1 /*
2 * Copyright (C) 2012 Google Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
14 * its contributors may be used to endorse or promote products derived
15 * from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include "config.h"
30
31 #if ENABLE(WEB_AUDIO)
32
33 #include "modules/webaudio/PeriodicWave.h"
34
35 #include "platform/audio/FFTFrame.h"
36 #include "platform/audio/VectorMath.h"
37 #include "modules/webaudio/OscillatorNode.h"
38 #include <algorithm>
39
40 const unsigned PeriodicWaveSize = 4096; // This must be a power of two.
41 const unsigned NumberOfRanges = 36; // There should be 3 * log2(PeriodicWaveSize) 1/3 octave ranges.
42 const float CentsPerRange = 1200 / 3; // 1/3 Octave.
43
44 namespace blink {
45
46 using namespace VectorMath;
47
create(float sampleRate,Float32Array * real,Float32Array * imag)48 PeriodicWave* PeriodicWave::create(float sampleRate, Float32Array* real, Float32Array* imag)
49 {
50 bool isGood = real && imag && real->length() == imag->length();
51 ASSERT(isGood);
52 if (isGood) {
53 PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
54 size_t numberOfComponents = real->length();
55 periodicWave->createBandLimitedTables(real->data(), imag->data(), numberOfComponents);
56 return periodicWave;
57 }
58 return 0;
59 }
60
createSine(float sampleRate)61 PeriodicWave* PeriodicWave::createSine(float sampleRate)
62 {
63 PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
64 periodicWave->generateBasicWaveform(OscillatorNode::SINE);
65 return periodicWave;
66 }
67
createSquare(float sampleRate)68 PeriodicWave* PeriodicWave::createSquare(float sampleRate)
69 {
70 PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
71 periodicWave->generateBasicWaveform(OscillatorNode::SQUARE);
72 return periodicWave;
73 }
74
createSawtooth(float sampleRate)75 PeriodicWave* PeriodicWave::createSawtooth(float sampleRate)
76 {
77 PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
78 periodicWave->generateBasicWaveform(OscillatorNode::SAWTOOTH);
79 return periodicWave;
80 }
81
createTriangle(float sampleRate)82 PeriodicWave* PeriodicWave::createTriangle(float sampleRate)
83 {
84 PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
85 periodicWave->generateBasicWaveform(OscillatorNode::TRIANGLE);
86 return periodicWave;
87 }
88
PeriodicWave(float sampleRate)89 PeriodicWave::PeriodicWave(float sampleRate)
90 : m_sampleRate(sampleRate)
91 , m_periodicWaveSize(PeriodicWaveSize)
92 , m_numberOfRanges(NumberOfRanges)
93 , m_centsPerRange(CentsPerRange)
94 {
95 float nyquist = 0.5 * m_sampleRate;
96 m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials();
97 m_rateScale = m_periodicWaveSize / m_sampleRate;
98 }
99
waveDataForFundamentalFrequency(float fundamentalFrequency,float * & lowerWaveData,float * & higherWaveData,float & tableInterpolationFactor)100 void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor)
101 {
102 // Negative frequencies are allowed, in which case we alias to the positive frequency.
103 fundamentalFrequency = fabsf(fundamentalFrequency);
104
105 // Calculate the pitch range.
106 float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5;
107 float centsAboveLowestFrequency = log2f(ratio) * 1200;
108
109 // Add one to round-up to the next range just in time to truncate partials before aliasing occurs.
110 float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange;
111
112 pitchRange = std::max(pitchRange, 0.0f);
113 pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1));
114
115 // The words "lower" and "higher" refer to the table data having the lower and higher numbers of partials.
116 // It's a little confusing since the range index gets larger the more partials we cull out.
117 // So the lower table data will have a larger range index.
118 unsigned rangeIndex1 = static_cast<unsigned>(pitchRange);
119 unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1;
120
121 lowerWaveData = m_bandLimitedTables[rangeIndex2]->data();
122 higherWaveData = m_bandLimitedTables[rangeIndex1]->data();
123
124 // Ranges from 0 -> 1 to interpolate between lower -> higher.
125 tableInterpolationFactor = pitchRange - rangeIndex1;
126 }
127
maxNumberOfPartials() const128 unsigned PeriodicWave::maxNumberOfPartials() const
129 {
130 return m_periodicWaveSize / 2;
131 }
132
numberOfPartialsForRange(unsigned rangeIndex) const133 unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const
134 {
135 // Number of cents below nyquist where we cull partials.
136 float centsToCull = rangeIndex * m_centsPerRange;
137
138 // A value from 0 -> 1 representing what fraction of the partials to keep.
139 float cullingScale = pow(2, -centsToCull / 1200);
140
141 // The very top range will have all the partials culled.
142 unsigned numberOfPartials = cullingScale * maxNumberOfPartials();
143
144 return numberOfPartials;
145 }
146
147 // Convert into time-domain wave buffers.
148 // One table is created for each range for non-aliasing playback at different playback rates.
149 // Thus, higher ranges have more high-frequency partials culled out.
createBandLimitedTables(const float * realData,const float * imagData,unsigned numberOfComponents)150 void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents)
151 {
152 float normalizationScale = 1;
153
154 unsigned fftSize = m_periodicWaveSize;
155 unsigned halfSize = fftSize / 2;
156 unsigned i;
157
158 numberOfComponents = std::min(numberOfComponents, halfSize);
159
160 m_bandLimitedTables.reserveCapacity(m_numberOfRanges);
161
162 for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) {
163 // This FFTFrame is used to cull partials (represented by frequency bins).
164 FFTFrame frame(fftSize);
165 float* realP = frame.realData();
166 float* imagP = frame.imagData();
167
168 // Copy from loaded frequency data and scale.
169 float scale = fftSize;
170 vsmul(realData, 1, &scale, realP, 1, numberOfComponents);
171 vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents);
172
173 // If fewer components were provided than 1/2 FFT size, then clear the remaining bins.
174 for (i = numberOfComponents; i < halfSize; ++i) {
175 realP[i] = 0;
176 imagP[i] = 0;
177 }
178
179 // Generate complex conjugate because of the way the inverse FFT is defined.
180 float minusOne = -1;
181 vsmul(imagP, 1, &minusOne, imagP, 1, halfSize);
182
183 // Find the starting bin where we should start culling.
184 // We need to clear out the highest frequencies to band-limit the waveform.
185 unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex);
186
187 // Cull the aliasing partials for this pitch range.
188 for (i = numberOfPartials + 1; i < halfSize; ++i) {
189 realP[i] = 0;
190 imagP[i] = 0;
191 }
192 // Clear packed-nyquist if necessary.
193 if (numberOfPartials < halfSize)
194 imagP[0] = 0;
195
196 // Clear any DC-offset.
197 realP[0] = 0;
198
199 // Create the band-limited table.
200 OwnPtr<AudioFloatArray> table = adoptPtr(new AudioFloatArray(m_periodicWaveSize));
201 m_bandLimitedTables.append(table.release());
202
203 // Apply an inverse FFT to generate the time-domain table data.
204 float* data = m_bandLimitedTables[rangeIndex]->data();
205 frame.doInverseFFT(data);
206
207 // For the first range (which has the highest power), calculate its peak value then compute normalization scale.
208 if (!rangeIndex) {
209 float maxValue;
210 vmaxmgv(data, 1, &maxValue, m_periodicWaveSize);
211
212 if (maxValue)
213 normalizationScale = 1.0f / maxValue;
214 }
215
216 // Apply normalization scale.
217 vsmul(data, 1, &normalizationScale, data, 1, m_periodicWaveSize);
218 }
219 }
220
generateBasicWaveform(int shape)221 void PeriodicWave::generateBasicWaveform(int shape)
222 {
223 unsigned fftSize = periodicWaveSize();
224 unsigned halfSize = fftSize / 2;
225
226 AudioFloatArray real(halfSize);
227 AudioFloatArray imag(halfSize);
228 float* realP = real.data();
229 float* imagP = imag.data();
230
231 // Clear DC and Nyquist.
232 realP[0] = 0;
233 imagP[0] = 0;
234
235 for (unsigned n = 1; n < halfSize; ++n) {
236 float piFactor = 2 / (n * piFloat);
237
238 // All waveforms are odd functions with a positive slope at time 0. Hence the coefficients
239 // for cos() are always 0.
240
241 // Fourier coefficients according to standard definition:
242 // b = 1/pi*integrate(f(x)*sin(n*x), x, -pi, pi)
243 // = 2/pi*integrate(f(x)*sin(n*x), x, 0, pi)
244 // since f(x) is an odd function.
245
246 float b; // Coefficient for sin().
247
248 // Calculate Fourier coefficients depending on the shape. Note that the overall scaling
249 // (magnitude) of the waveforms is normalized in createBandLimitedTables().
250 switch (shape) {
251 case OscillatorNode::SINE:
252 // Standard sine wave function.
253 b = (n == 1) ? 1 : 0;
254 break;
255 case OscillatorNode::SQUARE:
256 // Square-shaped waveform with the first half its maximum value and the second half its
257 // minimum value.
258 //
259 // See http://mathworld.wolfram.com/FourierSeriesSquareWave.html
260 //
261 // b[n] = 2/n/pi*(1-(-1)^n)
262 // = 4/n/pi for n odd and 0 otherwise.
263 // = 2*(2/(n*pi)) for n odd
264 b = (n & 1) ? 2 * piFactor : 0;
265 break;
266 case OscillatorNode::SAWTOOTH:
267 // Sawtooth-shaped waveform with the first half ramping from zero to maximum and the
268 // second half from minimum to zero.
269 //
270 // b[n] = -2*(-1)^n/pi/n
271 // = (2/(n*pi))*(-1)^(n+1)
272 b = piFactor * ((n & 1) ? 1 : -1);
273 break;
274 case OscillatorNode::TRIANGLE:
275 // Triangle-shaped waveform going from 0 at time 0 to 1 at time pi/2 and back to 0 at
276 // time pi.
277 //
278 // See http://mathworld.wolfram.com/FourierSeriesTriangleWave.html
279 //
280 // b[n] = 8*sin(pi*k/2)/(pi*k)^2
281 // = 8/pi^2/n^2*(-1)^((n-1)/2) for n odd and 0 otherwise
282 // = 2*(2/(n*pi))^2 * (-1)^((n-1)/2)
283 if (n & 1) {
284 b = 2 * (piFactor * piFactor) * ((((n - 1) >> 1) & 1) ? -1 : 1);
285 } else {
286 b = 0;
287 }
288 break;
289 default:
290 ASSERT_NOT_REACHED();
291 b = 0;
292 break;
293 }
294
295 realP[n] = 0;
296 imagP[n] = b;
297 }
298
299 createBandLimitedTables(realP, imagP, halfSize);
300 }
301
302 } // namespace blink
303
304 #endif // ENABLE(WEB_AUDIO)
305