1 /*
2 * The copyright in this software is being made available under the 2-clauses
3 * BSD License, included below. This software may be subject to other third
4 * party and contributor rights, including patent rights, and no such rights
5 * are granted under this license.
6 *
7 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8 * Copyright (c) 2002-2014, Professor Benoit Macq
9 * Copyright (c) 2001-2003, David Janssens
10 * Copyright (c) 2002-2003, Yannick Verschueren
11 * Copyright (c) 2003-2007, Francois-Olivier Devaux
12 * Copyright (c) 2003-2014, Antonin Descampe
13 * Copyright (c) 2005, Herve Drolon, FreeImage Team
14 * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
15 * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
28 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
31 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #ifdef __SSE__
41 #include <xmmintrin.h>
42 #endif
43
44 #include "opj_includes.h"
45
46 /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
47 /*@{*/
48
49 #define OPJ_WS(i) v->mem[(i)*2]
50 #define OPJ_WD(i) v->mem[(1+(i)*2)]
51
52 /** @name Local data structures */
53 /*@{*/
54
55 typedef struct dwt_local {
56 OPJ_INT32* mem;
57 OPJ_INT32 dn;
58 OPJ_INT32 sn;
59 OPJ_INT32 cas;
60 } opj_dwt_t;
61
62 typedef union {
63 OPJ_FLOAT32 f[4];
64 } opj_v4_t;
65
66 typedef struct v4dwt_local {
67 opj_v4_t* wavelet ;
68 OPJ_INT32 dn ;
69 OPJ_INT32 sn ;
70 OPJ_INT32 cas ;
71 } opj_v4dwt_t ;
72
73 static const OPJ_FLOAT32 opj_dwt_alpha = 1.586134342f; /* 12994 */
74 static const OPJ_FLOAT32 opj_dwt_beta = 0.052980118f; /* 434 */
75 static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /* -7233 */
76 static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /* -3633 */
77
78 static const OPJ_FLOAT32 opj_K = 1.230174105f; /* 10078 */
79 static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;
80
81 /*@}*/
82
83 /**
84 Virtual function type for wavelet transform in 1-D
85 */
86 typedef void (*DWT1DFN)(opj_dwt_t* v);
87
88 /** @name Local static functions */
89 /*@{*/
90
91 /**
92 Forward lazy transform (horizontal)
93 */
94 static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
95 /**
96 Forward lazy transform (vertical)
97 */
98 static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
99 /**
100 Inverse lazy transform (horizontal)
101 */
102 static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a);
103 /**
104 Inverse lazy transform (vertical)
105 */
106 static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x);
107 /**
108 Forward 5-3 wavelet transform in 1-D
109 */
110 static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
111 /**
112 Inverse 5-3 wavelet transform in 1-D
113 */
114 static void opj_dwt_decode_1(opj_dwt_t *v);
115 static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
116 /**
117 Forward 9-7 wavelet transform in 1-D
118 */
119 static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
120 /**
121 Explicit calculation of the Quantization Stepsizes
122 */
123 static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize);
124 /**
125 Inverse wavelet transform in 2-D.
126 */
127 static OPJ_BOOL opj_dwt_decode_tile(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn);
128
129 static OPJ_BOOL opj_dwt_encode_procedure( opj_tcd_tilecomp_t * tilec,
130 void (*p_function)(OPJ_INT32 *, OPJ_INT32,OPJ_INT32,OPJ_INT32) );
131
132 static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i);
133
134 /* <summary> */
135 /* Inverse 9-7 wavelet transform in 1-D. */
136 /* </summary> */
137 static void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt);
138
139 static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size);
140
141 static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read);
142
143 #ifdef __SSE__
144 static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c);
145
146 static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c);
147
148 #else
149 static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c);
150
151 static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c);
152
153 #endif
154
155 /*@}*/
156
157 /*@}*/
158
159 #define OPJ_S(i) a[(i)*2]
160 #define OPJ_D(i) a[(1+(i)*2)]
161 #define OPJ_S_(i) ((i)<0?OPJ_S(0):((i)>=sn?OPJ_S(sn-1):OPJ_S(i)))
162 #define OPJ_D_(i) ((i)<0?OPJ_D(0):((i)>=dn?OPJ_D(dn-1):OPJ_D(i)))
163 /* new */
164 #define OPJ_SS_(i) ((i)<0?OPJ_S(0):((i)>=dn?OPJ_S(dn-1):OPJ_S(i)))
165 #define OPJ_DD_(i) ((i)<0?OPJ_D(0):((i)>=sn?OPJ_D(sn-1):OPJ_D(i)))
166
167 /* <summary> */
168 /* This table contains the norms of the 5-3 wavelets for different bands. */
169 /* </summary> */
170 static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
171 {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
172 {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
173 {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
174 {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
175 };
176
177 /* <summary> */
178 /* This table contains the norms of the 9-7 wavelets for different bands. */
179 /* </summary> */
180 static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
181 {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
182 {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
183 {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
184 {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
185 };
186
187 /*
188 ==========================================================
189 local functions
190 ==========================================================
191 */
192
193 /* <summary> */
194 /* Forward lazy transform (horizontal). */
195 /* </summary> */
opj_dwt_deinterleave_h(OPJ_INT32 * a,OPJ_INT32 * b,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)196 void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
197 OPJ_INT32 i;
198 OPJ_INT32 * l_dest = b;
199 OPJ_INT32 * l_src = a+cas;
200
201 for (i=0; i<sn; ++i) {
202 *l_dest++ = *l_src;
203 l_src += 2;
204 }
205
206 l_dest = b + sn;
207 l_src = a + 1 - cas;
208
209 for (i=0; i<dn; ++i) {
210 *l_dest++=*l_src;
211 l_src += 2;
212 }
213 }
214
215 /* <summary> */
216 /* Forward lazy transform (vertical). */
217 /* </summary> */
opj_dwt_deinterleave_v(OPJ_INT32 * a,OPJ_INT32 * b,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 x,OPJ_INT32 cas)218 void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) {
219 OPJ_INT32 i = sn;
220 OPJ_INT32 * l_dest = b;
221 OPJ_INT32 * l_src = a+cas;
222
223 while (i--) {
224 *l_dest = *l_src;
225 l_dest += x;
226 l_src += 2;
227 } /* b[i*x]=a[2*i+cas]; */
228
229 l_dest = b + sn * x;
230 l_src = a + 1 - cas;
231
232 i = dn;
233 while (i--) {
234 *l_dest = *l_src;
235 l_dest += x;
236 l_src += 2;
237 } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
238 }
239
240 /* <summary> */
241 /* Inverse lazy transform (horizontal). */
242 /* </summary> */
opj_dwt_interleave_h(opj_dwt_t * h,OPJ_INT32 * a)243 void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a) {
244 OPJ_INT32 *ai = a;
245 OPJ_INT32 *bi = h->mem + h->cas;
246 OPJ_INT32 i = h->sn;
247 while( i-- ) {
248 *bi = *(ai++);
249 bi += 2;
250 }
251 ai = a + h->sn;
252 bi = h->mem + 1 - h->cas;
253 i = h->dn ;
254 while( i-- ) {
255 *bi = *(ai++);
256 bi += 2;
257 }
258 }
259
260 /* <summary> */
261 /* Inverse lazy transform (vertical). */
262 /* </summary> */
opj_dwt_interleave_v(opj_dwt_t * v,OPJ_INT32 * a,OPJ_INT32 x)263 void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) {
264 OPJ_INT32 *ai = a;
265 OPJ_INT32 *bi = v->mem + v->cas;
266 OPJ_INT32 i = v->sn;
267 while( i-- ) {
268 *bi = *ai;
269 bi += 2;
270 ai += x;
271 }
272 ai = a + (v->sn * x);
273 bi = v->mem + 1 - v->cas;
274 i = v->dn ;
275 while( i-- ) {
276 *bi = *ai;
277 bi += 2;
278 ai += x;
279 }
280 }
281
282
283 /* <summary> */
284 /* Forward 5-3 wavelet transform in 1-D. */
285 /* </summary> */
opj_dwt_encode_1(OPJ_INT32 * a,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)286 void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
287 OPJ_INT32 i;
288
289 if (!cas) {
290 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
291 for (i = 0; i < dn; i++) OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
292 for (i = 0; i < sn; i++) OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
293 }
294 } else {
295 if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */
296 OPJ_S(0) *= 2;
297 else {
298 for (i = 0; i < dn; i++) OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
299 for (i = 0; i < sn; i++) OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
300 }
301 }
302 }
303
304 /* <summary> */
305 /* Inverse 5-3 wavelet transform in 1-D. */
306 /* </summary> */
opj_dwt_decode_1_(OPJ_INT32 * a,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)307 void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
308 OPJ_INT32 i;
309
310 if (!cas) {
311 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
312 for (i = 0; i < sn; i++) OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
313 for (i = 0; i < dn; i++) OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
314 }
315 } else {
316 if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */
317 OPJ_S(0) /= 2;
318 else {
319 for (i = 0; i < sn; i++) OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
320 for (i = 0; i < dn; i++) OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
321 }
322 }
323 }
324
325 /* <summary> */
326 /* Inverse 5-3 wavelet transform in 1-D. */
327 /* </summary> */
opj_dwt_decode_1(opj_dwt_t * v)328 void opj_dwt_decode_1(opj_dwt_t *v) {
329 opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas);
330 }
331
332 /* <summary> */
333 /* Forward 9-7 wavelet transform in 1-D. */
334 /* </summary> */
opj_dwt_encode_1_real(OPJ_INT32 * a,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)335 void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
336 OPJ_INT32 i;
337 if (!cas) {
338 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
339 for (i = 0; i < dn; i++)
340 OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
341 for (i = 0; i < sn; i++)
342 OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
343 for (i = 0; i < dn; i++)
344 OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
345 for (i = 0; i < sn; i++)
346 OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
347 for (i = 0; i < dn; i++)
348 OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038); /*5038 */
349 for (i = 0; i < sn; i++)
350 OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659); /*6660 */
351 }
352 } else {
353 if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */
354 for (i = 0; i < dn; i++)
355 OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
356 for (i = 0; i < sn; i++)
357 OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
358 for (i = 0; i < dn; i++)
359 OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
360 for (i = 0; i < sn; i++)
361 OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
362 for (i = 0; i < dn; i++)
363 OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038); /*5038 */
364 for (i = 0; i < sn; i++)
365 OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659); /*6660 */
366 }
367 }
368 }
369
opj_dwt_encode_stepsize(OPJ_INT32 stepsize,OPJ_INT32 numbps,opj_stepsize_t * bandno_stepsize)370 void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) {
371 OPJ_INT32 p, n;
372 p = opj_int_floorlog2(stepsize) - 13;
373 n = 11 - opj_int_floorlog2(stepsize);
374 bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
375 bandno_stepsize->expn = numbps - p;
376 }
377
378 /*
379 ==========================================================
380 DWT interface
381 ==========================================================
382 */
383
384
385 /* <summary> */
386 /* Forward 5-3 wavelet transform in 2-D. */
387 /* </summary> */
opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec,void (* p_function)(OPJ_INT32 *,OPJ_INT32,OPJ_INT32,OPJ_INT32))388 INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec,void (*p_function)(OPJ_INT32 *, OPJ_INT32,OPJ_INT32,OPJ_INT32) )
389 {
390 OPJ_INT32 i, j, k;
391 OPJ_INT32 *a = 00;
392 OPJ_INT32 *aj = 00;
393 OPJ_INT32 *bj = 00;
394 OPJ_INT32 w, l;
395
396 OPJ_INT32 rw; /* width of the resolution level computed */
397 OPJ_INT32 rh; /* height of the resolution level computed */
398 OPJ_UINT32 l_data_size;
399
400 opj_tcd_resolution_t * l_cur_res = 0;
401 opj_tcd_resolution_t * l_last_res = 0;
402
403 w = tilec->x1-tilec->x0;
404 l = (OPJ_INT32)tilec->numresolutions-1;
405 a = tilec->data;
406
407 l_cur_res = tilec->resolutions + l;
408 l_last_res = l_cur_res - 1;
409
410 l_data_size = opj_dwt_max_resolution( tilec->resolutions,tilec->numresolutions) * (OPJ_UINT32)sizeof(OPJ_INT32);
411 bj = (OPJ_INT32*)opj_malloc((size_t)l_data_size);
412 if (! bj) {
413 return OPJ_FALSE;
414 }
415 i = l;
416
417 while (i--) {
418 OPJ_INT32 rw1; /* width of the resolution level once lower than computed one */
419 OPJ_INT32 rh1; /* height of the resolution level once lower than computed one */
420 OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
421 OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
422 OPJ_INT32 dn, sn;
423
424 rw = l_cur_res->x1 - l_cur_res->x0;
425 rh = l_cur_res->y1 - l_cur_res->y0;
426 rw1 = l_last_res->x1 - l_last_res->x0;
427 rh1 = l_last_res->y1 - l_last_res->y0;
428
429 cas_row = l_cur_res->x0 & 1;
430 cas_col = l_cur_res->y0 & 1;
431
432 sn = rh1;
433 dn = rh - rh1;
434 for (j = 0; j < rw; ++j) {
435 aj = a + j;
436 for (k = 0; k < rh; ++k) {
437 bj[k] = aj[k*w];
438 }
439
440 (*p_function) (bj, dn, sn, cas_col);
441
442 opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
443 }
444
445 sn = rw1;
446 dn = rw - rw1;
447
448 for (j = 0; j < rh; j++) {
449 aj = a + j * w;
450 for (k = 0; k < rw; k++) bj[k] = aj[k];
451 (*p_function) (bj, dn, sn, cas_row);
452 opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
453 }
454
455 l_cur_res = l_last_res;
456
457 --l_last_res;
458 }
459
460 opj_free(bj);
461 return OPJ_TRUE;
462 }
463
464 /* Forward 5-3 wavelet transform in 2-D. */
465 /* </summary> */
opj_dwt_encode(opj_tcd_tilecomp_t * tilec)466 OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
467 {
468 return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1);
469 }
470
471 /* <summary> */
472 /* Inverse 5-3 wavelet transform in 2-D. */
473 /* </summary> */
opj_dwt_decode(opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)474 OPJ_BOOL opj_dwt_decode(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) {
475 return opj_dwt_decode_tile(tilec, numres, &opj_dwt_decode_1);
476 }
477
478
479 /* <summary> */
480 /* Get gain of 5-3 wavelet transform. */
481 /* </summary> */
opj_dwt_getgain(OPJ_UINT32 orient)482 OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) {
483 if (orient == 0)
484 return 0;
485 if (orient == 1 || orient == 2)
486 return 1;
487 return 2;
488 }
489
490 /* <summary> */
491 /* Get norm of 5-3 wavelet. */
492 /* </summary> */
opj_dwt_getnorm(OPJ_UINT32 level,OPJ_UINT32 orient)493 OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) {
494 return opj_dwt_norms[orient][level];
495 }
496
497 /* <summary> */
498 /* Forward 9-7 wavelet transform in 2-D. */
499 /* </summary> */
opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)500 OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
501 {
502 return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1_real);
503 }
504
505 /* <summary> */
506 /* Get gain of 9-7 wavelet transform. */
507 /* </summary> */
opj_dwt_getgain_real(OPJ_UINT32 orient)508 OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) {
509 (void)orient;
510 return 0;
511 }
512
513 /* <summary> */
514 /* Get norm of 9-7 wavelet. */
515 /* </summary> */
opj_dwt_getnorm_real(OPJ_UINT32 level,OPJ_UINT32 orient)516 OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) {
517 return opj_dwt_norms_real[orient][level];
518 }
519
opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp,OPJ_UINT32 prec)520 void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) {
521 OPJ_UINT32 numbands, bandno;
522 numbands = 3 * tccp->numresolutions - 2;
523 for (bandno = 0; bandno < numbands; bandno++) {
524 OPJ_FLOAT64 stepsize;
525 OPJ_UINT32 resno, level, orient, gain;
526
527 resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
528 orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
529 level = tccp->numresolutions - 1 - resno;
530 gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2));
531 if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
532 stepsize = 1.0;
533 } else {
534 OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
535 stepsize = (1 << (gain)) / norm;
536 }
537 opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
538 }
539 }
540
541 /* <summary> */
542 /* Determine maximum computed resolution level for inverse wavelet transform */
543 /* </summary> */
opj_dwt_max_resolution(opj_tcd_resolution_t * restrict r,OPJ_UINT32 i)544 OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i) {
545 OPJ_UINT32 mr = 0;
546 OPJ_UINT32 w;
547 while( --i ) {
548 ++r;
549 if( mr < ( w = (OPJ_UINT32)(r->x1 - r->x0) ) )
550 mr = w ;
551 if( mr < ( w = (OPJ_UINT32)(r->y1 - r->y0) ) )
552 mr = w ;
553 }
554 return mr ;
555 }
556
557 /* <summary> */
558 /* Inverse wavelet transform in 2-D. */
559 /* </summary> */
opj_dwt_decode_tile(opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres,DWT1DFN dwt_1D)560 OPJ_BOOL opj_dwt_decode_tile(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) {
561 opj_dwt_t h;
562 opj_dwt_t v;
563
564 opj_tcd_resolution_t* tr = tilec->resolutions;
565
566 OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - tr->x0); /* width of the resolution level computed */
567 OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - tr->y0); /* height of the resolution level computed */
568
569 OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
570
571 h.mem = (OPJ_INT32*)
572 opj_aligned_malloc(opj_dwt_max_resolution(tr, numres) * sizeof(OPJ_INT32));
573 if (! h.mem){
574 return OPJ_FALSE;
575 }
576
577 v.mem = h.mem;
578
579 while( --numres) {
580 OPJ_INT32 * restrict tiledp = tilec->data;
581 OPJ_UINT32 j;
582
583 ++tr;
584 h.sn = (OPJ_INT32)rw;
585 v.sn = (OPJ_INT32)rh;
586
587 rw = (OPJ_UINT32)(tr->x1 - tr->x0);
588 rh = (OPJ_UINT32)(tr->y1 - tr->y0);
589
590 h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
591 h.cas = tr->x0 % 2;
592
593 for(j = 0; j < rh; ++j) {
594 opj_dwt_interleave_h(&h, &tiledp[j*w]);
595 (dwt_1D)(&h);
596 memcpy(&tiledp[j*w], h.mem, rw * sizeof(OPJ_INT32));
597 }
598
599 v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
600 v.cas = tr->y0 % 2;
601
602 for(j = 0; j < rw; ++j){
603 OPJ_UINT32 k;
604 opj_dwt_interleave_v(&v, &tiledp[j], (OPJ_INT32)w);
605 (dwt_1D)(&v);
606 for(k = 0; k < rh; ++k) {
607 tiledp[k * w + j] = v.mem[k];
608 }
609 }
610 }
611 opj_aligned_free(h.mem);
612 return OPJ_TRUE;
613 }
614
opj_v4dwt_interleave_h(opj_v4dwt_t * restrict w,OPJ_FLOAT32 * restrict a,OPJ_INT32 x,OPJ_INT32 size)615 void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size){
616 OPJ_FLOAT32* restrict bi = (OPJ_FLOAT32*) (w->wavelet + w->cas);
617 OPJ_INT32 count = w->sn;
618 OPJ_INT32 i, k;
619
620 for(k = 0; k < 2; ++k){
621 if ( count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0 ) {
622 /* Fast code path */
623 for(i = 0; i < count; ++i){
624 OPJ_INT32 j = i;
625 bi[i*8 ] = a[j];
626 j += x;
627 bi[i*8 + 1] = a[j];
628 j += x;
629 bi[i*8 + 2] = a[j];
630 j += x;
631 bi[i*8 + 3] = a[j];
632 }
633 }
634 else {
635 /* Slow code path */
636 for(i = 0; i < count; ++i){
637 OPJ_INT32 j = i;
638 bi[i*8 ] = a[j];
639 j += x;
640 if(j >= size) continue;
641 bi[i*8 + 1] = a[j];
642 j += x;
643 if(j >= size) continue;
644 bi[i*8 + 2] = a[j];
645 j += x;
646 if(j >= size) continue;
647 bi[i*8 + 3] = a[j]; /* This one*/
648 }
649 }
650
651 bi = (OPJ_FLOAT32*) (w->wavelet + 1 - w->cas);
652 a += w->sn;
653 size -= w->sn;
654 count = w->dn;
655 }
656 }
657
opj_v4dwt_interleave_v(opj_v4dwt_t * restrict v,OPJ_FLOAT32 * restrict a,OPJ_INT32 x,OPJ_INT32 nb_elts_read)658 void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read){
659 opj_v4_t* restrict bi = v->wavelet + v->cas;
660 OPJ_INT32 i;
661
662 for(i = 0; i < v->sn; ++i){
663 memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
664 }
665
666 a += v->sn * x;
667 bi = v->wavelet + 1 - v->cas;
668
669 for(i = 0; i < v->dn; ++i){
670 memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
671 }
672 }
673
674 #ifdef __SSE__
675
opj_v4dwt_decode_step1_sse(opj_v4_t * w,OPJ_INT32 count,const __m128 c)676 void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c){
677 __m128* restrict vw = (__m128*) w;
678 OPJ_INT32 i;
679 /* 4x unrolled loop */
680 for(i = 0; i < count >> 2; ++i){
681 *vw = _mm_mul_ps(*vw, c);
682 vw += 2;
683 *vw = _mm_mul_ps(*vw, c);
684 vw += 2;
685 *vw = _mm_mul_ps(*vw, c);
686 vw += 2;
687 *vw = _mm_mul_ps(*vw, c);
688 vw += 2;
689 }
690 count &= 3;
691 for(i = 0; i < count; ++i){
692 *vw = _mm_mul_ps(*vw, c);
693 vw += 2;
694 }
695 }
696
opj_v4dwt_decode_step2_sse(opj_v4_t * l,opj_v4_t * w,OPJ_INT32 k,OPJ_INT32 m,__m128 c)697 void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c){
698 __m128* restrict vl = (__m128*) l;
699 __m128* restrict vw = (__m128*) w;
700 OPJ_INT32 i;
701 __m128 tmp1, tmp2, tmp3;
702 tmp1 = vl[0];
703 for(i = 0; i < m; ++i){
704 tmp2 = vw[-1];
705 tmp3 = vw[ 0];
706 vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
707 tmp1 = tmp3;
708 vw += 2;
709 }
710 vl = vw - 2;
711 if(m >= k){
712 return;
713 }
714 c = _mm_add_ps(c, c);
715 c = _mm_mul_ps(c, vl[0]);
716 for(; m < k; ++m){
717 __m128 tmp = vw[-1];
718 vw[-1] = _mm_add_ps(tmp, c);
719 vw += 2;
720 }
721 }
722
723 #else
724
opj_v4dwt_decode_step1(opj_v4_t * w,OPJ_INT32 count,const OPJ_FLOAT32 c)725 void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c)
726 {
727 OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
728 OPJ_INT32 i;
729 for(i = 0; i < count; ++i){
730 OPJ_FLOAT32 tmp1 = fw[i*8 ];
731 OPJ_FLOAT32 tmp2 = fw[i*8 + 1];
732 OPJ_FLOAT32 tmp3 = fw[i*8 + 2];
733 OPJ_FLOAT32 tmp4 = fw[i*8 + 3];
734 fw[i*8 ] = tmp1 * c;
735 fw[i*8 + 1] = tmp2 * c;
736 fw[i*8 + 2] = tmp3 * c;
737 fw[i*8 + 3] = tmp4 * c;
738 }
739 }
740
opj_v4dwt_decode_step2(opj_v4_t * l,opj_v4_t * w,OPJ_INT32 k,OPJ_INT32 m,OPJ_FLOAT32 c)741 void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c)
742 {
743 OPJ_FLOAT32* restrict fl = (OPJ_FLOAT32*) l;
744 OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
745 OPJ_INT32 i;
746 for(i = 0; i < m; ++i){
747 OPJ_FLOAT32 tmp1_1 = fl[0];
748 OPJ_FLOAT32 tmp1_2 = fl[1];
749 OPJ_FLOAT32 tmp1_3 = fl[2];
750 OPJ_FLOAT32 tmp1_4 = fl[3];
751 OPJ_FLOAT32 tmp2_1 = fw[-4];
752 OPJ_FLOAT32 tmp2_2 = fw[-3];
753 OPJ_FLOAT32 tmp2_3 = fw[-2];
754 OPJ_FLOAT32 tmp2_4 = fw[-1];
755 OPJ_FLOAT32 tmp3_1 = fw[0];
756 OPJ_FLOAT32 tmp3_2 = fw[1];
757 OPJ_FLOAT32 tmp3_3 = fw[2];
758 OPJ_FLOAT32 tmp3_4 = fw[3];
759 fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
760 fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
761 fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
762 fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
763 fl = fw;
764 fw += 8;
765 }
766 if(m < k){
767 OPJ_FLOAT32 c1;
768 OPJ_FLOAT32 c2;
769 OPJ_FLOAT32 c3;
770 OPJ_FLOAT32 c4;
771 c += c;
772 c1 = fl[0] * c;
773 c2 = fl[1] * c;
774 c3 = fl[2] * c;
775 c4 = fl[3] * c;
776 for(; m < k; ++m){
777 OPJ_FLOAT32 tmp1 = fw[-4];
778 OPJ_FLOAT32 tmp2 = fw[-3];
779 OPJ_FLOAT32 tmp3 = fw[-2];
780 OPJ_FLOAT32 tmp4 = fw[-1];
781 fw[-4] = tmp1 + c1;
782 fw[-3] = tmp2 + c2;
783 fw[-2] = tmp3 + c3;
784 fw[-1] = tmp4 + c4;
785 fw += 8;
786 }
787 }
788 }
789
790 #endif
791
792 /* <summary> */
793 /* Inverse 9-7 wavelet transform in 1-D. */
794 /* </summary> */
opj_v4dwt_decode(opj_v4dwt_t * restrict dwt)795 void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt)
796 {
797 OPJ_INT32 a, b;
798 if(dwt->cas == 0) {
799 if(!((dwt->dn > 0) || (dwt->sn > 1))){
800 return;
801 }
802 a = 0;
803 b = 1;
804 }else{
805 if(!((dwt->sn > 0) || (dwt->dn > 1))) {
806 return;
807 }
808 a = 1;
809 b = 0;
810 }
811 #ifdef __SSE__
812 opj_v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(opj_K));
813 opj_v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(opj_c13318));
814 opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_delta));
815 opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_gamma));
816 opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_beta));
817 opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_alpha));
818 #else
819 opj_v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, opj_K);
820 opj_v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, opj_c13318);
821 opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_delta);
822 opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_gamma);
823 opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_beta);
824 opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_alpha);
825 #endif
826 }
827
828
829 /* <summary> */
830 /* Inverse 9-7 wavelet transform in 2-D. */
831 /* </summary> */
opj_dwt_decode_real(opj_tcd_tilecomp_t * restrict tilec,OPJ_UINT32 numres)832 OPJ_BOOL opj_dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, OPJ_UINT32 numres)
833 {
834 opj_v4dwt_t h;
835 opj_v4dwt_t v;
836
837 opj_tcd_resolution_t* res = tilec->resolutions;
838
839 OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */
840 OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */
841
842 OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
843
844 h.wavelet = (opj_v4_t*) opj_aligned_malloc((opj_dwt_max_resolution(res, numres)+5) * sizeof(opj_v4_t));
845 v.wavelet = h.wavelet;
846
847 while( --numres) {
848 OPJ_FLOAT32 * restrict aj = (OPJ_FLOAT32*) tilec->data;
849 OPJ_UINT32 bufsize = (OPJ_UINT32)((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0));
850 OPJ_INT32 j;
851
852 h.sn = (OPJ_INT32)rw;
853 v.sn = (OPJ_INT32)rh;
854
855 ++res;
856
857 rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */
858 rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */
859
860 h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
861 h.cas = res->x0 % 2;
862
863 for(j = (OPJ_INT32)rh; j > 3; j -= 4) {
864 OPJ_INT32 k;
865 opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
866 opj_v4dwt_decode(&h);
867
868 for(k = (OPJ_INT32)rw; --k >= 0;){
869 aj[k ] = h.wavelet[k].f[0];
870 aj[k+(OPJ_INT32)w ] = h.wavelet[k].f[1];
871 aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
872 aj[k+(OPJ_INT32)w*3] = h.wavelet[k].f[3];
873 }
874
875 aj += w*4;
876 bufsize -= w*4;
877 }
878
879 if (rh & 0x03) {
880 OPJ_INT32 k;
881 j = rh & 0x03;
882 opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
883 opj_v4dwt_decode(&h);
884 for(k = (OPJ_INT32)rw; --k >= 0;){
885 switch(j) {
886 case 3: aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
887 case 2: aj[k+(OPJ_INT32)w ] = h.wavelet[k].f[1];
888 case 1: aj[k ] = h.wavelet[k].f[0];
889 }
890 }
891 }
892
893 v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
894 v.cas = res->y0 % 2;
895
896 aj = (OPJ_FLOAT32*) tilec->data;
897 for(j = (OPJ_INT32)rw; j > 3; j -= 4){
898 OPJ_UINT32 k;
899
900 opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, 4);
901 opj_v4dwt_decode(&v);
902
903 for(k = 0; k < rh; ++k){
904 memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
905 }
906 aj += 4;
907 }
908
909 if (rw & 0x03){
910 OPJ_UINT32 k;
911
912 j = rw & 0x03;
913
914 opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, j);
915 opj_v4dwt_decode(&v);
916
917 for(k = 0; k < rh; ++k){
918 memcpy(&aj[k*w], &v.wavelet[k], (size_t)j * sizeof(OPJ_FLOAT32));
919 }
920 }
921 }
922
923 opj_aligned_free(h.wavelet);
924 return OPJ_TRUE;
925 }
926