• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * ARM NEON vector operations.
3  *
4  * Copyright (c) 2007, 2008 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GNU GPL v2.
8  */
9 #include <stdlib.h>
10 #include <stdio.h>
11 
12 #include "cpu.h"
13 #include "exec/exec-all.h"
14 #include "helper.h"
15 
16 #define SIGNBIT (uint32_t)0x80000000
17 #define SIGNBIT64 ((uint64_t)1 << 63)
18 
19 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
20 
21 #define NEON_TYPE1(name, type) \
22 typedef struct \
23 { \
24     type v1; \
25 } neon_##name;
26 #ifdef HOST_WORDS_BIGENDIAN
27 #define NEON_TYPE2(name, type) \
28 typedef struct \
29 { \
30     type v2; \
31     type v1; \
32 } neon_##name;
33 #define NEON_TYPE4(name, type) \
34 typedef struct \
35 { \
36     type v4; \
37     type v3; \
38     type v2; \
39     type v1; \
40 } neon_##name;
41 #else
42 #define NEON_TYPE2(name, type) \
43 typedef struct \
44 { \
45     type v1; \
46     type v2; \
47 } neon_##name;
48 #define NEON_TYPE4(name, type) \
49 typedef struct \
50 { \
51     type v1; \
52     type v2; \
53     type v3; \
54     type v4; \
55 } neon_##name;
56 #endif
57 
NEON_TYPE4(s8,int8_t)58 NEON_TYPE4(s8, int8_t)
59 NEON_TYPE4(u8, uint8_t)
60 NEON_TYPE2(s16, int16_t)
61 NEON_TYPE2(u16, uint16_t)
62 NEON_TYPE1(s32, int32_t)
63 NEON_TYPE1(u32, uint32_t)
64 #undef NEON_TYPE4
65 #undef NEON_TYPE2
66 #undef NEON_TYPE1
67 
68 /* Copy from a uint32_t to a vector structure type.  */
69 #define NEON_UNPACK(vtype, dest, val) do { \
70     union { \
71         vtype v; \
72         uint32_t i; \
73     } conv_u; \
74     conv_u.i = (val); \
75     dest = conv_u.v; \
76     } while(0)
77 
78 /* Copy from a vector structure type to a uint32_t.  */
79 #define NEON_PACK(vtype, dest, val) do { \
80     union { \
81         vtype v; \
82         uint32_t i; \
83     } conv_u; \
84     conv_u.v = (val); \
85     dest = conv_u.i; \
86     } while(0)
87 
88 #define NEON_DO1 \
89     NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
90 #define NEON_DO2 \
91     NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
92     NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
93 #define NEON_DO4 \
94     NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
95     NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
96     NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
97     NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
98 
99 #define NEON_VOP_BODY(vtype, n) \
100 { \
101     uint32_t res; \
102     vtype vsrc1; \
103     vtype vsrc2; \
104     vtype vdest; \
105     NEON_UNPACK(vtype, vsrc1, arg1); \
106     NEON_UNPACK(vtype, vsrc2, arg2); \
107     NEON_DO##n; \
108     NEON_PACK(vtype, res, vdest); \
109     return res; \
110 }
111 
112 #define NEON_VOP(name, vtype, n) \
113 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
114 NEON_VOP_BODY(vtype, n)
115 
116 #define NEON_VOP_ENV(name, vtype, n) \
117 uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
118 NEON_VOP_BODY(vtype, n)
119 
120 /* Pairwise operations.  */
121 /* For 32-bit elements each segment only contains a single element, so
122    the elementwise and pairwise operations are the same.  */
123 #define NEON_PDO2 \
124     NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
125     NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
126 #define NEON_PDO4 \
127     NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
128     NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
129     NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
130     NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
131 
132 #define NEON_POP(name, vtype, n) \
133 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
134 { \
135     uint32_t res; \
136     vtype vsrc1; \
137     vtype vsrc2; \
138     vtype vdest; \
139     NEON_UNPACK(vtype, vsrc1, arg1); \
140     NEON_UNPACK(vtype, vsrc2, arg2); \
141     NEON_PDO##n; \
142     NEON_PACK(vtype, res, vdest); \
143     return res; \
144 }
145 
146 /* Unary operators.  */
147 #define NEON_VOP1(name, vtype, n) \
148 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
149 { \
150     vtype vsrc1; \
151     vtype vdest; \
152     NEON_UNPACK(vtype, vsrc1, arg); \
153     NEON_DO##n; \
154     NEON_PACK(vtype, arg, vdest); \
155     return arg; \
156 }
157 
158 
159 #define NEON_USAT(dest, src1, src2, type) do { \
160     uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
161     if (tmp != (type)tmp) { \
162         SET_QC(); \
163         dest = ~0; \
164     } else { \
165         dest = tmp; \
166     }} while(0)
167 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
168 NEON_VOP_ENV(qadd_u8, neon_u8, 4)
169 #undef NEON_FN
170 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
171 NEON_VOP_ENV(qadd_u16, neon_u16, 2)
172 #undef NEON_FN
173 #undef NEON_USAT
174 
175 uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
176 {
177     uint32_t res = a + b;
178     if (res < a) {
179         SET_QC();
180         res = ~0;
181     }
182     return res;
183 }
184 
HELPER(neon_qadd_u64)185 uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
186 {
187     uint64_t res;
188 
189     res = src1 + src2;
190     if (res < src1) {
191         SET_QC();
192         res = ~(uint64_t)0;
193     }
194     return res;
195 }
196 
197 #define NEON_SSAT(dest, src1, src2, type) do { \
198     int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
199     if (tmp != (type)tmp) { \
200         SET_QC(); \
201         if (src2 > 0) { \
202             tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
203         } else { \
204             tmp = 1 << (sizeof(type) * 8 - 1); \
205         } \
206     } \
207     dest = tmp; \
208     } while(0)
209 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
210 NEON_VOP_ENV(qadd_s8, neon_s8, 4)
211 #undef NEON_FN
212 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
213 NEON_VOP_ENV(qadd_s16, neon_s16, 2)
214 #undef NEON_FN
215 #undef NEON_SSAT
216 
HELPER(neon_qadd_s32)217 uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
218 {
219     uint32_t res = a + b;
220     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
221         SET_QC();
222         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
223     }
224     return res;
225 }
226 
HELPER(neon_qadd_s64)227 uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
228 {
229     uint64_t res;
230 
231     res = src1 + src2;
232     if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
233         SET_QC();
234         res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
235     }
236     return res;
237 }
238 
239 #define NEON_USAT(dest, src1, src2, type) do { \
240     uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
241     if (tmp != (type)tmp) { \
242         SET_QC(); \
243         dest = 0; \
244     } else { \
245         dest = tmp; \
246     }} while(0)
247 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
248 NEON_VOP_ENV(qsub_u8, neon_u8, 4)
249 #undef NEON_FN
250 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
251 NEON_VOP_ENV(qsub_u16, neon_u16, 2)
252 #undef NEON_FN
253 #undef NEON_USAT
254 
HELPER(neon_qsub_u32)255 uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
256 {
257     uint32_t res = a - b;
258     if (res > a) {
259         SET_QC();
260         res = 0;
261     }
262     return res;
263 }
264 
HELPER(neon_qsub_u64)265 uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
266 {
267     uint64_t res;
268 
269     if (src1 < src2) {
270         SET_QC();
271         res = 0;
272     } else {
273         res = src1 - src2;
274     }
275     return res;
276 }
277 
278 #define NEON_SSAT(dest, src1, src2, type) do { \
279     int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
280     if (tmp != (type)tmp) { \
281         SET_QC(); \
282         if (src2 < 0) { \
283             tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
284         } else { \
285             tmp = 1 << (sizeof(type) * 8 - 1); \
286         } \
287     } \
288     dest = tmp; \
289     } while(0)
290 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
291 NEON_VOP_ENV(qsub_s8, neon_s8, 4)
292 #undef NEON_FN
293 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
294 NEON_VOP_ENV(qsub_s16, neon_s16, 2)
295 #undef NEON_FN
296 #undef NEON_SSAT
297 
HELPER(neon_qsub_s32)298 uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
299 {
300     uint32_t res = a - b;
301     if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
302         SET_QC();
303         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
304     }
305     return res;
306 }
307 
HELPER(neon_qsub_s64)308 uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
309 {
310     uint64_t res;
311 
312     res = src1 - src2;
313     if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
314         SET_QC();
315         res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
316     }
317     return res;
318 }
319 
320 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
321 NEON_VOP(hadd_s8, neon_s8, 4)
322 NEON_VOP(hadd_u8, neon_u8, 4)
323 NEON_VOP(hadd_s16, neon_s16, 2)
324 NEON_VOP(hadd_u16, neon_u16, 2)
325 #undef NEON_FN
326 
HELPER(neon_hadd_s32)327 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
328 {
329     int32_t dest;
330 
331     dest = (src1 >> 1) + (src2 >> 1);
332     if (src1 & src2 & 1)
333         dest++;
334     return dest;
335 }
336 
HELPER(neon_hadd_u32)337 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
338 {
339     uint32_t dest;
340 
341     dest = (src1 >> 1) + (src2 >> 1);
342     if (src1 & src2 & 1)
343         dest++;
344     return dest;
345 }
346 
347 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
348 NEON_VOP(rhadd_s8, neon_s8, 4)
349 NEON_VOP(rhadd_u8, neon_u8, 4)
350 NEON_VOP(rhadd_s16, neon_s16, 2)
351 NEON_VOP(rhadd_u16, neon_u16, 2)
352 #undef NEON_FN
353 
HELPER(neon_rhadd_s32)354 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
355 {
356     int32_t dest;
357 
358     dest = (src1 >> 1) + (src2 >> 1);
359     if ((src1 | src2) & 1)
360         dest++;
361     return dest;
362 }
363 
HELPER(neon_rhadd_u32)364 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
365 {
366     uint32_t dest;
367 
368     dest = (src1 >> 1) + (src2 >> 1);
369     if ((src1 | src2) & 1)
370         dest++;
371     return dest;
372 }
373 
374 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
375 NEON_VOP(hsub_s8, neon_s8, 4)
376 NEON_VOP(hsub_u8, neon_u8, 4)
377 NEON_VOP(hsub_s16, neon_s16, 2)
378 NEON_VOP(hsub_u16, neon_u16, 2)
379 #undef NEON_FN
380 
HELPER(neon_hsub_s32)381 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
382 {
383     int32_t dest;
384 
385     dest = (src1 >> 1) - (src2 >> 1);
386     if ((~src1) & src2 & 1)
387         dest--;
388     return dest;
389 }
390 
HELPER(neon_hsub_u32)391 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
392 {
393     uint32_t dest;
394 
395     dest = (src1 >> 1) - (src2 >> 1);
396     if ((~src1) & src2 & 1)
397         dest--;
398     return dest;
399 }
400 
401 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
402 NEON_VOP(cgt_s8, neon_s8, 4)
403 NEON_VOP(cgt_u8, neon_u8, 4)
404 NEON_VOP(cgt_s16, neon_s16, 2)
405 NEON_VOP(cgt_u16, neon_u16, 2)
406 NEON_VOP(cgt_s32, neon_s32, 1)
407 NEON_VOP(cgt_u32, neon_u32, 1)
408 #undef NEON_FN
409 
410 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
411 NEON_VOP(cge_s8, neon_s8, 4)
412 NEON_VOP(cge_u8, neon_u8, 4)
413 NEON_VOP(cge_s16, neon_s16, 2)
414 NEON_VOP(cge_u16, neon_u16, 2)
415 NEON_VOP(cge_s32, neon_s32, 1)
416 NEON_VOP(cge_u32, neon_u32, 1)
417 #undef NEON_FN
418 
419 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
420 NEON_VOP(min_s8, neon_s8, 4)
421 NEON_VOP(min_u8, neon_u8, 4)
422 NEON_VOP(min_s16, neon_s16, 2)
423 NEON_VOP(min_u16, neon_u16, 2)
424 NEON_VOP(min_s32, neon_s32, 1)
425 NEON_VOP(min_u32, neon_u32, 1)
426 NEON_POP(pmin_s8, neon_s8, 4)
427 NEON_POP(pmin_u8, neon_u8, 4)
428 NEON_POP(pmin_s16, neon_s16, 2)
429 NEON_POP(pmin_u16, neon_u16, 2)
430 #undef NEON_FN
431 
432 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
433 NEON_VOP(max_s8, neon_s8, 4)
434 NEON_VOP(max_u8, neon_u8, 4)
435 NEON_VOP(max_s16, neon_s16, 2)
436 NEON_VOP(max_u16, neon_u16, 2)
437 NEON_VOP(max_s32, neon_s32, 1)
438 NEON_VOP(max_u32, neon_u32, 1)
439 NEON_POP(pmax_s8, neon_s8, 4)
440 NEON_POP(pmax_u8, neon_u8, 4)
441 NEON_POP(pmax_s16, neon_s16, 2)
442 NEON_POP(pmax_u16, neon_u16, 2)
443 #undef NEON_FN
444 
445 #define NEON_FN(dest, src1, src2) \
446     dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
447 NEON_VOP(abd_s8, neon_s8, 4)
448 NEON_VOP(abd_u8, neon_u8, 4)
449 NEON_VOP(abd_s16, neon_s16, 2)
450 NEON_VOP(abd_u16, neon_u16, 2)
451 NEON_VOP(abd_s32, neon_s32, 1)
452 NEON_VOP(abd_u32, neon_u32, 1)
453 #undef NEON_FN
454 
455 #define NEON_FN(dest, src1, src2) do { \
456     int8_t tmp; \
457     tmp = (int8_t)src2; \
458     if (tmp >= (ssize_t)sizeof(src1) * 8 || \
459         tmp <= -(ssize_t)sizeof(src1) * 8) { \
460         dest = 0; \
461     } else if (tmp < 0) { \
462         dest = src1 >> -tmp; \
463     } else { \
464         dest = src1 << tmp; \
465     }} while (0)
466 NEON_VOP(shl_u8, neon_u8, 4)
467 NEON_VOP(shl_u16, neon_u16, 2)
468 NEON_VOP(shl_u32, neon_u32, 1)
469 #undef NEON_FN
470 
HELPER(neon_shl_u64)471 uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
472 {
473     int8_t shift = (int8_t)shiftop;
474     if (shift >= 64 || shift <= -64) {
475         val = 0;
476     } else if (shift < 0) {
477         val >>= -shift;
478     } else {
479         val <<= shift;
480     }
481     return val;
482 }
483 
484 #define NEON_FN(dest, src1, src2) do { \
485     int8_t tmp; \
486     tmp = (int8_t)src2; \
487     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
488         dest = 0; \
489     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
490         dest = src1 >> (sizeof(src1) * 8 - 1); \
491     } else if (tmp < 0) { \
492         dest = src1 >> -tmp; \
493     } else { \
494         dest = src1 << tmp; \
495     }} while (0)
496 NEON_VOP(shl_s8, neon_s8, 4)
497 NEON_VOP(shl_s16, neon_s16, 2)
498 NEON_VOP(shl_s32, neon_s32, 1)
499 #undef NEON_FN
500 
HELPER(neon_shl_s64)501 uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
502 {
503     int8_t shift = (int8_t)shiftop;
504     int64_t val = valop;
505     if (shift >= 64) {
506         val = 0;
507     } else if (shift <= -64) {
508         val >>= 63;
509     } else if (shift < 0) {
510         val >>= -shift;
511     } else {
512         val <<= shift;
513     }
514     return val;
515 }
516 
517 #define NEON_FN(dest, src1, src2) do { \
518     int8_t tmp; \
519     tmp = (int8_t)src2; \
520     if ((tmp >= (ssize_t)sizeof(src1) * 8) \
521         || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
522         dest = 0; \
523     } else if (tmp < 0) { \
524         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
525     } else { \
526         dest = src1 << tmp; \
527     }} while (0)
528 NEON_VOP(rshl_s8, neon_s8, 4)
529 NEON_VOP(rshl_s16, neon_s16, 2)
530 #undef NEON_FN
531 
532 /* The addition of the rounding constant may overflow, so we use an
533  * intermediate 64 bit accumulator.  */
HELPER(neon_rshl_s32)534 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
535 {
536     int32_t dest;
537     int32_t val = (int32_t)valop;
538     int8_t shift = (int8_t)shiftop;
539     if ((shift >= 32) || (shift <= -32)) {
540         dest = 0;
541     } else if (shift < 0) {
542         int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
543         dest = big_dest >> -shift;
544     } else {
545         dest = val << shift;
546     }
547     return dest;
548 }
549 
550 /* Handling addition overflow with 64 bit input values is more
551  * tricky than with 32 bit values.  */
HELPER(neon_rshl_s64)552 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
553 {
554     int8_t shift = (int8_t)shiftop;
555     int64_t val = valop;
556     if ((shift >= 64) || (shift <= -64)) {
557         val = 0;
558     } else if (shift < 0) {
559         val >>= (-shift - 1);
560         if (val == INT64_MAX) {
561             /* In this case, it means that the rounding constant is 1,
562              * and the addition would overflow. Return the actual
563              * result directly.  */
564             val = 0x4000000000000000LL;
565         } else {
566             val++;
567             val >>= 1;
568         }
569     } else {
570         val <<= shift;
571     }
572     return val;
573 }
574 
575 #define NEON_FN(dest, src1, src2) do { \
576     int8_t tmp; \
577     tmp = (int8_t)src2; \
578     if (tmp >= (ssize_t)sizeof(src1) * 8 || \
579         tmp < -(ssize_t)sizeof(src1) * 8) { \
580         dest = 0; \
581     } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
582         dest = src1 >> (-tmp - 1); \
583     } else if (tmp < 0) { \
584         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
585     } else { \
586         dest = src1 << tmp; \
587     }} while (0)
588 NEON_VOP(rshl_u8, neon_u8, 4)
589 NEON_VOP(rshl_u16, neon_u16, 2)
590 #undef NEON_FN
591 
592 /* The addition of the rounding constant may overflow, so we use an
593  * intermediate 64 bit accumulator.  */
HELPER(neon_rshl_u32)594 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
595 {
596     uint32_t dest;
597     int8_t shift = (int8_t)shiftop;
598     if (shift >= 32 || shift < -32) {
599         dest = 0;
600     } else if (shift == -32) {
601         dest = val >> 31;
602     } else if (shift < 0) {
603         uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
604         dest = big_dest >> -shift;
605     } else {
606         dest = val << shift;
607     }
608     return dest;
609 }
610 
611 /* Handling addition overflow with 64 bit input values is more
612  * tricky than with 32 bit values.  */
HELPER(neon_rshl_u64)613 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
614 {
615     int8_t shift = (uint8_t)shiftop;
616     if (shift >= 64 || shift < -64) {
617         val = 0;
618     } else if (shift == -64) {
619         /* Rounding a 1-bit result just preserves that bit.  */
620         val >>= 63;
621     } else if (shift < 0) {
622         val >>= (-shift - 1);
623         if (val == UINT64_MAX) {
624             /* In this case, it means that the rounding constant is 1,
625              * and the addition would overflow. Return the actual
626              * result directly.  */
627             val = 0x8000000000000000ULL;
628         } else {
629             val++;
630             val >>= 1;
631         }
632     } else {
633         val <<= shift;
634     }
635     return val;
636 }
637 
638 #define NEON_FN(dest, src1, src2) do { \
639     int8_t tmp; \
640     tmp = (int8_t)src2; \
641     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
642         if (src1) { \
643             SET_QC(); \
644             dest = ~0; \
645         } else { \
646             dest = 0; \
647         } \
648     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
649         dest = 0; \
650     } else if (tmp < 0) { \
651         dest = src1 >> -tmp; \
652     } else { \
653         dest = src1 << tmp; \
654         if ((dest >> tmp) != src1) { \
655             SET_QC(); \
656             dest = ~0; \
657         } \
658     }} while (0)
659 NEON_VOP_ENV(qshl_u8, neon_u8, 4)
660 NEON_VOP_ENV(qshl_u16, neon_u16, 2)
661 NEON_VOP_ENV(qshl_u32, neon_u32, 1)
662 #undef NEON_FN
663 
HELPER(neon_qshl_u64)664 uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
665 {
666     int8_t shift = (int8_t)shiftop;
667     if (shift >= 64) {
668         if (val) {
669             val = ~(uint64_t)0;
670             SET_QC();
671         }
672     } else if (shift <= -64) {
673         val = 0;
674     } else if (shift < 0) {
675         val >>= -shift;
676     } else {
677         uint64_t tmp = val;
678         val <<= shift;
679         if ((val >> shift) != tmp) {
680             SET_QC();
681             val = ~(uint64_t)0;
682         }
683     }
684     return val;
685 }
686 
687 #define NEON_FN(dest, src1, src2) do { \
688     int8_t tmp; \
689     tmp = (int8_t)src2; \
690     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
691         if (src1) { \
692             SET_QC(); \
693             dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
694             if (src1 > 0) { \
695                 dest--; \
696             } \
697         } else { \
698             dest = src1; \
699         } \
700     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
701         dest = src1 >> 31; \
702     } else if (tmp < 0) { \
703         dest = src1 >> -tmp; \
704     } else { \
705         dest = src1 << tmp; \
706         if ((dest >> tmp) != src1) { \
707             SET_QC(); \
708             dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
709             if (src1 > 0) { \
710                 dest--; \
711             } \
712         } \
713     }} while (0)
714 NEON_VOP_ENV(qshl_s8, neon_s8, 4)
715 NEON_VOP_ENV(qshl_s16, neon_s16, 2)
716 NEON_VOP_ENV(qshl_s32, neon_s32, 1)
717 #undef NEON_FN
718 
HELPER(neon_qshl_s64)719 uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
720 {
721     int8_t shift = (uint8_t)shiftop;
722     int64_t val = valop;
723     if (shift >= 64) {
724         if (val) {
725             SET_QC();
726             val = (val >> 63) ^ ~SIGNBIT64;
727         }
728     } else if (shift <= -64) {
729         val >>= 63;
730     } else if (shift < 0) {
731         val >>= -shift;
732     } else {
733         int64_t tmp = val;
734         val <<= shift;
735         if ((val >> shift) != tmp) {
736             SET_QC();
737             val = (tmp >> 63) ^ ~SIGNBIT64;
738         }
739     }
740     return val;
741 }
742 
743 #define NEON_FN(dest, src1, src2) do { \
744     if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
745         SET_QC(); \
746         dest = 0; \
747     } else { \
748         int8_t tmp; \
749         tmp = (int8_t)src2; \
750         if (tmp >= (ssize_t)sizeof(src1) * 8) { \
751             if (src1) { \
752                 SET_QC(); \
753                 dest = ~0; \
754             } else { \
755                 dest = 0; \
756             } \
757         } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
758             dest = 0; \
759         } else if (tmp < 0) { \
760             dest = src1 >> -tmp; \
761         } else { \
762             dest = src1 << tmp; \
763             if ((dest >> tmp) != src1) { \
764                 SET_QC(); \
765                 dest = ~0; \
766             } \
767         } \
768     }} while (0)
769 NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
770 NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
771 #undef NEON_FN
772 
HELPER(neon_qshlu_s32)773 uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
774 {
775     if ((int32_t)valop < 0) {
776         SET_QC();
777         return 0;
778     }
779     return helper_neon_qshl_u32(env, valop, shiftop);
780 }
781 
HELPER(neon_qshlu_s64)782 uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
783 {
784     if ((int64_t)valop < 0) {
785         SET_QC();
786         return 0;
787     }
788     return helper_neon_qshl_u64(env, valop, shiftop);
789 }
790 
791 #define NEON_FN(dest, src1, src2) do { \
792     int8_t tmp; \
793     tmp = (int8_t)src2; \
794     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
795         if (src1) { \
796             SET_QC(); \
797             dest = ~0; \
798         } else { \
799             dest = 0; \
800         } \
801     } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
802         dest = 0; \
803     } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
804         dest = src1 >> (sizeof(src1) * 8 - 1); \
805     } else if (tmp < 0) { \
806         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
807     } else { \
808         dest = src1 << tmp; \
809         if ((dest >> tmp) != src1) { \
810             SET_QC(); \
811             dest = ~0; \
812         } \
813     }} while (0)
814 NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
815 NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
816 #undef NEON_FN
817 
818 /* The addition of the rounding constant may overflow, so we use an
819  * intermediate 64 bit accumulator.  */
HELPER(neon_qrshl_u32)820 uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
821 {
822     uint32_t dest;
823     int8_t shift = (int8_t)shiftop;
824     if (shift >= 32) {
825         if (val) {
826             SET_QC();
827             dest = ~0;
828         } else {
829             dest = 0;
830         }
831     } else if (shift < -32) {
832         dest = 0;
833     } else if (shift == -32) {
834         dest = val >> 31;
835     } else if (shift < 0) {
836         uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
837         dest = big_dest >> -shift;
838     } else {
839         dest = val << shift;
840         if ((dest >> shift) != val) {
841             SET_QC();
842             dest = ~0;
843         }
844     }
845     return dest;
846 }
847 
848 /* Handling addition overflow with 64 bit input values is more
849  * tricky than with 32 bit values.  */
HELPER(neon_qrshl_u64)850 uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
851 {
852     int8_t shift = (int8_t)shiftop;
853     if (shift >= 64) {
854         if (val) {
855             SET_QC();
856             val = ~0;
857         }
858     } else if (shift < -64) {
859         val = 0;
860     } else if (shift == -64) {
861         val >>= 63;
862     } else if (shift < 0) {
863         val >>= (-shift - 1);
864         if (val == UINT64_MAX) {
865             /* In this case, it means that the rounding constant is 1,
866              * and the addition would overflow. Return the actual
867              * result directly.  */
868             val = 0x8000000000000000ULL;
869         } else {
870             val++;
871             val >>= 1;
872         }
873     } else { \
874         uint64_t tmp = val;
875         val <<= shift;
876         if ((val >> shift) != tmp) {
877             SET_QC();
878             val = ~0;
879         }
880     }
881     return val;
882 }
883 
884 #define NEON_FN(dest, src1, src2) do { \
885     int8_t tmp; \
886     tmp = (int8_t)src2; \
887     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
888         if (src1) { \
889             SET_QC(); \
890             dest = (1 << (sizeof(src1) * 8 - 1)); \
891             if (src1 > 0) { \
892                 dest--; \
893             } \
894         } else { \
895             dest = 0; \
896         } \
897     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
898         dest = 0; \
899     } else if (tmp < 0) { \
900         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
901     } else { \
902         dest = src1 << tmp; \
903         if ((dest >> tmp) != src1) { \
904             SET_QC(); \
905             dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
906             if (src1 > 0) { \
907                 dest--; \
908             } \
909         } \
910     }} while (0)
911 NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
912 NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
913 #undef NEON_FN
914 
915 /* The addition of the rounding constant may overflow, so we use an
916  * intermediate 64 bit accumulator.  */
HELPER(neon_qrshl_s32)917 uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
918 {
919     int32_t dest;
920     int32_t val = (int32_t)valop;
921     int8_t shift = (int8_t)shiftop;
922     if (shift >= 32) {
923         if (val) {
924             SET_QC();
925             dest = (val >> 31) ^ ~SIGNBIT;
926         } else {
927             dest = 0;
928         }
929     } else if (shift <= -32) {
930         dest = 0;
931     } else if (shift < 0) {
932         int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
933         dest = big_dest >> -shift;
934     } else {
935         dest = val << shift;
936         if ((dest >> shift) != val) {
937             SET_QC();
938             dest = (val >> 31) ^ ~SIGNBIT;
939         }
940     }
941     return dest;
942 }
943 
944 /* Handling addition overflow with 64 bit input values is more
945  * tricky than with 32 bit values.  */
HELPER(neon_qrshl_s64)946 uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
947 {
948     int8_t shift = (uint8_t)shiftop;
949     int64_t val = valop;
950 
951     if (shift >= 64) {
952         if (val) {
953             SET_QC();
954             val = (val >> 63) ^ ~SIGNBIT64;
955         }
956     } else if (shift <= -64) {
957         val = 0;
958     } else if (shift < 0) {
959         val >>= (-shift - 1);
960         if (val == INT64_MAX) {
961             /* In this case, it means that the rounding constant is 1,
962              * and the addition would overflow. Return the actual
963              * result directly.  */
964             val = 0x4000000000000000ULL;
965         } else {
966             val++;
967             val >>= 1;
968         }
969     } else {
970         int64_t tmp = val;
971         val <<= shift;
972         if ((val >> shift) != tmp) {
973             SET_QC();
974             val = (tmp >> 63) ^ ~SIGNBIT64;
975         }
976     }
977     return val;
978 }
979 
HELPER(neon_add_u8)980 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
981 {
982     uint32_t mask;
983     mask = (a ^ b) & 0x80808080u;
984     a &= ~0x80808080u;
985     b &= ~0x80808080u;
986     return (a + b) ^ mask;
987 }
988 
HELPER(neon_add_u16)989 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
990 {
991     uint32_t mask;
992     mask = (a ^ b) & 0x80008000u;
993     a &= ~0x80008000u;
994     b &= ~0x80008000u;
995     return (a + b) ^ mask;
996 }
997 
998 #define NEON_FN(dest, src1, src2) dest = src1 + src2
999 NEON_POP(padd_u8, neon_u8, 4)
1000 NEON_POP(padd_u16, neon_u16, 2)
1001 #undef NEON_FN
1002 
1003 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1004 NEON_VOP(sub_u8, neon_u8, 4)
1005 NEON_VOP(sub_u16, neon_u16, 2)
1006 #undef NEON_FN
1007 
1008 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1009 NEON_VOP(mul_u8, neon_u8, 4)
1010 NEON_VOP(mul_u16, neon_u16, 2)
1011 #undef NEON_FN
1012 
1013 /* Polynomial multiplication is like integer multiplication except the
1014    partial products are XORed, not added.  */
HELPER(neon_mul_p8)1015 uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1016 {
1017     uint32_t mask;
1018     uint32_t result;
1019     result = 0;
1020     while (op1) {
1021         mask = 0;
1022         if (op1 & 1)
1023             mask |= 0xff;
1024         if (op1 & (1 << 8))
1025             mask |= (0xff << 8);
1026         if (op1 & (1 << 16))
1027             mask |= (0xff << 16);
1028         if (op1 & (1 << 24))
1029             mask |= (0xff << 24);
1030         result ^= op2 & mask;
1031         op1 = (op1 >> 1) & 0x7f7f7f7f;
1032         op2 = (op2 << 1) & 0xfefefefe;
1033     }
1034     return result;
1035 }
1036 
HELPER(neon_mull_p8)1037 uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1038 {
1039     uint64_t result = 0;
1040     uint64_t mask;
1041     uint64_t op2ex = op2;
1042     op2ex = (op2ex & 0xff) |
1043         ((op2ex & 0xff00) << 8) |
1044         ((op2ex & 0xff0000) << 16) |
1045         ((op2ex & 0xff000000) << 24);
1046     while (op1) {
1047         mask = 0;
1048         if (op1 & 1) {
1049             mask |= 0xffff;
1050         }
1051         if (op1 & (1 << 8)) {
1052             mask |= (0xffffU << 16);
1053         }
1054         if (op1 & (1 << 16)) {
1055             mask |= (0xffffULL << 32);
1056         }
1057         if (op1 & (1 << 24)) {
1058             mask |= (0xffffULL << 48);
1059         }
1060         result ^= op2ex & mask;
1061         op1 = (op1 >> 1) & 0x7f7f7f7f;
1062         op2ex <<= 1;
1063     }
1064     return result;
1065 }
1066 
1067 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1068 NEON_VOP(tst_u8, neon_u8, 4)
1069 NEON_VOP(tst_u16, neon_u16, 2)
1070 NEON_VOP(tst_u32, neon_u32, 1)
1071 #undef NEON_FN
1072 
1073 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1074 NEON_VOP(ceq_u8, neon_u8, 4)
1075 NEON_VOP(ceq_u16, neon_u16, 2)
1076 NEON_VOP(ceq_u32, neon_u32, 1)
1077 #undef NEON_FN
1078 
1079 #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1080 NEON_VOP1(abs_s8, neon_s8, 4)
1081 NEON_VOP1(abs_s16, neon_s16, 2)
1082 #undef NEON_FN
1083 
1084 /* Count Leading Sign/Zero Bits.  */
do_clz8(uint8_t x)1085 static inline int do_clz8(uint8_t x)
1086 {
1087     int n;
1088     for (n = 8; x; n--)
1089         x >>= 1;
1090     return n;
1091 }
1092 
do_clz16(uint16_t x)1093 static inline int do_clz16(uint16_t x)
1094 {
1095     int n;
1096     for (n = 16; x; n--)
1097         x >>= 1;
1098     return n;
1099 }
1100 
1101 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1102 NEON_VOP1(clz_u8, neon_u8, 4)
1103 #undef NEON_FN
1104 
1105 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1106 NEON_VOP1(clz_u16, neon_u16, 2)
1107 #undef NEON_FN
1108 
1109 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1110 NEON_VOP1(cls_s8, neon_s8, 4)
1111 #undef NEON_FN
1112 
1113 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1114 NEON_VOP1(cls_s16, neon_s16, 2)
1115 #undef NEON_FN
1116 
HELPER(neon_cls_s32)1117 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1118 {
1119     int count;
1120     if ((int32_t)x < 0)
1121         x = ~x;
1122     for (count = 32; x; count--)
1123         x = x >> 1;
1124     return count - 1;
1125 }
1126 
1127 /* Bit count.  */
HELPER(neon_cnt_u8)1128 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1129 {
1130     x = (x & 0x55555555) + ((x >>  1) & 0x55555555);
1131     x = (x & 0x33333333) + ((x >>  2) & 0x33333333);
1132     x = (x & 0x0f0f0f0f) + ((x >>  4) & 0x0f0f0f0f);
1133     return x;
1134 }
1135 
1136 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1137     uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1138     if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1139         SET_QC(); \
1140         tmp = (tmp >> 31) ^ ~SIGNBIT; \
1141     } else { \
1142         tmp <<= 1; \
1143     } \
1144     if (round) { \
1145         int32_t old = tmp; \
1146         tmp += 1 << 15; \
1147         if ((int32_t)tmp < old) { \
1148             SET_QC(); \
1149             tmp = SIGNBIT - 1; \
1150         } \
1151     } \
1152     dest = tmp >> 16; \
1153     } while(0)
1154 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1155 NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1156 #undef NEON_FN
1157 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1158 NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1159 #undef NEON_FN
1160 #undef NEON_QDMULH16
1161 
1162 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1163     uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1164     if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1165         SET_QC(); \
1166         tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1167     } else { \
1168         tmp <<= 1; \
1169     } \
1170     if (round) { \
1171         int64_t old = tmp; \
1172         tmp += (int64_t)1 << 31; \
1173         if ((int64_t)tmp < old) { \
1174             SET_QC(); \
1175             tmp = SIGNBIT64 - 1; \
1176         } \
1177     } \
1178     dest = tmp >> 32; \
1179     } while(0)
1180 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1181 NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1182 #undef NEON_FN
1183 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1184 NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1185 #undef NEON_FN
1186 #undef NEON_QDMULH32
1187 
HELPER(neon_narrow_u8)1188 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1189 {
1190     return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1191            | ((x >> 24) & 0xff000000u);
1192 }
1193 
HELPER(neon_narrow_u16)1194 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1195 {
1196     return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1197 }
1198 
HELPER(neon_narrow_high_u8)1199 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1200 {
1201     return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1202             | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1203 }
1204 
HELPER(neon_narrow_high_u16)1205 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1206 {
1207     return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1208 }
1209 
HELPER(neon_narrow_round_high_u8)1210 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1211 {
1212     x &= 0xff80ff80ff80ff80ull;
1213     x += 0x0080008000800080ull;
1214     return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1215             | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1216 }
1217 
HELPER(neon_narrow_round_high_u16)1218 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1219 {
1220     x &= 0xffff8000ffff8000ull;
1221     x += 0x0000800000008000ull;
1222     return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1223 }
1224 
HELPER(neon_unarrow_sat8)1225 uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
1226 {
1227     uint16_t s;
1228     uint8_t d;
1229     uint32_t res = 0;
1230 #define SAT8(n) \
1231     s = x >> n; \
1232     if (s & 0x8000) { \
1233         SET_QC(); \
1234     } else { \
1235         if (s > 0xff) { \
1236             d = 0xff; \
1237             SET_QC(); \
1238         } else  { \
1239             d = s; \
1240         } \
1241         res |= (uint32_t)d << (n / 2); \
1242     }
1243 
1244     SAT8(0);
1245     SAT8(16);
1246     SAT8(32);
1247     SAT8(48);
1248 #undef SAT8
1249     return res;
1250 }
1251 
HELPER(neon_narrow_sat_u8)1252 uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
1253 {
1254     uint16_t s;
1255     uint8_t d;
1256     uint32_t res = 0;
1257 #define SAT8(n) \
1258     s = x >> n; \
1259     if (s > 0xff) { \
1260         d = 0xff; \
1261         SET_QC(); \
1262     } else  { \
1263         d = s; \
1264     } \
1265     res |= (uint32_t)d << (n / 2);
1266 
1267     SAT8(0);
1268     SAT8(16);
1269     SAT8(32);
1270     SAT8(48);
1271 #undef SAT8
1272     return res;
1273 }
1274 
HELPER(neon_narrow_sat_s8)1275 uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
1276 {
1277     int16_t s;
1278     uint8_t d;
1279     uint32_t res = 0;
1280 #define SAT8(n) \
1281     s = x >> n; \
1282     if (s != (int8_t)s) { \
1283         d = (s >> 15) ^ 0x7f; \
1284         SET_QC(); \
1285     } else  { \
1286         d = s; \
1287     } \
1288     res |= (uint32_t)d << (n / 2);
1289 
1290     SAT8(0);
1291     SAT8(16);
1292     SAT8(32);
1293     SAT8(48);
1294 #undef SAT8
1295     return res;
1296 }
1297 
HELPER(neon_unarrow_sat16)1298 uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
1299 {
1300     uint32_t high;
1301     uint32_t low;
1302     low = x;
1303     if (low & 0x80000000) {
1304         low = 0;
1305         SET_QC();
1306     } else if (low > 0xffff) {
1307         low = 0xffff;
1308         SET_QC();
1309     }
1310     high = x >> 32;
1311     if (high & 0x80000000) {
1312         high = 0;
1313         SET_QC();
1314     } else if (high > 0xffff) {
1315         high = 0xffff;
1316         SET_QC();
1317     }
1318     return low | (high << 16);
1319 }
1320 
HELPER(neon_narrow_sat_u16)1321 uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
1322 {
1323     uint32_t high;
1324     uint32_t low;
1325     low = x;
1326     if (low > 0xffff) {
1327         low = 0xffff;
1328         SET_QC();
1329     }
1330     high = x >> 32;
1331     if (high > 0xffff) {
1332         high = 0xffff;
1333         SET_QC();
1334     }
1335     return low | (high << 16);
1336 }
1337 
HELPER(neon_narrow_sat_s16)1338 uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
1339 {
1340     int32_t low;
1341     int32_t high;
1342     low = x;
1343     if (low != (int16_t)low) {
1344         low = (low >> 31) ^ 0x7fff;
1345         SET_QC();
1346     }
1347     high = x >> 32;
1348     if (high != (int16_t)high) {
1349         high = (high >> 31) ^ 0x7fff;
1350         SET_QC();
1351     }
1352     return (uint16_t)low | (high << 16);
1353 }
1354 
HELPER(neon_unarrow_sat32)1355 uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
1356 {
1357     if (x & 0x8000000000000000ull) {
1358         SET_QC();
1359         return 0;
1360     }
1361     if (x > 0xffffffffu) {
1362         SET_QC();
1363         return 0xffffffffu;
1364     }
1365     return x;
1366 }
1367 
HELPER(neon_narrow_sat_u32)1368 uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
1369 {
1370     if (x > 0xffffffffu) {
1371         SET_QC();
1372         return 0xffffffffu;
1373     }
1374     return x;
1375 }
1376 
HELPER(neon_narrow_sat_s32)1377 uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
1378 {
1379     if ((int64_t)x != (int32_t)x) {
1380         SET_QC();
1381         return ((int64_t)x >> 63) ^ 0x7fffffff;
1382     }
1383     return x;
1384 }
1385 
HELPER(neon_widen_u8)1386 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1387 {
1388     uint64_t tmp;
1389     uint64_t ret;
1390     ret = (uint8_t)x;
1391     tmp = (uint8_t)(x >> 8);
1392     ret |= tmp << 16;
1393     tmp = (uint8_t)(x >> 16);
1394     ret |= tmp << 32;
1395     tmp = (uint8_t)(x >> 24);
1396     ret |= tmp << 48;
1397     return ret;
1398 }
1399 
HELPER(neon_widen_s8)1400 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1401 {
1402     uint64_t tmp;
1403     uint64_t ret;
1404     ret = (uint16_t)(int8_t)x;
1405     tmp = (uint16_t)(int8_t)(x >> 8);
1406     ret |= tmp << 16;
1407     tmp = (uint16_t)(int8_t)(x >> 16);
1408     ret |= tmp << 32;
1409     tmp = (uint16_t)(int8_t)(x >> 24);
1410     ret |= tmp << 48;
1411     return ret;
1412 }
1413 
HELPER(neon_widen_u16)1414 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1415 {
1416     uint64_t high = (uint16_t)(x >> 16);
1417     return ((uint16_t)x) | (high << 32);
1418 }
1419 
HELPER(neon_widen_s16)1420 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1421 {
1422     uint64_t high = (int16_t)(x >> 16);
1423     return ((uint32_t)(int16_t)x) | (high << 32);
1424 }
1425 
HELPER(neon_addl_u16)1426 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1427 {
1428     uint64_t mask;
1429     mask = (a ^ b) & 0x8000800080008000ull;
1430     a &= ~0x8000800080008000ull;
1431     b &= ~0x8000800080008000ull;
1432     return (a + b) ^ mask;
1433 }
1434 
HELPER(neon_addl_u32)1435 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1436 {
1437     uint64_t mask;
1438     mask = (a ^ b) & 0x8000000080000000ull;
1439     a &= ~0x8000000080000000ull;
1440     b &= ~0x8000000080000000ull;
1441     return (a + b) ^ mask;
1442 }
1443 
HELPER(neon_paddl_u16)1444 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1445 {
1446     uint64_t tmp;
1447     uint64_t tmp2;
1448 
1449     tmp = a & 0x0000ffff0000ffffull;
1450     tmp += (a >> 16) & 0x0000ffff0000ffffull;
1451     tmp2 = b & 0xffff0000ffff0000ull;
1452     tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1453     return    ( tmp         & 0xffff)
1454             | ((tmp  >> 16) & 0xffff0000ull)
1455             | ((tmp2 << 16) & 0xffff00000000ull)
1456             | ( tmp2        & 0xffff000000000000ull);
1457 }
1458 
HELPER(neon_paddl_u32)1459 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1460 {
1461     uint32_t low = a + (a >> 32);
1462     uint32_t high = b + (b >> 32);
1463     return low + ((uint64_t)high << 32);
1464 }
1465 
HELPER(neon_subl_u16)1466 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1467 {
1468     uint64_t mask;
1469     mask = (a ^ ~b) & 0x8000800080008000ull;
1470     a |= 0x8000800080008000ull;
1471     b &= ~0x8000800080008000ull;
1472     return (a - b) ^ mask;
1473 }
1474 
HELPER(neon_subl_u32)1475 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1476 {
1477     uint64_t mask;
1478     mask = (a ^ ~b) & 0x8000000080000000ull;
1479     a |= 0x8000000080000000ull;
1480     b &= ~0x8000000080000000ull;
1481     return (a - b) ^ mask;
1482 }
1483 
HELPER(neon_addl_saturate_s32)1484 uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
1485 {
1486     uint32_t x, y;
1487     uint32_t low, high;
1488 
1489     x = a;
1490     y = b;
1491     low = x + y;
1492     if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1493         SET_QC();
1494         low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1495     }
1496     x = a >> 32;
1497     y = b >> 32;
1498     high = x + y;
1499     if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1500         SET_QC();
1501         high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1502     }
1503     return low | ((uint64_t)high << 32);
1504 }
1505 
HELPER(neon_addl_saturate_s64)1506 uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
1507 {
1508     uint64_t result;
1509 
1510     result = a + b;
1511     if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1512         SET_QC();
1513         result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1514     }
1515     return result;
1516 }
1517 
1518 /* We have to do the arithmetic in a larger type than
1519  * the input type, because for example with a signed 32 bit
1520  * op the absolute difference can overflow a signed 32 bit value.
1521  */
1522 #define DO_ABD(dest, x, y, intype, arithtype) do {            \
1523     arithtype tmp_x = (intype)(x);                            \
1524     arithtype tmp_y = (intype)(y);                            \
1525     dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1526     } while(0)
1527 
HELPER(neon_abdl_u16)1528 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1529 {
1530     uint64_t tmp;
1531     uint64_t result;
1532     DO_ABD(result, a, b, uint8_t, uint32_t);
1533     DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1534     result |= tmp << 16;
1535     DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1536     result |= tmp << 32;
1537     DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1538     result |= tmp << 48;
1539     return result;
1540 }
1541 
HELPER(neon_abdl_s16)1542 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1543 {
1544     uint64_t tmp;
1545     uint64_t result;
1546     DO_ABD(result, a, b, int8_t, int32_t);
1547     DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1548     result |= tmp << 16;
1549     DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1550     result |= tmp << 32;
1551     DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1552     result |= tmp << 48;
1553     return result;
1554 }
1555 
HELPER(neon_abdl_u32)1556 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1557 {
1558     uint64_t tmp;
1559     uint64_t result;
1560     DO_ABD(result, a, b, uint16_t, uint32_t);
1561     DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1562     return result | (tmp << 32);
1563 }
1564 
HELPER(neon_abdl_s32)1565 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1566 {
1567     uint64_t tmp;
1568     uint64_t result;
1569     DO_ABD(result, a, b, int16_t, int32_t);
1570     DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1571     return result | (tmp << 32);
1572 }
1573 
HELPER(neon_abdl_u64)1574 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1575 {
1576     uint64_t result;
1577     DO_ABD(result, a, b, uint32_t, uint64_t);
1578     return result;
1579 }
1580 
HELPER(neon_abdl_s64)1581 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1582 {
1583     uint64_t result;
1584     DO_ABD(result, a, b, int32_t, int64_t);
1585     return result;
1586 }
1587 #undef DO_ABD
1588 
1589 /* Widening multiply. Named type is the source type.  */
1590 #define DO_MULL(dest, x, y, type1, type2) do { \
1591     type1 tmp_x = x; \
1592     type1 tmp_y = y; \
1593     dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1594     } while(0)
1595 
HELPER(neon_mull_u8)1596 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1597 {
1598     uint64_t tmp;
1599     uint64_t result;
1600 
1601     DO_MULL(result, a, b, uint8_t, uint16_t);
1602     DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1603     result |= tmp << 16;
1604     DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1605     result |= tmp << 32;
1606     DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1607     result |= tmp << 48;
1608     return result;
1609 }
1610 
HELPER(neon_mull_s8)1611 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1612 {
1613     uint64_t tmp;
1614     uint64_t result;
1615 
1616     DO_MULL(result, a, b, int8_t, uint16_t);
1617     DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1618     result |= tmp << 16;
1619     DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1620     result |= tmp << 32;
1621     DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1622     result |= tmp << 48;
1623     return result;
1624 }
1625 
HELPER(neon_mull_u16)1626 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1627 {
1628     uint64_t tmp;
1629     uint64_t result;
1630 
1631     DO_MULL(result, a, b, uint16_t, uint32_t);
1632     DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1633     return result | (tmp << 32);
1634 }
1635 
HELPER(neon_mull_s16)1636 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1637 {
1638     uint64_t tmp;
1639     uint64_t result;
1640 
1641     DO_MULL(result, a, b, int16_t, uint32_t);
1642     DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1643     return result | (tmp << 32);
1644 }
1645 
HELPER(neon_negl_u16)1646 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1647 {
1648     uint16_t tmp;
1649     uint64_t result;
1650     result = (uint16_t)-x;
1651     tmp = -(x >> 16);
1652     result |= (uint64_t)tmp << 16;
1653     tmp = -(x >> 32);
1654     result |= (uint64_t)tmp << 32;
1655     tmp = -(x >> 48);
1656     result |= (uint64_t)tmp << 48;
1657     return result;
1658 }
1659 
HELPER(neon_negl_u32)1660 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1661 {
1662     uint32_t low = -x;
1663     uint32_t high = -(x >> 32);
1664     return low | ((uint64_t)high << 32);
1665 }
1666 
1667 /* FIXME:  There should be a native op for this.  */
HELPER(neon_negl_u64)1668 uint64_t HELPER(neon_negl_u64)(uint64_t x)
1669 {
1670     return -x;
1671 }
1672 
1673 /* Saturating sign manipulation.  */
1674 /* ??? Make these use NEON_VOP1 */
1675 #define DO_QABS8(x) do { \
1676     if (x == (int8_t)0x80) { \
1677         x = 0x7f; \
1678         SET_QC(); \
1679     } else if (x < 0) { \
1680         x = -x; \
1681     }} while (0)
HELPER(neon_qabs_s8)1682 uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
1683 {
1684     neon_s8 vec;
1685     NEON_UNPACK(neon_s8, vec, x);
1686     DO_QABS8(vec.v1);
1687     DO_QABS8(vec.v2);
1688     DO_QABS8(vec.v3);
1689     DO_QABS8(vec.v4);
1690     NEON_PACK(neon_s8, x, vec);
1691     return x;
1692 }
1693 #undef DO_QABS8
1694 
1695 #define DO_QNEG8(x) do { \
1696     if (x == (int8_t)0x80) { \
1697         x = 0x7f; \
1698         SET_QC(); \
1699     } else { \
1700         x = -x; \
1701     }} while (0)
HELPER(neon_qneg_s8)1702 uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
1703 {
1704     neon_s8 vec;
1705     NEON_UNPACK(neon_s8, vec, x);
1706     DO_QNEG8(vec.v1);
1707     DO_QNEG8(vec.v2);
1708     DO_QNEG8(vec.v3);
1709     DO_QNEG8(vec.v4);
1710     NEON_PACK(neon_s8, x, vec);
1711     return x;
1712 }
1713 #undef DO_QNEG8
1714 
1715 #define DO_QABS16(x) do { \
1716     if (x == (int16_t)0x8000) { \
1717         x = 0x7fff; \
1718         SET_QC(); \
1719     } else if (x < 0) { \
1720         x = -x; \
1721     }} while (0)
HELPER(neon_qabs_s16)1722 uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
1723 {
1724     neon_s16 vec;
1725     NEON_UNPACK(neon_s16, vec, x);
1726     DO_QABS16(vec.v1);
1727     DO_QABS16(vec.v2);
1728     NEON_PACK(neon_s16, x, vec);
1729     return x;
1730 }
1731 #undef DO_QABS16
1732 
1733 #define DO_QNEG16(x) do { \
1734     if (x == (int16_t)0x8000) { \
1735         x = 0x7fff; \
1736         SET_QC(); \
1737     } else { \
1738         x = -x; \
1739     }} while (0)
HELPER(neon_qneg_s16)1740 uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
1741 {
1742     neon_s16 vec;
1743     NEON_UNPACK(neon_s16, vec, x);
1744     DO_QNEG16(vec.v1);
1745     DO_QNEG16(vec.v2);
1746     NEON_PACK(neon_s16, x, vec);
1747     return x;
1748 }
1749 #undef DO_QNEG16
1750 
HELPER(neon_qabs_s32)1751 uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
1752 {
1753     if (x == SIGNBIT) {
1754         SET_QC();
1755         x = ~SIGNBIT;
1756     } else if ((int32_t)x < 0) {
1757         x = -x;
1758     }
1759     return x;
1760 }
1761 
HELPER(neon_qneg_s32)1762 uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
1763 {
1764     if (x == SIGNBIT) {
1765         SET_QC();
1766         x = ~SIGNBIT;
1767     } else {
1768         x = -x;
1769     }
1770     return x;
1771 }
1772 
1773 /* NEON Float helpers.  */
HELPER(neon_min_f32)1774 uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b, void *fpstp)
1775 {
1776     float_status *fpst = fpstp;
1777     return float32_val(float32_min(make_float32(a), make_float32(b), fpst));
1778 }
1779 
HELPER(neon_max_f32)1780 uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b, void *fpstp)
1781 {
1782     float_status *fpst = fpstp;
1783     return float32_val(float32_max(make_float32(a), make_float32(b), fpst));
1784 }
1785 
HELPER(neon_abd_f32)1786 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
1787 {
1788     float_status *fpst = fpstp;
1789     float32 f0 = make_float32(a);
1790     float32 f1 = make_float32(b);
1791     return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
1792 }
1793 
1794 /* Floating point comparisons produce an integer result.
1795  * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
1796  * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
1797  */
HELPER(neon_ceq_f32)1798 uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
1799 {
1800     float_status *fpst = fpstp;
1801     return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
1802 }
1803 
HELPER(neon_cge_f32)1804 uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
1805 {
1806     float_status *fpst = fpstp;
1807     return -float32_le(make_float32(b), make_float32(a), fpst);
1808 }
1809 
HELPER(neon_cgt_f32)1810 uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1811 {
1812     float_status *fpst = fpstp;
1813     return -float32_lt(make_float32(b), make_float32(a), fpst);
1814 }
1815 
HELPER(neon_acge_f32)1816 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
1817 {
1818     float_status *fpst = fpstp;
1819     float32 f0 = float32_abs(make_float32(a));
1820     float32 f1 = float32_abs(make_float32(b));
1821     return -float32_le(f1, f0, fpst);
1822 }
1823 
HELPER(neon_acgt_f32)1824 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1825 {
1826     float_status *fpst = fpstp;
1827     float32 f0 = float32_abs(make_float32(a));
1828     float32 f1 = float32_abs(make_float32(b));
1829     return -float32_lt(f1, f0, fpst);
1830 }
1831 
1832 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1833 
HELPER(neon_qunzip8)1834 void HELPER(neon_qunzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1835 {
1836     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1837     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1838     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1839     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1840     uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
1841         | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
1842         | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
1843         | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
1844     uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
1845         | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
1846         | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1847         | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
1848     uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
1849         | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
1850         | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
1851         | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
1852     uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
1853         | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
1854         | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
1855         | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1856     env->vfp.regs[rm] = make_float64(m0);
1857     env->vfp.regs[rm + 1] = make_float64(m1);
1858     env->vfp.regs[rd] = make_float64(d0);
1859     env->vfp.regs[rd + 1] = make_float64(d1);
1860 }
1861 
HELPER(neon_qunzip16)1862 void HELPER(neon_qunzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
1863 {
1864     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1865     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1866     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1867     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1868     uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
1869         | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
1870     uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
1871         | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
1872     uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
1873         | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
1874     uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
1875         | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1876     env->vfp.regs[rm] = make_float64(m0);
1877     env->vfp.regs[rm + 1] = make_float64(m1);
1878     env->vfp.regs[rd] = make_float64(d0);
1879     env->vfp.regs[rd + 1] = make_float64(d1);
1880 }
1881 
HELPER(neon_qunzip32)1882 void HELPER(neon_qunzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
1883 {
1884     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1885     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1886     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1887     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1888     uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
1889     uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1890     uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
1891     uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1892     env->vfp.regs[rm] = make_float64(m0);
1893     env->vfp.regs[rm + 1] = make_float64(m1);
1894     env->vfp.regs[rd] = make_float64(d0);
1895     env->vfp.regs[rd + 1] = make_float64(d1);
1896 }
1897 
HELPER(neon_unzip8)1898 void HELPER(neon_unzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1899 {
1900     uint64_t zm = float64_val(env->vfp.regs[rm]);
1901     uint64_t zd = float64_val(env->vfp.regs[rd]);
1902     uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
1903         | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
1904         | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1905         | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
1906     uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
1907         | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
1908         | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
1909         | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1910     env->vfp.regs[rm] = make_float64(m0);
1911     env->vfp.regs[rd] = make_float64(d0);
1912 }
1913 
HELPER(neon_unzip16)1914 void HELPER(neon_unzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
1915 {
1916     uint64_t zm = float64_val(env->vfp.regs[rm]);
1917     uint64_t zd = float64_val(env->vfp.regs[rd]);
1918     uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
1919         | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
1920     uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
1921         | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1922     env->vfp.regs[rm] = make_float64(m0);
1923     env->vfp.regs[rd] = make_float64(d0);
1924 }
1925 
HELPER(neon_qzip8)1926 void HELPER(neon_qzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1927 {
1928     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1929     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1930     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1931     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1932     uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
1933         | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
1934         | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
1935         | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
1936     uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
1937         | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
1938         | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
1939         | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
1940     uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
1941         | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
1942         | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1943         | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
1944     uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
1945         | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
1946         | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
1947         | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1948     env->vfp.regs[rm] = make_float64(m0);
1949     env->vfp.regs[rm + 1] = make_float64(m1);
1950     env->vfp.regs[rd] = make_float64(d0);
1951     env->vfp.regs[rd + 1] = make_float64(d1);
1952 }
1953 
HELPER(neon_qzip16)1954 void HELPER(neon_qzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
1955 {
1956     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1957     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1958     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1959     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1960     uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
1961         | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
1962     uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
1963         | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
1964     uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
1965         | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
1966     uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
1967         | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1968     env->vfp.regs[rm] = make_float64(m0);
1969     env->vfp.regs[rm + 1] = make_float64(m1);
1970     env->vfp.regs[rd] = make_float64(d0);
1971     env->vfp.regs[rd + 1] = make_float64(d1);
1972 }
1973 
HELPER(neon_qzip32)1974 void HELPER(neon_qzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
1975 {
1976     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1977     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1978     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1979     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1980     uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
1981     uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
1982     uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1983     uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1984     env->vfp.regs[rm] = make_float64(m0);
1985     env->vfp.regs[rm + 1] = make_float64(m1);
1986     env->vfp.regs[rd] = make_float64(d0);
1987     env->vfp.regs[rd + 1] = make_float64(d1);
1988 }
1989 
HELPER(neon_zip8)1990 void HELPER(neon_zip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1991 {
1992     uint64_t zm = float64_val(env->vfp.regs[rm]);
1993     uint64_t zd = float64_val(env->vfp.regs[rd]);
1994     uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
1995         | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
1996         | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1997         | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
1998     uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
1999         | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2000         | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2001         | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2002     env->vfp.regs[rm] = make_float64(m0);
2003     env->vfp.regs[rd] = make_float64(d0);
2004 }
2005 
HELPER(neon_zip16)2006 void HELPER(neon_zip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
2007 {
2008     uint64_t zm = float64_val(env->vfp.regs[rm]);
2009     uint64_t zd = float64_val(env->vfp.regs[rd]);
2010     uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2011         | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2012     uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2013         | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2014     env->vfp.regs[rm] = make_float64(m0);
2015     env->vfp.regs[rd] = make_float64(d0);
2016 }
2017