• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef MEDIA_CAST_CAST_DEFINES_H_
6 #define MEDIA_CAST_CAST_DEFINES_H_
7 
8 #include <stdint.h>
9 
10 #include <map>
11 #include <set>
12 
13 #include "base/basictypes.h"
14 #include "base/compiler_specific.h"
15 #include "base/logging.h"
16 #include "base/time/time.h"
17 #include "media/cast/net/cast_transport_config.h"
18 
19 namespace media {
20 namespace cast {
21 
22 const int64 kDontShowTimeoutMs = 33;
23 const float kDefaultCongestionControlBackOff = 0.875f;
24 const uint32 kVideoFrequency = 90000;
25 const uint32 kStartFrameId = UINT32_C(0xffffffff);
26 
27 // This is an important system-wide constant.  This limits how much history the
28 // implementation must retain in order to process the acknowledgements of past
29 // frames.
30 // This value is carefully choosen such that it fits in the 8-bits range for
31 // frame IDs. It is also less than half of the full 8-bits range such that we
32 // can handle wrap around and compare two frame IDs.
33 const int kMaxUnackedFrames = 120;
34 
35 const int64 kCastMessageUpdateIntervalMs = 33;
36 const int64 kNackRepeatIntervalMs = 30;
37 
38 enum CastInitializationStatus {
39   STATUS_AUDIO_UNINITIALIZED,
40   STATUS_VIDEO_UNINITIALIZED,
41   STATUS_AUDIO_INITIALIZED,
42   STATUS_VIDEO_INITIALIZED,
43   STATUS_INVALID_CAST_ENVIRONMENT,
44   STATUS_INVALID_CRYPTO_CONFIGURATION,
45   STATUS_UNSUPPORTED_AUDIO_CODEC,
46   STATUS_UNSUPPORTED_VIDEO_CODEC,
47   STATUS_INVALID_AUDIO_CONFIGURATION,
48   STATUS_INVALID_VIDEO_CONFIGURATION,
49   STATUS_HW_VIDEO_ENCODER_NOT_SUPPORTED,
50 };
51 
52 enum DefaultSettings {
53   kDefaultAudioEncoderBitrate = 0,  // This means "auto," and may mean VBR.
54   kDefaultAudioSamplingRate = 48000,
55   kDefaultMaxQp = 56,
56   kDefaultMinQp = 4,
57   kDefaultMaxFrameRate = 30,
58   kDefaultNumberOfVideoBuffers = 1,
59   kDefaultRtcpIntervalMs = 500,
60   kDefaultRtpHistoryMs = 1000,
61   kDefaultRtpMaxDelayMs = 100,
62 };
63 
64 enum PacketType {
65   kNewPacket,
66   kNewPacketCompletingFrame,
67   kDuplicatePacket,
68   kTooOldPacket,
69 };
70 
71 // kRtcpCastAllPacketsLost is used in PacketIDSet and
72 // on the wire to mean that ALL packets for a particular
73 // frame are lost.
74 const uint16 kRtcpCastAllPacketsLost = 0xffff;
75 
76 // kRtcpCastLastPacket is used in PacketIDSet to ask for
77 // the last packet of a frame to be retransmitted.
78 const uint16 kRtcpCastLastPacket = 0xfffe;
79 
80 const size_t kMinLengthOfRtcp = 8;
81 
82 // Basic RTP header + cast header.
83 const size_t kMinLengthOfRtp = 12 + 6;
84 
85 // Each uint16 represents one packet id within a cast frame.
86 // Can also contain kRtcpCastAllPacketsLost and kRtcpCastLastPacket.
87 typedef std::set<uint16> PacketIdSet;
88 // Each uint8 represents one cast frame.
89 typedef std::map<uint8, PacketIdSet> MissingFramesAndPacketsMap;
90 
91 // TODO(pwestin): Re-factor the functions bellow into a class with static
92 // methods.
93 
94 // January 1970, in NTP seconds.
95 // Network Time Protocol (NTP), which is in seconds relative to 0h UTC on
96 // 1 January 1900.
97 static const int64 kUnixEpochInNtpSeconds = INT64_C(2208988800);
98 
99 // Magic fractional unit. Used to convert time (in microseconds) to/from
100 // fractional NTP seconds.
101 static const double kMagicFractionalUnit = 4.294967296E3;
102 
103 // The maximum number of Cast receiver events to keep in history for the
104 // purpose of sending the events through RTCP.
105 // The number chosen should be more than the number of events that can be
106 // stored in a RTCP packet.
107 static const size_t kReceiverRtcpEventHistorySize = 512;
108 
IsNewerFrameId(uint32 frame_id,uint32 prev_frame_id)109 inline bool IsNewerFrameId(uint32 frame_id, uint32 prev_frame_id) {
110   return (frame_id != prev_frame_id) &&
111          static_cast<uint32>(frame_id - prev_frame_id) < 0x80000000;
112 }
113 
IsNewerRtpTimestamp(uint32 timestamp,uint32 prev_timestamp)114 inline bool IsNewerRtpTimestamp(uint32 timestamp, uint32 prev_timestamp) {
115   return (timestamp != prev_timestamp) &&
116          static_cast<uint32>(timestamp - prev_timestamp) < 0x80000000;
117 }
118 
IsOlderFrameId(uint32 frame_id,uint32 prev_frame_id)119 inline bool IsOlderFrameId(uint32 frame_id, uint32 prev_frame_id) {
120   return (frame_id == prev_frame_id) || IsNewerFrameId(prev_frame_id, frame_id);
121 }
122 
IsNewerPacketId(uint16 packet_id,uint16 prev_packet_id)123 inline bool IsNewerPacketId(uint16 packet_id, uint16 prev_packet_id) {
124   return (packet_id != prev_packet_id) &&
125          static_cast<uint16>(packet_id - prev_packet_id) < 0x8000;
126 }
127 
IsNewerSequenceNumber(uint16 sequence_number,uint16 prev_sequence_number)128 inline bool IsNewerSequenceNumber(uint16 sequence_number,
129                                   uint16 prev_sequence_number) {
130   // Same function as IsNewerPacketId just different data and name.
131   return IsNewerPacketId(sequence_number, prev_sequence_number);
132 }
133 
134 // Create a NTP diff from seconds and fractions of seconds; delay_fraction is
135 // fractions of a second where 0x80000000 is half a second.
ConvertToNtpDiff(uint32 delay_seconds,uint32 delay_fraction)136 inline uint32 ConvertToNtpDiff(uint32 delay_seconds, uint32 delay_fraction) {
137   return ((delay_seconds & 0x0000FFFF) << 16) +
138          ((delay_fraction & 0xFFFF0000) >> 16);
139 }
140 
ConvertFromNtpDiff(uint32 ntp_delay)141 inline base::TimeDelta ConvertFromNtpDiff(uint32 ntp_delay) {
142   uint32 delay_ms = (ntp_delay & 0x0000ffff) * 1000;
143   delay_ms >>= 16;
144   delay_ms += ((ntp_delay & 0xffff0000) >> 16) * 1000;
145   return base::TimeDelta::FromMilliseconds(delay_ms);
146 }
147 
ConvertTimeToFractions(int64 ntp_time_us,uint32 * seconds,uint32 * fractions)148 inline void ConvertTimeToFractions(int64 ntp_time_us,
149                                    uint32* seconds,
150                                    uint32* fractions) {
151   DCHECK_GE(ntp_time_us, 0) << "Time must NOT be negative";
152   const int64 seconds_component =
153       ntp_time_us / base::Time::kMicrosecondsPerSecond;
154   // NTP time will overflow in the year 2036.  Also, make sure unit tests don't
155   // regress and use an origin past the year 2036.  If this overflows here, the
156   // inverse calculation fails to compute the correct TimeTicks value, throwing
157   // off the entire system.
158   DCHECK_LT(seconds_component, INT64_C(4263431296))
159       << "One year left to fix the NTP year 2036 wrap-around issue!";
160   *seconds = static_cast<uint32>(seconds_component);
161   *fractions = static_cast<uint32>(
162       (ntp_time_us % base::Time::kMicrosecondsPerSecond) *
163           kMagicFractionalUnit);
164 }
165 
ConvertTimeTicksToNtp(const base::TimeTicks & time,uint32 * ntp_seconds,uint32 * ntp_fractions)166 inline void ConvertTimeTicksToNtp(const base::TimeTicks& time,
167                                   uint32* ntp_seconds,
168                                   uint32* ntp_fractions) {
169   base::TimeDelta elapsed_since_unix_epoch =
170       time - base::TimeTicks::UnixEpoch();
171 
172   int64 ntp_time_us =
173       elapsed_since_unix_epoch.InMicroseconds() +
174       (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond);
175 
176   ConvertTimeToFractions(ntp_time_us, ntp_seconds, ntp_fractions);
177 }
178 
ConvertNtpToTimeTicks(uint32 ntp_seconds,uint32 ntp_fractions)179 inline base::TimeTicks ConvertNtpToTimeTicks(uint32 ntp_seconds,
180                                              uint32 ntp_fractions) {
181   int64 ntp_time_us =
182       static_cast<int64>(ntp_seconds) * base::Time::kMicrosecondsPerSecond +
183       static_cast<int64>(ntp_fractions) / kMagicFractionalUnit;
184 
185   base::TimeDelta elapsed_since_unix_epoch = base::TimeDelta::FromMicroseconds(
186       ntp_time_us -
187       (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond));
188   return base::TimeTicks::UnixEpoch() + elapsed_since_unix_epoch;
189 }
190 
RtpDeltaToTimeDelta(int64 rtp_delta,int rtp_timebase)191 inline base::TimeDelta RtpDeltaToTimeDelta(int64 rtp_delta, int rtp_timebase) {
192   DCHECK_GT(rtp_timebase, 0);
193   return rtp_delta * base::TimeDelta::FromSeconds(1) / rtp_timebase;
194 }
195 
TimeDeltaToRtpDelta(base::TimeDelta delta,int rtp_timebase)196 inline int64 TimeDeltaToRtpDelta(base::TimeDelta delta, int rtp_timebase) {
197   DCHECK_GT(rtp_timebase, 0);
198   return delta * rtp_timebase / base::TimeDelta::FromSeconds(1);
199 }
200 
201 }  // namespace cast
202 }  // namespace media
203 
204 #endif  // MEDIA_CAST_CAST_DEFINES_H_
205