCHECK(if_false != fall_through);
705     __ B(NegateCondition(cond), if_false);
706   } else {
707     __ B(cond, if_true);
708     __ B(if_false);
709   }
710 }
711 
712 
StackOperand(Variable * var)713 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
714   // Offset is negative because higher indexes are at lower addresses.
715   int offset = -var->index() * kXRegSize;
716   // Adjust by a (parameter or local) base offset.
717   if (var->IsParameter()) {
718     offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
719   } else {
720     offset += JavaScriptFrameConstants::kLocal0Offset;
721   }
722   return MemOperand(fp, offset);
723 }
724 
725 
VarOperand(Variable * var,Register scratch)726 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
727   DCHECK(var->IsContextSlot() || var->IsStackAllocated());
728   if (var->IsContextSlot()) {
729     int context_chain_length = scope()->ContextChainLength(var->scope());
730     __ LoadContext(scratch, context_chain_length);
731     return ContextMemOperand(scratch, var->index());
732   } else {
733     return StackOperand(var);
734   }
735 }
736 
737 
GetVar(Register dest,Variable * var)738 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
739   // Use destination as scratch.
740   MemOperand location = VarOperand(var, dest);
741   __ Ldr(dest, location);
742 }
743 
744 
SetVar(Variable * var,Register src,Register scratch0,Register scratch1)745 void FullCodeGenerator::SetVar(Variable* var,
746                                Register src,
747                                Register scratch0,
748                                Register scratch1) {
749   DCHECK(var->IsContextSlot() || var->IsStackAllocated());
750   DCHECK(!AreAliased(src, scratch0, scratch1));
751   MemOperand location = VarOperand(var, scratch0);
752   __ Str(src, location);
753 
754   // Emit the write barrier code if the location is in the heap.
755   if (var->IsContextSlot()) {
756     // scratch0 contains the correct context.
757     __ RecordWriteContextSlot(scratch0,
758                               location.offset(),
759                               src,
760                               scratch1,
761                               kLRHasBeenSaved,
762                               kDontSaveFPRegs);
763   }
764 }
765 
766 
PrepareForBailoutBeforeSplit(Expression * expr,bool should_normalize,Label * if_true,Label * if_false)767 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
768                                                      bool should_normalize,
769                                                      Label* if_true,
770                                                      Label* if_false) {
771   // Only prepare for bailouts before splits if we're in a test
772   // context. Otherwise, we let the Visit function deal with the
773   // preparation to avoid preparing with the same AST id twice.
774   if (!context()->IsTest() || !info_->IsOptimizable()) return;
775 
776   // TODO(all): Investigate to see if there is something to work on here.
777   Label skip;
778   if (should_normalize) {
779     __ B(&skip);
780   }
781   PrepareForBailout(expr, TOS_REG);
782   if (should_normalize) {
783     __ CompareRoot(x0, Heap::kTrueValueRootIndex);
784     Split(eq, if_true, if_false, NULL);
785     __ Bind(&skip);
786   }
787 }
788 
789 
EmitDebugCheckDeclarationContext(Variable * variable)790 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
791   // The variable in the declaration always resides in the current function
792   // context.
793   DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
794   if (generate_debug_code_) {
795     // Check that we're not inside a with or catch context.
796     __ Ldr(x1, FieldMemOperand(cp, HeapObject::kMapOffset));
797     __ CompareRoot(x1, Heap::kWithContextMapRootIndex);
798     __ Check(ne, kDeclarationInWithContext);
799     __ CompareRoot(x1, Heap::kCatchContextMapRootIndex);
800     __ Check(ne, kDeclarationInCatchContext);
801   }
802 }
803 
804 
VisitVariableDeclaration(VariableDeclaration * declaration)805 void FullCodeGenerator::VisitVariableDeclaration(
806     VariableDeclaration* declaration) {
807   // If it was not possible to allocate the variable at compile time, we
808   // need to "declare" it at runtime to make sure it actually exists in the
809   // local context.
810   VariableProxy* proxy = declaration->proxy();
811   VariableMode mode = declaration->mode();
812   Variable* variable = proxy->var();
813   bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
814 
815   switch (variable->location()) {
816     case Variable::UNALLOCATED:
817       globals_->Add(variable->name(), zone());
818       globals_->Add(variable->binding_needs_init()
819                         ? isolate()->factory()->the_hole_value()
820                         : isolate()->factory()->undefined_value(),
821                     zone());
822       break;
823 
824     case Variable::PARAMETER:
825     case Variable::LOCAL:
826       if (hole_init) {
827         Comment cmnt(masm_, "[ VariableDeclaration");
828         __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
829         __ Str(x10, StackOperand(variable));
830       }
831       break;
832 
833     case Variable::CONTEXT:
834       if (hole_init) {
835         Comment cmnt(masm_, "[ VariableDeclaration");
836         EmitDebugCheckDeclarationContext(variable);
837         __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
838         __ Str(x10, ContextMemOperand(cp, variable->index()));
839         // No write barrier since the_hole_value is in old space.
840         PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
841       }
842       break;
843 
844     case Variable::LOOKUP: {
845       Comment cmnt(masm_, "[ VariableDeclaration");
846       __ Mov(x2, Operand(variable->name()));
847       // Declaration nodes are always introduced in one of four modes.
848       DCHECK(IsDeclaredVariableMode(mode));
849       PropertyAttributes attr = IsImmutableVariableMode(mode) ? READ_ONLY
850                                                               : NONE;
851       __ Mov(x1, Smi::FromInt(attr));
852       // Push initial value, if any.
853       // Note: For variables we must not push an initial value (such as
854       // 'undefined') because we may have a (legal) redeclaration and we
855       // must not destroy the current value.
856       if (hole_init) {
857         __ LoadRoot(x0, Heap::kTheHoleValueRootIndex);
858         __ Push(cp, x2, x1, x0);
859       } else {
860         // Pushing 0 (xzr) indicates no initial value.
861         __ Push(cp, x2, x1, xzr);
862       }
863       __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
864       break;
865     }
866   }
867 }
868 
869 
VisitFunctionDeclaration(FunctionDeclaration * declaration)870 void FullCodeGenerator::VisitFunctionDeclaration(
871     FunctionDeclaration* declaration) {
872   VariableProxy* proxy = declaration->proxy();
873   Variable* variable = proxy->var();
874   switch (variable->location()) {
875     case Variable::UNALLOCATED: {
876       globals_->Add(variable->name(), zone());
877       Handle<SharedFunctionInfo> function =
878           Compiler::BuildFunctionInfo(declaration->fun(), script(), info_);
879       // Check for stack overflow exception.
880       if (function.is_null()) return SetStackOverflow();
881       globals_->Add(function, zone());
882       break;
883     }
884 
885     case Variable::PARAMETER:
886     case Variable::LOCAL: {
887       Comment cmnt(masm_, "[ Function Declaration");
888       VisitForAccumulatorValue(declaration->fun());
889       __ Str(result_register(), StackOperand(variable));
890       break;
891     }
892 
893     case Variable::CONTEXT: {
894       Comment cmnt(masm_, "[ Function Declaration");
895       EmitDebugCheckDeclarationContext(variable);
896       VisitForAccumulatorValue(declaration->fun());
897       __ Str(result_register(), ContextMemOperand(cp, variable->index()));
898       int offset = Context::SlotOffset(variable->index());
899       // We know that we have written a function, which is not a smi.
900       __ RecordWriteContextSlot(cp,
901                                 offset,
902                                 result_register(),
903                                 x2,
904                                 kLRHasBeenSaved,
905                                 kDontSaveFPRegs,
906                                 EMIT_REMEMBERED_SET,
907                                 OMIT_SMI_CHECK);
908       PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
909       break;
910     }
911 
912     case Variable::LOOKUP: {
913       Comment cmnt(masm_, "[ Function Declaration");
914       __ Mov(x2, Operand(variable->name()));
915       __ Mov(x1, Smi::FromInt(NONE));
916       __ Push(cp, x2, x1);
917       // Push initial value for function declaration.
918       VisitForStackValue(declaration->fun());
919       __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
920       break;
921     }
922   }
923 }
924 
925 
VisitModuleDeclaration(ModuleDeclaration * declaration)926 void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
927   Variable* variable = declaration->proxy()->var();
928   DCHECK(variable->location() == Variable::CONTEXT);
929   DCHECK(variable->interface()->IsFrozen());
930 
931   Comment cmnt(masm_, "[ ModuleDeclaration");
932   EmitDebugCheckDeclarationContext(variable);
933 
934   // Load instance object.
935   __ LoadContext(x1, scope_->ContextChainLength(scope_->GlobalScope()));
936   __ Ldr(x1, ContextMemOperand(x1, variable->interface()->Index()));
937   __ Ldr(x1, ContextMemOperand(x1, Context::EXTENSION_INDEX));
938 
939   // Assign it.
940   __ Str(x1, ContextMemOperand(cp, variable->index()));
941   // We know that we have written a module, which is not a smi.
942   __ RecordWriteContextSlot(cp,
943                             Context::SlotOffset(variable->index()),
944                             x1,
945                             x3,
946                             kLRHasBeenSaved,
947                             kDontSaveFPRegs,
948                             EMIT_REMEMBERED_SET,
949                             OMIT_SMI_CHECK);
950   PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
951 
952   // Traverse info body.
953   Visit(declaration->module());
954 }
955 
956 
VisitImportDeclaration(ImportDeclaration * declaration)957 void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
958   VariableProxy* proxy = declaration->proxy();
959   Variable* variable = proxy->var();
960   switch (variable->location()) {
961     case Variable::UNALLOCATED:
962       // TODO(rossberg)
963       break;
964 
965     case Variable::CONTEXT: {
966       Comment cmnt(masm_, "[ ImportDeclaration");
967       EmitDebugCheckDeclarationContext(variable);
968       // TODO(rossberg)
969       break;
970     }
971 
972     case Variable::PARAMETER:
973     case Variable::LOCAL:
974     case Variable::LOOKUP:
975       UNREACHABLE();
976   }
977 }
978 
979 
VisitExportDeclaration(ExportDeclaration * declaration)980 void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
981   // TODO(rossberg)
982 }
983 
984 
DeclareGlobals(Handle<FixedArray> pairs)985 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
986   // Call the runtime to declare the globals.
987   __ Mov(x11, Operand(pairs));
988   Register flags = xzr;
989   if (Smi::FromInt(DeclareGlobalsFlags())) {
990     flags = x10;
991   __ Mov(flags, Smi::FromInt(DeclareGlobalsFlags()));
992   }
993   __ Push(cp, x11, flags);
994   __ CallRuntime(Runtime::kDeclareGlobals, 3);
995   // Return value is ignored.
996 }
997 
998 
DeclareModules(Handle<FixedArray> descriptions)999 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
1000   // Call the runtime to declare the modules.
1001   __ Push(descriptions);
1002   __ CallRuntime(Runtime::kDeclareModules, 1);
1003   // Return value is ignored.
1004 }
1005 
1006 
VisitSwitchStatement(SwitchStatement * stmt)1007 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
1008   ASM_LOCATION("FullCodeGenerator::VisitSwitchStatement");
1009   Comment cmnt(masm_, "[ SwitchStatement");
1010   Breakable nested_statement(this, stmt);
1011   SetStatementPosition(stmt);
1012 
1013   // Keep the switch value on the stack until a case matches.
1014   VisitForStackValue(stmt->tag());
1015   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
1016 
1017   ZoneList<CaseClause*>* clauses = stmt->cases();
1018   CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
1019 
1020   Label next_test;  // Recycled for each test.
1021   // Compile all the tests with branches to their bodies.
1022   for (int i = 0; i < clauses->length(); i++) {
1023     CaseClause* clause = clauses->at(i);
1024     clause->body_target()->Unuse();
1025 
1026     // The default is not a test, but remember it as final fall through.
1027     if (clause->is_default()) {
1028       default_clause = clause;
1029       continue;
1030     }
1031 
1032     Comment cmnt(masm_, "[ Case comparison");
1033     __ Bind(&next_test);
1034     next_test.Unuse();
1035 
1036     // Compile the label expression.
1037     VisitForAccumulatorValue(clause->label());
1038 
1039     // Perform the comparison as if via '==='.
1040     __ Peek(x1, 0);   // Switch value.
1041 
1042     JumpPatchSite patch_site(masm_);
1043     if (ShouldInlineSmiCase(Token::EQ_STRICT)) {
1044       Label slow_case;
1045       patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case);
1046       __ Cmp(x1, x0);
1047       __ B(ne, &next_test);
1048       __ Drop(1);  // Switch value is no longer needed.
1049       __ B(clause->body_target());
1050       __ Bind(&slow_case);
1051     }
1052 
1053     // Record position before stub call for type feedback.
1054     SetSourcePosition(clause->position());
1055     Handle<Code> ic =
1056         CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
1057     CallIC(ic, clause->CompareId());
1058     patch_site.EmitPatchInfo();
1059 
1060     Label skip;
1061     __ B(&skip);
1062     PrepareForBailout(clause, TOS_REG);
1063     __ JumpIfNotRoot(x0, Heap::kTrueValueRootIndex, &next_test);
1064     __ Drop(1);
1065     __ B(clause->body_target());
1066     __ Bind(&skip);
1067 
1068     __ Cbnz(x0, &next_test);
1069     __ Drop(1);  // Switch value is no longer needed.
1070     __ B(clause->body_target());
1071   }
1072 
1073   // Discard the test value and jump to the default if present, otherwise to
1074   // the end of the statement.
1075   __ Bind(&next_test);
1076   __ Drop(1);  // Switch value is no longer needed.
1077   if (default_clause == NULL) {
1078     __ B(nested_statement.break_label());
1079   } else {
1080     __ B(default_clause->body_target());
1081   }
1082 
1083   // Compile all the case bodies.
1084   for (int i = 0; i < clauses->length(); i++) {
1085     Comment cmnt(masm_, "[ Case body");
1086     CaseClause* clause = clauses->at(i);
1087     __ Bind(clause->body_target());
1088     PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
1089     VisitStatements(clause->statements());
1090   }
1091 
1092   __ Bind(nested_statement.break_label());
1093   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1094 }
1095 
1096 
VisitForInStatement(ForInStatement * stmt)1097 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
1098   ASM_LOCATION("FullCodeGenerator::VisitForInStatement");
1099   Comment cmnt(masm_, "[ ForInStatement");
1100   int slot = stmt->ForInFeedbackSlot();
1101   // TODO(all): This visitor probably needs better comments and a revisit.
1102   SetStatementPosition(stmt);
1103 
1104   Label loop, exit;
1105   ForIn loop_statement(this, stmt);
1106   increment_loop_depth();
1107 
1108   // Get the object to enumerate over. If the object is null or undefined, skip
1109   // over the loop.  See ECMA-262 version 5, section 12.6.4.
1110   VisitForAccumulatorValue(stmt->enumerable());
1111   __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, &exit);
1112   Register null_value = x15;
1113   __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1114   __ Cmp(x0, null_value);
1115   __ B(eq, &exit);
1116 
1117   PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1118 
1119   // Convert the object to a JS object.
1120   Label convert, done_convert;
1121   __ JumpIfSmi(x0, &convert);
1122   __ JumpIfObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE, &done_convert, ge);
1123   __ Bind(&convert);
1124   __ Push(x0);
1125   __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1126   __ Bind(&done_convert);
1127   __ Push(x0);
1128 
1129   // Check for proxies.
1130   Label call_runtime;
1131   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1132   __ JumpIfObjectType(x0, x10, x11, LAST_JS_PROXY_TYPE, &call_runtime, le);
1133 
1134   // Check cache validity in generated code. This is a fast case for
1135   // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1136   // guarantee cache validity, call the runtime system to check cache
1137   // validity or get the property names in a fixed array.
1138   __ CheckEnumCache(x0, null_value, x10, x11, x12, x13, &call_runtime);
1139 
1140   // The enum cache is valid.  Load the map of the object being
1141   // iterated over and use the cache for the iteration.
1142   Label use_cache;
1143   __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
1144   __ B(&use_cache);
1145 
1146   // Get the set of properties to enumerate.
1147   __ Bind(&call_runtime);
1148   __ Push(x0);  // Duplicate the enumerable object on the stack.
1149   __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
1150 
1151   // If we got a map from the runtime call, we can do a fast
1152   // modification check. Otherwise, we got a fixed array, and we have
1153   // to do a slow check.
1154   Label fixed_array, no_descriptors;
1155   __ Ldr(x2, FieldMemOperand(x0, HeapObject::kMapOffset));
1156   __ JumpIfNotRoot(x2, Heap::kMetaMapRootIndex, &fixed_array);
1157 
1158   // We got a map in register x0. Get the enumeration cache from it.
1159   __ Bind(&use_cache);
1160 
1161   __ EnumLengthUntagged(x1, x0);
1162   __ Cbz(x1, &no_descriptors);
1163 
1164   __ LoadInstanceDescriptors(x0, x2);
1165   __ Ldr(x2, FieldMemOperand(x2, DescriptorArray::kEnumCacheOffset));
1166   __ Ldr(x2,
1167          FieldMemOperand(x2, DescriptorArray::kEnumCacheBridgeCacheOffset));
1168 
1169   // Set up the four remaining stack slots.
1170   __ SmiTag(x1);
1171   // Map, enumeration cache, enum cache length, zero (both last as smis).
1172   __ Push(x0, x2, x1, xzr);
1173   __ B(&loop);
1174 
1175   __ Bind(&no_descriptors);
1176   __ Drop(1);
1177   __ B(&exit);
1178 
1179   // We got a fixed array in register x0. Iterate through that.
1180   __ Bind(&fixed_array);
1181 
1182   __ LoadObject(x1, FeedbackVector());
1183   __ Mov(x10, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
1184   __ Str(x10, FieldMemOperand(x1, FixedArray::OffsetOfElementAt(slot)));
1185 
1186   __ Mov(x1, Smi::FromInt(1));  // Smi indicates slow check.
1187   __ Peek(x10, 0);  // Get enumerated object.
1188   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1189   // TODO(all): similar check was done already. Can we avoid it here?
1190   __ CompareObjectType(x10, x11, x12, LAST_JS_PROXY_TYPE);
1191   DCHECK(Smi::FromInt(0) == 0);
1192   __ CzeroX(x1, le);  // Zero indicates proxy.
1193   __ Ldr(x2, FieldMemOperand(x0, FixedArray::kLengthOffset));
1194   // Smi and array, fixed array length (as smi) and initial index.
1195   __ Push(x1, x0, x2, xzr);
1196 
1197   // Generate code for doing the condition check.
1198   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1199   __ Bind(&loop);
1200   // Load the current count to x0, load the length to x1.
1201   __ PeekPair(x0, x1, 0);
1202   __ Cmp(x0, x1);  // Compare to the array length.
1203   __ B(hs, loop_statement.break_label());
1204 
1205   // Get the current entry of the array into register r3.
1206   __ Peek(x10, 2 * kXRegSize);
1207   __ Add(x10, x10, Operand::UntagSmiAndScale(x0, kPointerSizeLog2));
1208   __ Ldr(x3, MemOperand(x10, FixedArray::kHeaderSize - kHeapObjectTag));
1209 
1210   // Get the expected map from the stack or a smi in the
1211   // permanent slow case into register x10.
1212   __ Peek(x2, 3 * kXRegSize);
1213 
1214   // Check if the expected map still matches that of the enumerable.
1215   // If not, we may have to filter the key.
1216   Label update_each;
1217   __ Peek(x1, 4 * kXRegSize);
1218   __ Ldr(x11, FieldMemOperand(x1, HeapObject::kMapOffset));
1219   __ Cmp(x11, x2);
1220   __ B(eq, &update_each);
1221 
1222   // For proxies, no filtering is done.
1223   // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
1224   STATIC_ASSERT(kSmiTag == 0);
1225   __ Cbz(x2, &update_each);
1226 
1227   // Convert the entry to a string or (smi) 0 if it isn't a property
1228   // any more. If the property has been removed while iterating, we
1229   // just skip it.
1230   __ Push(x1, x3);
1231   __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
1232   __ Mov(x3, x0);
1233   __ Cbz(x0, loop_statement.continue_label());
1234 
1235   // Update the 'each' property or variable from the possibly filtered
1236   // entry in register x3.
1237   __ Bind(&update_each);
1238   __ Mov(result_register(), x3);
1239   // Perform the assignment as if via '='.
1240   { EffectContext context(this);
1241     EmitAssignment(stmt->each());
1242   }
1243 
1244   // Generate code for the body of the loop.
1245   Visit(stmt->body());
1246 
1247   // Generate code for going to the next element by incrementing
1248   // the index (smi) stored on top of the stack.
1249   __ Bind(loop_statement.continue_label());
1250   // TODO(all): We could use a callee saved register to avoid popping.
1251   __ Pop(x0);
1252   __ Add(x0, x0, Smi::FromInt(1));
1253   __ Push(x0);
1254 
1255   EmitBackEdgeBookkeeping(stmt, &loop);
1256   __ B(&loop);
1257 
1258   // Remove the pointers stored on the stack.
1259   __ Bind(loop_statement.break_label());
1260   __ Drop(5);
1261 
1262   // Exit and decrement the loop depth.
1263   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1264   __ Bind(&exit);
1265   decrement_loop_depth();
1266 }
1267 
1268 
VisitForOfStatement(ForOfStatement * stmt)1269 void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
1270   Comment cmnt(masm_, "[ ForOfStatement");
1271   SetStatementPosition(stmt);
1272 
1273   Iteration loop_statement(this, stmt);
1274   increment_loop_depth();
1275 
1276   // var iterator = iterable[Symbol.iterator]();
1277   VisitForEffect(stmt->assign_iterator());
1278 
1279   // Loop entry.
1280   __ Bind(loop_statement.continue_label());
1281 
1282   // result = iterator.next()
1283   VisitForEffect(stmt->next_result());
1284 
1285   // if (result.done) break;
1286   Label result_not_done;
1287   VisitForControl(stmt->result_done(),
1288                   loop_statement.break_label(),
1289                   &result_not_done,
1290                   &result_not_done);
1291   __ Bind(&result_not_done);
1292 
1293   // each = result.value
1294   VisitForEffect(stmt->assign_each());
1295 
1296   // Generate code for the body of the loop.
1297   Visit(stmt->body());
1298 
1299   // Check stack before looping.
1300   PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
1301   EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
1302   __ B(loop_statement.continue_label());
1303 
1304   // Exit and decrement the loop depth.
1305   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1306   __ Bind(loop_statement.break_label());
1307   decrement_loop_depth();
1308 }
1309 
1310 
EmitNewClosure(Handle<SharedFunctionInfo> info,bool pretenure)1311 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1312                                        bool pretenure) {
1313   // Use the fast case closure allocation code that allocates in new space for
1314   // nested functions that don't need literals cloning. If we're running with
1315   // the --always-opt or the --prepare-always-opt flag, we need to use the
1316   // runtime function so that the new function we are creating here gets a
1317   // chance to have its code optimized and doesn't just get a copy of the
1318   // existing unoptimized code.
1319   if (!FLAG_always_opt &&
1320       !FLAG_prepare_always_opt &&
1321       !pretenure &&
1322       scope()->is_function_scope() &&
1323       info->num_literals() == 0) {
1324     FastNewClosureStub stub(isolate(), info->strict_mode(), info->kind());
1325     __ Mov(x2, Operand(info));
1326     __ CallStub(&stub);
1327   } else {
1328     __ Mov(x11, Operand(info));
1329     __ LoadRoot(x10, pretenure ? Heap::kTrueValueRootIndex
1330                                : Heap::kFalseValueRootIndex);
1331     __ Push(cp, x11, x10);
1332     __ CallRuntime(Runtime::kNewClosure, 3);
1333   }
1334   context()->Plug(x0);
1335 }
1336 
1337 
VisitVariableProxy(VariableProxy * expr)1338 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
1339   Comment cmnt(masm_, "[ VariableProxy");
1340   EmitVariableLoad(expr);
1341 }
1342 
1343 
EmitLoadHomeObject(SuperReference * expr)1344 void FullCodeGenerator::EmitLoadHomeObject(SuperReference* expr) {
1345   Comment cnmt(masm_, "[ SuperReference ");
1346 
1347   __ ldr(LoadDescriptor::ReceiverRegister(),
1348          MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1349 
1350   Handle<Symbol> home_object_symbol(isolate()->heap()->home_object_symbol());
1351   __ Mov(LoadDescriptor::NameRegister(), Operand(home_object_symbol));
1352 
1353   CallLoadIC(NOT_CONTEXTUAL, expr->HomeObjectFeedbackId());
1354 
1355   __ Mov(x10, Operand(isolate()->factory()->undefined_value()));
1356   __ cmp(x0, x10);
1357   Label done;
1358   __ b(&done, ne);
1359   __ CallRuntime(Runtime::kThrowNonMethodError, 0);
1360   __ bind(&done);
1361 }
1362 
1363 
EmitLoadGlobalCheckExtensions(VariableProxy * proxy,TypeofState typeof_state,Label * slow)1364 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1365                                                       TypeofState typeof_state,
1366                                                       Label* slow) {
1367   Register current = cp;
1368   Register next = x10;
1369   Register temp = x11;
1370 
1371   Scope* s = scope();
1372   while (s != NULL) {
1373     if (s->num_heap_slots() > 0) {
1374       if (s->calls_sloppy_eval()) {
1375         // Check that extension is NULL.
1376         __ Ldr(temp, ContextMemOperand(current, Context::EXTENSION_INDEX));
1377         __ Cbnz(temp, slow);
1378       }
1379       // Load next context in chain.
1380       __ Ldr(next, ContextMemOperand(current, Context::PREVIOUS_INDEX));
1381       // Walk the rest of the chain without clobbering cp.
1382       current = next;
1383     }
1384     // If no outer scope calls eval, we do not need to check more
1385     // context extensions.
1386     if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1387     s = s->outer_scope();
1388   }
1389 
1390   if (s->is_eval_scope()) {
1391     Label loop, fast;
1392     __ Mov(next, current);
1393 
1394     __ Bind(&loop);
1395     // Terminate at native context.
1396     __ Ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset));
1397     __ JumpIfRoot(temp, Heap::kNativeContextMapRootIndex, &fast);
1398     // Check that extension is NULL.
1399     __ Ldr(temp, ContextMemOperand(next, Context::EXTENSION_INDEX));
1400     __ Cbnz(temp, slow);
1401     // Load next context in chain.
1402     __ Ldr(next, ContextMemOperand(next, Context::PREVIOUS_INDEX));
1403     __ B(&loop);
1404     __ Bind(&fast);
1405   }
1406 
1407   __ Ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectMemOperand());
1408   __ Mov(LoadDescriptor::NameRegister(), Operand(proxy->var()->name()));
1409   if (FLAG_vector_ics) {
1410     __ Mov(VectorLoadICDescriptor::SlotRegister(),
1411            Smi::FromInt(proxy->VariableFeedbackSlot()));
1412   }
1413 
1414   ContextualMode mode = (typeof_state == INSIDE_TYPEOF) ? NOT_CONTEXTUAL
1415                                                         : CONTEXTUAL;
1416   CallLoadIC(mode);
1417 }
1418 
1419 
ContextSlotOperandCheckExtensions(Variable * var,Label * slow)1420 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1421                                                                 Label* slow) {
1422   DCHECK(var->IsContextSlot());
1423   Register context = cp;
1424   Register next = x10;
1425   Register temp = x11;
1426 
1427   for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1428     if (s->num_heap_slots() > 0) {
1429       if (s->calls_sloppy_eval()) {
1430         // Check that extension is NULL.
1431         __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
1432         __ Cbnz(temp, slow);
1433       }
1434       __ Ldr(next, ContextMemOperand(context, Context::PREVIOUS_INDEX));
1435       // Walk the rest of the chain without clobbering cp.
1436       context = next;
1437     }
1438   }
1439   // Check that last extension is NULL.
1440   __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
1441   __ Cbnz(temp, slow);
1442 
1443   // This function is used only for loads, not stores, so it's safe to
1444   // return an cp-based operand (the write barrier cannot be allowed to
1445   // destroy the cp register).
1446   return ContextMemOperand(context, var->index());
1447 }
1448 
1449 
EmitDynamicLookupFastCase(VariableProxy * proxy,TypeofState typeof_state,Label * slow,Label * done)1450 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1451                                                   TypeofState typeof_state,
1452                                                   Label* slow,
1453                                                   Label* done) {
1454   // Generate fast-case code for variables that might be shadowed by
1455   // eval-introduced variables.  Eval is used a lot without
1456   // introducing variables.  In those cases, we do not want to
1457   // perform a runtime call for all variables in the scope
1458   // containing the eval.
1459   Variable* var = proxy->var();
1460   if (var->mode() == DYNAMIC_GLOBAL) {
1461     EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow);
1462     __ B(done);
1463   } else if (var->mode() == DYNAMIC_LOCAL) {
1464     Variable* local = var->local_if_not_shadowed();
1465     __ Ldr(x0, ContextSlotOperandCheckExtensions(local, slow));
1466     if (local->mode() == LET || local->mode() == CONST ||
1467         local->mode() == CONST_LEGACY) {
1468       __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, done);
1469       if (local->mode() == CONST_LEGACY) {
1470         __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
1471       } else {  // LET || CONST
1472         __ Mov(x0, Operand(var->name()));
1473         __ Push(x0);
1474         __ CallRuntime(Runtime::kThrowReferenceError, 1);
1475       }
1476     }
1477     __ B(done);
1478   }
1479 }
1480 
1481 
EmitVariableLoad(VariableProxy * proxy)1482 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
1483   // Record position before possible IC call.
1484   SetSourcePosition(proxy->position());
1485   Variable* var = proxy->var();
1486 
1487   // Three cases: global variables, lookup variables, and all other types of
1488   // variables.
1489   switch (var->location()) {
1490     case Variable::UNALLOCATED: {
1491       Comment cmnt(masm_, "Global variable");
1492       __ Ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectMemOperand());
1493       __ Mov(LoadDescriptor::NameRegister(), Operand(var->name()));
1494       if (FLAG_vector_ics) {
1495         __ Mov(VectorLoadICDescriptor::SlotRegister(),
1496                Smi::FromInt(proxy->VariableFeedbackSlot()));
1497       }
1498       CallLoadIC(CONTEXTUAL);
1499       context()->Plug(x0);
1500       break;
1501     }
1502 
1503     case Variable::PARAMETER:
1504     case Variable::LOCAL:
1505     case Variable::CONTEXT: {
1506       Comment cmnt(masm_, var->IsContextSlot()
1507                               ? "Context variable"
1508                               : "Stack variable");
1509       if (var->binding_needs_init()) {
1510         // var->scope() may be NULL when the proxy is located in eval code and
1511         // refers to a potential outside binding. Currently those bindings are
1512         // always looked up dynamically, i.e. in that case
1513         //     var->location() == LOOKUP.
1514         // always holds.
1515         DCHECK(var->scope() != NULL);
1516 
1517         // Check if the binding really needs an initialization check. The check
1518         // can be skipped in the following situation: we have a LET or CONST
1519         // binding in harmony mode, both the Variable and the VariableProxy have
1520         // the same declaration scope (i.e. they are both in global code, in the
1521         // same function or in the same eval code) and the VariableProxy is in
1522         // the source physically located after the initializer of the variable.
1523         //
1524         // We cannot skip any initialization checks for CONST in non-harmony
1525         // mode because const variables may be declared but never initialized:
1526         //   if (false) { const x; }; var y = x;
1527         //
1528         // The condition on the declaration scopes is a conservative check for
1529         // nested functions that access a binding and are called before the
1530         // binding is initialized:
1531         //   function() { f(); let x = 1; function f() { x = 2; } }
1532         //
1533         bool skip_init_check;
1534         if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
1535           skip_init_check = false;
1536         } else {
1537           // Check that we always have valid source position.
1538           DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
1539           DCHECK(proxy->position() != RelocInfo::kNoPosition);
1540           skip_init_check = var->mode() != CONST_LEGACY &&
1541               var->initializer_position() < proxy->position();
1542         }
1543 
1544         if (!skip_init_check) {
1545           // Let and const need a read barrier.
1546           GetVar(x0, var);
1547           Label done;
1548           __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, &done);
1549           if (var->mode() == LET || var->mode() == CONST) {
1550             // Throw a reference error when using an uninitialized let/const
1551             // binding in harmony mode.
1552             __ Mov(x0, Operand(var->name()));
1553             __ Push(x0);
1554             __ CallRuntime(Runtime::kThrowReferenceError, 1);
1555             __ Bind(&done);
1556           } else {
1557             // Uninitalized const bindings outside of harmony mode are unholed.
1558             DCHECK(var->mode() == CONST_LEGACY);
1559             __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
1560             __ Bind(&done);
1561           }
1562           context()->Plug(x0);
1563           break;
1564         }
1565       }
1566       context()->Plug(var);
1567       break;
1568     }
1569 
1570     case Variable::LOOKUP: {
1571       Label done, slow;
1572       // Generate code for loading from variables potentially shadowed by
1573       // eval-introduced variables.
1574       EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
1575       __ Bind(&slow);
1576       Comment cmnt(masm_, "Lookup variable");
1577       __ Mov(x1, Operand(var->name()));
1578       __ Push(cp, x1);  // Context and name.
1579       __ CallRuntime(Runtime::kLoadLookupSlot, 2);
1580       __ Bind(&done);
1581       context()->Plug(x0);
1582       break;
1583     }
1584   }
1585 }
1586 
1587 
VisitRegExpLiteral(RegExpLiteral * expr)1588 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1589   Comment cmnt(masm_, "[ RegExpLiteral");
1590   Label materialized;
1591   // Registers will be used as follows:
1592   // x5 = materialized value (RegExp literal)
1593   // x4 = JS function, literals array
1594   // x3 = literal index
1595   // x2 = RegExp pattern
1596   // x1 = RegExp flags
1597   // x0 = RegExp literal clone
1598   __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1599   __ Ldr(x4, FieldMemOperand(x10, JSFunction::kLiteralsOffset));
1600   int literal_offset =
1601       FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
1602   __ Ldr(x5, FieldMemOperand(x4, literal_offset));
1603   __ JumpIfNotRoot(x5, Heap::kUndefinedValueRootIndex, &materialized);
1604 
1605   // Create regexp literal using runtime function.
1606   // Result will be in x0.
1607   __ Mov(x3, Smi::FromInt(expr->literal_index()));
1608   __ Mov(x2, Operand(expr->pattern()));
1609   __ Mov(x1, Operand(expr->flags()));
1610   __ Push(x4, x3, x2, x1);
1611   __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
1612   __ Mov(x5, x0);
1613 
1614   __ Bind(&materialized);
1615   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
1616   Label allocated, runtime_allocate;
1617   __ Allocate(size, x0, x2, x3, &runtime_allocate, TAG_OBJECT);
1618   __ B(&allocated);
1619 
1620   __ Bind(&runtime_allocate);
1621   __ Mov(x10, Smi::FromInt(size));
1622   __ Push(x5, x10);
1623   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
1624   __ Pop(x5);
1625 
1626   __ Bind(&allocated);
1627   // After this, registers are used as follows:
1628   // x0: Newly allocated regexp.
1629   // x5: Materialized regexp.
1630   // x10, x11, x12: temps.
1631   __ CopyFields(x0, x5, CPURegList(x10, x11, x12), size / kPointerSize);
1632   context()->Plug(x0);
1633 }
1634 
1635 
EmitAccessor(Expression * expression)1636 void FullCodeGenerator::EmitAccessor(Expression* expression) {
1637   if (expression == NULL) {
1638     __ LoadRoot(x10, Heap::kNullValueRootIndex);
1639     __ Push(x10);
1640   } else {
1641     VisitForStackValue(expression);
1642   }
1643 }
1644 
1645 
VisitObjectLiteral(ObjectLiteral * expr)1646 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1647   Comment cmnt(masm_, "[ ObjectLiteral");
1648 
1649   expr->BuildConstantProperties(isolate());
1650   Handle<FixedArray> constant_properties = expr->constant_properties();
1651   __ Ldr(x3, MemOperand(fp,  JavaScriptFrameConstants::kFunctionOffset));
1652   __ Ldr(x3, FieldMemOperand(x3, JSFunction::kLiteralsOffset));
1653   __ Mov(x2, Smi::FromInt(expr->literal_index()));
1654   __ Mov(x1, Operand(constant_properties));
1655   int flags = expr->fast_elements()
1656       ? ObjectLiteral::kFastElements
1657       : ObjectLiteral::kNoFlags;
1658   flags |= expr->has_function()
1659       ? ObjectLiteral::kHasFunction
1660       : ObjectLiteral::kNoFlags;
1661   __ Mov(x0, Smi::FromInt(flags));
1662   int properties_count = constant_properties->length() / 2;
1663   const int max_cloned_properties =
1664       FastCloneShallowObjectStub::kMaximumClonedProperties;
1665   if (expr->may_store_doubles() || expr->depth() > 1 ||
1666       masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements ||
1667       properties_count > max_cloned_properties) {
1668     __ Push(x3, x2, x1, x0);
1669     __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
1670   } else {
1671     FastCloneShallowObjectStub stub(isolate(), properties_count);
1672     __ CallStub(&stub);
1673   }
1674 
1675   // If result_saved is true the result is on top of the stack.  If
1676   // result_saved is false the result is in x0.
1677   bool result_saved = false;
1678 
1679   // Mark all computed expressions that are bound to a key that
1680   // is shadowed by a later occurrence of the same key. For the
1681   // marked expressions, no store code is emitted.
1682   expr->CalculateEmitStore(zone());
1683 
1684   AccessorTable accessor_table(zone());
1685   for (int i = 0; i < expr->properties()->length(); i++) {
1686     ObjectLiteral::Property* property = expr->properties()->at(i);
1687     if (property->IsCompileTimeValue()) continue;
1688 
1689     Literal* key = property->key();
1690     Expression* value = property->value();
1691     if (!result_saved) {
1692       __ Push(x0);  // Save result on stack
1693       result_saved = true;
1694     }
1695     switch (property->kind()) {
1696       case ObjectLiteral::Property::CONSTANT:
1697         UNREACHABLE();
1698       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1699         DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
1700         // Fall through.
1701       case ObjectLiteral::Property::COMPUTED:
1702         if (key->value()->IsInternalizedString()) {
1703           if (property->emit_store()) {
1704             VisitForAccumulatorValue(value);
1705             DCHECK(StoreDescriptor::ValueRegister().is(x0));
1706             __ Mov(StoreDescriptor::NameRegister(), Operand(key->value()));
1707             __ Peek(StoreDescriptor::ReceiverRegister(), 0);
1708             CallStoreIC(key->LiteralFeedbackId());
1709             PrepareForBailoutForId(key->id(), NO_REGISTERS);
1710           } else {
1711             VisitForEffect(value);
1712           }
1713           break;
1714         }
1715         if (property->emit_store()) {
1716           // Duplicate receiver on stack.
1717           __ Peek(x0, 0);
1718           __ Push(x0);
1719           VisitForStackValue(key);
1720           VisitForStackValue(value);
1721           __ Mov(x0, Smi::FromInt(SLOPPY));  // Strict mode
1722           __ Push(x0);
1723           __ CallRuntime(Runtime::kSetProperty, 4);
1724         } else {
1725           VisitForEffect(key);
1726           VisitForEffect(value);
1727         }
1728         break;
1729       case ObjectLiteral::Property::PROTOTYPE:
1730         if (property->emit_store()) {
1731           // Duplicate receiver on stack.
1732           __ Peek(x0, 0);
1733           __ Push(x0);
1734           VisitForStackValue(value);
1735           __ CallRuntime(Runtime::kSetPrototype, 2);
1736         } else {
1737           VisitForEffect(value);
1738         }
1739         break;
1740       case ObjectLiteral::Property::GETTER:
1741         accessor_table.lookup(key)->second->getter = value;
1742         break;
1743       case ObjectLiteral::Property::SETTER:
1744         accessor_table.lookup(key)->second->setter = value;
1745         break;
1746     }
1747   }
1748 
1749   // Emit code to define accessors, using only a single call to the runtime for
1750   // each pair of corresponding getters and setters.
1751   for (AccessorTable::Iterator it = accessor_table.begin();
1752        it != accessor_table.end();
1753        ++it) {
1754       __ Peek(x10, 0);  // Duplicate receiver.
1755       __ Push(x10);
1756       VisitForStackValue(it->first);
1757       EmitAccessor(it->second->getter);
1758       EmitAccessor(it->second->setter);
1759       __ Mov(x10, Smi::FromInt(NONE));
1760       __ Push(x10);
1761       __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
1762   }
1763 
1764   if (expr->has_function()) {
1765     DCHECK(result_saved);
1766     __ Peek(x0, 0);
1767     __ Push(x0);
1768     __ CallRuntime(Runtime::kToFastProperties, 1);
1769   }
1770 
1771   if (result_saved) {
1772     context()->PlugTOS();
1773   } else {
1774     context()->Plug(x0);
1775   }
1776 }
1777 
1778 
VisitArrayLiteral(ArrayLiteral * expr)1779 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1780   Comment cmnt(masm_, "[ ArrayLiteral");
1781 
1782   expr->BuildConstantElements(isolate());
1783   int flags = (expr->depth() == 1) ? ArrayLiteral::kShallowElements
1784                                    : ArrayLiteral::kNoFlags;
1785 
1786   ZoneList<Expression*>* subexprs = expr->values();
1787   int length = subexprs->length();
1788   Handle<FixedArray> constant_elements = expr->constant_elements();
1789   DCHECK_EQ(2, constant_elements->length());
1790   ElementsKind constant_elements_kind =
1791       static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
1792   bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind);
1793   Handle<FixedArrayBase> constant_elements_values(
1794       FixedArrayBase::cast(constant_elements->get(1)));
1795 
1796   AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1797   if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
1798     // If the only customer of allocation sites is transitioning, then
1799     // we can turn it off if we don't have anywhere else to transition to.
1800     allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1801   }
1802 
1803   __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1804   __ Ldr(x3, FieldMemOperand(x3, JSFunction::kLiteralsOffset));
1805   __ Mov(x2, Smi::FromInt(expr->literal_index()));
1806   __ Mov(x1, Operand(constant_elements));
1807   if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) {
1808     __ Mov(x0, Smi::FromInt(flags));
1809     __ Push(x3, x2, x1, x0);
1810     __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
1811   } else {
1812     FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1813     __ CallStub(&stub);
1814   }
1815 
1816   bool result_saved = false;  // Is the result saved to the stack?
1817 
1818   // Emit code to evaluate all the non-constant subexpressions and to store
1819   // them into the newly cloned array.
1820   for (int i = 0; i < length; i++) {
1821     Expression* subexpr = subexprs->at(i);
1822     // If the subexpression is a literal or a simple materialized literal it
1823     // is already set in the cloned array.
1824     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1825 
1826     if (!result_saved) {
1827       __ Mov(x1, Smi::FromInt(expr->literal_index()));
1828       __ Push(x0, x1);
1829       result_saved = true;
1830     }
1831     VisitForAccumulatorValue(subexpr);
1832 
1833     if (IsFastObjectElementsKind(constant_elements_kind)) {
1834       int offset = FixedArray::kHeaderSize + (i * kPointerSize);
1835       __ Peek(x6, kPointerSize);  // Copy of array literal.
1836       __ Ldr(x1, FieldMemOperand(x6, JSObject::kElementsOffset));
1837       __ Str(result_register(), FieldMemOperand(x1, offset));
1838       // Update the write barrier for the array store.
1839       __ RecordWriteField(x1, offset, result_register(), x10,
1840                           kLRHasBeenSaved, kDontSaveFPRegs,
1841                           EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
1842     } else {
1843       __ Mov(x3, Smi::FromInt(i));
1844       StoreArrayLiteralElementStub stub(isolate());
1845       __ CallStub(&stub);
1846     }
1847 
1848     PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
1849   }
1850 
1851   if (result_saved) {
1852     __ Drop(1);   // literal index
1853     context()->PlugTOS();
1854   } else {
1855     context()->Plug(x0);
1856   }
1857 }
1858 
1859 
VisitAssignment(Assignment * expr)1860 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1861   DCHECK(expr->target()->IsValidReferenceExpression());
1862 
1863   Comment cmnt(masm_, "[ Assignment");
1864 
1865   // Left-hand side can only be a property, a global or a (parameter or local)
1866   // slot.
1867   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1868   LhsKind assign_type = VARIABLE;
1869   Property* property = expr->target()->AsProperty();
1870   if (property != NULL) {
1871     assign_type = (property->key()->IsPropertyName())
1872         ? NAMED_PROPERTY
1873         : KEYED_PROPERTY;
1874   }
1875 
1876   // Evaluate LHS expression.
1877   switch (assign_type) {
1878     case VARIABLE:
1879       // Nothing to do here.
1880       break;
1881     case NAMED_PROPERTY:
1882       if (expr->is_compound()) {
1883         // We need the receiver both on the stack and in the register.
1884         VisitForStackValue(property->obj());
1885         __ Peek(LoadDescriptor::ReceiverRegister(), 0);
1886       } else {
1887         VisitForStackValue(property->obj());
1888       }
1889       break;
1890     case KEYED_PROPERTY:
1891       if (expr->is_compound()) {
1892         VisitForStackValue(property->obj());
1893         VisitForStackValue(property->key());
1894         __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize);
1895         __ Peek(LoadDescriptor::NameRegister(), 0);
1896       } else {
1897         VisitForStackValue(property->obj());
1898         VisitForStackValue(property->key());
1899       }
1900       break;
1901   }
1902 
1903   // For compound assignments we need another deoptimization point after the
1904   // variable/property load.
1905   if (expr->is_compound()) {
1906     { AccumulatorValueContext context(this);
1907       switch (assign_type) {
1908         case VARIABLE:
1909           EmitVariableLoad(expr->target()->AsVariableProxy());
1910           PrepareForBailout(expr->target(), TOS_REG);
1911           break;
1912         case NAMED_PROPERTY:
1913           EmitNamedPropertyLoad(property);
1914           PrepareForBailoutForId(property->LoadId(), TOS_REG);
1915           break;
1916         case KEYED_PROPERTY:
1917           EmitKeyedPropertyLoad(property);
1918           PrepareForBailoutForId(property->LoadId(), TOS_REG);
1919           break;
1920       }
1921     }
1922 
1923     Token::Value op = expr->binary_op();
1924     __ Push(x0);  // Left operand goes on the stack.
1925     VisitForAccumulatorValue(expr->value());
1926 
1927     OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
1928         ? OVERWRITE_RIGHT
1929         : NO_OVERWRITE;
1930     SetSourcePosition(expr->position() + 1);
1931     AccumulatorValueContext context(this);
1932     if (ShouldInlineSmiCase(op)) {
1933       EmitInlineSmiBinaryOp(expr->binary_operation(),
1934                             op,
1935                             mode,
1936                             expr->target(),
1937                             expr->value());
1938     } else {
1939       EmitBinaryOp(expr->binary_operation(), op, mode);
1940     }
1941 
1942     // Deoptimization point in case the binary operation may have side effects.
1943     PrepareForBailout(expr->binary_operation(), TOS_REG);
1944   } else {
1945     VisitForAccumulatorValue(expr->value());
1946   }
1947 
1948   // Record source position before possible IC call.
1949   SetSourcePosition(expr->position());
1950 
1951   // Store the value.
1952   switch (assign_type) {
1953     case VARIABLE:
1954       EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1955                              expr->op());
1956       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1957       context()->Plug(x0);
1958       break;
1959     case NAMED_PROPERTY:
1960       EmitNamedPropertyAssignment(expr);
1961       break;
1962     case KEYED_PROPERTY:
1963       EmitKeyedPropertyAssignment(expr);
1964       break;
1965   }
1966 }
1967 
1968 
EmitNamedPropertyLoad(Property * prop)1969 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
1970   SetSourcePosition(prop->position());
1971   Literal* key = prop->key()->AsLiteral();
1972   DCHECK(!prop->IsSuperAccess());
1973 
1974   __ Mov(LoadDescriptor::NameRegister(), Operand(key->value()));
1975   if (FLAG_vector_ics) {
1976     __ Mov(VectorLoadICDescriptor::SlotRegister(),
1977            Smi::FromInt(prop->PropertyFeedbackSlot()));
1978     CallLoadIC(NOT_CONTEXTUAL);
1979   } else {
1980     CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId());
1981   }
1982 }
1983 
1984 
EmitNamedSuperPropertyLoad(Property * prop)1985 void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
1986   SetSourcePosition(prop->position());
1987   Literal* key = prop->key()->AsLiteral();
1988   DCHECK(!key->value()->IsSmi());
1989   DCHECK(prop->IsSuperAccess());
1990 
1991   SuperReference* super_ref = prop->obj()->AsSuperReference();
1992   EmitLoadHomeObject(super_ref);
1993   __ Push(x0);
1994   VisitForStackValue(super_ref->this_var());
1995   __ Push(key->value());
1996   __ CallRuntime(Runtime::kLoadFromSuper, 3);
1997 }
1998 
1999 
EmitKeyedPropertyLoad(Property * prop)2000 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
2001   SetSourcePosition(prop->position());
2002   // Call keyed load IC. It has arguments key and receiver in r0 and r1.
2003   Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
2004   if (FLAG_vector_ics) {
2005     __ Mov(VectorLoadICDescriptor::SlotRegister(),
2006            Smi::FromInt(prop->PropertyFeedbackSlot()));
2007     CallIC(ic);
2008   } else {
2009     CallIC(ic, prop->PropertyFeedbackId());
2010   }
2011 }
2012 
2013 
EmitInlineSmiBinaryOp(BinaryOperation * expr,Token::Value op,OverwriteMode mode,Expression * left_expr,Expression * right_expr)2014 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
2015                                               Token::Value op,
2016                                               OverwriteMode mode,
2017                                               Expression* left_expr,
2018                                               Expression* right_expr) {
2019   Label done, both_smis, stub_call;
2020 
2021   // Get the arguments.
2022   Register left = x1;
2023   Register right = x0;
2024   Register result = x0;
2025   __ Pop(left);
2026 
2027   // Perform combined smi check on both operands.
2028   __ Orr(x10, left, right);
2029   JumpPatchSite patch_site(masm_);
2030   patch_site.EmitJumpIfSmi(x10, &both_smis);
2031 
2032   __ Bind(&stub_call);
2033 
2034   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
2035   {
2036     Assembler::BlockPoolsScope scope(masm_);
2037     CallIC(code, expr->BinaryOperationFeedbackId());
2038     patch_site.EmitPatchInfo();
2039   }
2040   __ B(&done);
2041 
2042   __ Bind(&both_smis);
2043   // Smi case. This code works in the same way as the smi-smi case in the type
2044   // recording binary operation stub, see
2045   // BinaryOpStub::GenerateSmiSmiOperation for comments.
2046   // TODO(all): That doesn't exist any more. Where are the comments?
2047   //
2048   // The set of operations that needs to be supported here is controlled by
2049   // FullCodeGenerator::ShouldInlineSmiCase().
2050   switch (op) {
2051     case Token::SAR:
2052       __ Ubfx(right, right, kSmiShift, 5);
2053       __ Asr(result, left, right);
2054       __ Bic(result, result, kSmiShiftMask);
2055       break;
2056     case Token::SHL:
2057       __ Ubfx(right, right, kSmiShift, 5);
2058       __ Lsl(result, left, right);
2059       break;
2060     case Token::SHR:
2061       // If `left >>> right` >= 0x80000000, the result is not representable in a
2062       // signed 32-bit smi.
2063       __ Ubfx(right, right, kSmiShift, 5);
2064       __ Lsr(x10, left, right);
2065       __ Tbnz(x10, kXSignBit, &stub_call);
2066       __ Bic(result, x10, kSmiShiftMask);
2067       break;
2068     case Token::ADD:
2069       __ Adds(x10, left, right);
2070       __ B(vs, &stub_call);
2071       __ Mov(result, x10);
2072       break;
2073     case Token::SUB:
2074       __ Subs(x10, left, right);
2075       __ B(vs, &stub_call);
2076       __ Mov(result, x10);
2077       break;
2078     case Token::MUL: {
2079       Label not_minus_zero, done;
2080       STATIC_ASSERT(static_cast<unsigned>(kSmiShift) == (kXRegSizeInBits / 2));
2081       STATIC_ASSERT(kSmiTag == 0);
2082       __ Smulh(x10, left, right);
2083       __ Cbnz(x10, &not_minus_zero);
2084       __ Eor(x11, left, right);
2085       __ Tbnz(x11, kXSignBit, &stub_call);
2086       __ Mov(result, x10);
2087       __ B(&done);
2088       __ Bind(&not_minus_zero);
2089       __ Cls(x11, x10);
2090       __ Cmp(x11, kXRegSizeInBits - kSmiShift);
2091       __ B(lt, &stub_call);
2092       __ SmiTag(result, x10);
2093       __ Bind(&done);
2094       break;
2095     }
2096     case Token::BIT_OR:
2097       __ Orr(result, left, right);
2098       break;
2099     case Token::BIT_AND:
2100       __ And(result, left, right);
2101       break;
2102     case Token::BIT_XOR:
2103       __ Eor(result, left, right);
2104       break;
2105     default:
2106       UNREACHABLE();
2107   }
2108 
2109   __ Bind(&done);
2110   context()->Plug(x0);
2111 }
2112 
2113 
EmitBinaryOp(BinaryOperation * expr,Token::Value op,OverwriteMode mode)2114 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
2115                                      Token::Value op,
2116                                      OverwriteMode mode) {
2117   __ Pop(x1);
2118   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
2119   JumpPatchSite patch_site(masm_);    // Unbound, signals no inlined smi code.
2120   {
2121     Assembler::BlockPoolsScope scope(masm_);
2122     CallIC(code, expr->BinaryOperationFeedbackId());
2123     patch_site.EmitPatchInfo();
2124   }
2125   context()->Plug(x0);
2126 }
2127 
2128 
EmitAssignment(Expression * expr)2129 void FullCodeGenerator::EmitAssignment(Expression* expr) {
2130   DCHECK(expr->IsValidReferenceExpression());
2131 
2132   // Left-hand side can only be a property, a global or a (parameter or local)
2133   // slot.
2134   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
2135   LhsKind assign_type = VARIABLE;
2136   Property* prop = expr->AsProperty();
2137   if (prop != NULL) {
2138     assign_type = (prop->key()->IsPropertyName())
2139         ? NAMED_PROPERTY
2140         : KEYED_PROPERTY;
2141   }
2142 
2143   switch (assign_type) {
2144     case VARIABLE: {
2145       Variable* var = expr->AsVariableProxy()->var();
2146       EffectContext context(this);
2147       EmitVariableAssignment(var, Token::ASSIGN);
2148       break;
2149     }
2150     case NAMED_PROPERTY: {
2151       __ Push(x0);  // Preserve value.
2152       VisitForAccumulatorValue(prop->obj());
2153       // TODO(all): We could introduce a VisitForRegValue(reg, expr) to avoid
2154       // this copy.
2155       __ Mov(StoreDescriptor::ReceiverRegister(), x0);
2156       __ Pop(StoreDescriptor::ValueRegister());  // Restore value.
2157       __ Mov(StoreDescriptor::NameRegister(),
2158              Operand(prop->key()->AsLiteral()->value()));
2159       CallStoreIC();
2160       break;
2161     }
2162     case KEYED_PROPERTY: {
2163       __ Push(x0);  // Preserve value.
2164       VisitForStackValue(prop->obj());
2165       VisitForAccumulatorValue(prop->key());
2166       __ Mov(StoreDescriptor::NameRegister(), x0);
2167       __ Pop(StoreDescriptor::ReceiverRegister(),
2168              StoreDescriptor::ValueRegister());
2169       Handle<Code> ic =
2170           CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
2171       CallIC(ic);
2172       break;
2173     }
2174   }
2175   context()->Plug(x0);
2176 }
2177 
2178 
EmitStoreToStackLocalOrContextSlot(Variable * var,MemOperand location)2179 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2180     Variable* var, MemOperand location) {
2181   __ Str(result_register(), location);
2182   if (var->IsContextSlot()) {
2183     // RecordWrite may destroy all its register arguments.
2184     __ Mov(x10, result_register());
2185     int offset = Context::SlotOffset(var->index());
2186     __ RecordWriteContextSlot(
2187         x1, offset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
2188   }
2189 }
2190 
2191 
EmitVariableAssignment(Variable * var,Token::Value op)2192 void FullCodeGenerator::EmitVariableAssignment(Variable* var,
2193                                                Token::Value op) {
2194   ASM_LOCATION("FullCodeGenerator::EmitVariableAssignment");
2195   if (var->IsUnallocated()) {
2196     // Global var, const, or let.
2197     __ Mov(StoreDescriptor::NameRegister(), Operand(var->name()));
2198     __ Ldr(StoreDescriptor::ReceiverRegister(), GlobalObjectMemOperand());
2199     CallStoreIC();
2200 
2201   } else if (op == Token::INIT_CONST_LEGACY) {
2202     // Const initializers need a write barrier.
2203     DCHECK(!var->IsParameter());  // No const parameters.
2204     if (var->IsLookupSlot()) {
2205       __ Mov(x1, Operand(var->name()));
2206       __ Push(x0, cp, x1);
2207       __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
2208     } else {
2209       DCHECK(var->IsStackLocal() || var->IsContextSlot());
2210       Label skip;
2211       MemOperand location = VarOperand(var, x1);
2212       __ Ldr(x10, location);
2213       __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &skip);
2214       EmitStoreToStackLocalOrContextSlot(var, location);
2215       __ Bind(&skip);
2216     }
2217 
2218   } else if (var->mode() == LET && op != Token::INIT_LET) {
2219     // Non-initializing assignment to let variable needs a write barrier.
2220     DCHECK(!var->IsLookupSlot());
2221     DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2222     Label assign;
2223     MemOperand location = VarOperand(var, x1);
2224     __ Ldr(x10, location);
2225     __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &assign);
2226     __ Mov(x10, Operand(var->name()));
2227     __ Push(x10);
2228     __ CallRuntime(Runtime::kThrowReferenceError, 1);
2229     // Perform the assignment.
2230     __ Bind(&assign);
2231     EmitStoreToStackLocalOrContextSlot(var, location);
2232 
2233   } else if (!var->is_const_mode() || op == Token::INIT_CONST) {
2234     if (var->IsLookupSlot()) {
2235       // Assignment to var.
2236       __ Mov(x11, Operand(var->name()));
2237       __ Mov(x10, Smi::FromInt(strict_mode()));
2238       // jssp[0]  : mode.
2239       // jssp[8]  : name.
2240       // jssp[16] : context.
2241       // jssp[24] : value.
2242       __ Push(x0, cp, x11, x10);
2243       __ CallRuntime(Runtime::kStoreLookupSlot, 4);
2244     } else {
2245       // Assignment to var or initializing assignment to let/const in harmony
2246       // mode.
2247       DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2248       MemOperand location = VarOperand(var, x1);
2249       if (FLAG_debug_code && op == Token::INIT_LET) {
2250         __ Ldr(x10, location);
2251         __ CompareRoot(x10, Heap::kTheHoleValueRootIndex);
2252         __ Check(eq, kLetBindingReInitialization);
2253       }
2254       EmitStoreToStackLocalOrContextSlot(var, location);
2255     }
2256   }
2257   // Non-initializing assignments to consts are ignored.
2258 }
2259 
2260 
EmitNamedPropertyAssignment(Assignment * expr)2261 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2262   ASM_LOCATION("FullCodeGenerator::EmitNamedPropertyAssignment");
2263   // Assignment to a property, using a named store IC.
2264   Property* prop = expr->target()->AsProperty();
2265   DCHECK(prop != NULL);
2266   DCHECK(prop->key()->IsLiteral());
2267 
2268   // Record source code position before IC call.
2269   SetSourcePosition(expr->position());
2270   __ Mov(StoreDescriptor::NameRegister(),
2271          Operand(prop->key()->AsLiteral()->value()));
2272   __ Pop(StoreDescriptor::ReceiverRegister());
2273   CallStoreIC(expr->AssignmentFeedbackId());
2274 
2275   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2276   context()->Plug(x0);
2277 }
2278 
2279 
EmitKeyedPropertyAssignment(Assignment * expr)2280 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2281   ASM_LOCATION("FullCodeGenerator::EmitKeyedPropertyAssignment");
2282   // Assignment to a property, using a keyed store IC.
2283 
2284   // Record source code position before IC call.
2285   SetSourcePosition(expr->position());
2286   // TODO(all): Could we pass this in registers rather than on the stack?
2287   __ Pop(StoreDescriptor::NameRegister(), StoreDescriptor::ReceiverRegister());
2288   DCHECK(StoreDescriptor::ValueRegister().is(x0));
2289 
2290   Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
2291   CallIC(ic, expr->AssignmentFeedbackId());
2292 
2293   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2294   context()->Plug(x0);
2295 }
2296 
2297 
VisitProperty(Property * expr)2298 void FullCodeGenerator::VisitProperty(Property* expr) {
2299   Comment cmnt(masm_, "[ Property");
2300   Expression* key = expr->key();
2301 
2302   if (key->IsPropertyName()) {
2303     if (!expr->IsSuperAccess()) {
2304       VisitForAccumulatorValue(expr->obj());
2305       __ Move(LoadDescriptor::ReceiverRegister(), x0);
2306       EmitNamedPropertyLoad(expr);
2307     } else {
2308       EmitNamedSuperPropertyLoad(expr);
2309     }
2310     PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2311     context()->Plug(x0);
2312   } else {
2313     VisitForStackValue(expr->obj());
2314     VisitForAccumulatorValue(expr->key());
2315     __ Move(LoadDescriptor::NameRegister(), x0);
2316     __ Pop(LoadDescriptor::ReceiverRegister());
2317     EmitKeyedPropertyLoad(expr);
2318     context()->Plug(x0);
2319   }
2320 }
2321 
2322 
CallIC(Handle<Code> code,TypeFeedbackId ast_id)2323 void FullCodeGenerator::CallIC(Handle<Code> code,
2324                                TypeFeedbackId ast_id) {
2325   ic_total_count_++;
2326   // All calls must have a predictable size in full-codegen code to ensure that
2327   // the debugger can patch them correctly.
2328   __ Call(code, RelocInfo::CODE_TARGET, ast_id);
2329 }
2330 
2331 
2332 // Code common for calls using the IC.
EmitCallWithLoadIC(Call * expr)2333 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2334   Expression* callee = expr->expression();
2335 
2336   CallICState::CallType call_type =
2337       callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD;
2338 
2339   // Get the target function.
2340   if (call_type == CallICState::FUNCTION) {
2341     { StackValueContext context(this);
2342       EmitVariableLoad(callee->AsVariableProxy());
2343       PrepareForBailout(callee, NO_REGISTERS);
2344     }
2345     // Push undefined as receiver. This is patched in the method prologue if it
2346     // is a sloppy mode method.
2347     __ Push(isolate()->factory()->undefined_value());
2348   } else {
2349     // Load the function from the receiver.
2350     DCHECK(callee->IsProperty());
2351     DCHECK(!callee->AsProperty()->IsSuperAccess());
2352     __ Peek(LoadDescriptor::ReceiverRegister(), 0);
2353     EmitNamedPropertyLoad(callee->AsProperty());
2354     PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2355     // Push the target function under the receiver.
2356     __ Pop(x10);
2357     __ Push(x0, x10);
2358   }
2359 
2360   EmitCall(expr, call_type);
2361 }
2362 
2363 
EmitSuperCallWithLoadIC(Call * expr)2364 void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2365   Expression* callee = expr->expression();
2366   DCHECK(callee->IsProperty());
2367   Property* prop = callee->AsProperty();
2368   DCHECK(prop->IsSuperAccess());
2369 
2370   SetSourcePosition(prop->position());
2371   Literal* key = prop->key()->AsLiteral();
2372   DCHECK(!key->value()->IsSmi());
2373 
2374   // Load the function from the receiver.
2375   const Register scratch = x10;
2376   SuperReference* super_ref = callee->AsProperty()->obj()->AsSuperReference();
2377   EmitLoadHomeObject(super_ref);
2378   __ Push(x0);
2379   VisitForAccumulatorValue(super_ref->this_var());
2380   __ Push(x0);
2381   __ Peek(scratch, kPointerSize);
2382   __ Push(scratch, x0);
2383   __ Push(key->value());
2384 
2385   // Stack here:
2386   //  - home_object
2387   //  - this (receiver)
2388   //  - home_object <-- LoadFromSuper will pop here and below.
2389   //  - this (receiver)
2390   //  - key
2391   __ CallRuntime(Runtime::kLoadFromSuper, 3);
2392 
2393   // Replace home_object with target function.
2394   __ Poke(x0, kPointerSize);
2395 
2396   // Stack here:
2397   // - target function
2398   // - this (receiver)
2399   EmitCall(expr, CallICState::METHOD);
2400 }
2401 
2402 
2403 // Code common for calls using the IC.
EmitKeyedCallWithLoadIC(Call * expr,Expression * key)2404 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2405                                                 Expression* key) {
2406   // Load the key.
2407   VisitForAccumulatorValue(key);
2408 
2409   Expression* callee = expr->expression();
2410 
2411   // Load the function from the receiver.
2412   DCHECK(callee->IsProperty());
2413   __ Peek(LoadDescriptor::ReceiverRegister(), 0);
2414   __ Move(LoadDescriptor::NameRegister(), x0);
2415   EmitKeyedPropertyLoad(callee->AsProperty());
2416   PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2417 
2418   // Push the target function under the receiver.
2419   __ Pop(x10);
2420   __ Push(x0, x10);
2421 
2422   EmitCall(expr, CallICState::METHOD);
2423 }
2424 
2425 
EmitCall(Call * expr,CallICState::CallType call_type)2426 void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) {
2427   // Load the arguments.
2428   ZoneList<Expression*>* args = expr->arguments();
2429   int arg_count = args->length();
2430   { PreservePositionScope scope(masm()->positions_recorder());
2431     for (int i = 0; i < arg_count; i++) {
2432       VisitForStackValue(args->at(i));
2433     }
2434   }
2435   // Record source position of the IC call.
2436   SetSourcePosition(expr->position());
2437 
2438   Handle<Code> ic = CallIC::initialize_stub(
2439       isolate(), arg_count, call_type);
2440   __ Mov(x3, Smi::FromInt(expr->CallFeedbackSlot()));
2441   __ Peek(x1, (arg_count + 1) * kXRegSize);
2442   // Don't assign a type feedback id to the IC, since type feedback is provided
2443   // by the vector above.
2444   CallIC(ic);
2445 
2446   RecordJSReturnSite(expr);
2447   // Restore context register.
2448   __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2449   context()->DropAndPlug(1, x0);
2450 }
2451 
2452 
EmitResolvePossiblyDirectEval(int arg_count)2453 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2454   ASM_LOCATION("FullCodeGenerator::EmitResolvePossiblyDirectEval");
2455   // Prepare to push a copy of the first argument or undefined if it doesn't
2456   // exist.
2457   if (arg_count > 0) {
2458     __ Peek(x9, arg_count * kXRegSize);
2459   } else {
2460     __ LoadRoot(x9, Heap::kUndefinedValueRootIndex);
2461   }
2462 
2463   __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2464   // Prepare to push the receiver of the enclosing function.
2465   int receiver_offset = 2 + info_->scope()->num_parameters();
2466   __ Ldr(x11, MemOperand(fp, receiver_offset * kPointerSize));
2467 
2468   // Prepare to push the language mode.
2469   __ Mov(x12, Smi::FromInt(strict_mode()));
2470   // Prepare to push the start position of the scope the calls resides in.
2471   __ Mov(x13, Smi::FromInt(scope()->start_position()));
2472 
2473   // Push.
2474   __ Push(x9, x10, x11, x12, x13);
2475 
2476   // Do the runtime call.
2477   __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 6);
2478 }
2479 
2480 
VisitCall(Call * expr)2481 void FullCodeGenerator::VisitCall(Call* expr) {
2482 #ifdef DEBUG
2483   // We want to verify that RecordJSReturnSite gets called on all paths
2484   // through this function.  Avoid early returns.
2485   expr->return_is_recorded_ = false;
2486 #endif
2487 
2488   Comment cmnt(masm_, "[ Call");
2489   Expression* callee = expr->expression();
2490   Call::CallType call_type = expr->GetCallType(isolate());
2491 
2492   if (call_type == Call::POSSIBLY_EVAL_CALL) {
2493     // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
2494     // to resolve the function we need to call and the receiver of the
2495     // call.  Then we call the resolved function using the given
2496     // arguments.
2497     ZoneList<Expression*>* args = expr->arguments();
2498     int arg_count = args->length();
2499 
2500     {
2501       PreservePositionScope pos_scope(masm()->positions_recorder());
2502       VisitForStackValue(callee);
2503       __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
2504       __ Push(x10);  // Reserved receiver slot.
2505 
2506       // Push the arguments.
2507       for (int i = 0; i < arg_count; i++) {
2508         VisitForStackValue(args->at(i));
2509       }
2510 
2511       // Push a copy of the function (found below the arguments) and
2512       // resolve eval.
2513       __ Peek(x10, (arg_count + 1) * kPointerSize);
2514       __ Push(x10);
2515       EmitResolvePossiblyDirectEval(arg_count);
2516 
2517       // The runtime call returns a pair of values in x0 (function) and
2518       // x1 (receiver). Touch up the stack with the right values.
2519       __ PokePair(x1, x0, arg_count * kPointerSize);
2520     }
2521 
2522     // Record source position for debugger.
2523     SetSourcePosition(expr->position());
2524 
2525     // Call the evaluated function.
2526     CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
2527     __ Peek(x1, (arg_count + 1) * kXRegSize);
2528     __ CallStub(&stub);
2529     RecordJSReturnSite(expr);
2530     // Restore context register.
2531     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2532     context()->DropAndPlug(1, x0);
2533 
2534   } else if (call_type == Call::GLOBAL_CALL) {
2535     EmitCallWithLoadIC(expr);
2536 
2537   } else if (call_type == Call::LOOKUP_SLOT_CALL) {
2538     // Call to a lookup slot (dynamically introduced variable).
2539     VariableProxy* proxy = callee->AsVariableProxy();
2540     Label slow, done;
2541 
2542     { PreservePositionScope scope(masm()->positions_recorder());
2543       // Generate code for loading from variables potentially shadowed
2544       // by eval-introduced variables.
2545       EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
2546     }
2547 
2548     __ Bind(&slow);
2549     // Call the runtime to find the function to call (returned in x0)
2550     // and the object holding it (returned in x1).
2551     __ Mov(x10, Operand(proxy->name()));
2552     __ Push(context_register(), x10);
2553     __ CallRuntime(Runtime::kLoadLookupSlot, 2);
2554     __ Push(x0, x1);  // Receiver, function.
2555 
2556     // If fast case code has been generated, emit code to push the
2557     // function and receiver and have the slow path jump around this
2558     // code.
2559     if (done.is_linked()) {
2560       Label call;
2561       __ B(&call);
2562       __ Bind(&done);
2563       // Push function.
2564       // The receiver is implicitly the global receiver. Indicate this
2565       // by passing the undefined to the call function stub.
2566       __ LoadRoot(x1, Heap::kUndefinedValueRootIndex);
2567       __ Push(x0, x1);
2568       __ Bind(&call);
2569     }
2570 
2571     // The receiver is either the global receiver or an object found
2572     // by LoadContextSlot.
2573     EmitCall(expr);
2574   } else if (call_type == Call::PROPERTY_CALL) {
2575     Property* property = callee->AsProperty();
2576     bool is_named_call = property->key()->IsPropertyName();
2577     // super.x() is handled in EmitCallWithLoadIC.
2578     if (property->IsSuperAccess() && is_named_call) {
2579       EmitSuperCallWithLoadIC(expr);
2580     } else {
2581       {
2582         PreservePositionScope scope(masm()->positions_recorder());
2583         VisitForStackValue(property->obj());
2584       }
2585       if (is_named_call) {
2586         EmitCallWithLoadIC(expr);
2587       } else {
2588         EmitKeyedCallWithLoadIC(expr, property->key());
2589       }
2590     }
2591   } else {
2592     DCHECK(call_type == Call::OTHER_CALL);
2593     // Call to an arbitrary expression not handled specially above.
2594     { PreservePositionScope scope(masm()->positions_recorder());
2595       VisitForStackValue(callee);
2596     }
2597     __ LoadRoot(x1, Heap::kUndefinedValueRootIndex);
2598     __ Push(x1);
2599     // Emit function call.
2600     EmitCall(expr);
2601   }
2602 
2603 #ifdef DEBUG
2604   // RecordJSReturnSite should have been called.
2605   DCHECK(expr->return_is_recorded_);
2606 #endif
2607 }
2608 
2609 
VisitCallNew(CallNew * expr)2610 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2611   Comment cmnt(masm_, "[ CallNew");
2612   // According to ECMA-262, section 11.2.2, page 44, the function
2613   // expression in new calls must be evaluated before the
2614   // arguments.
2615 
2616   // Push constructor on the stack.  If it's not a function it's used as
2617   // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2618   // ignored.
2619   VisitForStackValue(expr->expression());
2620 
2621   // Push the arguments ("left-to-right") on the stack.
2622   ZoneList<Expression*>* args = expr->arguments();
2623   int arg_count = args->length();
2624   for (int i = 0; i < arg_count; i++) {
2625     VisitForStackValue(args->at(i));
2626   }
2627 
2628   // Call the construct call builtin that handles allocation and
2629   // constructor invocation.
2630   SetSourcePosition(expr->position());
2631 
2632   // Load function and argument count into x1 and x0.
2633   __ Mov(x0, arg_count);
2634   __ Peek(x1, arg_count * kXRegSize);
2635 
2636   // Record call targets in unoptimized code.
2637   if (FLAG_pretenuring_call_new) {
2638     EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
2639     DCHECK(expr->AllocationSiteFeedbackSlot() ==
2640            expr->CallNewFeedbackSlot() + 1);
2641   }
2642 
2643   __ LoadObject(x2, FeedbackVector());
2644   __ Mov(x3, Smi::FromInt(expr->CallNewFeedbackSlot()));
2645 
2646   CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
2647   __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
2648   PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2649   context()->Plug(x0);
2650 }
2651 
2652 
EmitIsSmi(CallRuntime * expr)2653 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2654   ZoneList<Expression*>* args = expr->arguments();
2655   DCHECK(args->length() == 1);
2656 
2657   VisitForAccumulatorValue(args->at(0));
2658 
2659   Label materialize_true, materialize_false;
2660   Label* if_true = NULL;
2661   Label* if_false = NULL;
2662   Label* fall_through = NULL;
2663   context()->PrepareTest(&materialize_true, &materialize_false,
2664                          &if_true, &if_false, &fall_through);
2665 
2666   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2667   __ TestAndSplit(x0, kSmiTagMask, if_true, if_false, fall_through);
2668 
2669   context()->Plug(if_true, if_false);
2670 }
2671 
2672 
EmitIsNonNegativeSmi(CallRuntime * expr)2673 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
2674   ZoneList<Expression*>* args = expr->arguments();
2675   DCHECK(args->length() == 1);
2676 
2677   VisitForAccumulatorValue(args->at(0));
2678 
2679   Label materialize_true, materialize_false;
2680   Label* if_true = NULL;
2681   Label* if_false = NULL;
2682   Label* fall_through = NULL;
2683   context()->PrepareTest(&materialize_true, &materialize_false,
2684                          &if_true, &if_false, &fall_through);
2685 
2686   uint64_t sign_mask = V8_UINT64_C(1) << (kSmiShift + kSmiValueSize - 1);
2687 
2688   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2689   __ TestAndSplit(x0, kSmiTagMask | sign_mask, if_true, if_false, fall_through);
2690 
2691   context()->Plug(if_true, if_false);
2692 }
2693 
2694 
EmitIsObject(CallRuntime * expr)2695 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
2696   ZoneList<Expression*>* args = expr->arguments();
2697   DCHECK(args->length() == 1);
2698 
2699   VisitForAccumulatorValue(args->at(0));
2700 
2701   Label materialize_true, materialize_false;
2702   Label* if_true = NULL;
2703   Label* if_false = NULL;
2704   Label* fall_through = NULL;
2705   context()->PrepareTest(&materialize_true, &materialize_false,
2706                          &if_true, &if_false, &fall_through);
2707 
2708   __ JumpIfSmi(x0, if_false);
2709   __ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true);
2710   __ Ldr(x10, FieldMemOperand(x0, HeapObject::kMapOffset));
2711   // Undetectable objects behave like undefined when tested with typeof.
2712   __ Ldrb(x11, FieldMemOperand(x10, Map::kBitFieldOffset));
2713   __ Tbnz(x11, Map::kIsUndetectable, if_false);
2714   __ Ldrb(x12, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2715   __ Cmp(x12, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
2716   __ B(lt, if_false);
2717   __ Cmp(x12, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
2718   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2719   Split(le, if_true, if_false, fall_through);
2720 
2721   context()->Plug(if_true, if_false);
2722 }
2723 
2724 
EmitIsSpecObject(CallRuntime * expr)2725 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
2726   ZoneList<Expression*>* args = expr->arguments();
2727   DCHECK(args->length() == 1);
2728 
2729   VisitForAccumulatorValue(args->at(0));
2730 
2731   Label materialize_true, materialize_false;
2732   Label* if_true = NULL;
2733   Label* if_false = NULL;
2734   Label* fall_through = NULL;
2735   context()->PrepareTest(&materialize_true, &materialize_false,
2736                          &if_true, &if_false, &fall_through);
2737 
2738   __ JumpIfSmi(x0, if_false);
2739   __ CompareObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE);
2740   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2741   Split(ge, if_true, if_false, fall_through);
2742 
2743   context()->Plug(if_true, if_false);
2744 }
2745 
2746 
EmitIsUndetectableObject(CallRuntime * expr)2747 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
2748   ASM_LOCATION("FullCodeGenerator::EmitIsUndetectableObject");
2749   ZoneList<Expression*>* args = expr->arguments();
2750   DCHECK(args->length() == 1);
2751 
2752   VisitForAccumulatorValue(args->at(0));
2753 
2754   Label materialize_true, materialize_false;
2755   Label* if_true = NULL;
2756   Label* if_false = NULL;
2757   Label* fall_through = NULL;
2758   context()->PrepareTest(&materialize_true, &materialize_false,
2759                          &if_true, &if_false, &fall_through);
2760 
2761   __ JumpIfSmi(x0, if_false);
2762   __ Ldr(x10, FieldMemOperand(x0, HeapObject::kMapOffset));
2763   __ Ldrb(x11, FieldMemOperand(x10, Map::kBitFieldOffset));
2764   __ Tst(x11, 1 << Map::kIsUndetectable);
2765   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2766   Split(ne, if_true, if_false, fall_through);
2767 
2768   context()->Plug(if_true, if_false);
2769 }
2770 
2771 
EmitIsStringWrapperSafeForDefaultValueOf(CallRuntime * expr)2772 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
2773     CallRuntime* expr) {
2774   ZoneList<Expression*>* args = expr->arguments();
2775   DCHECK(args->length() == 1);
2776   VisitForAccumulatorValue(args->at(0));
2777 
2778   Label materialize_true, materialize_false, skip_lookup;
2779   Label* if_true = NULL;
2780   Label* if_false = NULL;
2781   Label* fall_through = NULL;
2782   context()->PrepareTest(&materialize_true, &materialize_false,
2783                          &if_true, &if_false, &fall_through);
2784 
2785   Register object = x0;
2786   __ AssertNotSmi(object);
2787 
2788   Register map = x10;
2789   Register bitfield2 = x11;
2790   __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
2791   __ Ldrb(bitfield2, FieldMemOperand(map, Map::kBitField2Offset));
2792   __ Tbnz(bitfield2, Map::kStringWrapperSafeForDefaultValueOf, &skip_lookup);
2793 
2794   // Check for fast case object. Generate false result for slow case object.
2795   Register props = x12;
2796   Register props_map = x12;
2797   Register hash_table_map = x13;
2798   __ Ldr(props, FieldMemOperand(object, JSObject::kPropertiesOffset));
2799   __ Ldr(props_map, FieldMemOperand(props, HeapObject::kMapOffset));
2800   __ LoadRoot(hash_table_map, Heap::kHashTableMapRootIndex);
2801   __ Cmp(props_map, hash_table_map);
2802   __ B(eq, if_false);
2803 
2804   // Look for valueOf name in the descriptor array, and indicate false if found.
2805   // Since we omit an enumeration index check, if it is added via a transition
2806   // that shares its descriptor array, this is a false positive.
2807   Label loop, done;
2808 
2809   // Skip loop if no descriptors are valid.
2810   Register descriptors = x12;
2811   Register descriptors_length = x13;
2812   __ NumberOfOwnDescriptors(descriptors_length, map);
2813   __ Cbz(descriptors_length, &done);
2814 
2815   __ LoadInstanceDescriptors(map, descriptors);
2816 
2817   // Calculate the end of the descriptor array.
2818   Register descriptors_end = x14;
2819   __ Mov(x15, DescriptorArray::kDescriptorSize);
2820   __ Mul(descriptors_length, descriptors_length, x15);
2821   // Calculate location of the first key name.
2822   __ Add(descriptors, descriptors,
2823          DescriptorArray::kFirstOffset - kHeapObjectTag);
2824   // Calculate the end of the descriptor array.
2825   __ Add(descriptors_end, descriptors,
2826          Operand(descriptors_length, LSL, kPointerSizeLog2));
2827 
2828   // Loop through all the keys in the descriptor array. If one of these is the
2829   // string "valueOf" the result is false.
2830   Register valueof_string = x1;
2831   int descriptor_size = DescriptorArray::kDescriptorSize * kPointerSize;
2832   __ Mov(valueof_string, Operand(isolate()->factory()->value_of_string()));
2833   __ Bind(&loop);
2834   __ Ldr(x15, MemOperand(descriptors, descriptor_size, PostIndex));
2835   __ Cmp(x15, valueof_string);
2836   __ B(eq, if_false);
2837   __ Cmp(descriptors, descriptors_end);
2838   __ B(ne, &loop);
2839 
2840   __ Bind(&done);
2841 
2842   // Set the bit in the map to indicate that there is no local valueOf field.
2843   __ Ldrb(x2, FieldMemOperand(map, Map::kBitField2Offset));
2844   __ Orr(x2, x2, 1 << Map::kStringWrapperSafeForDefaultValueOf);
2845   __ Strb(x2, FieldMemOperand(map, Map::kBitField2Offset));
2846 
2847   __ Bind(&skip_lookup);
2848 
2849   // If a valueOf property is not found on the object check that its prototype
2850   // is the unmodified String prototype. If not result is false.
2851   Register prototype = x1;
2852   Register global_idx = x2;
2853   Register native_context = x2;
2854   Register string_proto = x3;
2855   Register proto_map = x4;
2856   __ Ldr(prototype, FieldMemOperand(map, Map::kPrototypeOffset));
2857   __ JumpIfSmi(prototype, if_false);
2858   __ Ldr(proto_map, FieldMemOperand(prototype, HeapObject::kMapOffset));
2859   __ Ldr(global_idx, GlobalObjectMemOperand());
2860   __ Ldr(native_context,
2861          FieldMemOperand(global_idx, GlobalObject::kNativeContextOffset));
2862   __ Ldr(string_proto,
2863          ContextMemOperand(native_context,
2864                            Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
2865   __ Cmp(proto_map, string_proto);
2866 
2867   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2868   Split(eq, if_true, if_false, fall_through);
2869 
2870   context()->Plug(if_true, if_false);
2871 }
2872 
2873 
EmitIsFunction(CallRuntime * expr)2874 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
2875   ZoneList<Expression*>* args = expr->arguments();
2876   DCHECK(args->length() == 1);
2877 
2878   VisitForAccumulatorValue(args->at(0));
2879 
2880   Label materialize_true, materialize_false;
2881   Label* if_true = NULL;
2882   Label* if_false = NULL;
2883   Label* fall_through = NULL;
2884   context()->PrepareTest(&materialize_true, &materialize_false,
2885                          &if_true, &if_false, &fall_through);
2886 
2887   __ JumpIfSmi(x0, if_false);
2888   __ CompareObjectType(x0, x10, x11, JS_FUNCTION_TYPE);
2889   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2890   Split(eq, if_true, if_false, fall_through);
2891 
2892   context()->Plug(if_true, if_false);
2893 }
2894 
2895 
EmitIsMinusZero(CallRuntime * expr)2896 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
2897   ZoneList<Expression*>* args = expr->arguments();
2898   DCHECK(args->length() == 1);
2899 
2900   VisitForAccumulatorValue(args->at(0));
2901 
2902   Label materialize_true, materialize_false;
2903   Label* if_true = NULL;
2904   Label* if_false = NULL;
2905   Label* fall_through = NULL;
2906   context()->PrepareTest(&materialize_true, &materialize_false,
2907                          &if_true, &if_false, &fall_through);
2908 
2909   // Only a HeapNumber can be -0.0, so return false if we have something else.
2910   __ JumpIfNotHeapNumber(x0, if_false, DO_SMI_CHECK);
2911 
2912   // Test the bit pattern.
2913   __ Ldr(x10, FieldMemOperand(x0, HeapNumber::kValueOffset));
2914   __ Cmp(x10, 1);   // Set V on 0x8000000000000000.
2915 
2916   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2917   Split(vs, if_true, if_false, fall_through);
2918 
2919   context()->Plug(if_true, if_false);
2920 }
2921 
2922 
EmitIsArray(CallRuntime * expr)2923 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
2924   ZoneList<Expression*>* args = expr->arguments();
2925   DCHECK(args->length() == 1);
2926 
2927   VisitForAccumulatorValue(args->at(0));
2928 
2929   Label materialize_true, materialize_false;
2930   Label* if_true = NULL;
2931   Label* if_false = NULL;
2932   Label* fall_through = NULL;
2933   context()->PrepareTest(&materialize_true, &materialize_false,
2934                          &if_true, &if_false, &fall_through);
2935 
2936   __ JumpIfSmi(x0, if_false);
2937   __ CompareObjectType(x0, x10, x11, JS_ARRAY_TYPE);
2938   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2939   Split(eq, if_true, if_false, fall_through);
2940 
2941   context()->Plug(if_true, if_false);
2942 }
2943 
2944 
EmitIsRegExp(CallRuntime * expr)2945 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
2946   ZoneList<Expression*>* args = expr->arguments();
2947   DCHECK(args->length() == 1);
2948 
2949   VisitForAccumulatorValue(args->at(0));
2950 
2951   Label materialize_true, materialize_false;
2952   Label* if_true = NULL;
2953   Label* if_false = NULL;
2954   Label* fall_through = NULL;
2955   context()->PrepareTest(&materialize_true, &materialize_false,
2956                          &if_true, &if_false, &fall_through);
2957 
2958   __ JumpIfSmi(x0, if_false);
2959   __ CompareObjectType(x0, x10, x11, JS_REGEXP_TYPE);
2960   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2961   Split(eq, if_true, if_false, fall_through);
2962 
2963   context()->Plug(if_true, if_false);
2964 }
2965 
2966 
2967 
EmitIsConstructCall(CallRuntime * expr)2968 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
2969   DCHECK(expr->arguments()->length() == 0);
2970 
2971   Label materialize_true, materialize_false;
2972   Label* if_true = NULL;
2973   Label* if_false = NULL;
2974   Label* fall_through = NULL;
2975   context()->PrepareTest(&materialize_true, &materialize_false,
2976                          &if_true, &if_false, &fall_through);
2977 
2978   // Get the frame pointer for the calling frame.
2979   __ Ldr(x2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2980 
2981   // Skip the arguments adaptor frame if it exists.
2982   Label check_frame_marker;
2983   __ Ldr(x1, MemOperand(x2, StandardFrameConstants::kContextOffset));
2984   __ Cmp(x1, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2985   __ B(ne, &check_frame_marker);
2986   __ Ldr(x2, MemOperand(x2, StandardFrameConstants::kCallerFPOffset));
2987 
2988   // Check the marker in the calling frame.
2989   __ Bind(&check_frame_marker);
2990   __ Ldr(x1, MemOperand(x2, StandardFrameConstants::kMarkerOffset));
2991   __ Cmp(x1, Smi::FromInt(StackFrame::CONSTRUCT));
2992   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2993   Split(eq, if_true, if_false, fall_through);
2994 
2995   context()->Plug(if_true, if_false);
2996 }
2997 
2998 
EmitObjectEquals(CallRuntime * expr)2999 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3000   ZoneList<Expression*>* args = expr->arguments();
3001   DCHECK(args->length() == 2);
3002 
3003   // Load the two objects into registers and perform the comparison.
3004   VisitForStackValue(args->at(0));
3005   VisitForAccumulatorValue(args->at(1));
3006 
3007   Label materialize_true, materialize_false;
3008   Label* if_true = NULL;
3009   Label* if_false = NULL;
3010   Label* fall_through = NULL;
3011   context()->PrepareTest(&materialize_true, &materialize_false,
3012                          &if_true, &if_false, &fall_through);
3013 
3014   __ Pop(x1);
3015   __ Cmp(x0, x1);
3016   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3017   Split(eq, if_true, if_false, fall_through);
3018 
3019   context()->Plug(if_true, if_false);
3020 }
3021 
3022 
EmitArguments(CallRuntime * expr)3023 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3024   ZoneList<Expression*>* args = expr->arguments();
3025   DCHECK(args->length() == 1);
3026 
3027   // ArgumentsAccessStub expects the key in x1.
3028   VisitForAccumulatorValue(args->at(0));
3029   __ Mov(x1, x0);
3030   __ Mov(x0, Smi::FromInt(info_->scope()->num_parameters()));
3031   ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3032   __ CallStub(&stub);
3033   context()->Plug(x0);
3034 }
3035 
3036 
EmitArgumentsLength(CallRuntime * expr)3037 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3038   DCHECK(expr->arguments()->length() == 0);
3039   Label exit;
3040   // Get the number of formal parameters.
3041   __ Mov(x0, Smi::FromInt(info_->scope()->num_parameters()));
3042 
3043   // Check if the calling frame is an arguments adaptor frame.
3044   __ Ldr(x12, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3045   __ Ldr(x13, MemOperand(x12, StandardFrameConstants::kContextOffset));
3046   __ Cmp(x13, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3047   __ B(ne, &exit);
3048 
3049   // Arguments adaptor case: Read the arguments length from the
3050   // adaptor frame.
3051   __ Ldr(x0, MemOperand(x12, ArgumentsAdaptorFrameConstants::kLengthOffset));
3052 
3053   __ Bind(&exit);
3054   context()->Plug(x0);
3055 }
3056 
3057 
EmitClassOf(CallRuntime * expr)3058 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3059   ASM_LOCATION("FullCodeGenerator::EmitClassOf");
3060   ZoneList<Expression*>* args = expr->arguments();
3061   DCHECK(args->length() == 1);
3062   Label done, null, function, non_function_constructor;
3063 
3064   VisitForAccumulatorValue(args->at(0));
3065 
3066   // If the object is a smi, we return null.
3067   __ JumpIfSmi(x0, &null);
3068 
3069   // Check that the object is a JS object but take special care of JS
3070   // functions to make sure they have 'Function' as their class.
3071   // Assume that there are only two callable types, and one of them is at
3072   // either end of the type range for JS object types. Saves extra comparisons.
3073   STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
3074   __ CompareObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE);
3075   // x10: object's map.
3076   // x11: object's type.
3077   __ B(lt, &null);
3078   STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3079                 FIRST_SPEC_OBJECT_TYPE + 1);
3080   __ B(eq, &function);
3081 
3082   __ Cmp(x11, LAST_SPEC_OBJECT_TYPE);
3083   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3084                 LAST_SPEC_OBJECT_TYPE - 1);
3085   __ B(eq, &function);
3086   // Assume that there is no larger type.
3087   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
3088 
3089   // Check if the constructor in the map is a JS function.
3090   __ Ldr(x12, FieldMemOperand(x10, Map::kConstructorOffset));
3091   __ JumpIfNotObjectType(x12, x13, x14, JS_FUNCTION_TYPE,
3092                          &non_function_constructor);
3093 
3094   // x12 now contains the constructor function. Grab the
3095   // instance class name from there.
3096   __ Ldr(x13, FieldMemOperand(x12, JSFunction::kSharedFunctionInfoOffset));
3097   __ Ldr(x0,
3098          FieldMemOperand(x13, SharedFunctionInfo::kInstanceClassNameOffset));
3099   __ B(&done);
3100 
3101   // Functions have class 'Function'.
3102   __ Bind(&function);
3103   __ LoadRoot(x0, Heap::kFunction_stringRootIndex);
3104   __ B(&done);
3105 
3106   // Objects with a non-function constructor have class 'Object'.
3107   __ Bind(&non_function_constructor);
3108   __ LoadRoot(x0, Heap::kObject_stringRootIndex);
3109   __ B(&done);
3110 
3111   // Non-JS objects have class null.
3112   __ Bind(&null);
3113   __ LoadRoot(x0, Heap::kNullValueRootIndex);
3114 
3115   // All done.
3116   __ Bind(&done);
3117 
3118   context()->Plug(x0);
3119 }
3120 
3121 
EmitSubString(CallRuntime * expr)3122 void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
3123   // Load the arguments on the stack and call the stub.
3124   SubStringStub stub(isolate());
3125   ZoneList<Expression*>* args = expr->arguments();
3126   DCHECK(args->length() == 3);
3127   VisitForStackValue(args->at(0));
3128   VisitForStackValue(args->at(1));
3129   VisitForStackValue(args->at(2));
3130   __ CallStub(&stub);
3131   context()->Plug(x0);
3132 }
3133 
3134 
EmitRegExpExec(CallRuntime * expr)3135 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
3136   // Load the arguments on the stack and call the stub.
3137   RegExpExecStub stub(isolate());
3138   ZoneList<Expression*>* args = expr->arguments();
3139   DCHECK(args->length() == 4);
3140   VisitForStackValue(args->at(0));
3141   VisitForStackValue(args->at(1));
3142   VisitForStackValue(args->at(2));
3143   VisitForStackValue(args->at(3));
3144   __ CallStub(&stub);
3145   context()->Plug(x0);
3146 }
3147 
3148 
EmitValueOf(CallRuntime * expr)3149 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3150   ASM_LOCATION("FullCodeGenerator::EmitValueOf");
3151   ZoneList<Expression*>* args = expr->arguments();
3152   DCHECK(args->length() == 1);
3153   VisitForAccumulatorValue(args->at(0));  // Load the object.
3154 
3155   Label done;
3156   // If the object is a smi return the object.
3157   __ JumpIfSmi(x0, &done);
3158   // If the object is not a value type, return the object.
3159   __ JumpIfNotObjectType(x0, x10, x11, JS_VALUE_TYPE, &done);
3160   __ Ldr(x0, FieldMemOperand(x0, JSValue::kValueOffset));
3161 
3162   __ Bind(&done);
3163   context()->Plug(x0);
3164 }
3165 
3166 
EmitDateField(CallRuntime * expr)3167 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
3168   ZoneList<Expression*>* args = expr->arguments();
3169   DCHECK(args->length() == 2);
3170   DCHECK_NE(NULL, args->at(1)->AsLiteral());
3171   Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
3172 
3173   VisitForAccumulatorValue(args->at(0));  // Load the object.
3174 
3175   Label runtime, done, not_date_object;
3176   Register object = x0;
3177   Register result = x0;
3178   Register stamp_addr = x10;
3179   Register stamp_cache = x11;
3180 
3181   __ JumpIfSmi(object, &not_date_object);
3182   __ JumpIfNotObjectType(object, x10, x10, JS_DATE_TYPE, &not_date_object);
3183 
3184   if (index->value() == 0) {
3185     __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
3186     __ B(&done);
3187   } else {
3188     if (index->value() < JSDate::kFirstUncachedField) {
3189       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
3190       __ Mov(x10, stamp);
3191       __ Ldr(stamp_addr, MemOperand(x10));
3192       __ Ldr(stamp_cache, FieldMemOperand(object, JSDate::kCacheStampOffset));
3193       __ Cmp(stamp_addr, stamp_cache);
3194       __ B(ne, &runtime);
3195       __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
3196                                              kPointerSize * index->value()));
3197       __ B(&done);
3198     }
3199 
3200     __ Bind(&runtime);
3201     __ Mov(x1, index);
3202     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
3203     __ B(&done);
3204   }
3205 
3206   __ Bind(&not_date_object);
3207   __ CallRuntime(Runtime::kThrowNotDateError, 0);
3208   __ Bind(&done);
3209   context()->Plug(x0);
3210 }
3211 
3212 
EmitOneByteSeqStringSetChar(CallRuntime * expr)3213 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3214   ZoneList<Expression*>* args = expr->arguments();
3215   DCHECK_EQ(3, args->length());
3216 
3217   Register string = x0;
3218   Register index = x1;
3219   Register value = x2;
3220   Register scratch = x10;
3221 
3222   VisitForStackValue(args->at(0));        // index
3223   VisitForStackValue(args->at(1));        // value
3224   VisitForAccumulatorValue(args->at(2));  // string
3225   __ Pop(value, index);
3226 
3227   if (FLAG_debug_code) {
3228     __ AssertSmi(value, kNonSmiValue);
3229     __ AssertSmi(index, kNonSmiIndex);
3230     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3231     __ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch,
3232                                  one_byte_seq_type);
3233   }
3234 
3235   __ Add(scratch, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3236   __ SmiUntag(value);
3237   __ SmiUntag(index);
3238   __ Strb(value, MemOperand(scratch, index));
3239   context()->Plug(string);
3240 }
3241 
3242 
EmitTwoByteSeqStringSetChar(CallRuntime * expr)3243 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3244   ZoneList<Expression*>* args = expr->arguments();
3245   DCHECK_EQ(3, args->length());
3246 
3247   Register string = x0;
3248   Register index = x1;
3249   Register value = x2;
3250   Register scratch = x10;
3251 
3252   VisitForStackValue(args->at(0));        // index
3253   VisitForStackValue(args->at(1));        // value
3254   VisitForAccumulatorValue(args->at(2));  // string
3255   __ Pop(value, index);
3256 
3257   if (FLAG_debug_code) {
3258     __ AssertSmi(value, kNonSmiValue);
3259     __ AssertSmi(index, kNonSmiIndex);
3260     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3261     __ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch,
3262                                  two_byte_seq_type);
3263   }
3264 
3265   __ Add(scratch, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
3266   __ SmiUntag(value);
3267   __ SmiUntag(index);
3268   __ Strh(value, MemOperand(scratch, index, LSL, 1));
3269   context()->Plug(string);
3270 }
3271 
3272 
EmitMathPow(CallRuntime * expr)3273 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
3274   // Load the arguments on the stack and call the MathPow stub.
3275   ZoneList<Expression*>* args = expr->arguments();
3276   DCHECK(args->length() == 2);
3277   VisitForStackValue(args->at(0));
3278   VisitForStackValue(args->at(1));
3279   MathPowStub stub(isolate(), MathPowStub::ON_STACK);
3280   __ CallStub(&stub);
3281   context()->Plug(x0);
3282 }
3283 
3284 
EmitSetValueOf(CallRuntime * expr)3285 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3286   ZoneList<Expression*>* args = expr->arguments();
3287   DCHECK(args->length() == 2);
3288   VisitForStackValue(args->at(0));  // Load the object.
3289   VisitForAccumulatorValue(args->at(1));  // Load the value.
3290   __ Pop(x1);
3291   // x0 = value.
3292   // x1 = object.
3293 
3294   Label done;
3295   // If the object is a smi, return the value.
3296   __ JumpIfSmi(x1, &done);
3297 
3298   // If the object is not a value type, return the value.
3299   __ JumpIfNotObjectType(x1, x10, x11, JS_VALUE_TYPE, &done);
3300 
3301   // Store the value.
3302   __ Str(x0, FieldMemOperand(x1, JSValue::kValueOffset));
3303   // Update the write barrier. Save the value as it will be
3304   // overwritten by the write barrier code and is needed afterward.
3305   __ Mov(x10, x0);
3306   __ RecordWriteField(
3307       x1, JSValue::kValueOffset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
3308 
3309   __ Bind(&done);
3310   context()->Plug(x0);
3311 }
3312 
3313 
EmitNumberToString(CallRuntime * expr)3314 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
3315   ZoneList<Expression*>* args = expr->arguments();
3316   DCHECK_EQ(args->length(), 1);
3317 
3318   // Load the argument into x0 and call the stub.
3319   VisitForAccumulatorValue(args->at(0));
3320 
3321   NumberToStringStub stub(isolate());
3322   __ CallStub(&stub);
3323   context()->Plug(x0);
3324 }
3325 
3326 
EmitStringCharFromCode(CallRuntime * expr)3327 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3328   ZoneList<Expression*>* args = expr->arguments();
3329   DCHECK(args->length() == 1);
3330 
3331   VisitForAccumulatorValue(args->at(0));
3332 
3333   Label done;
3334   Register code = x0;
3335   Register result = x1;
3336 
3337   StringCharFromCodeGenerator generator(code, result);
3338   generator.GenerateFast(masm_);
3339   __ B(&done);
3340 
3341   NopRuntimeCallHelper call_helper;
3342   generator.GenerateSlow(masm_, call_helper);
3343 
3344   __ Bind(&done);
3345   context()->Plug(result);
3346 }
3347 
3348 
EmitStringCharCodeAt(CallRuntime * expr)3349 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3350   ZoneList<Expression*>* args = expr->arguments();
3351   DCHECK(args->length() == 2);
3352 
3353   VisitForStackValue(args->at(0));
3354   VisitForAccumulatorValue(args->at(1));
3355 
3356   Register object = x1;
3357   Register index = x0;
3358   Register result = x3;
3359 
3360   __ Pop(object);
3361 
3362   Label need_conversion;
3363   Label index_out_of_range;
3364   Label done;
3365   StringCharCodeAtGenerator generator(object,
3366                                       index,
3367                                       result,
3368                                       &need_conversion,
3369                                       &need_conversion,
3370                                       &index_out_of_range,
3371                                       STRING_INDEX_IS_NUMBER);
3372   generator.GenerateFast(masm_);
3373   __ B(&done);
3374 
3375   __ Bind(&index_out_of_range);
3376   // When the index is out of range, the spec requires us to return NaN.
3377   __ LoadRoot(result, Heap::kNanValueRootIndex);
3378   __ B(&done);
3379 
3380   __ Bind(&need_conversion);
3381   // Load the undefined value into the result register, which will
3382   // trigger conversion.
3383   __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3384   __ B(&done);
3385 
3386   NopRuntimeCallHelper call_helper;
3387   generator.GenerateSlow(masm_, call_helper);
3388 
3389   __ Bind(&done);
3390   context()->Plug(result);
3391 }
3392 
3393 
EmitStringCharAt(CallRuntime * expr)3394 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3395   ZoneList<Expression*>* args = expr->arguments();
3396   DCHECK(args->length() == 2);
3397 
3398   VisitForStackValue(args->at(0));
3399   VisitForAccumulatorValue(args->at(1));
3400 
3401   Register object = x1;
3402   Register index = x0;
3403   Register result = x0;
3404 
3405   __ Pop(object);
3406 
3407   Label need_conversion;
3408   Label index_out_of_range;
3409   Label done;
3410   StringCharAtGenerator generator(object,
3411                                   index,
3412                                   x3,
3413                                   result,
3414                                   &need_conversion,
3415                                   &need_conversion,
3416                                   &index_out_of_range,
3417                                   STRING_INDEX_IS_NUMBER);
3418   generator.GenerateFast(masm_);
3419   __ B(&done);
3420 
3421   __ Bind(&index_out_of_range);
3422   // When the index is out of range, the spec requires us to return
3423   // the empty string.
3424   __ LoadRoot(result, Heap::kempty_stringRootIndex);
3425   __ B(&done);
3426 
3427   __ Bind(&need_conversion);
3428   // Move smi zero into the result register, which will trigger conversion.
3429   __ Mov(result, Smi::FromInt(0));
3430   __ B(&done);
3431 
3432   NopRuntimeCallHelper call_helper;
3433   generator.GenerateSlow(masm_, call_helper);
3434 
3435   __ Bind(&done);
3436   context()->Plug(result);
3437 }
3438 
3439 
EmitStringAdd(CallRuntime * expr)3440 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
3441   ASM_LOCATION("FullCodeGenerator::EmitStringAdd");
3442   ZoneList<Expression*>* args = expr->arguments();
3443   DCHECK_EQ(2, args->length());
3444 
3445   VisitForStackValue(args->at(0));
3446   VisitForAccumulatorValue(args->at(1));
3447 
3448   __ Pop(x1);
3449   StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
3450   __ CallStub(&stub);
3451 
3452   context()->Plug(x0);
3453 }
3454 
3455 
EmitStringCompare(CallRuntime * expr)3456 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
3457   ZoneList<Expression*>* args = expr->arguments();
3458   DCHECK_EQ(2, args->length());
3459   VisitForStackValue(args->at(0));
3460   VisitForStackValue(args->at(1));
3461 
3462   StringCompareStub stub(isolate());
3463   __ CallStub(&stub);
3464   context()->Plug(x0);
3465 }
3466 
3467 
EmitCallFunction(CallRuntime * expr)3468 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
3469   ASM_LOCATION("FullCodeGenerator::EmitCallFunction");
3470   ZoneList<Expression*>* args = expr->arguments();
3471   DCHECK(args->length() >= 2);
3472 
3473   int arg_count = args->length() - 2;  // 2 ~ receiver and function.
3474   for (int i = 0; i < arg_count + 1; i++) {
3475     VisitForStackValue(args->at(i));
3476   }
3477   VisitForAccumulatorValue(args->last());  // Function.
3478 
3479   Label runtime, done;
3480   // Check for non-function argument (including proxy).
3481   __ JumpIfSmi(x0, &runtime);
3482   __ JumpIfNotObjectType(x0, x1, x1, JS_FUNCTION_TYPE, &runtime);
3483 
3484   // InvokeFunction requires the function in x1. Move it in there.
3485   __ Mov(x1, x0);
3486   ParameterCount count(arg_count);
3487   __ InvokeFunction(x1, count, CALL_FUNCTION, NullCallWrapper());
3488   __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3489   __ B(&done);
3490 
3491   __ Bind(&runtime);
3492   __ Push(x0);
3493   __ CallRuntime(Runtime::kCall, args->length());
3494   __ Bind(&done);
3495 
3496   context()->Plug(x0);
3497 }
3498 
3499 
EmitRegExpConstructResult(CallRuntime * expr)3500 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
3501   RegExpConstructResultStub stub(isolate());
3502   ZoneList<Expression*>* args = expr->arguments();
3503   DCHECK(args->length() == 3);
3504   VisitForStackValue(args->at(0));
3505   VisitForStackValue(args->at(1));
3506   VisitForAccumulatorValue(args->at(2));
3507   __ Pop(x1, x2);
3508   __ CallStub(&stub);
3509   context()->Plug(x0);
3510 }
3511 
3512 
EmitGetFromCache(CallRuntime * expr)3513 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
3514   ZoneList<Expression*>* args = expr->arguments();
3515   DCHECK_EQ(2, args->length());
3516   DCHECK_NE(NULL, args->at(0)->AsLiteral());
3517   int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
3518 
3519   Handle<FixedArray> jsfunction_result_caches(
3520       isolate()->native_context()->jsfunction_result_caches());
3521   if (jsfunction_result_caches->length() <= cache_id) {
3522     __ Abort(kAttemptToUseUndefinedCache);
3523     __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
3524     context()->Plug(x0);
3525     return;
3526   }
3527 
3528   VisitForAccumulatorValue(args->at(1));
3529 
3530   Register key = x0;
3531   Register cache = x1;
3532   __ Ldr(cache, GlobalObjectMemOperand());
3533   __ Ldr(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
3534   __ Ldr(cache, ContextMemOperand(cache,
3535                                   Context::JSFUNCTION_RESULT_CACHES_INDEX));
3536   __ Ldr(cache,
3537          FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
3538 
3539   Label done;
3540   __ Ldrsw(x2, UntagSmiFieldMemOperand(cache,
3541                                        JSFunctionResultCache::kFingerOffset));
3542   __ Add(x3, cache, FixedArray::kHeaderSize - kHeapObjectTag);
3543   __ Add(x3, x3, Operand(x2, LSL, kPointerSizeLog2));
3544 
3545   // Load the key and data from the cache.
3546   __ Ldp(x2, x3, MemOperand(x3));
3547 
3548   __ Cmp(key, x2);
3549   __ CmovX(x0, x3, eq);
3550   __ B(eq, &done);
3551 
3552   // Call runtime to perform the lookup.
3553   __ Push(cache, key);
3554   __ CallRuntime(Runtime::kGetFromCache, 2);
3555 
3556   __ Bind(&done);
3557   context()->Plug(x0);
3558 }
3559 
3560 
EmitHasCachedArrayIndex(CallRuntime * expr)3561 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3562   ZoneList<Expression*>* args = expr->arguments();
3563   VisitForAccumulatorValue(args->at(0));
3564 
3565   Label materialize_true, materialize_false;
3566   Label* if_true = NULL;
3567   Label* if_false = NULL;
3568   Label* fall_through = NULL;
3569   context()->PrepareTest(&materialize_true, &materialize_false,
3570                          &if_true, &if_false, &fall_through);
3571 
3572   __ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset));
3573   __ Tst(x10, String::kContainsCachedArrayIndexMask);
3574   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3575   Split(eq, if_true, if_false, fall_through);
3576 
3577   context()->Plug(if_true, if_false);
3578 }
3579 
3580 
EmitGetCachedArrayIndex(CallRuntime * expr)3581 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3582   ZoneList<Expression*>* args = expr->arguments();
3583   DCHECK(args->length() == 1);
3584   VisitForAccumulatorValue(args->at(0));
3585 
3586   __ AssertString(x0);
3587 
3588   __ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset));
3589   __ IndexFromHash(x10, x0);
3590 
3591   context()->Plug(x0);
3592 }
3593 
3594 
EmitFastOneByteArrayJoin(CallRuntime * expr)3595 void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
3596   ASM_LOCATION("FullCodeGenerator::EmitFastOneByteArrayJoin");
3597 
3598   ZoneList<Expression*>* args = expr->arguments();
3599   DCHECK(args->length() == 2);
3600   VisitForStackValue(args->at(1));
3601   VisitForAccumulatorValue(args->at(0));
3602 
3603   Register array = x0;
3604   Register result = x0;
3605   Register elements = x1;
3606   Register element = x2;
3607   Register separator = x3;
3608   Register array_length = x4;
3609   Register result_pos = x5;
3610   Register map = x6;
3611   Register string_length = x10;
3612   Register elements_end = x11;
3613   Register string = x12;
3614   Register scratch1 = x13;
3615   Register scratch2 = x14;
3616   Register scratch3 = x7;
3617   Register separator_length = x15;
3618 
3619   Label bailout, done, one_char_separator, long_separator,
3620       non_trivial_array, not_size_one_array, loop,
3621       empty_separator_loop, one_char_separator_loop,
3622       one_char_separator_loop_entry, long_separator_loop;
3623 
3624   // The separator operand is on the stack.
3625   __ Pop(separator);
3626 
3627   // Check that the array is a JSArray.
3628   __ JumpIfSmi(array, &bailout);
3629   __ JumpIfNotObjectType(array, map, scratch1, JS_ARRAY_TYPE, &bailout);
3630 
3631   // Check that the array has fast elements.
3632   __ CheckFastElements(map, scratch1, &bailout);
3633 
3634   // If the array has length zero, return the empty string.
3635   // Load and untag the length of the array.
3636   // It is an unsigned value, so we can skip sign extension.
3637   // We assume little endianness.
3638   __ Ldrsw(array_length,
3639            UntagSmiFieldMemOperand(array, JSArray::kLengthOffset));
3640   __ Cbnz(array_length, &non_trivial_array);
3641   __ LoadRoot(result, Heap::kempty_stringRootIndex);
3642   __ B(&done);
3643 
3644   __ Bind(&non_trivial_array);
3645   // Get the FixedArray containing array's elements.
3646   __ Ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset));
3647 
3648   // Check that all array elements are sequential one-byte strings, and
3649   // accumulate the sum of their lengths.
3650   __ Mov(string_length, 0);
3651   __ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag);
3652   __ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
3653   // Loop condition: while (element < elements_end).
3654   // Live values in registers:
3655   //   elements: Fixed array of strings.
3656   //   array_length: Length of the fixed array of strings (not smi)
3657   //   separator: Separator string
3658   //   string_length: Accumulated sum of string lengths (not smi).
3659   //   element: Current array element.
3660   //   elements_end: Array end.
3661   if (FLAG_debug_code) {
3662     __ Cmp(array_length, 0);
3663     __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
3664   }
3665   __ Bind(&loop);
3666   __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3667   __ JumpIfSmi(string, &bailout);
3668   __ Ldr(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
3669   __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3670   __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
3671   __ Ldrsw(scratch1,
3672            UntagSmiFieldMemOperand(string, SeqOneByteString::kLengthOffset));
3673   __ Adds(string_length, string_length, scratch1);
3674   __ B(vs, &bailout);
3675   __ Cmp(element, elements_end);
3676   __ B(lt, &loop);
3677 
3678   // If array_length is 1, return elements[0], a string.
3679   __ Cmp(array_length, 1);
3680   __ B(ne, &not_size_one_array);
3681   __ Ldr(result, FieldMemOperand(elements, FixedArray::kHeaderSize));
3682   __ B(&done);
3683 
3684   __ Bind(&not_size_one_array);
3685 
3686   // Live values in registers:
3687   //   separator: Separator string
3688   //   array_length: Length of the array (not smi).
3689   //   string_length: Sum of string lengths (not smi).
3690   //   elements: FixedArray of strings.
3691 
3692   // Check that the separator is a flat one-byte string.
3693   __ JumpIfSmi(separator, &bailout);
3694   __ Ldr(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
3695   __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3696   __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
3697 
3698   // Add (separator length times array_length) - separator length to the
3699   // string_length to get the length of the result string.
3700   // Load the separator length as untagged.
3701   // We assume little endianness, and that the length is positive.
3702   __ Ldrsw(separator_length,
3703            UntagSmiFieldMemOperand(separator,
3704                                    SeqOneByteString::kLengthOffset));
3705   __ Sub(string_length, string_length, separator_length);
3706   __ Umaddl(string_length, array_length.W(), separator_length.W(),
3707             string_length);
3708 
3709   // Get first element in the array.
3710   __ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag);
3711   // Live values in registers:
3712   //   element: First array element
3713   //   separator: Separator string
3714   //   string_length: Length of result string (not smi)
3715   //   array_length: Length of the array (not smi).
3716   __ AllocateOneByteString(result, string_length, scratch1, scratch2, scratch3,
3717                            &bailout);
3718 
3719   // Prepare for looping. Set up elements_end to end of the array. Set
3720   // result_pos to the position of the result where to write the first
3721   // character.
3722   // TODO(all): useless unless AllocateOneByteString trashes the register.
3723   __ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
3724   __ Add(result_pos, result, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3725 
3726   // Check the length of the separator.
3727   __ Cmp(separator_length, 1);
3728   __ B(eq, &one_char_separator);
3729   __ B(gt, &long_separator);
3730 
3731   // Empty separator case
3732   __ Bind(&empty_separator_loop);
3733   // Live values in registers:
3734   //   result_pos: the position to which we are currently copying characters.
3735   //   element: Current array element.
3736   //   elements_end: Array end.
3737 
3738   // Copy next array element to the result.
3739   __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3740   __ Ldrsw(string_length,
3741            UntagSmiFieldMemOperand(string, String::kLengthOffset));
3742   __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3743   __ CopyBytes(result_pos, string, string_length, scratch1);
3744   __ Cmp(element, elements_end);
3745   __ B(lt, &empty_separator_loop);  // End while (element < elements_end).
3746   __ B(&done);
3747 
3748   // One-character separator case
3749   __ Bind(&one_char_separator);
3750   // Replace separator with its one-byte character value.
3751   __ Ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
3752   // Jump into the loop after the code that copies the separator, so the first
3753   // element is not preceded by a separator
3754   __ B(&one_char_separator_loop_entry);
3755 
3756   __ Bind(&one_char_separator_loop);
3757   // Live values in registers:
3758   //   result_pos: the position to which we are currently copying characters.
3759   //   element: Current array element.
3760   //   elements_end: Array end.
3761   //   separator: Single separator one-byte char (in lower byte).
3762 
3763   // Copy the separator character to the result.
3764   __ Strb(separator, MemOperand(result_pos, 1, PostIndex));
3765 
3766   // Copy next array element to the result.
3767   __ Bind(&one_char_separator_loop_entry);
3768   __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3769   __ Ldrsw(string_length,
3770            UntagSmiFieldMemOperand(string, String::kLengthOffset));
3771   __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3772   __ CopyBytes(result_pos, string, string_length, scratch1);
3773   __ Cmp(element, elements_end);
3774   __ B(lt, &one_char_separator_loop);  // End while (element < elements_end).
3775   __ B(&done);
3776 
3777   // Long separator case (separator is more than one character). Entry is at the
3778   // label long_separator below.
3779   __ Bind(&long_separator_loop);
3780   // Live values in registers:
3781   //   result_pos: the position to which we are currently copying characters.
3782   //   element: Current array element.
3783   //   elements_end: Array end.
3784   //   separator: Separator string.
3785 
3786   // Copy the separator to the result.
3787   // TODO(all): hoist next two instructions.
3788   __ Ldrsw(string_length,
3789            UntagSmiFieldMemOperand(separator, String::kLengthOffset));
3790   __ Add(string, separator, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3791   __ CopyBytes(result_pos, string, string_length, scratch1);
3792 
3793   __ Bind(&long_separator);
3794   __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3795   __ Ldrsw(string_length,
3796            UntagSmiFieldMemOperand(string, String::kLengthOffset));
3797   __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3798   __ CopyBytes(result_pos, string, string_length, scratch1);
3799   __ Cmp(element, elements_end);
3800   __ B(lt, &long_separator_loop);  // End while (element < elements_end).
3801   __ B(&done);
3802 
3803   __ Bind(&bailout);
3804   // Returning undefined will force slower code to handle it.
3805   __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3806   __ Bind(&done);
3807   context()->Plug(result);
3808 }
3809 
3810 
EmitDebugIsActive(CallRuntime * expr)3811 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
3812   DCHECK(expr->arguments()->length() == 0);
3813   ExternalReference debug_is_active =
3814       ExternalReference::debug_is_active_address(isolate());
3815   __ Mov(x10, debug_is_active);
3816   __ Ldrb(x0, MemOperand(x10));
3817   __ SmiTag(x0);
3818   context()->Plug(x0);
3819 }
3820 
3821 
VisitCallRuntime(CallRuntime * expr)3822 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
3823   if (expr->function() != NULL &&
3824       expr->function()->intrinsic_type == Runtime::INLINE) {
3825     Comment cmnt(masm_, "[ InlineRuntimeCall");
3826     EmitInlineRuntimeCall(expr);
3827     return;
3828   }
3829 
3830   Comment cmnt(masm_, "[ CallRunTime");
3831   ZoneList<Expression*>* args = expr->arguments();
3832   int arg_count = args->length();
3833 
3834   if (expr->is_jsruntime()) {
3835     // Push the builtins object as the receiver.
3836     __ Ldr(x10, GlobalObjectMemOperand());
3837     __ Ldr(LoadDescriptor::ReceiverRegister(),
3838            FieldMemOperand(x10, GlobalObject::kBuiltinsOffset));
3839     __ Push(LoadDescriptor::ReceiverRegister());
3840 
3841     // Load the function from the receiver.
3842     Handle<String> name = expr->name();
3843     __ Mov(LoadDescriptor::NameRegister(), Operand(name));
3844     if (FLAG_vector_ics) {
3845       __ Mov(VectorLoadICDescriptor::SlotRegister(),
3846              Smi::FromInt(expr->CallRuntimeFeedbackSlot()));
3847       CallLoadIC(NOT_CONTEXTUAL);
3848     } else {
3849       CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
3850     }
3851 
3852     // Push the target function under the receiver.
3853     __ Pop(x10);
3854     __ Push(x0, x10);
3855 
3856     int arg_count = args->length();
3857     for (int i = 0; i < arg_count; i++) {
3858       VisitForStackValue(args->at(i));
3859     }
3860 
3861     // Record source position of the IC call.
3862     SetSourcePosition(expr->position());
3863     CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
3864     __ Peek(x1, (arg_count + 1) * kPointerSize);
3865     __ CallStub(&stub);
3866 
3867     // Restore context register.
3868     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3869 
3870     context()->DropAndPlug(1, x0);
3871   } else {
3872     // Push the arguments ("left-to-right").
3873     for (int i = 0; i < arg_count; i++) {
3874       VisitForStackValue(args->at(i));
3875     }
3876 
3877     // Call the C runtime function.
3878     __ CallRuntime(expr->function(), arg_count);
3879     context()->Plug(x0);
3880   }
3881 }
3882 
3883 
VisitUnaryOperation(UnaryOperation * expr)3884 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
3885   switch (expr->op()) {
3886     case Token::DELETE: {
3887       Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
3888       Property* property = expr->expression()->AsProperty();
3889       VariableProxy* proxy = expr->expression()->AsVariableProxy();
3890 
3891       if (property != NULL) {
3892         VisitForStackValue(property->obj());
3893         VisitForStackValue(property->key());
3894         __ Mov(x10, Smi::FromInt(strict_mode()));
3895         __ Push(x10);
3896         __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
3897         context()->Plug(x0);
3898       } else if (proxy != NULL) {
3899         Variable* var = proxy->var();
3900         // Delete of an unqualified identifier is disallowed in strict mode
3901         // but "delete this" is allowed.
3902         DCHECK(strict_mode() == SLOPPY || var->is_this());
3903         if (var->IsUnallocated()) {
3904           __ Ldr(x12, GlobalObjectMemOperand());
3905           __ Mov(x11, Operand(var->name()));
3906           __ Mov(x10, Smi::FromInt(SLOPPY));
3907           __ Push(x12, x11, x10);
3908           __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
3909           context()->Plug(x0);
3910         } else if (var->IsStackAllocated() || var->IsContextSlot()) {
3911           // Result of deleting non-global, non-dynamic variables is false.
3912           // The subexpression does not have side effects.
3913           context()->Plug(var->is_this());
3914         } else {
3915           // Non-global variable.  Call the runtime to try to delete from the
3916           // context where the variable was introduced.
3917           __ Mov(x2, Operand(var->name()));
3918           __ Push(context_register(), x2);
3919           __ CallRuntime(Runtime::kDeleteLookupSlot, 2);
3920           context()->Plug(x0);
3921         }
3922       } else {
3923         // Result of deleting non-property, non-variable reference is true.
3924         // The subexpression may have side effects.
3925         VisitForEffect(expr->expression());
3926         context()->Plug(true);
3927       }
3928       break;
3929       break;
3930     }
3931     case Token::VOID: {
3932       Comment cmnt(masm_, "[ UnaryOperation (VOID)");
3933       VisitForEffect(expr->expression());
3934       context()->Plug(Heap::kUndefinedValueRootIndex);
3935       break;
3936     }
3937     case Token::NOT: {
3938       Comment cmnt(masm_, "[ UnaryOperation (NOT)");
3939       if (context()->IsEffect()) {
3940         // Unary NOT has no side effects so it's only necessary to visit the
3941         // subexpression.  Match the optimizing compiler by not branching.
3942         VisitForEffect(expr->expression());
3943       } else if (context()->IsTest()) {
3944         const TestContext* test = TestContext::cast(context());
3945         // The labels are swapped for the recursive call.
3946         VisitForControl(expr->expression(),
3947                         test->false_label(),
3948                         test->true_label(),
3949                         test->fall_through());
3950         context()->Plug(test->true_label(), test->false_label());
3951       } else {
3952         DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
3953         // TODO(jbramley): This could be much more efficient using (for
3954         // example) the CSEL instruction.
3955         Label materialize_true, materialize_false, done;
3956         VisitForControl(expr->expression(),
3957                         &materialize_false,
3958                         &materialize_true,
3959                         &materialize_true);
3960 
3961         __ Bind(&materialize_true);
3962         PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
3963         __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
3964         __ B(&done);
3965 
3966         __ Bind(&materialize_false);
3967         PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
3968         __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
3969         __ B(&done);
3970 
3971         __ Bind(&done);
3972         if (context()->IsStackValue()) {
3973           __ Push(result_register());
3974         }
3975       }
3976       break;
3977     }
3978     case Token::TYPEOF: {
3979       Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
3980       {
3981         StackValueContext context(this);
3982         VisitForTypeofValue(expr->expression());
3983       }
3984       __ CallRuntime(Runtime::kTypeof, 1);
3985       context()->Plug(x0);
3986       break;
3987     }
3988     default:
3989       UNREACHABLE();
3990   }
3991 }
3992 
3993 
VisitCountOperation(CountOperation * expr)3994 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
3995   DCHECK(expr->expression()->IsValidReferenceExpression());
3996 
3997   Comment cmnt(masm_, "[ CountOperation");
3998   SetSourcePosition(expr->position());
3999 
4000   // Expression can only be a property, a global or a (parameter or local)
4001   // slot.
4002   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
4003   LhsKind assign_type = VARIABLE;
4004   Property* prop = expr->expression()->AsProperty();
4005   // In case of a property we use the uninitialized expression context
4006   // of the key to detect a named property.
4007   if (prop != NULL) {
4008     assign_type =
4009         (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
4010   }
4011 
4012   // Evaluate expression and get value.
4013   if (assign_type == VARIABLE) {
4014     DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
4015     AccumulatorValueContext context(this);
4016     EmitVariableLoad(expr->expression()->AsVariableProxy());
4017   } else {
4018     // Reserve space for result of postfix operation.
4019     if (expr->is_postfix() && !context()->IsEffect()) {
4020       __ Push(xzr);
4021     }
4022     if (assign_type == NAMED_PROPERTY) {
4023       // Put the object both on the stack and in the register.
4024       VisitForStackValue(prop->obj());
4025       __ Peek(LoadDescriptor::ReceiverRegister(), 0);
4026       EmitNamedPropertyLoad(prop);
4027     } else {
4028       // KEYED_PROPERTY
4029       VisitForStackValue(prop->obj());
4030       VisitForStackValue(prop->key());
4031       __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize);
4032       __ Peek(LoadDescriptor::NameRegister(), 0);
4033       EmitKeyedPropertyLoad(prop);
4034     }
4035   }
4036 
4037   // We need a second deoptimization point after loading the value
4038   // in case evaluating the property load my have a side effect.
4039   if (assign_type == VARIABLE) {
4040     PrepareForBailout(expr->expression(), TOS_REG);
4041   } else {
4042     PrepareForBailoutForId(prop->LoadId(), TOS_REG);
4043   }
4044 
4045   // Inline smi case if we are in a loop.
4046   Label stub_call, done;
4047   JumpPatchSite patch_site(masm_);
4048 
4049   int count_value = expr->op() == Token::INC ? 1 : -1;
4050   if (ShouldInlineSmiCase(expr->op())) {
4051     Label slow;
4052     patch_site.EmitJumpIfNotSmi(x0, &slow);
4053 
4054     // Save result for postfix expressions.
4055     if (expr->is_postfix()) {
4056       if (!context()->IsEffect()) {
4057         // Save the result on the stack. If we have a named or keyed property we
4058         // store the result under the receiver that is currently on top of the
4059         // stack.
4060         switch (assign_type) {
4061           case VARIABLE:
4062             __ Push(x0);
4063             break;
4064           case NAMED_PROPERTY:
4065             __ Poke(x0, kPointerSize);
4066             break;
4067           case KEYED_PROPERTY:
4068             __ Poke(x0, kPointerSize * 2);
4069             break;
4070         }
4071       }
4072     }
4073 
4074     __ Adds(x0, x0, Smi::FromInt(count_value));
4075     __ B(vc, &done);
4076     // Call stub. Undo operation first.
4077     __ Sub(x0, x0, Smi::FromInt(count_value));
4078     __ B(&stub_call);
4079     __ Bind(&slow);
4080   }
4081   ToNumberStub convert_stub(isolate());
4082   __ CallStub(&convert_stub);
4083 
4084   // Save result for postfix expressions.
4085   if (expr->is_postfix()) {
4086     if (!context()->IsEffect()) {
4087       // Save the result on the stack. If we have a named or keyed property
4088       // we store the result under the receiver that is currently on top
4089       // of the stack.
4090       switch (assign_type) {
4091         case VARIABLE:
4092           __ Push(x0);
4093           break;
4094         case NAMED_PROPERTY:
4095           __ Poke(x0, kXRegSize);
4096           break;
4097         case KEYED_PROPERTY:
4098           __ Poke(x0, 2 * kXRegSize);
4099           break;
4100       }
4101     }
4102   }
4103 
4104   __ Bind(&stub_call);
4105   __ Mov(x1, x0);
4106   __ Mov(x0, Smi::FromInt(count_value));
4107 
4108   // Record position before stub call.
4109   SetSourcePosition(expr->position());
4110 
4111   {
4112     Assembler::BlockPoolsScope scope(masm_);
4113     Handle<Code> code =
4114         CodeFactory::BinaryOpIC(isolate(), Token::ADD, NO_OVERWRITE).code();
4115     CallIC(code, expr->CountBinOpFeedbackId());
4116     patch_site.EmitPatchInfo();
4117   }
4118   __ Bind(&done);
4119 
4120   // Store the value returned in x0.
4121   switch (assign_type) {
4122     case VARIABLE:
4123       if (expr->is_postfix()) {
4124         { EffectContext context(this);
4125           EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4126                                  Token::ASSIGN);
4127           PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4128           context.Plug(x0);
4129         }
4130         // For all contexts except EffectConstant We have the result on
4131         // top of the stack.
4132         if (!context()->IsEffect()) {
4133           context()->PlugTOS();
4134         }
4135       } else {
4136         EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4137                                Token::ASSIGN);
4138         PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4139         context()->Plug(x0);
4140       }
4141       break;
4142     case NAMED_PROPERTY: {
4143       __ Mov(StoreDescriptor::NameRegister(),
4144              Operand(prop->key()->AsLiteral()->value()));
4145       __ Pop(StoreDescriptor::ReceiverRegister());
4146       CallStoreIC(expr->CountStoreFeedbackId());
4147       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4148       if (expr->is_postfix()) {
4149         if (!context()->IsEffect()) {
4150           context()->PlugTOS();
4151         }
4152       } else {
4153         context()->Plug(x0);
4154       }
4155       break;
4156     }
4157     case KEYED_PROPERTY: {
4158       __ Pop(StoreDescriptor::NameRegister());
4159       __ Pop(StoreDescriptor::ReceiverRegister());
4160       Handle<Code> ic =
4161           CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
4162       CallIC(ic, expr->CountStoreFeedbackId());
4163       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4164       if (expr->is_postfix()) {
4165         if (!context()->IsEffect()) {
4166           context()->PlugTOS();
4167         }
4168       } else {
4169         context()->Plug(x0);
4170       }
4171       break;
4172     }
4173   }
4174 }
4175 
4176 
VisitForTypeofValue(Expression * expr)4177 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
4178   DCHECK(!context()->IsEffect());
4179   DCHECK(!context()->IsTest());
4180   VariableProxy* proxy = expr->AsVariableProxy();
4181   if (proxy != NULL && proxy->var()->IsUnallocated()) {
4182     Comment cmnt(masm_, "Global variable");
4183     __ Ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectMemOperand());
4184     __ Mov(LoadDescriptor::NameRegister(), Operand(proxy->name()));
4185     if (FLAG_vector_ics) {
4186       __ Mov(VectorLoadICDescriptor::SlotRegister(),
4187              Smi::FromInt(proxy->VariableFeedbackSlot()));
4188     }
4189     // Use a regular load, not a contextual load, to avoid a reference
4190     // error.
4191     CallLoadIC(NOT_CONTEXTUAL);
4192     PrepareForBailout(expr, TOS_REG);
4193     context()->Plug(x0);
4194   } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
4195     Label done, slow;
4196 
4197     // Generate code for loading from variables potentially shadowed
4198     // by eval-introduced variables.
4199     EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done);
4200 
4201     __ Bind(&slow);
4202     __ Mov(x0, Operand(proxy->name()));
4203     __ Push(cp, x0);
4204     __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2);
4205     PrepareForBailout(expr, TOS_REG);
4206     __ Bind(&done);
4207 
4208     context()->Plug(x0);
4209   } else {
4210     // This expression cannot throw a reference error at the top level.
4211     VisitInDuplicateContext(expr);
4212   }
4213 }
4214 
4215 
EmitLiteralCompareTypeof(Expression * expr,Expression * sub_expr,Handle<String> check)4216 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4217                                                  Expression* sub_expr,
4218                                                  Handle<String> check) {
4219   ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof");
4220   Comment cmnt(masm_, "[ EmitLiteralCompareTypeof");
4221   Label materialize_true, materialize_false;
4222   Label* if_true = NULL;
4223   Label* if_false = NULL;
4224   Label* fall_through = NULL;
4225   context()->PrepareTest(&materialize_true, &materialize_false,
4226                          &if_true, &if_false, &fall_through);
4227 
4228   { AccumulatorValueContext context(this);
4229     VisitForTypeofValue(sub_expr);
4230   }
4231   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4232 
4233   Factory* factory = isolate()->factory();
4234   if (String::Equals(check, factory->number_string())) {
4235     ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof number_string");
4236     __ JumpIfSmi(x0, if_true);
4237     __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
4238     __ CompareRoot(x0, Heap::kHeapNumberMapRootIndex);
4239     Split(eq, if_true, if_false, fall_through);
4240   } else if (String::Equals(check, factory->string_string())) {
4241     ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof string_string");
4242     __ JumpIfSmi(x0, if_false);
4243     // Check for undetectable objects => false.
4244     __ JumpIfObjectType(x0, x0, x1, FIRST_NONSTRING_TYPE, if_false, ge);
4245     __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset));
4246     __ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_true, if_false,
4247                     fall_through);
4248   } else if (String::Equals(check, factory->symbol_string())) {
4249     ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof symbol_string");
4250     __ JumpIfSmi(x0, if_false);
4251     __ CompareObjectType(x0, x0, x1, SYMBOL_TYPE);
4252     Split(eq, if_true, if_false, fall_through);
4253   } else if (String::Equals(check, factory->boolean_string())) {
4254     ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof boolean_string");
4255     __ JumpIfRoot(x0, Heap::kTrueValueRootIndex, if_true);
4256     __ CompareRoot(x0, Heap::kFalseValueRootIndex);
4257     Split(eq, if_true, if_false, fall_through);
4258   } else if (String::Equals(check, factory->undefined_string())) {
4259     ASM_LOCATION(
4260         "FullCodeGenerator::EmitLiteralCompareTypeof undefined_string");
4261     __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, if_true);
4262     __ JumpIfSmi(x0, if_false);
4263     // Check for undetectable objects => true.
4264     __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
4265     __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset));
4266     __ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_false, if_true,
4267                     fall_through);
4268   } else if (String::Equals(check, factory->function_string())) {
4269     ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof function_string");
4270     __ JumpIfSmi(x0, if_false);
4271     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4272     __ JumpIfObjectType(x0, x10, x11, JS_FUNCTION_TYPE, if_true);
4273     __ CompareAndSplit(x11, JS_FUNCTION_PROXY_TYPE, eq, if_true, if_false,
4274                        fall_through);
4275 
4276   } else if (String::Equals(check, factory->object_string())) {
4277     ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof object_string");
4278     __ JumpIfSmi(x0, if_false);
4279     __ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true);
4280     // Check for JS objects => true.
4281     Register map = x10;
4282     __ JumpIfObjectType(x0, map, x11, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE,
4283                         if_false, lt);
4284     __ CompareInstanceType(map, x11, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
4285     __ B(gt, if_false);
4286     // Check for undetectable objects => false.
4287     __ Ldrb(x10, FieldMemOperand(map, Map::kBitFieldOffset));
4288 
4289     __ TestAndSplit(x10, 1 << Map::kIsUndetectable, if_true, if_false,
4290                     fall_through);
4291 
4292   } else {
4293     ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof other");
4294     if (if_false != fall_through) __ B(if_false);
4295   }
4296   context()->Plug(if_true, if_false);
4297 }
4298 
4299 
VisitCompareOperation(CompareOperation * expr)4300 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4301   Comment cmnt(masm_, "[ CompareOperation");
4302   SetSourcePosition(expr->position());
4303 
4304   // Try to generate an optimized comparison with a literal value.
4305   // TODO(jbramley): This only checks common values like NaN or undefined.
4306   // Should it also handle ARM64 immediate operands?
4307   if (TryLiteralCompare(expr)) {
4308     return;
4309   }
4310 
4311   // Assign labels according to context()->PrepareTest.
4312   Label materialize_true;
4313   Label materialize_false;
4314   Label* if_true = NULL;
4315   Label* if_false = NULL;
4316   Label* fall_through = NULL;
4317   context()->PrepareTest(&materialize_true, &materialize_false,
4318                          &if_true, &if_false, &fall_through);
4319 
4320   Token::Value op = expr->op();
4321   VisitForStackValue(expr->left());
4322   switch (op) {
4323     case Token::IN:
4324       VisitForStackValue(expr->right());
4325       __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
4326       PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4327       __ CompareRoot(x0, Heap::kTrueValueRootIndex);
4328       Split(eq, if_true, if_false, fall_through);
4329       break;
4330 
4331     case Token::INSTANCEOF: {
4332       VisitForStackValue(expr->right());
4333       InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
4334       __ CallStub(&stub);
4335       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4336       // The stub returns 0 for true.
4337       __ CompareAndSplit(x0, 0, eq, if_true, if_false, fall_through);
4338       break;
4339     }
4340 
4341     default: {
4342       VisitForAccumulatorValue(expr->right());
4343       Condition cond = CompareIC::ComputeCondition(op);
4344 
4345       // Pop the stack value.
4346       __ Pop(x1);
4347 
4348       JumpPatchSite patch_site(masm_);
4349       if (ShouldInlineSmiCase(op)) {
4350         Label slow_case;
4351         patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case);
4352         __ Cmp(x1, x0);
4353         Split(cond, if_true, if_false, NULL);
4354         __ Bind(&slow_case);
4355       }
4356 
4357       // Record position and call the compare IC.
4358       SetSourcePosition(expr->position());
4359       Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
4360       CallIC(ic, expr->CompareOperationFeedbackId());
4361       patch_site.EmitPatchInfo();
4362       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4363       __ CompareAndSplit(x0, 0, cond, if_true, if_false, fall_through);
4364     }
4365   }
4366 
4367   // Convert the result of the comparison into one expected for this
4368   // expression's context.
4369   context()->Plug(if_true, if_false);
4370 }
4371 
4372 
EmitLiteralCompareNil(CompareOperation * expr,Expression * sub_expr,NilValue nil)4373 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4374                                               Expression* sub_expr,
4375                                               NilValue nil) {
4376   ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareNil");
4377   Label materialize_true, materialize_false;
4378   Label* if_true = NULL;
4379   Label* if_false = NULL;
4380   Label* fall_through = NULL;
4381   context()->PrepareTest(&materialize_true, &materialize_false,
4382                          &if_true, &if_false, &fall_through);
4383 
4384   VisitForAccumulatorValue(sub_expr);
4385   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4386 
4387   if (expr->op() == Token::EQ_STRICT) {
4388     Heap::RootListIndex nil_value = nil == kNullValue ?
4389         Heap::kNullValueRootIndex :
4390         Heap::kUndefinedValueRootIndex;
4391     __ CompareRoot(x0, nil_value);
4392     Split(eq, if_true, if_false, fall_through);
4393   } else {
4394     Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
4395     CallIC(ic, expr->CompareOperationFeedbackId());
4396     __ CompareAndSplit(x0, 0, ne, if_true, if_false, fall_through);
4397   }
4398 
4399   context()->Plug(if_true, if_false);
4400 }
4401 
4402 
VisitThisFunction(ThisFunction * expr)4403 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4404   __ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4405   context()->Plug(x0);
4406 }
4407 
4408 
VisitYield(Yield * expr)4409 void FullCodeGenerator::VisitYield(Yield* expr) {
4410   Comment cmnt(masm_, "[ Yield");
4411   // Evaluate yielded value first; the initial iterator definition depends on
4412   // this. It stays on the stack while we update the iterator.
4413   VisitForStackValue(expr->expression());
4414 
4415   // TODO(jbramley): Tidy this up once the merge is done, using named registers
4416   // and suchlike. The implementation changes a little by bleeding_edge so I
4417   // don't want to spend too much time on it now.
4418 
4419   switch (expr->yield_kind()) {
4420     case Yield::kSuspend:
4421       // Pop value from top-of-stack slot; box result into result register.
4422       EmitCreateIteratorResult(false);
4423       __ Push(result_register());
4424       // Fall through.
4425     case Yield::kInitial: {
4426       Label suspend, continuation, post_runtime, resume;
4427 
4428       __ B(&suspend);
4429 
4430       // TODO(jbramley): This label is bound here because the following code
4431       // looks at its pos(). Is it possible to do something more efficient here,
4432       // perhaps using Adr?
4433       __ Bind(&continuation);
4434       __ B(&resume);
4435 
4436       __ Bind(&suspend);
4437       VisitForAccumulatorValue(expr->generator_object());
4438       DCHECK((continuation.pos() > 0) && Smi::IsValid(continuation.pos()));
4439       __ Mov(x1, Smi::FromInt(continuation.pos()));
4440       __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset));
4441       __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset));
4442       __ Mov(x1, cp);
4443       __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2,
4444                           kLRHasBeenSaved, kDontSaveFPRegs);
4445       __ Add(x1, fp, StandardFrameConstants::kExpressionsOffset);
4446       __ Cmp(__ StackPointer(), x1);
4447       __ B(eq, &post_runtime);
4448       __ Push(x0);  // generator object
4449       __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
4450       __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4451       __ Bind(&post_runtime);
4452       __ Pop(result_register());
4453       EmitReturnSequence();
4454 
4455       __ Bind(&resume);
4456       context()->Plug(result_register());
4457       break;
4458     }
4459 
4460     case Yield::kFinal: {
4461       VisitForAccumulatorValue(expr->generator_object());
4462       __ Mov(x1, Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
4463       __ Str(x1, FieldMemOperand(result_register(),
4464                                  JSGeneratorObject::kContinuationOffset));
4465       // Pop value from top-of-stack slot, box result into result register.
4466       EmitCreateIteratorResult(true);
4467       EmitUnwindBeforeReturn();
4468       EmitReturnSequence();
4469       break;
4470     }
4471 
4472     case Yield::kDelegating: {
4473       VisitForStackValue(expr->generator_object());
4474 
4475       // Initial stack layout is as follows:
4476       // [sp + 1 * kPointerSize] iter
4477       // [sp + 0 * kPointerSize] g
4478 
4479       Label l_catch, l_try, l_suspend, l_continuation, l_resume;
4480       Label l_next, l_call, l_loop;
4481       Register load_receiver = LoadDescriptor::ReceiverRegister();
4482       Register load_name = LoadDescriptor::NameRegister();
4483 
4484       // Initial send value is undefined.
4485       __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
4486       __ B(&l_next);
4487 
4488       // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
4489       __ Bind(&l_catch);
4490       handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
4491       __ LoadRoot(load_name, Heap::kthrow_stringRootIndex);  // "throw"
4492       __ Peek(x3, 1 * kPointerSize);                         // iter
4493       __ Push(load_name, x3, x0);                       // "throw", iter, except
4494       __ B(&l_call);
4495 
4496       // try { received = %yield result }
4497       // Shuffle the received result above a try handler and yield it without
4498       // re-boxing.
4499       __ Bind(&l_try);
4500       __ Pop(x0);                                        // result
4501       __ PushTryHandler(StackHandler::CATCH, expr->index());
4502       const int handler_size = StackHandlerConstants::kSize;
4503       __ Push(x0);                                       // result
4504       __ B(&l_suspend);
4505 
4506       // TODO(jbramley): This label is bound here because the following code
4507       // looks at its pos(). Is it possible to do something more efficient here,
4508       // perhaps using Adr?
4509       __ Bind(&l_continuation);
4510       __ B(&l_resume);
4511 
4512       __ Bind(&l_suspend);
4513       const int generator_object_depth = kPointerSize + handler_size;
4514       __ Peek(x0, generator_object_depth);
4515       __ Push(x0);                                       // g
4516       DCHECK((l_continuation.pos() > 0) && Smi::IsValid(l_continuation.pos()));
4517       __ Mov(x1, Smi::FromInt(l_continuation.pos()));
4518       __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset));
4519       __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset));
4520       __ Mov(x1, cp);
4521       __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2,
4522                           kLRHasBeenSaved, kDontSaveFPRegs);
4523       __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
4524       __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4525       __ Pop(x0);                                        // result
4526       EmitReturnSequence();
4527       __ Bind(&l_resume);                                // received in x0
4528       __ PopTryHandler();
4529 
4530       // receiver = iter; f = 'next'; arg = received;
4531       __ Bind(&l_next);
4532 
4533       __ LoadRoot(load_name, Heap::knext_stringRootIndex);  // "next"
4534       __ Peek(x3, 1 * kPointerSize);                        // iter
4535       __ Push(load_name, x3, x0);                      // "next", iter, received
4536 
4537       // result = receiver[f](arg);
4538       __ Bind(&l_call);
4539       __ Peek(load_receiver, 1 * kPointerSize);
4540       __ Peek(load_name, 2 * kPointerSize);
4541       if (FLAG_vector_ics) {
4542         __ Mov(VectorLoadICDescriptor::SlotRegister(),
4543                Smi::FromInt(expr->KeyedLoadFeedbackSlot()));
4544       }
4545       Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
4546       CallIC(ic, TypeFeedbackId::None());
4547       __ Mov(x1, x0);
4548       __ Poke(x1, 2 * kPointerSize);
4549       CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
4550       __ CallStub(&stub);
4551 
4552       __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4553       __ Drop(1);  // The function is still on the stack; drop it.
4554 
4555       // if (!result.done) goto l_try;
4556       __ Bind(&l_loop);
4557       __ Move(load_receiver, x0);
4558 
4559       __ Push(load_receiver);                               // save result
4560       __ LoadRoot(load_name, Heap::kdone_stringRootIndex);  // "done"
4561       if (FLAG_vector_ics) {
4562         __ Mov(VectorLoadICDescriptor::SlotRegister(),
4563                Smi::FromInt(expr->DoneFeedbackSlot()));
4564       }
4565       CallLoadIC(NOT_CONTEXTUAL);                           // x0=result.done
4566       // The ToBooleanStub argument (result.done) is in x0.
4567       Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
4568       CallIC(bool_ic);
4569       __ Cbz(x0, &l_try);
4570 
4571       // result.value
4572       __ Pop(load_receiver);                                 // result
4573       __ LoadRoot(load_name, Heap::kvalue_stringRootIndex);  // "value"
4574       if (FLAG_vector_ics) {
4575         __ Mov(VectorLoadICDescriptor::SlotRegister(),
4576                Smi::FromInt(expr->ValueFeedbackSlot()));
4577       }
4578       CallLoadIC(NOT_CONTEXTUAL);                            // x0=result.value
4579       context()->DropAndPlug(2, x0);                         // drop iter and g
4580       break;
4581     }
4582   }
4583 }
4584 
4585 
EmitGeneratorResume(Expression * generator,Expression * value,JSGeneratorObject::ResumeMode resume_mode)4586 void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
4587     Expression *value,
4588     JSGeneratorObject::ResumeMode resume_mode) {
4589   ASM_LOCATION("FullCodeGenerator::EmitGeneratorResume");
4590   Register value_reg = x0;
4591   Register generator_object = x1;
4592   Register the_hole = x2;
4593   Register operand_stack_size = w3;
4594   Register function = x4;
4595 
4596   // The value stays in x0, and is ultimately read by the resumed generator, as
4597   // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
4598   // is read to throw the value when the resumed generator is already closed. r1
4599   // will hold the generator object until the activation has been resumed.
4600   VisitForStackValue(generator);
4601   VisitForAccumulatorValue(value);
4602   __ Pop(generator_object);
4603 
4604   // Check generator state.
4605   Label wrong_state, closed_state, done;
4606   __ Ldr(x10, FieldMemOperand(generator_object,
4607                               JSGeneratorObject::kContinuationOffset));
4608   STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
4609   STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
4610   __ CompareAndBranch(x10, Smi::FromInt(0), eq, &closed_state);
4611   __ CompareAndBranch(x10, Smi::FromInt(0), lt, &wrong_state);
4612 
4613   // Load suspended function and context.
4614   __ Ldr(cp, FieldMemOperand(generator_object,
4615                              JSGeneratorObject::kContextOffset));
4616   __ Ldr(function, FieldMemOperand(generator_object,
4617                                    JSGeneratorObject::kFunctionOffset));
4618 
4619   // Load receiver and store as the first argument.
4620   __ Ldr(x10, FieldMemOperand(generator_object,
4621                               JSGeneratorObject::kReceiverOffset));
4622   __ Push(x10);
4623 
4624   // Push holes for the rest of the arguments to the generator function.
4625   __ Ldr(x10, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
4626 
4627   // The number of arguments is stored as an int32_t, and -1 is a marker
4628   // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
4629   // extension to correctly handle it. However, in this case, we operate on
4630   // 32-bit W registers, so extension isn't required.
4631   __ Ldr(w10, FieldMemOperand(x10,
4632                               SharedFunctionInfo::kFormalParameterCountOffset));
4633   __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
4634   __ PushMultipleTimes(the_hole, w10);
4635 
4636   // Enter a new JavaScript frame, and initialize its slots as they were when
4637   // the generator was suspended.
4638   Label resume_frame;
4639   __ Bl(&resume_frame);
4640   __ B(&done);
4641 
4642   __ Bind(&resume_frame);
4643   __ Push(lr,           // Return address.
4644           fp,           // Caller's frame pointer.
4645           cp,           // Callee's context.
4646           function);    // Callee's JS Function.
4647   __ Add(fp, __ StackPointer(), kPointerSize * 2);
4648 
4649   // Load and untag the operand stack size.
4650   __ Ldr(x10, FieldMemOperand(generator_object,
4651                               JSGeneratorObject::kOperandStackOffset));
4652   __ Ldr(operand_stack_size,
4653          UntagSmiFieldMemOperand(x10, FixedArray::kLengthOffset));
4654 
4655   // If we are sending a value and there is no operand stack, we can jump back
4656   // in directly.
4657   if (resume_mode == JSGeneratorObject::NEXT) {
4658     Label slow_resume;
4659     __ Cbnz(operand_stack_size, &slow_resume);
4660     __ Ldr(x10, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4661     __ Ldrsw(x11,
4662              UntagSmiFieldMemOperand(generator_object,
4663                                      JSGeneratorObject::kContinuationOffset));
4664     __ Add(x10, x10, x11);
4665     __ Mov(x12, Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
4666     __ Str(x12, FieldMemOperand(generator_object,
4667                                 JSGeneratorObject::kContinuationOffset));
4668     __ Br(x10);
4669 
4670     __ Bind(&slow_resume);
4671   }
4672 
4673   // Otherwise, we push holes for the operand stack and call the runtime to fix
4674   // up the stack and the handlers.
4675   __ PushMultipleTimes(the_hole, operand_stack_size);
4676 
4677   __ Mov(x10, Smi::FromInt(resume_mode));
4678   __ Push(generator_object, result_register(), x10);
4679   __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
4680   // Not reached: the runtime call returns elsewhere.
4681   __ Unreachable();
4682 
4683   // Reach here when generator is closed.
4684   __ Bind(&closed_state);
4685   if (resume_mode == JSGeneratorObject::NEXT) {
4686     // Return completed iterator result when generator is closed.
4687     __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
4688     __ Push(x10);
4689     // Pop value from top-of-stack slot; box result into result register.
4690     EmitCreateIteratorResult(true);
4691   } else {
4692     // Throw the provided value.
4693     __ Push(value_reg);
4694     __ CallRuntime(Runtime::kThrow, 1);
4695   }
4696   __ B(&done);
4697 
4698   // Throw error if we attempt to operate on a running generator.
4699   __ Bind(&wrong_state);
4700   __ Push(generator_object);
4701   __ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
4702 
4703   __ Bind(&done);
4704   context()->Plug(result_register());
4705 }
4706 
4707 
EmitCreateIteratorResult(bool done)4708 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
4709   Label gc_required;
4710   Label allocated;
4711 
4712   Handle<Map> map(isolate()->native_context()->iterator_result_map());
4713 
4714   // Allocate and populate an object with this form: { value: VAL, done: DONE }
4715 
4716   Register result = x0;
4717   __ Allocate(map->instance_size(), result, x10, x11, &gc_required, TAG_OBJECT);
4718   __ B(&allocated);
4719 
4720   __ Bind(&gc_required);
4721   __ Push(Smi::FromInt(map->instance_size()));
4722   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
4723   __ Ldr(context_register(),
4724          MemOperand(fp, StandardFrameConstants::kContextOffset));
4725 
4726   __ Bind(&allocated);
4727   Register map_reg = x1;
4728   Register result_value = x2;
4729   Register boolean_done = x3;
4730   Register empty_fixed_array = x4;
4731   Register untagged_result = x5;
4732   __ Mov(map_reg, Operand(map));
4733   __ Pop(result_value);
4734   __ Mov(boolean_done, Operand(isolate()->factory()->ToBoolean(done)));
4735   __ Mov(empty_fixed_array, Operand(isolate()->factory()->empty_fixed_array()));
4736   DCHECK_EQ(map->instance_size(), 5 * kPointerSize);
4737   STATIC_ASSERT(JSObject::kPropertiesOffset + kPointerSize ==
4738                 JSObject::kElementsOffset);
4739   STATIC_ASSERT(JSGeneratorObject::kResultValuePropertyOffset + kPointerSize ==
4740                 JSGeneratorObject::kResultDonePropertyOffset);
4741   __ ObjectUntag(untagged_result, result);
4742   __ Str(map_reg, MemOperand(untagged_result, HeapObject::kMapOffset));
4743   __ Stp(empty_fixed_array, empty_fixed_array,
4744          MemOperand(untagged_result, JSObject::kPropertiesOffset));
4745   __ Stp(result_value, boolean_done,
4746          MemOperand(untagged_result,
4747                     JSGeneratorObject::kResultValuePropertyOffset));
4748 
4749   // Only the value field needs a write barrier, as the other values are in the
4750   // root set.
4751   __ RecordWriteField(result, JSGeneratorObject::kResultValuePropertyOffset,
4752                       x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
4753 }
4754 
4755 
4756 // TODO(all): I don't like this method.
4757 // It seems to me that in too many places x0 is used in place of this.
4758 // Also, this function is not suitable for all places where x0 should be
4759 // abstracted (eg. when used as an argument). But some places assume that the
4760 // first argument register is x0, and use this function instead.
4761 // Considering that most of the register allocation is hard-coded in the
4762 // FullCodeGen, that it is unlikely we will need to change it extensively, and
4763 // that abstracting the allocation through functions would not yield any
4764 // performance benefit, I think the existence of this function is debatable.
result_register()4765 Register FullCodeGenerator::result_register() {
4766   return x0;
4767 }
4768 
4769 
context_register()4770 Register FullCodeGenerator::context_register() {
4771   return cp;
4772 }
4773 
4774 
StoreToFrameField(int frame_offset,Register value)4775 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4776   DCHECK(POINTER_SIZE_ALIGN(frame_offset) == frame_offset);
4777   __ Str(value, MemOperand(fp, frame_offset));
4778 }
4779 
4780 
LoadContextField(Register dst,int context_index)4781 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4782   __ Ldr(dst, ContextMemOperand(cp, context_index));
4783 }
4784 
4785 
PushFunctionArgumentForContextAllocation()4786 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4787   Scope* declaration_scope = scope()->DeclarationScope();
4788   if (declaration_scope->is_global_scope() ||
4789       declaration_scope->is_module_scope()) {
4790     // Contexts nested in the native context have a canonical empty function
4791     // as their closure, not the anonymous closure containing the global
4792     // code.  Pass a smi sentinel and let the runtime look up the empty
4793     // function.
4794     DCHECK(kSmiTag == 0);
4795     __ Push(xzr);
4796   } else if (declaration_scope->is_eval_scope()) {
4797     // Contexts created by a call to eval have the same closure as the
4798     // context calling eval, not the anonymous closure containing the eval
4799     // code.  Fetch it from the context.
4800     __ Ldr(x10, ContextMemOperand(cp, Context::CLOSURE_INDEX));
4801     __ Push(x10);
4802   } else {
4803     DCHECK(declaration_scope->is_function_scope());
4804     __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4805     __ Push(x10);
4806   }
4807 }
4808 
4809 
EnterFinallyBlock()4810 void FullCodeGenerator::EnterFinallyBlock() {
4811   ASM_LOCATION("FullCodeGenerator::EnterFinallyBlock");
4812   DCHECK(!result_register().is(x10));
4813   // Preserve the result register while executing finally block.
4814   // Also cook the return address in lr to the stack (smi encoded Code* delta).
4815   __ Sub(x10, lr, Operand(masm_->CodeObject()));
4816   __ SmiTag(x10);
4817   __ Push(result_register(), x10);
4818 
4819   // Store pending message while executing finally block.
4820   ExternalReference pending_message_obj =
4821       ExternalReference::address_of_pending_message_obj(isolate());
4822   __ Mov(x10, pending_message_obj);
4823   __ Ldr(x10, MemOperand(x10));
4824 
4825   ExternalReference has_pending_message =
4826       ExternalReference::address_of_has_pending_message(isolate());
4827   STATIC_ASSERT(sizeof(bool) == 1);   // NOLINT(runtime/sizeof)
4828   __ Mov(x11, has_pending_message);
4829   __ Ldrb(x11, MemOperand(x11));
4830   __ SmiTag(x11);
4831 
4832   __ Push(x10, x11);
4833 
4834   ExternalReference pending_message_script =
4835       ExternalReference::address_of_pending_message_script(isolate());
4836   __ Mov(x10, pending_message_script);
4837   __ Ldr(x10, MemOperand(x10));
4838   __ Push(x10);
4839 }
4840 
4841 
ExitFinallyBlock()4842 void FullCodeGenerator::ExitFinallyBlock() {
4843   ASM_LOCATION("FullCodeGenerator::ExitFinallyBlock");
4844   DCHECK(!result_register().is(x10));
4845 
4846   // Restore pending message from stack.
4847   __ Pop(x10, x11, x12);
4848   ExternalReference pending_message_script =
4849       ExternalReference::address_of_pending_message_script(isolate());
4850   __ Mov(x13, pending_message_script);
4851   __ Str(x10, MemOperand(x13));
4852 
4853   __ SmiUntag(x11);
4854   ExternalReference has_pending_message =
4855       ExternalReference::address_of_has_pending_message(isolate());
4856   __ Mov(x13, has_pending_message);
4857   STATIC_ASSERT(sizeof(bool) == 1);   // NOLINT(runtime/sizeof)
4858   __ Strb(x11, MemOperand(x13));
4859 
4860   ExternalReference pending_message_obj =
4861       ExternalReference::address_of_pending_message_obj(isolate());
4862   __ Mov(x13, pending_message_obj);
4863   __ Str(x12, MemOperand(x13));
4864 
4865   // Restore result register and cooked return address from the stack.
4866   __ Pop(x10, result_register());
4867 
4868   // Uncook the return address (see EnterFinallyBlock).
4869   __ SmiUntag(x10);
4870   __ Add(x11, x10, Operand(masm_->CodeObject()));
4871   __ Br(x11);
4872 }
4873 
4874 
4875 #undef __
4876 
4877 
PatchAt(Code * unoptimized_code,Address pc,BackEdgeState target_state,Code * replacement_code)4878 void BackEdgeTable::PatchAt(Code* unoptimized_code,
4879                             Address pc,
4880                             BackEdgeState target_state,
4881                             Code* replacement_code) {
4882   // Turn the jump into a nop.
4883   Address branch_address = pc - 3 * kInstructionSize;
4884   PatchingAssembler patcher(branch_address, 1);
4885 
4886   DCHECK(Instruction::Cast(branch_address)
4887              ->IsNop(Assembler::INTERRUPT_CODE_NOP) ||
4888          (Instruction::Cast(branch_address)->IsCondBranchImm() &&
4889           Instruction::Cast(branch_address)->ImmPCOffset() ==
4890               6 * kInstructionSize));
4891 
4892   switch (target_state) {
4893     case INTERRUPT:
4894       //  <decrement profiling counter>
4895       //  .. .. .. ..       b.pl ok
4896       //  .. .. .. ..       ldr x16, pc+<interrupt stub address>
4897       //  .. .. .. ..       blr x16
4898       //  ... more instructions.
4899       //  ok-label
4900       // Jump offset is 6 instructions.
4901       patcher.b(6, pl);
4902       break;
4903     case ON_STACK_REPLACEMENT:
4904     case OSR_AFTER_STACK_CHECK:
4905       //  <decrement profiling counter>
4906       //  .. .. .. ..       mov x0, x0 (NOP)
4907       //  .. .. .. ..       ldr x16, pc+<on-stack replacement address>
4908       //  .. .. .. ..       blr x16
4909       patcher.nop(Assembler::INTERRUPT_CODE_NOP);
4910       break;
4911   }
4912 
4913   // Replace the call address.
4914   Instruction* load = Instruction::Cast(pc)->preceding(2);
4915   Address interrupt_address_pointer =
4916       reinterpret_cast<Address>(load) + load->ImmPCOffset();
4917   DCHECK((Memory::uint64_at(interrupt_address_pointer) ==
4918           reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
4919                                          ->builtins()
4920                                          ->OnStackReplacement()
4921                                          ->entry())) ||
4922          (Memory::uint64_at(interrupt_address_pointer) ==
4923           reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
4924                                          ->builtins()
4925                                          ->InterruptCheck()
4926                                          ->entry())) ||
4927          (Memory::uint64_at(interrupt_address_pointer) ==
4928           reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
4929                                          ->builtins()
4930                                          ->OsrAfterStackCheck()
4931                                          ->entry())) ||
4932          (Memory::uint64_at(interrupt_address_pointer) ==
4933           reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
4934                                          ->builtins()
4935                                          ->OnStackReplacement()
4936                                          ->entry())));
4937   Memory::uint64_at(interrupt_address_pointer) =
4938       reinterpret_cast<uint64_t>(replacement_code->entry());
4939 
4940   unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
4941       unoptimized_code, reinterpret_cast<Address>(load), replacement_code);
4942 }
4943 
4944 
GetBackEdgeState(Isolate * isolate,Code * unoptimized_code,Address pc)4945 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
4946     Isolate* isolate,
4947     Code* unoptimized_code,
4948     Address pc) {
4949   // TODO(jbramley): There should be some extra assertions here (as in the ARM
4950   // back-end), but this function is gone in bleeding_edge so it might not
4951   // matter anyway.
4952   Instruction* jump_or_nop = Instruction::Cast(pc)->preceding(3);
4953 
4954   if (jump_or_nop->IsNop(Assembler::INTERRUPT_CODE_NOP)) {
4955     Instruction* load = Instruction::Cast(pc)->preceding(2);
4956     uint64_t entry = Memory::uint64_at(reinterpret_cast<Address>(load) +
4957                                        load->ImmPCOffset());
4958     if (entry == reinterpret_cast<uint64_t>(
4959         isolate->builtins()->OnStackReplacement()->entry())) {
4960       return ON_STACK_REPLACEMENT;
4961     } else if (entry == reinterpret_cast<uint64_t>(
4962         isolate->builtins()->OsrAfterStackCheck()->entry())) {
4963       return OSR_AFTER_STACK_CHECK;
4964     } else {
4965       UNREACHABLE();
4966     }
4967   }
4968 
4969   return INTERRUPT;
4970 }
4971 
4972 
4973 #define __ ACCESS_MASM(masm())
4974 
4975 
Exit(int * stack_depth,int * context_length)4976 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
4977     int* stack_depth,
4978     int* context_length) {
4979   ASM_LOCATION("FullCodeGenerator::TryFinally::Exit");
4980   // The macros used here must preserve the result register.
4981 
4982   // Because the handler block contains the context of the finally
4983   // code, we can restore it directly from there for the finally code
4984   // rather than iteratively unwinding contexts via their previous
4985   // links.
4986   __ Drop(*stack_depth);  // Down to the handler block.
4987   if (*context_length > 0) {
4988     // Restore the context to its dedicated register and the stack.
4989     __ Peek(cp, StackHandlerConstants::kContextOffset);
4990     __ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4991   }
4992   __ PopTryHandler();
4993   __ Bl(finally_entry_);
4994 
4995   *stack_depth = 0;
4996   *context_length = 0;
4997   return previous_;
4998 }
4999 
5000 
5001 #undef __
5002 
5003 
5004 } }  // namespace v8::internal
5005 
5006 #endif  // V8_TARGET_ARCH_ARM64
5007